JP4303379B2 - Manufacturing method of semiconductor substrate - Google Patents

Manufacturing method of semiconductor substrate Download PDF

Info

Publication number
JP4303379B2
JP4303379B2 JP27535199A JP27535199A JP4303379B2 JP 4303379 B2 JP4303379 B2 JP 4303379B2 JP 27535199 A JP27535199 A JP 27535199A JP 27535199 A JP27535199 A JP 27535199A JP 4303379 B2 JP4303379 B2 JP 4303379B2
Authority
JP
Japan
Prior art keywords
layer
substrate
silicon substrate
compound semiconductor
gallium arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27535199A
Other languages
Japanese (ja)
Other versions
JP2001102668A (en
Inventor
元一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27535199A priority Critical patent/JP4303379B2/en
Publication of JP2001102668A publication Critical patent/JP2001102668A/en
Application granted granted Critical
Publication of JP4303379B2 publication Critical patent/JP4303379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はIII-V族化合物半導体層を含むエピタキシャル層をシリコン基板上に転写する半導体基板の製造方法に関する。
【0002】
【従来の技術】
シリコン基板に化合物半導体を形成することで、化合物半導体の優れた受発光特性と高周波特性を兼ね備えた多機能のデバイスがシリコン基板上に構築できる。シリコン基板はGaAs基板やInP基板に比べて機械的強度が高く、デバイス試作プロセスにおける基板の割れ、カケに起因する歩留りの低下を大幅に改善できる。また、安価で大口径のシリコン基板を用いたデバイスは、GaAs基板やInP基板を用いたデバイスよりも、デバイスの製造コストを大幅に低減することができる。このため、化合物半導体をシリコン基板に直接成長する技術や化合物半導体基板をシリコン基板に貼り合せる手法が提案されている。
【0003】
例えばシリコン基板上にGaAsを直接成長する場合には、MBE(Molecular Beam Epitaxy)法やMOCVD(Metal Organic Chemical Vapor Deposition)法による2段階成長法で形成する。つまり、850℃〜1000℃でシリコン基板表面の自然酸化膜を除去し、400℃前後へ冷却した後、非晶質GaAsを100〜1000Å成膜する。その後500〜700℃に昇温してGaAs層をエピタキシャル成長する。
【0004】
また、特開平6−90061号公報や特開平9−63951号公報に示されているように、シリコン基板と化合物半導体基板の表面同志を接合し、異種基板を接合する手法が提案されている。
【0005】
ここで、図4を用いて、シリコン基板への化合物半導体エピタキシャル層の転写技術を説明する。
【0006】
まず、図4(a)に示すように、ガリウム砒素基板1にガリウム砒素から成るバッファ層2を0.1〜2μm程度成長する。
【0007】
次に、選択エッチング層としてアルミニウム砒素層3を100〜1000Å成長し、デバイスの活性層を含むエピタキシャル層4を成長する。
【0008】
次に、図4(b)に示すように、シリコン基板5を接触させて水素ガス中でアニールすることで貼り合わせる。
【0009】
その後、図4(c)に示すように、ふっ酸系のエッチング液でアルミニウム砒素層3をエッチングする。これによりデバイスの活性層を含むエピタキシャル層4をシリコン基板5に転写することができる。
【0010】
【発明が解決しようとする課題】
ところが、シリコン基板5上に化合物半導体4を直接エピタキシャル成長する場合、基板5とエピタキシャル層4の格子定数や熱膨張係数の差に起因して、化合物半導体エピタキシャル層に1×106個cm-2以上の結晶欠陥が発生する。そのため、レーザーダイオード、発光ダイオード、あるいは電界効果トランジスター等を形成しても、その特性と信頼性が大幅に低下し、実用に供することができないという問題があった。
【0011】
また、シリコン基板5に化合物半導体層4を貼り合せた後に、化合物半導体基板1から化合物半導体エピタキシャル層4をリフトオフ法で転写するには、エッチング液による選択エッチング層3の除去が必要であり、エッチング液の回り込み距離に制限されて、数cm角の大きさでの貼り合せが限界であり、特開平6−90061号公報や特開平9−63951号公報に示される手法では、4インチや6インチの大口径基板への転写は不可能であるという問題があった。
【0012】
さらに、貼り合せた後に、シリコン基板5と化合物半導体層4との熱膨張係数や格子定数の差に起因する転位がデバイスの活性層を含む化合物半導体エピタキシャル層4に発生するという問題があった。
【0013】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る半導体基板の製造方法では、表面に溝が形成された、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板上にAlGa1−yAs(0.9≦y≦1.0)層とIII-V族化合物半導体層をエピタキシャル成長して、前記溝に対応する部位を除去するように前記Al Ga 1−y As層(0.9≦y≦1.0)と前記III-V族化合物半導体層をメサエッチングする工程と、シリコン基板に非晶質ガリウム砒素層を形成し、該非晶質ガリウム砒素層上にInGa1−xAs(0.05≦x≦0.6)層をエピタキシャル成長する工程と、前記III-V族化合物半導体層と前記InGa1−xAs(0.05≦x≦0.6)層とを貼り合わせた後、前記AlGa1−yAs(0.9≦y≦1.0)層をエッチングして、前記ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板を除去する工程と、を具備する
【0014】
また、上記半導体基板の製造方法では、前記シリコン基板上のInxGa1-xAs(0.05≦x≦0.6)層の転位密度が1×108cm-2以下であり、かつこのシリコン基板の反りによる曲率半径が70m以上であることが望ましい。
【0016】
さらに、上記半導体基板の製造方法では、
前記シリコン基板の前記溝に対応する部位に溝を形成して前記InGa1−xAs(0.05≦x≦0.6)層を形成することが望ましい。
【0017】
【作用】
上記のように製造すると、デバイスの活性層を含む化合物半導体エピタキシャル層は、InxGa1-xAs(0.05≦x≦0.6)層をエピタキシャル成長したシリコン基板に転写され、InxGa1-xAs(0.05≦x≦0.6)層が緩衝層として働くため、デバイスの活性層を含む化合物半導体層に転位が導入されることがない。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づき詳細に説明する。
【0019】
図1は、請求項1に係る半導体基板の製造方法の一実施形態を示す図であり、6はゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板、7はガリウム砒素やインジウム燐等からなるバッファ層、8はGaAs、AlGaAs、InAlGaP、InGaAs、InAlAs、InP、GaAsP、InAlGaAs、またはInAlGaAsPなどのIII-V族化合物半導体から成るデバイスの活性層を含むエピタキシャル層、9はシリコン基板5にエピタキシャル成長されたInxGa1-xAs(0.05≦x≦0.6)層である。
【0020】
Si基板上に、直接、GaAsなどのIII-V族化合物半導体を成長する場合と比較して、Ge基板、GaAs基板、InP基板には転位密度の低い(1×104個cm-2以下)結晶の良好なIII-V族化合物半導体が形成できる。また、AlAsの選択エッチング層を挿入してバッファ層を形成できるのも基板は、Ge基板、GaAs基板、InP基板に限定される。
【0021】
まず、周知のMBE法やMOCVD法等の気相エピタキシャル法で、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板6にガリウム砒素やインジウム燐等からなるバッファ層7を成長する。
【0022】
その後、選択エッチング層となるAlyGa1-yAs(0.9≦y≦1.0)層3を100〜1000Å成長する。この膜厚は、図1(b)に示すメサ領域の幅Wが広い程、厚く設定しないと、後に示す選択エッチングが困難となる。たとえばメサ領域の幅Wが100μmの時は、200Å以上で選択エッチングが可能となる。
【0023】
選択エッチング層となるAlyGa1-yAs(0.9≦y≦1.0)層3の成長の後、III-V族化合物半導体から成るデバイスの活性層を含むエピタキシャル層8を成長して、エピタキシャル装置から取り出す。
【0024】
その後、図1(b)に示すように、通常のフォトリソグラフィとエッチングで幅Wを持つメサ領域を形成する。この際、エッチングは硫酸/過酸化水素水/水の混合液によるウエットエッチングまたは塩素ガスのプラズマによる気相エッチングで行ない、AlyGa1-yAs(0.9≦y≦1.0)層3の側壁が完全に露出するまでエッチングを行なう。
【0025】
次に、図1(c)に示すように、InxGa1-xAs(0.05≦x≦0.6)層9がエピタキシャル成長されたシリコン基板5と貼り合せ、貼り合せ面を10〜50Paの圧力で加圧して、水素雰囲気の200〜500℃で30分から数時間のアニールを行なうことで、貼り合せを完了する。
【0026】
なお、InxGa1-xAs(0.05≦x≦0.6)層9のシリコン基板5へのエピタキシャル成長は、MBE法やMOCVD法による2段階成長法で行う。つまり、850〜1000℃でシリコン基板5の表面の自然酸化膜等を除去し、400℃前後に冷却した後に非晶質ガリウム砒素層を100〜1000Å成膜する。
【0027】
その後、500〜600℃に昇温しInxGa1-xAs(0.05≦x≦0.6)層9を成長する。
【0028】
インジウム組成が0.6より大きい場合は単結晶薄膜を成長することができず、良好な貼り合せ強度が得られない。つまり、InxGa1-xAs(0.05≦x≦0.6)層9の転位密度を1ラ108cm-2以下にすることで、良好な貼り合せ強度を得ることができる。インジウムの組成が0.05より小さくなると、シリコン基板の橇による曲率半径が70mより小さくなり、シリコン基板の橇が大きくなり、均一な貼り合わせができなくなる。
【0029】
InxGa1-xAs(0.05≦x≦0.6)層9が成長されたシリコン基板5の反りによる曲率半径は70m以上が必要で、70mより小さい場合、貼り合せ強度の低下やクラックの発生等が生じ、所望の半導体基板を得ることができない。
【0030】
次に、図1(d)に示すように、ふっ酸系のエッチング液でAlyGa1-yAs(0.9≦y≦1.0)層3を除去し、デバイスの活性層を含むエピタキシャル層8をInxGa1-xAs(0.05≦x≦0.6)層9を介してシリコン基板5に転写する。
【0031】
図2は、請求項3に係る半導体基板の製造方法を示す図である。図2(a)に示すように、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板6にあらかじめ数十〜数百μmの溝10を形成しておくと、図2(d)におけるAlyGa1-yAs(0.9≦y≦1.0)層3の選択的除去を短時間にかつより均一に行なうことができる。すなわち、エピタキシャル層8または基板6の溝10を通してふっ酸系のエッチング液を供給してアルミニウム砒素層3を選択的にエッチング除去できるため、4インチ以上の大口径基板6でのエピタキシャル層の転写が可能となる。
【0032】
図3は、請求項4に係る半導体基板の製造方法を示す図である。図3(c)に示すように、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板6にあらかじめ数十〜数百μmの溝‘10を形成しておき、かつあらかじめ溝10が形成されたシリコン基板5にInxGa1-xAs(0.05≦x≦0.6)層9がエピタキシャル成長された基板と貼り合せることにより、図3(d)におけるAlyGa1-yAs(0.9≦y≦1.0)層3の選択的除去を短時間にかつより均一に行なうことができる。すなわち、エピタキシャル層8または基板6の溝10を通してふっ酸系のエッチング液を供給してアルミニウム砒素層3を選択的にエッチング除去できるため、4インチ以上の大口径基板でのエピタキシャル層の転写が可能となる。
【0033】
【発明の効果】
以上のように、請求項1に係る半導体基板の製造方法によれば、シリコン基板に転位欠陥の少ないIII-V族化合物半導体エピタキシャル層が形成できる。これにより、機械的強度が高く、熱伝導性の良好なシリコン基板の特徴を活かした化合物半導体レーザー、フォトダイオード等のアレイや、化合物半導体の電界効果トランジスター等による高速電子素子を一体化したデバイスを製造することができる。
【0034】
また、メサ部や基板溝を通して選択エッチングを行なうことができ、4インチ以上の大口径基板においてもIII-V族化合物半導体エピタキシャル層を均一にシリコン基板に転写することができる。
【0035】
さらに、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板は繰り返して使用できるため、素子を安価に製造することができる。
【図面の簡単な説明】
【図1】請求項1に係る半導体基板の一実施形態を示す図である。
【図2】請求項3に係る半導体基板の製造方法の一実施形態を示す図である。
【図3】請求項4に係る半導体基板の製造方法の一実施形態を示す図である。
【図4】従来の半導体基板の製造方法を示す図である。
【符号の鋭明】
1:ガリウム砒素基板、2:バッファ層、3:AlyGa1-yAs(0.9≦y≦1.0)選択エッチング層、4:デバイスの活性層を含むエピタキシャル層、5:シリコン基板、6:ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板、7:バッファ層、8:デバイスの活性層を含むエピタキシャル層、9:InxGa1-xAs(0.05≦x≦0.6)層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor substrate in which an epitaxial layer including a III-V compound semiconductor layer is transferred onto a silicon substrate.
[0002]
[Prior art]
By forming a compound semiconductor on a silicon substrate, a multi-functional device having both excellent light emitting and receiving characteristics and high frequency characteristics of the compound semiconductor can be constructed on the silicon substrate. A silicon substrate has higher mechanical strength than a GaAs substrate or an InP substrate, and can significantly improve yield reduction due to substrate cracking and chipping in a device trial manufacturing process. In addition, an inexpensive device using a large-diameter silicon substrate can significantly reduce the manufacturing cost of the device compared to a device using a GaAs substrate or an InP substrate. For this reason, techniques for directly growing a compound semiconductor on a silicon substrate and techniques for bonding the compound semiconductor substrate to the silicon substrate have been proposed.
[0003]
For example, when GaAs is directly grown on a silicon substrate, it is formed by a two-step growth method using MBE (Molecular Beam Epitaxy) method or MOCVD (Metal Organic Chemical Vapor Deposition) method. That is, the natural oxide film on the surface of the silicon substrate is removed at 850 ° C. to 1000 ° C., cooled to about 400 ° C., and then amorphous GaAs is formed to a thickness of 100 to 1000 mm. Thereafter, the temperature is raised to 500 to 700 ° C. to epitaxially grow the GaAs layer.
[0004]
Further, as disclosed in Japanese Patent Laid-Open Nos. 6-90061 and 9-63951, there has been proposed a technique in which the surfaces of a silicon substrate and a compound semiconductor substrate are bonded to each other and different substrates are bonded.
[0005]
Here, a technique for transferring a compound semiconductor epitaxial layer to a silicon substrate will be described with reference to FIG.
[0006]
First, as shown in FIG. 4A, a buffer layer 2 made of gallium arsenide is grown on the gallium arsenide substrate 1 by about 0.1 to 2 μm.
[0007]
Next, an aluminum arsenic layer 3 is grown as a selective etching layer by 100 to 1000 mm, and an epitaxial layer 4 including an active layer of the device is grown.
[0008]
Next, as shown in FIG. 4B, bonding is performed by bringing the silicon substrate 5 into contact and annealing in hydrogen gas.
[0009]
Thereafter, as shown in FIG. 4C, the aluminum arsenic layer 3 is etched with a hydrofluoric acid-based etchant. Thereby, the epitaxial layer 4 including the active layer of the device can be transferred to the silicon substrate 5.
[0010]
[Problems to be solved by the invention]
However, when the compound semiconductor 4 is directly epitaxially grown on the silicon substrate 5, 1 × 10 6 cm −2 or more exists in the compound semiconductor epitaxial layer due to the difference in lattice constant and thermal expansion coefficient between the substrate 5 and the epitaxial layer 4. This causes crystal defects. Therefore, even if a laser diode, a light emitting diode, a field effect transistor, or the like is formed, there is a problem that the characteristics and reliability are greatly lowered and it cannot be put to practical use.
[0011]
Further, in order to transfer the compound semiconductor epitaxial layer 4 from the compound semiconductor substrate 1 by the lift-off method after the compound semiconductor layer 4 is bonded to the silicon substrate 5, it is necessary to remove the selective etching layer 3 with an etching solution. Bonding at a size of several centimeters is limited by the wraparound distance of the liquid, and in the method disclosed in Japanese Patent Laid-Open Nos. 6-90061 and 9-63951, 4 inches or 6 inches. There is a problem that transfer onto a large-diameter substrate is impossible.
[0012]
Furthermore, after bonding, there has been a problem that dislocations due to differences in thermal expansion coefficient and lattice constant between the silicon substrate 5 and the compound semiconductor layer 4 occur in the compound semiconductor epitaxial layer 4 including the active layer of the device.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problem, in the method for manufacturing a semiconductor substrate according to claim 1, Al y Ga 1-y As (0) is formed on a germanium substrate, a gallium arsenide substrate, or an indium phosphide substrate having a groove formed on the surface. .9 ≦ y ≦ 1.0) layer and III-V compound semiconductor layer are epitaxially grown, and the Al y Ga 1-y As layer (0.9 ≦ y ≦ 1) is removed so as to remove the portion corresponding to the groove. 1.0) and a step of mesa-etching the III-V compound semiconductor layer , an amorphous gallium arsenide layer is formed on the silicon substrate, and In x Ga 1-x As (0) is formed on the amorphous gallium arsenide layer. .05 ≦ x ≦ 0.6) layer is epitaxially grown, and the III-V group compound semiconductor layer and the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer are bonded together. after the Al y Ga 1-y As ( .9 ≦ y ≦ 1.0) layer by etching, comprising the the steps of removing the germanium substrate, a gallium arsenide substrate or an indium phosphide substrate.
[0014]
In the method for manufacturing a semiconductor substrate, a dislocation density of an In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer on the silicon substrate is 1 × 10 8 cm −2 or less, and It is desirable that the radius of curvature due to warpage of the silicon substrate is 70 m or more.
[0016]
Furthermore, in the manufacturing method of the semiconductor substrate,
It is desirable to form a groove in a portion corresponding to the groove of the silicon substrate to form the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer.
[0017]
[Action]
When prepared as described above, the compound semiconductor epitaxial layers including an active layer of the device, the transferred In x Ga 1-x As ( 0.05 ≦ x ≦ 0.6) layer on a silicon substrate epitaxially grown, an In x Ga Since the 1-x As (0.05 ≦ x ≦ 0.6) layer functions as a buffer layer, dislocations are not introduced into the compound semiconductor layer including the active layer of the device.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a diagram showing an embodiment of a method for manufacturing a semiconductor substrate according to claim 1, wherein 6 is a germanium substrate, gallium arsenide substrate, or indium phosphorus substrate, and 7 is a buffer layer made of gallium arsenide, indium phosphorus, or the like. , 8 is an epitaxial layer including an active layer of a device made of a III-V group compound semiconductor such as GaAs, AlGaAs, InAlGaP, InGaAs, InAlAs, InP, GaAsP, InAlGaAs, or InAlGaAsP, and 9 is an epitaxially grown In on the silicon substrate 5. x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer.
[0020]
Compared to the case of directly growing a III-V group compound semiconductor such as GaAs on a Si substrate, the Ge substrate, GaAs substrate, and InP substrate have a lower dislocation density (1 × 10 4 cm −2 or less). A group III-V compound semiconductor with good crystal can be formed. Further, the buffer layer can be formed by inserting a selective etching layer of AlAs, and the substrate is limited to a Ge substrate, a GaAs substrate, and an InP substrate.
[0021]
First, a buffer layer 7 made of gallium arsenide, indium phosphide, or the like is grown on a germanium substrate, a gallium arsenide substrate, or an indium phosphide substrate 6 by a well-known vapor phase epitaxial method such as MBE or MOCVD.
[0022]
Thereafter, an Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) layer 3 serving as a selective etching layer is grown by 100 to 1000 mm. If the film thickness is not set to be thicker as the width W of the mesa region shown in FIG. 1B is wider, the selective etching described later becomes difficult. For example, when the width W of the mesa region is 100 μm, selective etching can be performed at 200 mm or more.
[0023]
After the growth of the Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) layer 3 serving as a selective etching layer, an epitaxial layer 8 including an active layer of a device made of a III-V compound semiconductor is grown. And take out from the epitaxial apparatus.
[0024]
Thereafter, as shown in FIG. 1B, a mesa region having a width W is formed by normal photolithography and etching. At this time, the etching is performed by wet etching using a mixed solution of sulfuric acid / hydrogen peroxide solution / water or vapor phase etching using plasma of chlorine gas, and an Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) layer. Etching is performed until the side wall 3 is completely exposed.
[0025]
Next, as shown in FIG. 1 (c), In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9 is bonded to a silicon substrate 5 is epitaxially grown, the bonding surface 10 Bonding is completed by pressurizing at a pressure of 50 Pa and annealing at 200 to 500 ° C. in a hydrogen atmosphere for 30 minutes to several hours.
[0026]
Incidentally, the epitaxial growth of the silicon substrate 5 in the In x Ga 1-x As ( 0.05 ≦ x ≦ 0.6) layer 9 is carried out in two step growth method according to the MBE method and the MOCVD method. That is, a natural oxide film or the like on the surface of the silicon substrate 5 is removed at 850 to 1000 ° C., and after cooling to around 400 ° C., an amorphous gallium arsenide layer is formed to a thickness of 100 to 1000 mm.
[0027]
Thereafter, the temperature is raised to 500 to 600 ° C., and an In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9 is grown.
[0028]
When the indium composition is larger than 0.6, a single crystal thin film cannot be grown, and good bonding strength cannot be obtained. That is, when the dislocation density of the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9 is 1 ra 10 8 cm −2 or less, a good bonding strength can be obtained. When the composition of indium is smaller than 0.05, the radius of curvature due to the wrinkles of the silicon substrate is smaller than 70 m, the wrinkles of the silicon substrate are increased, and uniform bonding cannot be performed.
[0029]
The curvature radius due to warpage of the silicon substrate 5 on which the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9 is grown needs to be 70 m or more. Generation of cracks or the like occurs, and a desired semiconductor substrate cannot be obtained.
[0030]
Next, as shown in FIG. 1D, the Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) layer 3 is removed with a hydrofluoric acid-based etchant to include the active layer of the device. The epitaxial layer 8 is transferred to the silicon substrate 5 via the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9.
[0031]
FIG. 2 is a view showing a method for manufacturing a semiconductor substrate according to a third aspect. As shown in FIG. 2A, when a groove 10 of several tens to several hundreds of μm is formed in advance on a germanium substrate, a gallium arsenide substrate, or an indium phosphorous substrate 6, Al y Ga 1 in FIG. -y As (0.9 ≦ y ≦ 1.0) The selective removal of the layer 3 can be performed in a short time and more uniformly. That is, since the aluminum arsenic layer 3 can be selectively removed by supplying a hydrofluoric acid-based etchant through the epitaxial layer 8 or the groove 10 of the substrate 6, the transfer of the epitaxial layer on the large-diameter substrate 6 of 4 inches or more can be performed. It becomes possible.
[0032]
FIG. 3 is a view showing a method for manufacturing a semiconductor substrate according to a fourth aspect. As shown in FIG. 3 (c), a silicon substrate on which a groove ′ of several tens to several hundreds μm is formed in advance on a germanium substrate, a gallium arsenide substrate, or an indium phosphorous substrate 6 and the grooves 10 are formed in advance. 5 is bonded to a substrate on which an In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer 9 is epitaxially grown, whereby Al y Ga 1-y As (0.9) in FIG. ≦ y ≦ 1.0) The selective removal of the layer 3 can be performed in a short time and more uniformly. That is, since the aluminum arsenic layer 3 can be selectively removed by supplying a hydrofluoric acid-based etching solution through the epitaxial layer 8 or the groove 10 of the substrate 6, the epitaxial layer can be transferred on a large-diameter substrate of 4 inches or more. It becomes.
[0033]
【The invention's effect】
As described above, according to the semiconductor substrate manufacturing method of the first aspect, a III-V compound semiconductor epitaxial layer with few dislocation defects can be formed on the silicon substrate. This makes it possible to integrate devices such as compound semiconductor lasers, photodiodes, and other high-speed electronic elements such as compound semiconductor field effect transistors that utilize the characteristics of silicon substrates with high mechanical strength and good thermal conductivity. Can be manufactured.
[0034]
Further, selective etching can be performed through the mesa portion and the substrate groove, and the III-V compound semiconductor epitaxial layer can be uniformly transferred to the silicon substrate even in a large-diameter substrate of 4 inches or more.
[0035]
Furthermore, since a germanium substrate, a gallium arsenide substrate, or an indium phosphorus substrate can be used repeatedly, the device can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of a semiconductor substrate according to claim 1;
FIG. 2 is a diagram showing an embodiment of a method for manufacturing a semiconductor substrate according to claim 3;
FIG. 3 is a diagram showing an embodiment of a method for producing a semiconductor substrate according to claim 4;
FIG. 4 is a view showing a conventional method for manufacturing a semiconductor substrate.
[Sharpness of sign]
1: Gallium arsenide substrate, 2: Buffer layer, 3: Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) selective etching layer, 4: Epitaxial layer including device active layer, 5: Silicon substrate , 6: germanium substrate, gallium arsenide substrate, or indium phosphide substrate, 7: buffer layer, 8: epitaxial layer including the active layer of the device, 9: In x Ga 1-x As (0.05 ≦ x ≦ 0.6) )layer

Claims (3)

表面に溝が形成された、ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板上にAlGa1−yAs(0.9≦y≦1.0)層とIII-V族化合物半導体層をエピタキシャル成長して、前記溝に対応する部位を除去するように前記Al Ga 1−y As層(0.9≦y≦1.0)と前記III-V族化合物半導体層をメサエッチングする工程と、
シリコン基板に非晶質ガリウム砒素層を形成し、該非晶質ガリウム砒素層上にInGa1−xAs(0.05≦x≦0.6)層をエピタキシャル成長する工程と、
前記III-V族化合物半導体層と前記InGa1−xAs(0.05≦x≦0.6)層とを貼り合わせた後、前記AlGa1−yAs(0.9≦y≦1.0)層をエッチングして、前記ゲルマニウム基板、ガリウム砒素基板、またはインジウム燐基板を除去する工程と、を具備する半導体基板の製造方法。
Epitaxial growth of Al y Ga 1-y As (0.9 ≦ y ≦ 1.0) layer and III-V group compound semiconductor layer on germanium substrate, gallium arsenide substrate, or indium phosphide substrate with grooves formed on the surface And mesa-etching the Al y Ga 1-y As layer (0.9 ≦ y ≦ 1.0) and the group III-V compound semiconductor layer so as to remove a portion corresponding to the groove ;
Forming an amorphous gallium arsenide layer on a silicon substrate, and epitaxially growing an In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer on the amorphous gallium arsenide layer;
After the III-V group compound semiconductor layer and the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer are bonded together, the Al y Ga 1-y As (0.9 ≦ y) ≦ 1.0) layer by etching, the germanium substrate, a gallium arsenide substrate or a method of manufacturing a semiconductor substrate comprising the steps, a removing an indium phosphide substrate.
前記シリコン基板上のInGa1−xAs(0.05≦x≦0.6)層の転位密度が1×108cm-2以下であり、かつこのシリコン基板の反りによる曲率半径が70m以上であることを特徴とする請求項1に記載の半導体基板の製造方法。The dislocation density of the In x Ga 1-x As (0.05 ≦ x ≦ 0.6) layer on the silicon substrate is 1 × 10 8 cm −2 or less, and the radius of curvature due to warpage of the silicon substrate is 70 m. The method for manufacturing a semiconductor substrate according to claim 1, wherein the method is as described above. 前記シリコン基板の前記溝に対応する部位に溝を形成して前記InA groove is formed in a portion corresponding to the groove of the silicon substrate, and the In x GaGa 1−x1-x As(0.05≦x≦0.6)層を形成することを特徴とする請求項1または請求項2に記載の半導体基板の製造方法。The semiconductor substrate manufacturing method according to claim 1, wherein an As (0.05 ≦ x ≦ 0.6) layer is formed.
JP27535199A 1999-09-28 1999-09-28 Manufacturing method of semiconductor substrate Expired - Fee Related JP4303379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27535199A JP4303379B2 (en) 1999-09-28 1999-09-28 Manufacturing method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27535199A JP4303379B2 (en) 1999-09-28 1999-09-28 Manufacturing method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2001102668A JP2001102668A (en) 2001-04-13
JP4303379B2 true JP4303379B2 (en) 2009-07-29

Family

ID=17554273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27535199A Expired - Fee Related JP4303379B2 (en) 1999-09-28 1999-09-28 Manufacturing method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4303379B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488702B2 (en) * 2003-07-30 2010-06-23 株式会社沖データ Manufacturing method of semiconductor device
JP2005108943A (en) * 2003-09-29 2005-04-21 Oki Data Corp Semiconductor wafer and method for manufacturing semiconductor device using same
JP2005159071A (en) * 2003-11-27 2005-06-16 Ricoh Co Ltd Semiconductor device, its manufacturing method and optical transmission system
KR100718875B1 (en) * 2005-02-24 2007-05-17 (주)실리콘화일 Image sensor manufacturing method and the image sensor therefrom
JP2008053250A (en) 2006-08-22 2008-03-06 Sony Corp Process for fabricating semiconductor device
JP2011103466A (en) * 2010-11-09 2011-05-26 Oki Data Corp Semiconductor wafer, and method of manufacturing semiconductor device using the same
EP3288067B1 (en) 2016-08-25 2021-10-27 IMEC vzw Method for transferring a group iii-iv semiconductor active layer
CN111711063A (en) * 2020-06-30 2020-09-25 度亘激光技术(苏州)有限公司 Substrate, semiconductor device and manufacturing method of semiconductor device
JP7354943B2 (en) 2020-07-03 2023-10-03 信越半導体株式会社 Junction type semiconductor photodetector and method for manufacturing the junction type semiconductor photodetector
JP2022013255A (en) * 2020-07-03 2022-01-18 信越半導体株式会社 Manufacturing method for junction type semiconductor wafer, and manufacturing method for junction type semiconductor element
CN112397374B (en) * 2020-11-17 2024-01-16 湖南汇思光电科技有限公司 Growth method of low threading dislocation density silicon-based gallium arsenide layer based on nano-cavity
CN116299856B (en) * 2023-05-19 2023-07-28 中国科学院半导体研究所 Silicon optical coupling structure

Also Published As

Publication number Publication date
JP2001102668A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
US9449868B2 (en) Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9147733B2 (en) Method for the reuse of gallium nitride epitaxial substrates
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
CA2412999C (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP4286527B2 (en) Method for manufacturing gallium nitride substrate
JP4303379B2 (en) Manufacturing method of semiconductor substrate
KR101021775B1 (en) Method for epitaxial growth and epitaxial layer structure using the method
CN112397374A (en) Low threading dislocation density silicon-based gallium arsenide layer growth method based on nano-cavities
JP4638000B2 (en) Manufacturing method of semiconductor substrate
US8263984B2 (en) Process for making a GaN substrate
JP2001007394A (en) Semiconductor substrate, manufacture thereof and semiconductor light emitting element
Hu et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate
JP3667124B2 (en) Method for manufacturing compound semiconductor substrate
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JP2560601B2 (en) Method for manufacturing metal film / compound semiconductor laminated structure on elemental semiconductor substrate
JP2011049565A (en) Method of manufacturing semiconductor substrate
JP2706592B2 (en) Crystal substrate manufacturing method
JP2560600B2 (en) Method for manufacturing metal film / compound semiconductor laminated structure on elemental semiconductor substrate
JP2001156400A (en) Method for forming compound semiconductor substrate
JP2001217455A (en) Semiconductor substrate, method of forming the same and light emitting device
KR100407955B1 (en) method for forming GaAs on fusion substrate
WO2023069771A1 (en) Methods for fabricating a vertical cavity surface emitting laser
JP2002246279A (en) Semiconductor substrate, its producing method and semiconductor device
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JP2001111173A (en) Substrate for semiconductor device and method of fabrication thereof and semiconductor device using that substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees