JP3667124B2 - Method for manufacturing compound semiconductor substrate - Google Patents

Method for manufacturing compound semiconductor substrate Download PDF

Info

Publication number
JP3667124B2
JP3667124B2 JP33812498A JP33812498A JP3667124B2 JP 3667124 B2 JP3667124 B2 JP 3667124B2 JP 33812498 A JP33812498 A JP 33812498A JP 33812498 A JP33812498 A JP 33812498A JP 3667124 B2 JP3667124 B2 JP 3667124B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
semiconductor layer
layer
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33812498A
Other languages
Japanese (ja)
Other versions
JP2000164514A (en
Inventor
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33812498A priority Critical patent/JP3667124B2/en
Publication of JP2000164514A publication Critical patent/JP2000164514A/en
Application granted granted Critical
Publication of JP3667124B2 publication Critical patent/JP3667124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Si基板の(100)面上にガリウム砒素(GaAs)、アルミニウムガリウム砒素(AlGaAs)、インジウムガリウム砒素(InGaAs)、窒化ガリウム(GaN)および窒化インジウムガリウム(InGaN)などの化合物半導体層を形成する化合物半導体基板の製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
GaAsやInPなどの化合物半導体基板は、機械的に脆く、取り扱いが難しい。また、良質で大面積の結晶基板が得られにくいなどの問題がある。この問題を解決するため、安価で、大面積で、高強度のSi基板上にGaAsなどの化合物半導体を結晶成長させる方法が提案されている。
【0003】
しかしながら、Si基板上にGaAsなどの化合物半導体を結晶成長させる際に結晶欠陥密度が1×109 個cm-2以上になるなど問題が生じる。この問題は、SiとGaAsなどの化合物半導体との間の格子定数差および熱膨張係数差に起因している。このようなSiとGaAsなどの化合物半導体との格子定数差および熱膨張係数差による応力および結晶欠陥を吸収するために、低温成長中間層を挿入するいわゆる2段階成長法やそれを改良した成長法として熱サイクルアニール法および超格子法などにより結晶欠陥密度を1×106 個cm-2程度まで低減させることができる。しかしながら、1×106 個cm-2程度の結晶欠陥密度では、キャリヤ寿命の低下により、半導体装置の特性に悪影響を与える。
【0004】
近年、Si基板上のGaAsの結晶欠陥密度を1×104 個cm-2程度まで低減させる方法として、図5(a)(b)に示すように、Si基板1上にホログラフィックフォトリソグラフィにより形成した200nm間隔ののこぎり歯状のグレーティング2を形成し、その基板1上にGaAs膜3を2段階成長法によりエピタキシャル成長させる方法が報告されている(Appl. Phys. Lett. 59,2418(991))。
【0005】
つまり、200nm間隔ののこぎり歯状のパターン3を形成するためのフォトリソグラフィは、Si基板1上にパターンとしてSi3 4 膜(不図示)を形成して反射防止膜(不図示)とフォトレジスト膜(不図示)を形成し、このフォトレジスト膜を200nmピッチに露光してパターニングした後に、このフォトレジストパターンを利用して、SiOx 膜を40°斜め蒸着する。次いで、反射防止膜をO2 ガスでRIEエッチングした後、Si3 4 膜をCF4 ガスでRIEエッチングする。次いで、NH4 OH:H2 2 :H2 Oでフォトレジストと反射防止膜を除去した後、残ったSi3 4 膜をマスクとしてシリコン基板の表面を異方性エッチングしてのこぎり歯状のV溝2を形成する。
【0006】
しかしながら、上記のようにホログラフィックフォトリソグラフィ法による200nmののこぎり歯状のV溝2を形成するグラフォエピタキシャル成長は、Siの異方性エッチングであるために、V溝の形状が限定され、表面テクスチャの形状制御が困難で、光の波長に起因するフォトプロセス上の限界により、テクスチャの微細化に限界(>200nm)があり、また非常に複雑な工程を必要とするため、化合物半導体基板の低コストが図れない。
【0007】
本発明は、このような従来技術の問題点に鑑みてなされたものであり、反射防止膜の蒸着や特殊なフォトリソグラフィが必要で工程が煩雑であるという従来技術の問題点を解消した化合物半導体基板の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る化合物半導体基板の製造方法では、Si基板上に50nm〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層上にさらに複数の化合物半導体層を成長する工程を含むことを特徴とする。
【0009】
また、請求項2に係る化合物半導体基板の製造方法では、Si基板上に50nm〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層を鏡面研磨する工程と、この鏡面研磨された化合物半導体層上にさらに第二の化合物半導体層を成長する工程を含むことを特徴とする。
【0010】
【作用】
請求項1に係る発明では、RIE法により、Si基板の(100)面に短時間で均一な形状に制御された表面テクスチャを形成した後、MBE法あるいはMOCVD法により、通常の2段階成長法を用いて、化合物半導体から成るバッファ層をグラフォエピタキシャル成長させて熱処理を行った後に、目的の化合物半導体層を形成することにより、転位密度が1×104 個cm-2程度の良好な目的の化合物半導体層を得るものである。
【0011】
また、請求項2に係る発明では、目的の化合物半導体層の最表面を鏡面研磨した後、単数あるいは複数の化合物半導体層を形成することによって、表面粗さを低減する。
【0012】
【発明の実施の形態】
以下、各請求項に係る発明の実施形態を添付図面に基づいて説明する。
請求項1に係る化合物半導体基板の製造方法では、図1(a)(b)に示すように、Si基板1の(100)面上にRIE法により表面テクスチャ10を設け、そのSi基板1上にGaAs層2〜4を有機金属化合物(例えばトリメチルガリウム(以下、TMGと略す))とアルシンを用いる気相成長法(例えばMOCVD法)によりエピタキシャル成長させる場合について説明する。
【0013】
先ず、Si基板1を洗浄後、弗酸(HF)に浸すことにより表面自然酸化膜を除去する。そして、水洗し、リンサードライヤにより乾燥した後、直ちにこの基板をRIE装置にセットする。
【0014】
本発明では、Si基板1上に微細な表面テクスチャをSolar Energy Materials and Solar Cells 43,237(1977) に報告されているようなRIE法により形成する。RIEのエッチングガスとして、Ar、CF4 、Cl2 、N2 O、O2 などを用いる。例えば、図2(a)(b)のように、Cl2 の流量は1〜100sccmとして、Si基板1上に高さ50〜500nmのピラミッド型あるいは柱状の表面テクスチャ10を形成する。表面テクスチャ10の形状は、Cl2 の流量およびエッチング時間により制御できる。
【0015】
このようにして、Si基板1上に表面テクスチャ10を形成した後、このSi基板1をMOCVD装置にセットする。
【0016】
そして、図1および図4のように、最初に、工程1として、水素とアルシンガスを流しながら、850℃、10分で表面テクスチャ10を形成したSi基板1の熱処理を行い、表面の自然酸化膜を除去する。次に、工程2として、350〜400℃で水素やアルシンガスを流しながらTMGを加え、アモルファスの第1バッファ層2を10〜30nm成長させる。次に、工程3として、水素やアルシンガスを流しながら550〜750℃まで昇温することにより、第1バッファ層を結晶化させ、さらにTMGを加えて第2バッファ層3を1〜3μm成長させる。さらに必要に応じて、転位密度を低減させるために工程4のように、水素やアルシンガスを流しながら350℃と750℃の4回の熱サイクルアニールにより第1バッファ層2および第2バッファ層3を熱処理する。そして、工程5として、さらに結晶性のよい目的とするGaAs層4を1〜3μm成長する。このようにして、転位密度が104 cm-2程度の目的とするGaAs層4をSi基板上に成長させることができる。
【0017】
表面テクスチャ10の高さは、100〜300nmの範囲が最適であり、目的とするGaAs層4中の転位密度は1×104 個cm-2程度にできる。
【0018】
表面テクスチャ10の高さの範囲を50〜500nmとしたが、この範囲以外では、グラフォエピタキシャル成長せずに通常のへテロエピタキシャル成長になり、転位密度の低減が図れない。
【0019】
次に、請求項2に係る化合物半導体基板の製造方法を説明する。なお、Si基板上に高さが50〜500nmの等方性表面テクスチャを形成する工程、Si基板上にIII −V族化合物半導体バッファ層を成長する工程、およびバッファ層上に化合物半導体層を成長する工程は、請求項1に係る化合物半導体基板の製造方法と同様である。
【0020】
請求項2に係る化合物半導体基板の製造方法では、図4に示すように、バッファ層2、3上に化合物半導体層4を1〜3μm成長した後に、この化合物半導体層4を0.5〜1μm鏡面研磨する。この研磨は例えば砥粒としてコロイダルシリカを用いてポリウレタンのクロス上で研磨する。研磨圧力は200g/cm2 、pH10程度のアルカリ液に調整した研磨砥粒を供給しながら化学機械研磨を行なう。
【0021】
鏡面研磨された化合物半導体層4上に、さらに目的とする第二の化合物半導体層5を成長する。この場合は、ホモエピタキシャル成長となり、転位密度が低減することはない。
【0022】
【発明の効果】
以上のように、請求項1に係る化合物半導体基板の製造方法によれば、Si基板上に高さが50〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層上にさらに複数の化合物半導体層を成長する工程を有することから、Si基板上に転位密度1×104 個cm-2程度の化合物半導体を成長できる利点があり、低コストで大面積のSi基板上に化合物半導体を形成できるため、高周波半導体装置、発光装置および高効率太陽電池の低コスト化を図ることができる。
【0023】
また、請求項2に係る化合物半導体基板の製造方法によれば、Si基板上に高さが50〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層を鏡面研磨する工程と、この鏡面研磨された化合物半導体層上にさらに第二の化合物半導体層を成長する工程を有することから、結晶欠陥密度を1×104 個cm-2程度まで低減するとともに、表面粗さの標準偏差が13.0mmまで低減した化合物半導体のデバイス層を形成できる。
【図面の簡単な説明】
【図1】請求項1に係る化合物半導体基板の製造方法を示す図である。
【図2】請求項1に係る化合物半導体基板の製造に用いられるシリコン基板を示す図である。
【図3】請求項1に係る化合物半導体基板の製造工程と基板温度を示す図である。
【図4】請求項2に係る化合物半導体基板の製造方法を示す図である。
【図5】従来の化合物半導体基板の製造方法を示す図である。
【符号の説明】
1‥‥‥Si基板(100)、2‥‥‥第1バッファ層、3‥‥‥第2バッファ層、4‥‥‥化合物半導体層、5‥‥‥第二の化合物半導体層
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a compound semiconductor layer such as gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium gallium arsenide (InGaAs), gallium nitride (GaN), and indium gallium nitride (InGaN) on the (100) surface of a Si substrate. The present invention relates to a method for manufacturing a compound semiconductor substrate that forms a substrate.
[0002]
[Background Art and Problems to be Solved by the Invention]
Compound semiconductor substrates such as GaAs and InP are mechanically fragile and difficult to handle. In addition, there is a problem that it is difficult to obtain a crystal substrate having a high quality and a large area. In order to solve this problem, a method for crystal growth of a compound semiconductor such as GaAs on an inexpensive, large-area, high-strength Si substrate has been proposed.
[0003]
However, when a compound semiconductor such as GaAs is grown on a Si substrate, there is a problem that the crystal defect density is 1 × 10 9 cm −2 or more. This problem is caused by a difference in lattice constant and thermal expansion coefficient between Si and a compound semiconductor such as GaAs. In order to absorb the stress and crystal defects caused by the difference in lattice constant and thermal expansion coefficient between compound semiconductors such as Si and GaAs, a so-called two-stage growth method in which a low-temperature growth intermediate layer is inserted, or an improved growth method thereof. As described above, the crystal defect density can be reduced to about 1 × 10 6 cm −2 by a thermal cycle annealing method or a superlattice method. However, a crystal defect density of about 1 × 10 6 cm −2 adversely affects the characteristics of the semiconductor device due to a decrease in carrier lifetime.
[0004]
In recent years, as a method of reducing the crystal defect density of GaAs on a Si substrate to about 1 × 10 4 cm −2 , holographic photolithography is performed on the Si substrate 1 as shown in FIGS. There has been reported a method in which the formed sawtooth-like grating 2 with an interval of 200 nm is formed, and a GaAs film 3 is epitaxially grown on the substrate 1 by a two-step growth method (Appl. Phys. Lett. 59, 2418 (991)). ).
[0005]
That is, in the photolithography for forming the sawtooth pattern 3 with an interval of 200 nm, an Si 3 N 4 film (not shown) is formed on the Si substrate 1 as a pattern, and an antireflection film (not shown) and the photoresist are formed. A film (not shown) is formed, this photoresist film is exposed and patterned at a pitch of 200 nm, and then the SiO x film is obliquely deposited by 40 ° using this photoresist pattern. Next, after the RIE etching of the antireflection film with O 2 gas, the Si 3 N 4 film is RIE etched with CF 4 gas. Next, the photoresist and the antireflection film are removed with NH 4 OH: H 2 O 2 : H 2 O, and then the surface of the silicon substrate is anisotropically etched using the remaining Si 3 N 4 film as a mask to form a sawtooth shape. The V-groove 2 is formed.
[0006]
However, as described above, the grapho epitaxial growth for forming the 200 nm sawtooth V-groove 2 by the holographic photolithography method is an anisotropic etching of Si. It is difficult to control the shape of the substrate, and there is a limit to finer texture (> 200 nm) due to the limitations of the photo process due to the wavelength of light, and a very complicated process is required. Cost cannot be achieved.
[0007]
The present invention has been made in view of such problems of the prior art, and is a compound semiconductor that eliminates the problems of the prior art that the deposition of an antireflection film and special photolithography are necessary and the process is complicated. An object is to provide a method for manufacturing a substrate.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the method of manufacturing a compound semiconductor substrate according to claim 1, a step of forming an isotropic surface texture of 50 nm to 500 nm on a Si substrate, and a III-V group compound on the Si substrate The method includes a step of growing a semiconductor buffer layer, a step of growing a compound semiconductor layer on the buffer layer, and a step of growing a plurality of compound semiconductor layers on the compound semiconductor layer.
[0009]
In the method for manufacturing a compound semiconductor substrate according to claim 2, a step of forming an isotropic surface texture of 50 nm to 500 nm on the Si substrate, and a III-V group compound semiconductor buffer layer are grown on the Si substrate. A step of growing a compound semiconductor layer on the buffer layer, a step of mirror polishing the compound semiconductor layer, and a step of growing a second compound semiconductor layer on the mirror-polished compound semiconductor layer. It is characterized by including.
[0010]
[Action]
In the invention according to claim 1, after forming a surface texture controlled in a uniform shape in a short time on the (100) surface of the Si substrate by the RIE method, an ordinary two-step growth method is performed by the MBE method or the MOCVD method. After forming a buffer layer made of a compound semiconductor using grapho-epitaxial growth and performing a heat treatment, a target compound semiconductor layer is formed, whereby a dislocation density of about 1 × 10 4 cm −2 is obtained. A compound semiconductor layer is obtained.
[0011]
In the invention according to claim 2, the surface roughness is reduced by forming one or more compound semiconductor layers after mirror-polishing the outermost surface of the target compound semiconductor layer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the invention according to each claim will be described with reference to the accompanying drawings.
In the method for manufacturing a compound semiconductor substrate according to claim 1, as shown in FIGS. 1A and 1B, a surface texture 10 is provided on the (100) surface of the Si substrate 1 by the RIE method. Next, a case where the GaAs layers 2 to 4 are epitaxially grown by a vapor phase growth method (for example, MOCVD method) using an organometallic compound (for example, trimethylgallium (hereinafter abbreviated as TMG)) and arsine will be described.
[0013]
First, after cleaning the Si substrate 1, the surface natural oxide film is removed by immersing in hydrofluoric acid (HF). Then, after washing with water and drying with a rinser dryer, the substrate is immediately set on the RIE apparatus.
[0014]
In the present invention, a fine surface texture is formed on the Si substrate 1 by the RIE method as reported in Solar Energy Materials and Solar Cells 43,237 (1977). Ar, CF 4 , Cl 2 , N 2 O, O 2 or the like is used as an etching gas for RIE. For example, as shown in FIGS. 2A and 2B, the flow rate of Cl 2 is set to 1 to 100 sccm, and a pyramidal or columnar surface texture 10 having a height of 50 to 500 nm is formed on the Si substrate 1. The shape of the surface texture 10 can be controlled by the flow rate of Cl 2 and the etching time.
[0015]
After forming the surface texture 10 on the Si substrate 1 in this way, the Si substrate 1 is set in an MOCVD apparatus.
[0016]
Then, as shown in FIGS. 1 and 4, first, as a process 1, while flowing hydrogen and arsine gas, the Si substrate 1 on which the surface texture 10 is formed at 850 ° C. for 10 minutes is subjected to heat treatment, and a natural oxide film on the surface Remove. Next, as step 2, TMG is added while flowing hydrogen or arsine gas at 350 to 400 ° C. to grow the amorphous first buffer layer 2 to 10 to 30 nm. Next, as Step 3, the temperature is raised to 550 to 750 ° C. while flowing hydrogen or arsine gas to crystallize the first buffer layer, and TMG is further added to grow the second buffer layer 3 to 1 to 3 μm. Further, if necessary, the first buffer layer 2 and the second buffer layer 3 are formed by four thermal cycle annealings at 350 ° C. and 750 ° C. while flowing hydrogen or arsine gas as in step 4 in order to reduce the dislocation density. Heat treatment. Then, as step 5, a target GaAs layer 4 having better crystallinity is grown by 1 to 3 μm. In this way, the target GaAs layer 4 having a dislocation density of about 10 4 cm −2 can be grown on the Si substrate.
[0017]
The height of the surface texture 10 is optimally in the range of 100 to 300 nm, and the target dislocation density in the GaAs layer 4 can be about 1 × 10 4 cm −2 .
[0018]
The range of the height of the surface texture 10 is 50 to 500 nm. However, outside this range, normal heteroepitaxial growth occurs without graphoepitaxial growth, and the dislocation density cannot be reduced.
[0019]
Next, a method for manufacturing a compound semiconductor substrate according to claim 2 will be described. The step of forming an isotropic surface texture having a height of 50 to 500 nm on the Si substrate, the step of growing a III-V compound semiconductor buffer layer on the Si substrate, and the growth of the compound semiconductor layer on the buffer layer The step of performing is the same as the method of manufacturing a compound semiconductor substrate according to claim 1.
[0020]
In the method for manufacturing a compound semiconductor substrate according to claim 2, as shown in FIG. 4, after the compound semiconductor layer 4 is grown on the buffer layers 2 and 1 to 3 μm, the compound semiconductor layer 4 is grown to 0.5 to 1 μm. Mirror finish. For example, the polishing is performed on a polyurethane cloth using colloidal silica as abrasive grains. Polishing pressure is 200 g / cm 2 , and chemical mechanical polishing is performed while supplying abrasive grains adjusted to an alkaline solution having a pH of about 10.
[0021]
A target second compound semiconductor layer 5 is further grown on the mirror-polished compound semiconductor layer 4. In this case, homoepitaxial growth occurs, and the dislocation density does not decrease.
[0022]
【The invention's effect】
As mentioned above, according to the manufacturing method of the compound semiconductor substrate which concerns on Claim 1, the process of forming an isotropic surface texture whose height is 50-500 nm on Si substrate, and III-V on this Si substrate A step of growing a group compound semiconductor buffer layer, a step of growing a compound semiconductor layer on the buffer layer, and a step of growing a plurality of compound semiconductor layers on the compound semiconductor layer. There is an advantage that a compound semiconductor having a dislocation density of about 1 × 10 4 cm −2 can be grown, and a compound semiconductor can be formed on a large-area Si substrate at a low cost. Cost reduction can be achieved.
[0023]
According to the method for manufacturing a compound semiconductor substrate according to claim 2, a step of forming an isotropic surface texture having a height of 50 to 500 nm on the Si substrate, and a III-V group compound semiconductor on the Si substrate. A step of growing a buffer layer; a step of growing a compound semiconductor layer on the buffer layer; a step of mirror polishing the compound semiconductor layer; and a second compound semiconductor layer further on the mirror-polished compound semiconductor layer Therefore, it is possible to form a compound semiconductor device layer in which the crystal defect density is reduced to about 1 × 10 4 cm −2 and the standard deviation of the surface roughness is reduced to 13.0 mm.
[Brief description of the drawings]
1 is a view showing a method for manufacturing a compound semiconductor substrate according to claim 1;
FIG. 2 is a view showing a silicon substrate used for manufacturing a compound semiconductor substrate according to claim 1;
FIG. 3 is a diagram showing a manufacturing process and a substrate temperature of a compound semiconductor substrate according to claim 1;
4 is a view showing a method of manufacturing a compound semiconductor substrate according to claim 2. FIG.
FIG. 5 is a diagram showing a conventional method of manufacturing a compound semiconductor substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Si substrate (100), 2 ... 1st buffer layer, 3 ... 2nd buffer layer, 4 ... Compound semiconductor layer, 5 ... 2nd compound semiconductor layer

Claims (2)

Si基板上に高さが50〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層上にさらに複数の化合物半導体層を成長する工程を含むことを特徴とする化合物半導体基板の製造方法。Forming an isotropic surface texture having a height of 50 to 500 nm on the Si substrate; growing a III-V group compound semiconductor buffer layer on the Si substrate; and forming a compound semiconductor layer on the buffer layer. A method for producing a compound semiconductor substrate, comprising a step of growing and a step of further growing a plurality of compound semiconductor layers on the compound semiconductor layer. Si基板上に高さが50〜500nmの等方性表面テクスチャを形成する工程と、このSi基板上にIII −V族化合物半導体バッファ層を成長する工程と、このバッファ層上に化合物半導体層を成長する工程と、この化合物半導体層を鏡面研磨する工程と、この鏡面研磨された化合物半導体層上にさらに第二の化合物半導体層を成長する工程を含むことを特徴とする化合物半導体基板の製造方法。Forming an isotropic surface texture having a height of 50 to 500 nm on the Si substrate; growing a III-V group compound semiconductor buffer layer on the Si substrate; and forming a compound semiconductor layer on the buffer layer. A method of manufacturing a compound semiconductor substrate, comprising: a step of growing; a step of mirror polishing the compound semiconductor layer; and a step of further growing a second compound semiconductor layer on the mirror-polished compound semiconductor layer. .
JP33812498A 1998-11-27 1998-11-27 Method for manufacturing compound semiconductor substrate Expired - Fee Related JP3667124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33812498A JP3667124B2 (en) 1998-11-27 1998-11-27 Method for manufacturing compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33812498A JP3667124B2 (en) 1998-11-27 1998-11-27 Method for manufacturing compound semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2000164514A JP2000164514A (en) 2000-06-16
JP3667124B2 true JP3667124B2 (en) 2005-07-06

Family

ID=18315148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33812498A Expired - Fee Related JP3667124B2 (en) 1998-11-27 1998-11-27 Method for manufacturing compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3667124B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651161B2 (en) * 2000-07-03 2011-03-16 宣彦 澤木 Semiconductor device and manufacturing method thereof
JP4872246B2 (en) * 2005-06-10 2012-02-08 住友電気工業株式会社 Semi-insulating GaAs substrate and epitaxial substrate
KR20110065446A (en) * 2008-10-02 2011-06-15 스미또모 가가꾸 가부시키가이샤 Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
JP5267176B2 (en) * 2009-02-04 2013-08-21 富士電機株式会社 Thin film formation method
JP5418922B2 (en) * 2011-10-05 2014-02-19 住友電気工業株式会社 Compound semiconductor substrate, epitaxial substrate, compound semiconductor substrate manufacturing method, and epitaxial substrate manufacturing method
US20160315224A1 (en) * 2014-01-28 2016-10-27 Sharp Kabushiki Kaisha Nitride semiconductor element

Also Published As

Publication number Publication date
JP2000164514A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
US6864160B2 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
CA2412999C (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP3886341B2 (en) Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
JP5416212B2 (en) Device formation by epitaxial layer growth
US20020069816A1 (en) Methods of fabricating gallium nitride layers on textured silicon substrates, and gallium nitride semiconductor structures fabricated thereby
JP4651207B2 (en) Semiconductor substrate and manufacturing method thereof
JP2010147166A (en) Method for manufacturing semiconductor element
JP2001122693A (en) Ground substrate for crystal growth and method of producing substrate using the same
EP2532022B1 (en) Method for manufacturing gallium nitride wafer
JP2013251304A (en) Laminate and laminate manufacturing method
WO2001059819A1 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby
JP3441415B2 (en) Manufacturing method of semiconductor crystal
JP3667124B2 (en) Method for manufacturing compound semiconductor substrate
JP4303379B2 (en) Manufacturing method of semiconductor substrate
JPH09129651A (en) Thermal annealing method and device of sapphire substrate
US20210175077A1 (en) Semipolar or nonpolar group iii-nitride substrates
KR100323710B1 (en) method for fabricating GaN semiconductor laser substate
JP3350855B2 (en) Method for manufacturing group III nitride semiconductor substrate
EP0603780B1 (en) Method of growing compound semiconductor on silicon wafer
JP4233894B2 (en) Manufacturing method of semiconductor single crystal
JP3805703B2 (en) Method for producing group 3-5 compound semiconductor and group 3-5 compound semiconductor
EP1540713A1 (en) Defect reduction in semiconductor materials
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
TW200425303A (en) Recycling by mechanical means of a wafer comprising a multi-layer structure after taking-off a thin layer thereof
CN114678264A (en) Preparation method of silicon-based III-V semiconductor material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees