JP2011049565A - Method of manufacturing semiconductor substrate - Google Patents

Method of manufacturing semiconductor substrate Download PDF

Info

Publication number
JP2011049565A
JP2011049565A JP2010196799A JP2010196799A JP2011049565A JP 2011049565 A JP2011049565 A JP 2011049565A JP 2010196799 A JP2010196799 A JP 2010196799A JP 2010196799 A JP2010196799 A JP 2010196799A JP 2011049565 A JP2011049565 A JP 2011049565A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
substrate
semiconductor substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010196799A
Other languages
Japanese (ja)
Inventor
Ken Watanuki
憲 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010196799A priority Critical patent/JP2011049565A/en
Publication of JP2011049565A publication Critical patent/JP2011049565A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a high-reliability semiconductor substrate without causing damage of a compound semiconductor layer or transition of a crystal by influence due to natural oxidation in etching a selection etching layer. <P>SOLUTION: The method of manufacturing a high-reliability semiconductor substrate includes: a lamination step of sequentially laminating, on a compound semiconductor substrate 8 by an epitaxial growth method, a selection etching layer 3, a stress relaxing layer 9 and a compound semiconductor layer 4 having Young's modulus larger than that of the stress relaxing layer 9 and formed of a group III-V compound semiconductor; an etching step of etching and removing the selection etching layer 3, the stress relaxing layer 9 and the compound semiconductor layer 4 to be formed into a predetermined pattern; a joining step of sticking the compound semiconductor substrate 8 with the selection etching layer 3, the stress relaxing layer 9 and the compound semiconductor layer 4 laminated thereon by joining the upper surface of the compound semiconductor layer 4 to a principal surface of a Si substrate 5 by a direct joining method; and a separation step of separating the Si substrate 5 from the compound semiconductor substrate 8 by further etching and removing the selection etching layer 3 left in the etching step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はシリコン(Si)基板上に化合物半導体層を積層した半導体基板の製造方法と半導体基板に関し、特に化合物半導体層をシリコン基板上に転写して半導体基板を作製する半導体基板の製造方法および半導体基板に関する。   The present invention relates to a method for manufacturing a semiconductor substrate in which a compound semiconductor layer is stacked on a silicon (Si) substrate and a semiconductor substrate, and more particularly, to a method for manufacturing a semiconductor substrate and a semiconductor for manufacturing a semiconductor substrate by transferring a compound semiconductor layer onto a silicon substrate. Regarding the substrate.

従来、ガリウム砒素(GaAs),インジウム燐(InP)などの化合物半導体基板は、機械的に脆く、取り扱いが難しく、また良質で大面積の結晶基板が得られにくいという問題もあり、安価で大面積で強度の大きなSi基板上にガリウム砒素等の化合物半導体層をエピタキシャル成長する方法が提案されている。このようなSi基板上に化合物半導体層を形成して成る半導体基板は、超LSI技術によって形成できるSiデバイスと、化合物半導体を用いた高速低消費電力型電子デバイス、発光ダイオード(LED)、半導体レーザ(LD)等の化合物半導体デバイスとの集積化が図れる技術として注目されている。   Conventionally, compound semiconductor substrates such as gallium arsenide (GaAs) and indium phosphide (InP) are mechanically fragile, difficult to handle, and difficult to obtain a high-quality, large-area crystal substrate. A method of epitaxially growing a compound semiconductor layer such as gallium arsenide on a high-strength Si substrate has been proposed. A semiconductor substrate formed by forming a compound semiconductor layer on such a Si substrate includes a Si device that can be formed by VLSI technology, a high-speed and low-power consumption electronic device using a compound semiconductor, a light emitting diode (LED), and a semiconductor laser. It has been attracting attention as a technology that can be integrated with compound semiconductor devices such as (LD).

しかしながら、Si基板上にGaAs等の化合物半導体をエピタキシャル成長させた場合、良好な特性を持つ化合物半導体デバイスを形成することが困難である。これは、Si基板と化合物半導体のエピタキシャル層との格子定数差、熱膨張係数差により、エピタキシャル層表面に1×106個cm-2以上の結晶欠陥が発生するためである。この結晶欠陥に起因して、Si基板上に形成した化合物半導体デバイスは、電気的特性、発光素子の場合の発光特性、受光素子の場合の受光特性、信頼性が大幅に低下する。 However, when a compound semiconductor such as GaAs is epitaxially grown on a Si substrate, it is difficult to form a compound semiconductor device having good characteristics. This is because crystal defects of 1 × 10 6 cm −2 or more are generated on the surface of the epitaxial layer due to the difference in lattice constant and thermal expansion coefficient between the Si substrate and the compound semiconductor epitaxial layer. Due to the crystal defects, the compound semiconductor device formed on the Si substrate has a significant decrease in electrical characteristics, light emission characteristics in the case of a light emitting element, light reception characteristics in the case of a light receiving element, and reliability.

そこで、Si基板上に欠陥の少ない化合物半導体層を形成する方法として、Si基板と、化合物半導体基板上に形成された化合物半導体層との表面同士を直接接合し、異種基板を接合する方法が開示されている(従来例1;特開平6−90061号公報、従来例2;特開平9−63951号公報とする)。   Therefore, as a method for forming a compound semiconductor layer with few defects on a Si substrate, a method is disclosed in which the surfaces of the Si substrate and the compound semiconductor layer formed on the compound semiconductor substrate are directly bonded to each other to bond different types of substrates. (Conventional Example 1; Japanese Patent Laid-Open No. 6-90061, Conventional Example 2; Japanese Patent Laid-Open No. 9-63951).

上記従来例1に記載されている、化合物半導体基板上に形成した化合物半導体層をSi基板に転写する技術を図3を用いて説明する。まず、同図(a)に示すように、MBE(Molecular Beam Epitaxy)法またはMOCVD(Metal Organic Chemical Vapor Deposition)法を用いて、GaAs基板11上にGaAsから成るバッファ層12を0.1〜2μm程度、次に選択エッチング層としてGaAlAs層13を1000Å程度成長し、デバイスの活性層を含むエピタキシャル層14を成長する。   A technique for transferring a compound semiconductor layer formed on a compound semiconductor substrate described in the above-mentioned conventional example 1 to a Si substrate will be described with reference to FIG. First, as shown in FIG. 2A, a buffer layer 12 made of GaAs is formed on a GaAs substrate 11 by 0.1-2 μm using MBE (Molecular Beam Epitaxy) method or MOCVD (Metal Organic Chemical Vapor Deposition) method. Next, a GaAlAs layer 13 is grown as a selective etching layer by about 1000 mm, and an epitaxial layer 14 including an active layer of the device is grown.

次に、同図(b)に示すように、Si基板15をエピタキシャル層14上に接合させ、水素ガス中でアニールすることにより直接接合させ貼り合わせる。   Next, as shown in FIG. 4B, the Si substrate 15 is bonded onto the epitaxial layer 14, and directly bonded and bonded by annealing in hydrogen gas.

最後に、同図(c)に示すように、HF等のフッ酸系のエッチング液でGaAlAs層13をエッチングする。これにより、活性層を含むエピタキシャル層14をSi基板15上に転写することができる。しかしながら、このような製造方法では、GaAlAs層13のエッチング後、直ちにGaAlAs層13の自然酸化が起こり、GaAlAs層13が約3%収縮することにより活性層にダメ−ジを与える。   Finally, as shown in FIG. 3C, the GaAlAs layer 13 is etched with a hydrofluoric acid-based etchant such as HF. Thereby, the epitaxial layer 14 including the active layer can be transferred onto the Si substrate 15. However, in such a manufacturing method, after the GaAlAs layer 13 is etched, natural oxidation of the GaAlAs layer 13 occurs immediately, and the GaAlAs layer 13 contracts by about 3%, thereby giving damage to the active layer.

上記従来例2に記載されている、化合物半導体基板上に形成した化合物半導体層をSi基板に転写する技術を、図4を用いて説明する。なお、図4において、図3と同じ材質の層については同じ符号を付している。まず、図4(a)に示すように、GaAs基板11上にAlGaAs層13とGaAsから成る種結晶用の接着層16とを順次MBE法またはMOCVD法で結晶成長させた後、接着層16の一部をエッチング除去する。   A technique for transferring the compound semiconductor layer formed on the compound semiconductor substrate described in the above-mentioned conventional example 2 to the Si substrate will be described with reference to FIG. In FIG. 4, the same reference numerals are assigned to layers made of the same material as in FIG. 3. First, as shown in FIG. 4A, an AlGaAs layer 13 and a seed crystal adhesive layer 16 made of GaAs are sequentially grown on the GaAs substrate 11 by MBE or MOCVD, and then the adhesive layer 16 is formed. A part is removed by etching.

次に、同図(b)に示すように、Si基板15の主面に接着層16の上面を当接させ、加熱して直接接着させた後、同図(c)に示すようにAlGaAs層13のみをエッチング除去する。   Next, as shown in FIG. 4B, the upper surface of the adhesive layer 16 is brought into contact with the main surface of the Si substrate 15 and heated and directly adhered thereto, and then the AlGaAs layer as shown in FIG. Only 13 is removed by etching.

最後に、図4(d)に示すように、Si基板15上に接着層16の上面のみが露出するようにSiO2膜17を形成し、接着層16の露出面上にデバイスの活性層を含む化合物半導体から成るエピタキシャル層14をMBE法またはMOCVD法で成長させる。 Finally, as shown in FIG. 4D, an SiO 2 film 17 is formed on the Si substrate 15 so that only the upper surface of the adhesive layer 16 is exposed, and an active layer of the device is formed on the exposed surface of the adhesive layer 16. An epitaxial layer 14 made of a compound semiconductor is grown by MBE or MOCVD.

特開平6−90061号公報JP-A-6-90061 特開平9−63951号公報JP-A-9-63951

しかしながら、従来例1に記載されている上記の技術では、Si基板15を貼り合わせた後に、GaAs基板11から化合物半導体のエピタキシャル層14をリフトオフ法で転写しているが、選択エッチング層としてのGaAlAs層13をウエットエッチングにより除去する必要があり、このエッチング速度は、エッチング液のGaAlAs層13の残存部への回り込み距離が大きくなるときわめて小さくなる。従って、エッチング可能な回り込み距離に制限されて、数cm角の大きさのGaAs基板11およびSi基板15の貼り合わせが実際には限界であり、4インチや6インチの大口径基板への転写は実質的に不可能であるという問題があった。   However, in the above technique described in the conventional example 1, after the Si substrate 15 is bonded, the epitaxial layer 14 of the compound semiconductor is transferred from the GaAs substrate 11 by the lift-off method, but GaAlAs as a selective etching layer is used. It is necessary to remove the layer 13 by wet etching, and this etching rate becomes extremely small as the wraparound distance of the etching solution to the remaining portion of the GaAlAs layer 13 increases. Therefore, the bonding of the GaAs substrate 11 and Si substrate 15 having a size of several centimeters square is actually a limit, limited by the wraparound distance that can be etched, and transfer to a large-diameter substrate of 4 inches or 6 inches is not possible. There was a problem that it was practically impossible.

また、GaAlAs層13のエッチング時、またはGaAs基板11とSi基板15との貼り合わせ時に、GaAlAs層13が自然酸化で約3%収縮することによりデバイスの活性層にダメージを与えたり、活性層に新たな結晶の転位が生じていた。これらの結晶欠陥は、化合物半導体から成る半導体レーザ(LD)部,フォトダイオード(PD)部等のデバイス部の受発光特性および信頼性が劣化するという問題を引き起こしていた。   Further, when the GaAlAs layer 13 is etched or when the GaAs substrate 11 and the Si substrate 15 are bonded together, the GaAlAs layer 13 contracts by about 3% due to natural oxidation to damage the active layer of the device, New crystal dislocations occurred. These crystal defects have caused a problem that the light receiving and emitting characteristics and reliability of device parts such as a semiconductor laser (LD) part and a photodiode (PD) part made of a compound semiconductor are deteriorated.

また、従来例2に記載されている技術では、AlGaAs層13のみをエッチング除去した後、高コストのMBE法またはMOCVD法によってエピタキシャル層14を再び成長させるため、半導体基板およびそれから得られる半導体素子が高価なものとなり、生産性が低下して製造歩留まりも低下し易いものであった。   In the technique described in Conventional Example 2, only the AlGaAs layer 13 is removed by etching, and then the epitaxial layer 14 is grown again by a high-cost MBE method or MOCVD method. Therefore, a semiconductor substrate and a semiconductor element obtained therefrom are obtained. It was expensive, and the productivity was lowered and the production yield was likely to be lowered.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、製造工程において活性層に損傷を与えたり新たな結晶の転位を発生させることがなく、その結果LD,PD等のデバイス部の受発光特性および信頼性を維持でき、また半導体基板を低コストに製造でき、生産性の良好なものとすることである。   Accordingly, the present invention has been completed in view of the above problems, and its object is not to damage the active layer or generate new crystal dislocations in the manufacturing process, and as a result, LD, PD, etc. It is possible to maintain the light emitting and receiving characteristics and reliability of the device portion, to manufacture the semiconductor substrate at low cost, and to improve the productivity.

本発明の半導体基板の製造方法は、化合物半導体基板上に、選択エッチング層、応力緩和層および前記応力緩和層より大きいヤング率を有するIII−V族化合物半導体から成る化合物半導体層をエピタキシャル成長法により順次積層させる積層工程と、前記選択エッチング層、前記応力緩和層および前記化合物半導体層を所定パターンとなるようにエッチング除去するエッチング工程と、Si基板の主面に前記化合物半導体層の上面を直接接合法により接合させて、前記選択エッチング層、前記応力緩和層および前記化合物半導体層が積層された前記化合物半導体基板を貼りあわせる接合工程と、前記エッチング工程で残った前記選択エッチング層をエッチング除去することにより、前記Si基板と前記化合物
半導体基板とを分離する分離工程とを具備したことを特徴とする。
In the method for producing a semiconductor substrate of the present invention, a compound semiconductor layer comprising a selective etching layer, a stress relaxation layer, and a III-V group compound semiconductor having a Young's modulus larger than the stress relaxation layer is sequentially formed on the compound semiconductor substrate by an epitaxial growth method. A stacking step of stacking, an etching step of etching and removing the selective etching layer, the stress relaxation layer, and the compound semiconductor layer so as to have a predetermined pattern; and a method of directly bonding the upper surface of the compound semiconductor layer to the main surface of the Si substrate By bonding, the bonding step of bonding the compound semiconductor substrate on which the selective etching layer, the stress relaxation layer, and the compound semiconductor layer are stacked, and the selective etching layer remaining in the etching step are removed by etching. , A separation step of separating the Si substrate and the compound semiconductor substrate Characterized by comprising a.

本発明は、上記の構成により、選択エッチング層のエッチング時の自然酸化による影響が応力緩和層によって遮られる。従って、製造工程における化合物半導体層の損傷、結晶の転移が発生せず、信頼性の高いものを製造し得る。   In the present invention, the stress relaxation layer blocks the influence of natural oxidation during etching of the selective etching layer due to the above configuration. Therefore, damage to the compound semiconductor layer and crystal transition in the manufacturing process do not occur, and a highly reliable material can be manufactured.

本発明は、上記の構成により、選択エッチング層の自然酸化の進行を抑制し、選択エッチング層のみをエッチング除去することにより、良好な結晶性の活性層を含む化合物半導体層をSi基板上に転写することができるという効果を有する。   The present invention suppresses the progress of the natural oxidation of the selective etching layer and removes only the selective etching layer by the above structure, thereby transferring the compound semiconductor layer including the active layer having a good crystallinity onto the Si substrate. It has the effect that it can be done.

また、本発明の半導体基板の製造方法は、上記構成において、前記化合物半導体基板がGe基板またはGaAs基板から成り、前記選択エッチング層がAlGaAsから成っている。   In the method for manufacturing a semiconductor substrate according to the present invention, the compound semiconductor substrate is made of a Ge substrate or a GaAs substrate, and the selective etching layer is made of AlGaAs.

さらに、本発明の半導体基板の製造方法は、上記構成において、前記応力緩和層がInGaAsからなっている。   Furthermore, in the method for manufacturing a semiconductor substrate of the present invention, in the above configuration, the stress relaxation layer is made of InGaAs.

また、本発明の半導体基板の製造方法は、上記構成において、前記化合物半導体層がInP基板から成り、前記選択エッチング層がAlGaAsから成っている。   In the method of manufacturing a semiconductor substrate according to the present invention, the compound semiconductor layer is made of an InP substrate and the selective etching layer is made of AlGaAs.

さらに、本発明の半導体基板の製造方法は、上記構成において、InGaAsからなっている。   Furthermore, the semiconductor substrate manufacturing method of the present invention is made of InGaAs in the above configuration.

また、本発明の半導体基板の製造方法は、前記積層工程において、前記化合物半導体基板の前記選択エッチング層が積層される主面に溝を形成する工程を具備する。   Moreover, the manufacturing method of the semiconductor substrate of this invention comprises the process of forming a groove | channel in the main surface on which the said selective etching layer of the said compound semiconductor substrate is laminated | stacked in the said lamination process.

本発明は、上記の構成により、分離工程において選択エッチング層をエッチング除去する際に、エッチング液が化合物半導体基板の全面に行き渡るようになる。   According to the present invention, when the selective etching layer is removed by etching in the separation step, the etching solution spreads over the entire surface of the compound semiconductor substrate.

本発明は、化合物半導体基板上に、選択エッチング層、応力緩和層および前記応力緩和層より大きいヤング率を有するIII−V族化合物半導体から成る化合物半導体層をエピタキシャル成長法により順次積層させる積層工程と、前記選択エッチング層、前記応力緩和層および前記化合物半導体層を所定パターンとなるようにエッチング除去するエッチング工程と、Si基板の主面に前記化合物半導体層の上面を直接接合法により接合させて、前記選択エッチング層、前記応力緩和層および前記化合物半導体層が積層された前記化合物半導体基板を貼りあわせる接合工程と、前記エッチング工程で残った前記選択エッチング層をエッチング除去することにより、前記Si基板と前記化合物半導体基板とを分離する分離工程とを具備したことにより、選択エッチング層のエッチング時の自然酸化による影響が応力緩和層によって遮られる。従って、製造工程における化合物半導体層の損傷、結晶の転移が発生せず、信頼性の高いものを製造し得る。   The present invention provides a stacking step of sequentially stacking a compound semiconductor layer comprising a selective etching layer, a stress relaxation layer and a III-V group compound semiconductor having a Young's modulus larger than the stress relaxation layer on a compound semiconductor substrate by an epitaxial growth method; Etching and removing the selective etching layer, the stress relaxation layer and the compound semiconductor layer so as to form a predetermined pattern, and bonding the upper surface of the compound semiconductor layer to the main surface of the Si substrate by a direct bonding method, A bonding step of bonding the compound semiconductor substrate on which the selective etching layer, the stress relaxation layer, and the compound semiconductor layer are laminated; and removing the selective etching layer remaining in the etching step by etching to remove the Si substrate and the A separation step of separating the compound semiconductor substrate; Affected by natural oxidation during etching selective etching layer is blocked by the stress relaxation layer. Therefore, damage to the compound semiconductor layer and crystal transition in the manufacturing process do not occur, and a highly reliable material can be manufactured.

また、Si基板に転位や欠陥の少ないIII−V族化合物半導体のエピタキシャル層が形成できるため、機械的強度が高く、熱伝導性の良好なSi基板の特性を活かしたLD、フォトダイオード(PD)アレイ、発光ダイオード(LED)アレイ、化合物半導体電界効果トランジスタ(FET)等を、SiのLSIと一体化させたデバイスを製造することができる。   In addition, since an epitaxial layer of III-V compound semiconductor with few dislocations and defects can be formed on the Si substrate, LD and photodiode (PD) utilizing the characteristics of Si substrate with high mechanical strength and good thermal conductivity A device in which an array, a light emitting diode (LED) array, a compound semiconductor field effect transistor (FET), or the like is integrated with a Si LSI can be manufactured.

さらに、コストがかかり環境への負荷も大きいMBE法またはMOCVD法による各層の成長は1回で済み、また、化合物半導体層および応力緩和層がSi基板に転写されて、
残った化合物半導体基板は繰り返し使用できるため、半導体素子を安価に効率的に製造することができる。
Furthermore, the growth of each layer by the MBE method or the MOCVD method, which is costly and has a large environmental load, is only once, and the compound semiconductor layer and the stress relaxation layer are transferred to the Si substrate,
Since the remaining compound semiconductor substrate can be used repeatedly, the semiconductor element can be efficiently manufactured at low cost.

また、本発明は、前記積層工程において、前記化合物半導体基板の前記選択エッチング層が積層される主面に溝を形成する工程を含むことを具備していることにより、分離工程において選択エッチング層をエッチング除去する際に、エッチング液が化合物半導体基板の全面に行き渡るようになる。   Further, the present invention includes a step of forming a groove in a main surface on which the selective etching layer of the compound semiconductor substrate is laminated in the stacking step, so that the selective etching layer is formed in the separation step. When the etching is removed, the etching solution spreads over the entire surface of the compound semiconductor substrate.

(a)〜(d)は本発明の半導体基板の各製造工程を示し、それぞれ半導体基板の断面図である。(A)-(d) shows each manufacturing process of the semiconductor substrate of this invention, and is sectional drawing of a semiconductor substrate, respectively. 本発明の半導体基板の一実施形態を示し、(a)はエッチング前のバッファ層を有する状態の断面図、(b)はバッファ層をエッチングしコンタクト層を露出させた状態の断面図である。1A and 1B show an embodiment of a semiconductor substrate according to the present invention, in which FIG. 1A is a cross-sectional view showing a state having a buffer layer before etching, and FIG. 2B is a cross-sectional view showing a state in which the contact layer is exposed by etching the buffer layer. (a)〜(c)は従来の半導体基板の各製造工程示し、それぞれ半導体基板の断面図である。(A)-(c) shows each manufacturing process of the conventional semiconductor substrate, and is sectional drawing of a semiconductor substrate, respectively. (a)〜(d)は従来の半導体基板の各製造工程示し、それぞれ半導体基板の断面図である。(A)-(d) shows each manufacturing process of the conventional semiconductor substrate, and is sectional drawing of a semiconductor substrate, respectively.

以下、本発明の半導体基板の製造方法の実施形態を以下に詳細に説明する。図1は本発明の製造方法の一実施形態を示す図であり、化合物半導体基板がGeまたはGaAsから成る場合について説明する。同図において、8はGeまたはGaAs化合物半導体基板、2はGaAsバッファ層、3は、好ましくは500Å以下の厚みをもつAlxGa1-xAs(0.9≦x≦1)層、9はInyGa1-yAs層(0.05≦y≦0.6)を含むバッファ層、4はGaAs,AlGaAs,InGaAs等のIII−V族化合物半導体からなるデバイスの活性層を含む化合物半導体層(エピタキシャル層)、5はSi基板である。 Hereinafter, embodiments of a method for manufacturing a semiconductor substrate of the present invention will be described in detail below. FIG. 1 is a diagram showing an embodiment of a manufacturing method of the present invention, and a case where a compound semiconductor substrate is made of Ge or GaAs will be described. In the figure, 8 is a Ge or GaAs compound semiconductor substrate, 2 is a GaAs buffer layer, 3 is an Al x Ga 1-x As (0.9 ≦ x ≦ 1) layer having a thickness of preferably 500 mm or less, 9 is A buffer layer including an In y Ga 1-y As layer (0.05 ≦ y ≦ 0.6), 4 is a compound semiconductor layer including an active layer of a device made of a III-V group compound semiconductor such as GaAs, AlGaAs, InGaAs, etc. (Epitaxial layer) 5 is a Si substrate.

本発明において、Si基板5上に直接GaAs等のIII−V族化合物半導体を成長する場合と比較して、Ge基板、GaAs基板およびInP基板上には、転位密度が1×104個cm-2以下と低く、結晶性の良好なIII−V族化合物半導体が形成できる。また、AlxGa1-xAs(0.9≦x≦1)の選択エッチング層を形成して良好なエピタキシャル成長ができる基板は、Ge基板、GaAs基板およびInP基板に限られる。 In the present invention, compared to the case where a III-V compound semiconductor such as GaAs is directly grown on the Si substrate 5, the dislocation density is 1 × 10 4 cm on the Ge substrate, GaAs substrate, and InP substrate. A group III-V compound semiconductor having a crystallinity as low as 2 or less can be formed. Further, substrates that can be satisfactorily epitaxially grown by forming a selective etching layer of Al x Ga 1-x As (0.9 ≦ x ≦ 1) are limited to Ge substrates, GaAs substrates, and InP substrates.

本発明の製造方法を具体的に説明すると、まず周知のMBE法やMOCVD法などの気相エピタキシャル法で、GeまたはGaAsから成る化合物半導体基板8上に、GaAsバッファ層2を成長させる。   The manufacturing method of the present invention will be specifically described. First, the GaAs buffer layer 2 is grown on the compound semiconductor substrate 8 made of Ge or GaAs by a well-known vapor phase epitaxial method such as MBE method or MOCVD method.

このGaAsバッファ層2の厚さは100Å〜2μmが好ましく、100Å未満では、デバイスの活性層を含む化合物半導体層4に転位などが入りやすい。2μmを超えると、厚さが過大となり高コスト化する。   The thickness of the GaAs buffer layer 2 is preferably 100 to 2 μm. If the thickness is less than 100 μm, dislocations and the like are likely to enter the compound semiconductor layer 4 including the active layer of the device. If it exceeds 2 μm, the thickness becomes excessive and the cost increases.

その後、選択エッチング層となるAlxGa1-xAs(0.9≦x≦1)層3を、気相エピタキシャル法で500Å以下の厚みで成長させ、続いてInyGa1-yAs層(0.05≦y≦0.6)を含むバッファ層9、デバイスの活性層を含む化合物半導体層4を、気相エピタキシャル成長装置内で連続的に成長した後、この気相エピタキシャル成長装置から取り出す。AlxGa1-xAs層3の膜厚は、500Åより厚くすると、AlxGa1-xAs層3の自然酸化が非常に早く進み、AlxGa1-xAs層3,化合物半導体層4,バッファ層9のエッチング時にAlxGa1-xAs層3の急速な自然酸化が活性層へ損傷を与え易いものとなる。 Thereafter, an Al x Ga 1-x As (0.9 ≦ x ≦ 1) layer 3 to be a selective etching layer is grown to a thickness of 500 mm or less by a vapor phase epitaxial method, and then an In y Ga 1-y As layer is formed. The buffer layer 9 including (0.05 ≦ y ≦ 0.6) and the compound semiconductor layer 4 including the active layer of the device are continuously grown in the vapor phase epitaxial growth apparatus and then taken out from the vapor phase epitaxial growth apparatus. The film thickness of the Al x Ga 1-x As layer 3, when thicker than 500 Å, Al x Ga natural oxidation of 1-x As layer 3 progresses very quickly, Al x Ga 1-x As layer 3, a compound semiconductor layer 4. When the buffer layer 9 is etched, the rapid natural oxidation of the Al x Ga 1-x As layer 3 is liable to damage the active layer.

なお、AlxGa1-xAs層3について0.9≦x≦1としたのは、x<0.9では、図1(d)のフッ酸によるAlxGa1-xAs層3のエッチング速度が遅くなってしまい、他の化合物半導体層と区別して良好な選択エッチングができなくなる傾向にある。 Note that 0.9 ≦ x ≦ 1 with respect to the Al x Ga 1-x As layer 3 is that when x <0.9, the Al x Ga 1-x As layer 3 with hydrofluoric acid in FIG. The etching rate becomes slow, and there is a tendency that good selective etching cannot be performed as distinguished from other compound semiconductor layers.

また、InyGa1-yAs層について0.05≦y≦0.6としたのは、y<0.05では、AlxGa1-xAs層3のエッチング時や自然酸化による応力が化合物半導体層4に損傷を与えたり、転位を新たに発生させ易いものとなる。0.6<yでは、AlxGa1-xAs層3の上に形成した際、単結晶層を形成することができず、良好な結晶性が得られないからである。 In addition, the In y Ga 1-y As layer was set to 0.05 ≦ y ≦ 0.6 when y <0.05, the stress due to the natural oxidation during the etching of the Al x Ga 1-x As layer 3. It becomes easy to damage the compound semiconductor layer 4 and to newly generate dislocations. This is because when 0.6 <y, a single crystal layer cannot be formed when the Al x Ga 1-x As layer 3 is formed, and good crystallinity cannot be obtained.

InyGa1-yAs層の厚さは、例えばy=0.2のとき0.1〜0.2μmが好ましく、0.1μm未満では、その応力を緩和するのに不十分であり、0.2μmを超えると、AlxGa1-xAs層3上に形成した際、良好な結晶性が得られ難くなる。 The thickness of the In y Ga 1-y As layer is preferably, for example, 0.1 to 0.2 μm when y = 0.2, and less than 0.1 μm is insufficient to relieve the stress. When the thickness exceeds 2 μm, it is difficult to obtain good crystallinity when formed on the Al x Ga 1-x As layer 3.

化合物半導体層4の厚さは、特に限定するものではないが、一般に0.5μm〜1μm程度である。   The thickness of the compound semiconductor layer 4 is not particularly limited, but is generally about 0.5 μm to 1 μm.

また、InyGa1-yAs層を含むバッファ層9は、一般に、GaAs層,InyGa1-yAs層,GaAs層を順次積層させた構成等である。 The buffer layer 9 including the In y Ga 1 -y As layer generally has a configuration in which a GaAs layer, an In y Ga 1 -y As layer, and a GaAs layer are sequentially stacked.

化合物半導体層4は、具体的には、n型(n−)GaAsクラッド層,n−AlGaAs活性層,p型(p−)GaAsクラッド層,GaAs接着層を順次積層させた層構成、または、n−GaAsクラッド層,n−AlGaAs層,GaAs活性層,p−AlGaAsクラッド層,GaAs接着層を順次積層させた層構成等である。   Specifically, the compound semiconductor layer 4 has a layer configuration in which an n-type (n-) GaAs cladding layer, an n-AlGaAs active layer, a p-type (p-) GaAs cladding layer, and a GaAs adhesion layer are sequentially stacked, or For example, the n-GaAs cladding layer, the n-AlGaAs layer, the GaAs active layer, the p-AlGaAs cladding layer, and the GaAs adhesion layer are sequentially stacked.

その後、図1(b)に示すように、フォトリソグラフィ法とエッチング法により、AlxGa1-xAs層3,化合物半導体層4を所定パターンと成るようにエッチング除去し、メサ状の領域を形成する。この際、エッチングは、硫酸,過酸化水素水,水の混合液によるウエットエッチング、または塩素系ガスのプラズマによる気相エッチングで行い、AlxGa1-xAs層3の端面の少なくとも一部が、好ましくは端面の全体が、露出するまでエッチングを行う。 Thereafter, as shown in FIG. 1B, the Al x Ga 1-x As layer 3 and the compound semiconductor layer 4 are removed by etching so as to form a predetermined pattern by photolithography and etching, and a mesa-shaped region is formed. Form. At this time, the etching is performed by wet etching using a mixed solution of sulfuric acid, hydrogen peroxide water, and water, or vapor phase etching using plasma of a chlorine-based gas, and at least a part of the end face of the Al x Ga 1-x As layer 3 is formed. Etching is preferably performed until the entire end face is exposed.

次に、図1(c)に示すように、化合物半導体基板8の化合物半導体層4の接着層を、Si基板5の主面の所定領域に接合させ、接合面に10〜50Paの圧力が加わるように加圧して、水素雰囲気中で200〜500℃で30分から数時間のアニールを行うことにより、直接接合させ貼り合わせを完了する。   Next, as shown in FIG. 1C, the adhesive layer of the compound semiconductor layer 4 of the compound semiconductor substrate 8 is bonded to a predetermined region of the main surface of the Si substrate 5, and a pressure of 10 to 50 Pa is applied to the bonding surface. By applying pressure in the manner described above and annealing in a hydrogen atmosphere at 200 to 500 ° C. for 30 minutes to several hours, direct bonding is performed to complete the bonding.

なお、InyGa1-yAs層はヤング率がGaAs等と比較して小さいことから、InyGa1-yAs層を含むバッファ層9は、貼り合わせ時などにAlxGa1-xAs層3の自然酸化が進み、化合物半導体層4中に応力が生じるのを緩和する働きをする。このため、AlxGa1-xAs層3の自然酸化による応力が、デバイスの活性層を含む化合物半導体層4へ損傷を与えたり、化合物半導体層4に転位を新たに発生させることはない。 Since the In y Ga 1 -y As layer has a Young's modulus smaller than that of GaAs or the like, the buffer layer 9 including the In y Ga 1 -y As layer is formed of Al x Ga 1 -x at the time of bonding or the like. It functions to alleviate the occurrence of stress in the compound semiconductor layer 4 due to the natural oxidation of the As layer 3. For this reason, the stress due to the natural oxidation of the Al x Ga 1-x As layer 3 does not damage the compound semiconductor layer 4 including the active layer of the device or cause new dislocations in the compound semiconductor layer 4.

次に、図1(d)に示すように、フッ酸系のエッチング液でAlxGa1-xAs層3を除去し、デバイスの活性層を含む化合物半導体層4をSi基板5に転写する。この場合、AlxGa1-xAs層3の選択的除去を短時間に均一に行うため、化合物半導体基板8のバッファ層2が積層される主面に、予め幅が10μm〜300μm程度、深さが10μm〜30μm程度の溝を形成するのが良く、この場合フッ酸によるエッチング液が化合物半導体基板8の全面に行き渡るようになる。より好ましくは、化合物半導体基板8のバッファ層
2が積層される主面の、AlxGa1-xAs層3のパターンが形成される直下の部位に溝を形成するのがよい。この溝のパターン形状は特に特定されるものではないが、化合物半導体基板8のバッファ層2が積層される主面またはその一部に均一に形成するのがよい。
Next, as shown in FIG. 1D, the Al x Ga 1-x As layer 3 is removed with a hydrofluoric acid-based etchant, and the compound semiconductor layer 4 including the active layer of the device is transferred to the Si substrate 5. . In this case, in order to selectively remove the Al x Ga 1-x As layer 3 uniformly in a short time, a depth of about 10 μm to 300 μm is previously formed on the main surface of the compound semiconductor substrate 8 on which the buffer layer 2 is laminated. It is preferable to form a groove having a length of about 10 μm to 30 μm. More preferably, a groove is formed in a portion of the main surface of the compound semiconductor substrate 8 on which the buffer layer 2 is stacked, immediately below the pattern of the Al x Ga 1-x As layer 3. The pattern shape of the groove is not particularly specified, but it is preferably formed uniformly on the main surface or a part of the compound semiconductor substrate 8 on which the buffer layer 2 is laminated.

本発明の製造方法において、化合物半導体基板8がInP基板の場合、GaAsバッファ層2はInPバッファ層であり、AlxGa1-xAs層3はAlxGa1-xAs層,AlxGa1-xAsP層等であり、InyGa1-yAs層はInGaAs層である。これらの各層の好適な厚さ、バッファ層9と化合物半導体層4の層構成については、上述したものと同様である。ただし、化合物半導体層4の活性層は、InGaAs,InAlAs,InAlGaP,InP,GaAsP,InAlGaAs,InAlGaAsP等である。 In the manufacturing method of the present invention, when the compound semiconductor substrate 8 is an InP substrate, the GaAs buffer layer 2 is an InP buffer layer, the Al x Ga 1-x As layer 3 is an Al x Ga 1-x As layer, and Al x Ga. 1-x AsP layer or the like, and the In y Ga 1-y As layer is an InGaAs layer. The preferred thickness of each of these layers and the layer structure of the buffer layer 9 and the compound semiconductor layer 4 are the same as those described above. However, the active layer of the compound semiconductor layer 4 is InGaAs, InAlAs, InAlGaP, InP, GaAsP, InAlGaAs, InAlGaAsP, or the like.

本発明の製造方法により得られた半導体基板を図2に示す。図2(b)に示すように、Si基板5上の所定の領域に、活性層を含む化合物半導体層4、0.3μm以下のn−InyGa1-yAs(0.05≦y≦0.6)からなるコンタクト層10が積層されている。 A semiconductor substrate obtained by the manufacturing method of the present invention is shown in FIG. As shown in FIG. 2B, in a predetermined region on the Si substrate 5, a compound semiconductor layer 4 including an active layer, n-In y Ga 1-y As (0.05 ≦ y ≦ 0.5 μm or less) is formed. A contact layer 10 made of 0.6) is laminated.

これらは、図1に示すプロセスの後、図2(a)の状態の半導体基板について、InyGa1-yAs層を含むバッファ層9を、フォトリソグラフィ法と、フェロシアン化カリウムとフェリシアン化カリウムの混合液を用いたウエットエッチング法により、InyGa1-yAs層(n−InyGa1-yAsから成るコンタクト層10)が露出するまでエッチングすることにより作製される。 In the semiconductor substrate in the state of FIG. 2A after the process shown in FIG. 1, the buffer layer 9 including the In y Ga 1-y As layer is mixed with a photolithographic method, potassium ferrocyanide and potassium ferricyanide. The In y Ga 1-y As layer (the contact layer 10 made of n-In y Ga 1-y As) is etched by wet etching using a liquid until it is exposed.

このように作製した半導体基板は、p型活性層またはn型活性層を含む化合物半導体層4の転位密度が1×104個cm-2以下と低く、Si基板5上に化合物半導体層4とコンタクト層10を直接成長させる場合と比較して、バッファ層の高抵抗化も容易となり、活性層を含むLD等の発光部の電気的な分離も容易に達成できる。 In the semiconductor substrate manufactured in this way, the dislocation density of the compound semiconductor layer 4 including the p-type active layer or the n-type active layer is as low as 1 × 10 4 cm −2 or less, and the compound semiconductor layer 4 is formed on the Si substrate 5. Compared with the case where the contact layer 10 is directly grown, it is easy to increase the resistance of the buffer layer, and the electrical isolation of the light emitting part such as the LD including the active layer can be easily achieved.

2:バッファ層
3:AlxGa1-xAs層
4:化合物半導体層
5:Si基板
8:化合物半導体基板
9:InyGa1-yAs層を含むバッファ層
10:n−InyGa1-yAsコンタクト層
2: Buffer layer 3: Al x Ga 1-x As layer 4: Compound semiconductor layer 5: Si substrate 8: Compound semiconductor substrate 9: Buffer layer including In y Ga 1-y As layer 10: n-In y Ga 1 -y As contact layer

Claims (6)

化合物半導体基板上に、選択エッチング層、応力緩和層および前記応力緩和層より大きいヤング率を有するIII−V族化合物半導体から成る化合物半導体層をエピタキシャル成長法により順次積層させる積層工程と、
前記選択エッチング層、前記応力緩和層および前記化合物半導体層を所定パターンとなるようにエッチング除去するエッチング工程と、
Si基板の主面に前記化合物半導体層の上面を直接接合法により接合させて、前記選択エッチング層、前記応力緩和層および前記化合物半導体層が積層された前記化合物半導体基板を貼りあわせる接合工程と、
前記エッチング工程で残った前記選択エッチング層をさらにエッチング除去することにより、前記Si基板と前記化合物半導体基板とを分離する分離工程とを具備したことを特徴とする半導体基板の製造方法。
A stacking step of sequentially stacking a compound semiconductor layer made of a III-V group compound semiconductor having a Young's modulus larger than the selective etching layer, the stress relaxation layer, and the stress relaxation layer on the compound semiconductor substrate by an epitaxial growth method;
An etching step of etching and removing the selective etching layer, the stress relaxation layer, and the compound semiconductor layer to have a predetermined pattern;
A bonding step of bonding the upper surface of the compound semiconductor layer to the main surface of the Si substrate by a direct bonding method, and bonding the compound semiconductor substrate on which the selective etching layer, the stress relaxation layer, and the compound semiconductor layer are laminated;
A method for manufacturing a semiconductor substrate, comprising: a separation step of separating the Si substrate and the compound semiconductor substrate by further etching away the selective etching layer remaining in the etching step.
前記化合物半導体基板はGe基板またはGaAs基板から成り、前記選択エッチング層はAlGaAsから成ることを特徴とする請求項1記載の半導体基板の製造方法。   2. The method of manufacturing a semiconductor substrate according to claim 1, wherein the compound semiconductor substrate is made of a Ge substrate or a GaAs substrate, and the selective etching layer is made of AlGaAs. 前記応力緩和層はInGaAsから成ることを特徴とする請求項2記載の半導体基板の製造方法。   3. The method of manufacturing a semiconductor substrate according to claim 2, wherein the stress relaxation layer is made of InGaAs. 前記化合物半導体層はInP基板から成り、前記選択エッチング層はAlGaAsから成ることを特徴とする請求項1記載の半導体基板の製造方法。   2. The method of manufacturing a semiconductor substrate according to claim 1, wherein the compound semiconductor layer is made of an InP substrate, and the selective etching layer is made of AlGaAs. 前記応力緩和層は、InGaAsから成ることを特徴とする請求項4記載の半導体基板の製造方法。   5. The method of manufacturing a semiconductor substrate according to claim 4, wherein the stress relaxation layer is made of InGaAs. 前記積層工程において、前記化合物半導体基板の前記選択エッチング層が積層される主面に溝を形成する工程を含む請求項1〜5のいずれかに記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 1, wherein the stacking step includes a step of forming a groove in a main surface on which the selective etching layer of the compound semiconductor substrate is stacked.
JP2010196799A 2010-09-02 2010-09-02 Method of manufacturing semiconductor substrate Withdrawn JP2011049565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196799A JP2011049565A (en) 2010-09-02 2010-09-02 Method of manufacturing semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196799A JP2011049565A (en) 2010-09-02 2010-09-02 Method of manufacturing semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000193381A Division JP4638000B2 (en) 2000-06-27 2000-06-27 Manufacturing method of semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2011049565A true JP2011049565A (en) 2011-03-10

Family

ID=43835533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196799A Withdrawn JP2011049565A (en) 2010-09-02 2010-09-02 Method of manufacturing semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2011049565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306008B2 (en) 2013-09-03 2016-04-05 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306008B2 (en) 2013-09-03 2016-04-05 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9929239B2 (en) 2013-09-03 2018-03-27 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
TWI764872B (en) Lift off process for chip scale package solid state devices on engineered substrate
TW201603297A (en) Non-destructive wafer recycling for epitaxial lift-off thin-film device using a superlattice epitaxial layer
JP2009094144A (en) Method of manufacturing light emitting device
TWI440073B (en) Method for fabricating circuit structure
JP6959919B2 (en) Wide bandgap device integrated circuit architecture on a machined substrate
JP2017531327A (en) Hybrid heterostructure light emitting device
US9799801B2 (en) Method for producing an optoelectronic semiconductor chip
KR20170122790A (en) Method of forming a composite substrate and growing a iii-v light emitting device over the composite substrate
WO2022145454A1 (en) Semiconductor substrate, semiconductor device and electronic device
JP4638000B2 (en) Manufacturing method of semiconductor substrate
US20230343890A1 (en) Epitaxial wafer for ultraviolet light emitting device, method for producing metal bonded substrate for ultraviolet light emitting device, method for producing ultraviolet light emitting device, and method for producing ultraviolet light emitting device array
JP2007095845A (en) Semiconductor composite substrate and method of manufacturing semiconductor device using the same
US20100009476A1 (en) Substrate structure and method of removing the substrate structure
CN116941016A (en) Semiconductor substrate, method and apparatus for manufacturing the same, and template substrate
JP2007528587A (en) Method for growing nitride semiconductor epitaxial layer
KR101161264B1 (en) Fabricating method of semiconductor device for reuse of substrate
JP4303379B2 (en) Manufacturing method of semiconductor substrate
US8263984B2 (en) Process for making a GaN substrate
JP2009190918A (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor device
JP2005019590A (en) Method of manufacturing semiconductor device
JP2011049565A (en) Method of manufacturing semiconductor substrate
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
WO2005038889A1 (en) The method for allngan epitaxial growth on silicon substrate
JP2008235318A (en) Nitride semiconductor wafer and method of manufacturing thin-film semiconductor device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120605