JP2706592B2 - Crystal substrate manufacturing method - Google Patents

Crystal substrate manufacturing method

Info

Publication number
JP2706592B2
JP2706592B2 JP2201492A JP2201492A JP2706592B2 JP 2706592 B2 JP2706592 B2 JP 2706592B2 JP 2201492 A JP2201492 A JP 2201492A JP 2201492 A JP2201492 A JP 2201492A JP 2706592 B2 JP2706592 B2 JP 2706592B2
Authority
JP
Japan
Prior art keywords
crystal substrate
substrate
crystal
gaas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2201492A
Other languages
Japanese (ja)
Other versions
JPH06232045A (en
Inventor
士郎 酒井
直樹 和田
Original Assignee
徳島大学長
松下寿電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徳島大学長, 松下寿電子工業株式会社 filed Critical 徳島大学長
Priority to JP2201492A priority Critical patent/JP2706592B2/en
Publication of JPH06232045A publication Critical patent/JPH06232045A/en
Application granted granted Critical
Publication of JP2706592B2 publication Critical patent/JP2706592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はトランジスタ、レーザー
ダイオード、発光ダイオード、光ICなどの種々の半導
体素子を形成する場合等に用いられる結晶基板の製造方
法に関するものであり、特に第1の結晶基板上に、その
第1の結晶基板と格子定数および熱膨張係数が異なる第
2、3の結晶基板をヘテロエピタキシャル成長により形
成した場合における、前記格子定数および熱膨張係数の
差異に基づく種々の欠陥および格子歪を軽減除去した結
晶基板の製造方法に特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a crystal substrate used for forming various semiconductor elements such as a transistor, a laser diode, a light emitting diode, and an optical IC. In the case where second and third crystal substrates having different lattice constants and thermal expansion coefficients from the first crystal substrate are formed by heteroepitaxial growth, various defects and lattices based on the difference between the lattice constant and the thermal expansion coefficient are formed. The method is characterized by a method for manufacturing a crystal substrate in which distortion is reduced and removed.

【0002】[0002]

【従来の技術】近年、例えばGaAs半導体結晶基板を
形成する際に、安価でより大きな結晶が容易に得られる
Si基板上に、ヘテロエピタキシャル成長法によりGa
As半導体結晶基板を形成する方法が試みられ、またこ
の方法により得られたGaAs半導体結晶基板を用いて
レーザダイオードなどの作製が試みられている。
2. Description of the Related Art In recent years, for example, when a GaAs semiconductor crystal substrate is formed, a GaAs semiconductor crystal substrate is formed by heteroepitaxial growth on a Si substrate on which a large crystal can be easily obtained.
A method for forming an As semiconductor crystal substrate has been attempted, and a laser diode or the like has been manufactured using the GaAs semiconductor crystal substrate obtained by this method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
方法で得られたレーザダイオードの寿命は、極端に短い
ものである。
However, the life of the laser diode obtained by the above-mentioned method is extremely short.

【0004】その原因の主たるものは、GaAs半導体
結晶とSi半導体結晶基板の格子定数および熱膨張係数
の差異により、GaAs半導体結晶基板内に発生した転
位、およびその転位を素子の動作中に活性層に伝搬・増
殖させうる歪応力である。
[0004] The main cause is that the dislocation generated in the GaAs semiconductor crystal substrate due to the difference between the lattice constant and the thermal expansion coefficient of the GaAs semiconductor crystal and the Si semiconductor crystal substrate, and the dislocation is generated during the operation of the element by the active layer. Is the strain stress that can propagate and multiply.

【0005】本発明は、このエピタキシャル成長層の転
位密度および歪応力をより減少させるものである。
[0005] The present invention is to further reduce the dislocation density and the strain stress of the epitaxially grown layer.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めの本発明の結晶基板の製造方法は、第1の結晶基板上
に、その第1の結晶基板の格子定数および熱膨張係数と
異なる格子定数および熱膨張係数を有する第2の結晶基
板をその一部が前記第1の結晶基板面より離間した状態
で対向するように形成し、しかる後に第2の結晶基板上
に第3の結晶基板を成長する場合に、成長前のエッチン
グ工程において露呈した第1の結晶基板上に酸化珪素等
の前記第3の結晶基板が結晶成長しない被膜を形成し、
第3の結晶基板成長後もその第2、3の結晶基板の一部
が第1の結晶基板に対して離間した状態を保持するよう
にしたものである。
According to the present invention, there is provided a method of manufacturing a crystal substrate according to the present invention, wherein a lattice constant and a thermal expansion coefficient of the first crystal substrate are different from those of the first crystal substrate. A second crystal substrate having a lattice constant and a coefficient of thermal expansion is formed so as to face a part of the second crystal substrate while being separated from the surface of the first crystal substrate, and then a third crystal substrate is formed on the second crystal substrate. When growing a substrate, a film is formed on the first crystal substrate exposed in the etching step before growth, such as silicon oxide, on which the third crystal substrate does not grow,
A part of the second and third crystal substrates is kept separated from the first crystal substrate even after the growth of the third crystal substrate.

【0007】[0007]

【作用】上記の製造方法により作成された結晶基板は、
第1と第2の基板の境界面付近に多数存在する転位部分
は除去され、かつ第2の結晶基板内の大きな歪応力は緩
和される。この状態で熱アニールを施すことにより、境
界面付近からの転位の増殖を受けることなく、第2の結
晶基板内の残留歪と高温状態の中で転位の移動・結合が
生じ転位を減少させることができる。
The crystal substrate produced by the above-described manufacturing method is
Many dislocations existing near the interface between the first and second substrates are removed, and large strain stress in the second crystal substrate is relaxed. By performing thermal annealing in this state, the dislocations are moved and combined in the high-temperature state due to residual strain in the second crystal substrate without dislocation multiplication from near the interface, thereby reducing dislocations. Can be.

【0008】その後歪、欠陥が低減された第2の基板上
に第3の基板層を成長させることにより、さらに結晶性
の良い第3の結晶層が得られる。第3の結晶基板の成長
中に充分熱アニール効果が得られる場合には先の熱アニ
ールは省いても良い。しかし、この第3の結晶基板を成
長させる場合に、露呈した第1の結晶基板上に何も施さ
ない場合には、第3の結晶が第1の基板上にも成長され
ることになり、第1と2の基板の離間状態が保てなくな
る。実際、第1の結晶基板上には第2の結晶基板の端部
よりある一定距離をおいて、第3の結晶が成長しない領
域が現れるにもかかわらず、第2の基板がその端部にお
いて第1の基板と接合されることとなった。
After that, by growing a third substrate layer on the second substrate with reduced distortion and defects, a third crystal layer having better crystallinity can be obtained. If a sufficient thermal annealing effect can be obtained during the growth of the third crystal substrate, the previous thermal annealing may be omitted. However, when growing the third crystal substrate, if nothing is performed on the exposed first crystal substrate, the third crystal will also grow on the first substrate, The separated state of the first and second substrates cannot be maintained. In fact, despite the fact that a region where the third crystal does not grow appears at a certain distance from the end of the second crystal substrate on the first crystal substrate, the second substrate is still at the end. It is to be bonded to the first substrate.

【0009】この離間状態が損なわれると、第2と3の
基板内に、結晶成長後温度を室温に降下させる過程にお
いて新たに歪応力が形成されてしまい、素子を第3の基
板上に形成した場合にその素子の劣化を早めてしまう。
このために第2の基板上に第3の結晶を成長させる場合
に、第1の基板と第2、3の基板が接合されないよう
に、露呈した第1の基板上に例えば酸化珪素の被膜を形
成する。この結果第3の結晶成長後も第1と2の結晶基
板の離間状態は保たれる。
If the separation state is impaired, a new strain stress is formed in the process of lowering the temperature to room temperature after the crystal growth in the second and third substrates, and an element is formed on the third substrate. In that case, the deterioration of the element is accelerated.
For this reason, when growing a third crystal on the second substrate, a coating of, for example, silicon oxide is formed on the exposed first substrate so that the first substrate is not bonded to the second and third substrates. Form. As a result, the separated state between the first and second crystal substrates is maintained even after the third crystal growth.

【0010】すなわち本発明により、第2の結晶基板上
に第3の結晶基板を成長した後も、第3の結晶基板内に
おいて素子の動作を妨げる転位と歪応力の両方が低減で
きるため、その第3の基板上に良好な特性の素子が形成
できる。
That is, according to the present invention, even after the third crystal substrate is grown on the second crystal substrate, both the dislocation and the strain stress which hinder the operation of the element in the third crystal substrate can be reduced. An element having good characteristics can be formed on the third substrate.

【0011】[0011]

【実施例】まず図1に示すように250μmの厚さのS
i半導体結晶基板1上に、従来公知の2段階成長法を用
いて0.2μm厚さのGaAsエピタキシャル層3を形
成した。その上に、GaAsとの間においてエピタキシ
ャル成長が可能であり、かつGaAsに対して選択エッ
チングが可能な、例えばAl0.7 Ga0.3 Asの選択エ
ッチング層2を0.5μm形成した。その選択エッチン
グ層2の上に、第2の結晶基板となるGaAs半導体基
板層3を1μmエピタキシャル成長させた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, as shown in FIG.
A GaAs epitaxial layer 3 having a thickness of 0.2 μm was formed on an i-semiconductor crystal substrate 1 using a conventionally known two-step growth method. On top of that, a selective etching layer 2 of, for example, Al0.7 Ga0.3 As, which can be epitaxially grown with GaAs and can be selectively etched with respect to GaAs, is formed to have a thickness of 0.5 μm. On the selective etching layer 2, a GaAs semiconductor substrate layer 3 serving as a second crystal substrate was epitaxially grown by 1 μm.

【0012】次に、図2(a)に示すように所定の範囲
3aを残すように前記GaAs半導体結晶基板層3の表
面よりエッチングにより前記選択エッチング層2に達す
る切溝4を形成し、しかる後に、その切溝4を利用し、
AlGaAs系選択エッチング液、例えばふっ化水素溶
液を用いてAl0.7 Ga0.3 As選択エッチング層2の
み、一部エッチングにより除去し、図2(a)に平面
図、(b)に断面図を示すような、Si半導体結晶基板
1より部分的に離間し、かつ歪応力が緩和されたGaA
s半導体結晶基板層を得た。このような形状で部分的に
離反されたGaAs半導体結晶基板層内の歪を計算機シ
ミュレーションおよびフォトルミネッセンス測定により
評価した結果、離反させる以前のGaAs半導体結晶基
板層の歪と比べて広範囲において1/10以下に減少し
ていることがわかった。
Next, as shown in FIG. 2A, a kerf 4 reaching the selective etching layer 2 is formed by etching from the surface of the GaAs semiconductor crystal substrate layer 3 so as to leave a predetermined range 3a. Later, using the kerf 4,
Using an AlGaAs-based selective etching solution, for example, a hydrogen fluoride solution, only the Al0.7 Ga0.3 As selective etching layer 2 is partially removed by etching, and a plan view is shown in FIG. As shown, GaAs partially separated from Si semiconductor crystal substrate 1 and having relaxed strain stress
An s semiconductor crystal substrate layer was obtained. As a result of evaluating the strain in the GaAs semiconductor crystal substrate layer partially separated in such a shape by computer simulation and photoluminescence measurement, it was found that the strain in the GaAs semiconductor crystal substrate layer before separation was 1/10 in a wide range. It was found that it decreased below.

【0013】この状態で800℃、10分熱アニールを
施した。熱アニール後の転位を調べるために透過電子顕
微鏡観察したところ、部分的に離反されたGaAs半導
体結晶基板3内では転位が観察されない領域も存在して
いることがわかった。またフォトルミネッセンス測定に
おいてもアニール前と比べ強度が大きく増加することが
わかった。
In this state, thermal annealing was performed at 800 ° C. for 10 minutes. Observation with a transmission electron microscope for examining dislocations after thermal annealing revealed that there were regions where dislocations were not observed in the partially separated GaAs semiconductor crystal substrate 3. Also, in the photoluminescence measurement, it was found that the strength was greatly increased as compared with before the annealing.

【0014】その後、図3の断面図に示すように部分的
に離間されたGaAs半導体結晶基板3以外の露呈した
Si基板1上にフォトレジストによるリフトオフ法にて
蒸着SiO2 被膜層6をおよそ500オングストローム
形成した。その後減圧MOCVD(metalorganic chemi
cal vapor deposition)法にて離間された第2のGaA
s基板3上に第3の結晶基板となるGaAsエピタキシ
ャル層5を厚さ2μm再成長させた。この再成長後、G
aAs層とSi基板の離間状態を調べるために、走査電
子顕微鏡を用いてGaAs層3とSi基板1の境界部を
拡大観察した所、再成長後もGaAs層はSi基板に対
して離間した状態を保っていた。この時、このSiO2
を被膜しなかった場合は、第3のGaAs層成長後、第
2のGaAs層端部より一定距離を離してSi基板上に
多結晶GaAsが成長されていた。
Thereafter, as shown in the cross-sectional view of FIG. 3, a vapor-deposited SiO 2 coating layer 6 is formed on the exposed Si substrate 1 other than the partially separated GaAs semiconductor crystal substrate 3 by a lift-off method using a photoresist to a thickness of about 500 angstroms. Formed. After that, reduced pressure MOCVD (metalorganic chemi
second GaAs separated by cal vapor deposition)
A GaAs epitaxial layer 5 serving as a third crystal substrate was regrown on the s substrate 3 to a thickness of 2 μm. After this regrowth, G
The boundary between the GaAs layer 3 and the Si substrate 1 was enlarged and observed using a scanning electron microscope to examine the state of separation between the aAs layer and the Si substrate, and the GaAs layer was separated from the Si substrate even after regrowth. Was kept. At this time, this SiO2
Was not formed, after growing the third GaAs layer, polycrystalline GaAs was grown on the Si substrate at a certain distance from the end of the second GaAs layer.

【0015】すなわち第2のGaAs基板端部より一定
距離をおいた部分には多結晶GaAsが成長しない領域
が存在した。この現象は成長原料の横方向拡散としてす
でに良く知られている。この多結晶GaAsの成長しな
い領域があるにもかかわらず、成長後は第2、3のGa
As層とSi基板はその端部において接合されていた。
この成長後の第3のGaAs層内の歪を調べるためにフ
ォトルミネッセンス測定を行った所熱歪がさらに発生し
ていることがわかった。
That is, there is a region where polycrystalline GaAs does not grow at a certain distance from the end of the second GaAs substrate. This phenomenon is already well known as lateral diffusion of the growth material. Despite the region in which the polycrystalline GaAs does not grow, the second and third Ga layers are grown after the growth.
The As layer and the Si substrate were joined at their ends.
Photoluminescence measurement was performed to examine the strain in the third GaAs layer after this growth, and it was found that thermal strain was further generated.

【0016】これに反してSiO2 被膜を行った場合に
は、再成長後の歪と結晶性を評価するためにフォトルミ
ネッセンス測定およびその像を観察したところ、歪は再
成長前と同様に1/10以下に減少したままで、発光強
度は10倍以上増加し半値幅も減少していた。さらにフ
ォトルミネッセンス像においても転位などによる暗点が
ほとんど観察されなかった。すなわち再成長後も大きく
歪が低減された状態を保ちながら、結晶性が格段に改善
されていることがわかった。
On the other hand, when the SiO 2 film was formed, the photoluminescence was measured to evaluate the strain and the crystallinity after the regrowth and the image thereof was observed. The emission intensity increased by a factor of 10 or more and the half-value width also decreased while remaining at or below 10. Further, even in the photoluminescence image, almost no dark spot due to dislocation or the like was observed. That is, it was found that the crystallinity was remarkably improved while maintaining the state where the strain was greatly reduced even after the regrowth.

【0017】しかる後に、従来公知の方法によってこの
上にレーザダイオード等の半導体素子を形成するもので
ある。また前記レーザダイオード等の半導体素子は第3
の結晶基板成長中に引き続いて形成しても良い。さらに
再成長中に熱アニール効果が充分期待される場合には熱
アニールは省略しても良い。また被膜材料はSi基板上
に形成して、GaAs再成長後、Si基板と分離された
GaAs層とSi基板の接合が阻止できるものであれば
SiO2 以外でも良い。
Thereafter, a semiconductor device such as a laser diode is formed thereon by a conventionally known method. The semiconductor device such as the laser diode is a third
May be formed subsequently during the growth of the crystal substrate. Further, if a sufficient thermal annealing effect is expected during regrowth, the thermal annealing may be omitted. The coating material may be other than SiO2 as long as it can be formed on the Si substrate and, after regrowth of GaAs, can prevent the bonding of the GaAs layer separated from the Si substrate and the Si substrate.

【0018】なお、結晶成長を阻止するための被膜6
は、従来からの結晶成長法の一つである選択成長法にお
いて用いられてきたもので良く、酸化珪素の他に、窒化
珪素、酸化アルミニュウムなどが知られている。
The coating 6 for preventing crystal growth
May be used in a selective growth method, which is one of the conventional crystal growth methods. In addition to silicon oxide, silicon nitride, aluminum oxide, and the like are known.

【0019】[0019]

【発明の効果】本発明によれば、第1の結晶基板上に、
格子定数および熱膨張係数の異なる第2、3の結晶基板
を成長する場合においても、第1の基板に対する第2の
基板の離間状態が保たれたまま第3の基板が成長でき、
第2の結晶基板よりさらに転位密度の少ないかつ歪応力
の少ない第3の結晶基板が得られ、その上に高品質の素
子を形成できるものである。
According to the present invention, on the first crystal substrate,
In the case of growing the second and third crystal substrates having different lattice constants and thermal expansion coefficients, the third substrate can be grown while keeping the second substrate separated from the first substrate,
A third crystal substrate having a lower dislocation density and lower strain stress than that of the second crystal substrate can be obtained, and a high-quality element can be formed thereon.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の結晶基板の製造方法の一工程
における結晶基板の断面図
FIG. 1 is a cross-sectional view of a crystal substrate in one step of a method of manufacturing a crystal substrate according to an embodiment of the present invention.

【図2】(a)は本発明の実施例の結晶基板の製造方法
の一工程における結晶基板の平面図 (b)は図2(a)のA−A線における断面図
FIG. 2A is a plan view of a crystal substrate in one step of a method of manufacturing a crystal substrate according to an embodiment of the present invention; FIG.

【図3】本発明の実施例の結晶基板の製造方法の一工程
における結晶基板の断面図
FIG. 3 is a cross-sectional view of the crystal substrate in one step of the method of manufacturing the crystal substrate according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 Al0.7 Ga0.3 As選択エッチング層 3 GaAsエピタキシャル層 4 エッチング溝部 5 GaAsエピタキシャル再成長層 6 SiO2 被覆層 REFERENCE SIGNS LIST 1 Si substrate 2 Al0.7 Ga0.3 As selective etching layer 3 GaAs epitaxial layer 4 etching groove 5 GaAs epitaxial regrowth layer 6 SiO2 coating layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の結晶基板上に、その第1の結晶基板
の格子定数および熱膨張係数と異なる格子定数および熱
膨張係数を有する第2の結晶基板を、その一部が前記第
1の結晶基板面より離間した状態で対向するように形成
し、その第1の結晶基板面より離間した第2の結晶基板
上に、第3の結晶基板を成長させる前の工程において、
露呈している前記第1の結晶基板上に前記第3の結晶基
板が結晶成長しない被膜を形成した後、第3の結晶基板
を成長せしめることを特徴とする結晶基板の製造方法。
A second crystal substrate having a lattice constant and a thermal expansion coefficient different from the lattice constant and the thermal expansion coefficient of the first crystal substrate on the first crystal substrate; In a process before growing a third crystal substrate on a second crystal substrate separated from the first crystal substrate surface, the second crystal substrate is formed so as to face the crystal substrate surface separated from the first crystal substrate surface.
A method of manufacturing a crystal substrate, comprising: forming a film on which the third crystal substrate does not grow on the exposed first crystal substrate, and then growing the third crystal substrate.
【請求項2】第1の結晶基板上に、その第1の結晶基板
の格子定数および熱膨張係数と異なる格子定数および熱
膨張係数を有する第2の結晶基板を、その第2の結晶基
板の上にさらに第3の結晶基板をそれぞれヘテロエピタ
キシャル成長させるに際し、前記第1の結晶基板上に前
記第1の結晶基板と第2の結晶基板に対して選択エッチ
ング可能な選択エッチング層を形成し、その選択エッチ
ング層の上に、第2の結晶基板を形成した後に、その第
2の結晶基板の表面から少なくとも前記選択エッチング
層まで届く切溝を形成し、その切溝を通して前記選択エ
ッチング層をエッチングにより除去して、前記第2の結
晶基板の一部が前記第1の結晶基板面より離間した状態
で対向するよう形成し、その第1の結晶基板面より離間
した第2の結晶基板上に、第3の結晶基板を成長させる
前の工程において、露呈している前記第1の結晶基板上
に前記第3の結晶基板が結晶成長しない被膜を形成した
後、第3の結晶基板をヘテロエピタキシャル成長せしめ
ることを特徴とする結晶基板の製造方法。
2. A second crystal substrate having a lattice constant and a thermal expansion coefficient different from the lattice constant and the thermal expansion coefficient of the first crystal substrate on the first crystal substrate. When a third crystal substrate is further heteroepitaxially grown thereon, a selective etching layer that can be selectively etched with respect to the first crystal substrate and the second crystal substrate is formed on the first crystal substrate. After forming the second crystal substrate on the selective etching layer, a kerf is formed from the surface of the second crystal substrate to at least the selective etching layer, and the selective etching layer is etched through the kerf. Removing the second crystal substrate so that a portion of the second crystal substrate is opposed to the first crystal substrate surface while being separated from the first crystal substrate surface, and a second crystal substrate separated from the first crystal substrate surface is formed. In the step before growing the third crystal substrate, a film on which the third crystal substrate does not grow is formed on the exposed first crystal substrate. A method for producing a crystal substrate, comprising heteroepitaxial growth.
JP2201492A 1992-01-10 1992-01-10 Crystal substrate manufacturing method Expired - Fee Related JP2706592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201492A JP2706592B2 (en) 1992-01-10 1992-01-10 Crystal substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201492A JP2706592B2 (en) 1992-01-10 1992-01-10 Crystal substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH06232045A JPH06232045A (en) 1994-08-19
JP2706592B2 true JP2706592B2 (en) 1998-01-28

Family

ID=12071148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201492A Expired - Fee Related JP2706592B2 (en) 1992-01-10 1992-01-10 Crystal substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2706592B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113685A (en) * 1998-09-14 2000-09-05 Hewlett-Packard Company Method for relieving stress in GaN devices
US6417077B1 (en) * 2000-02-07 2002-07-09 Motorola, Inc. Edge growth heteroepitaxy processes with reduced lattice mismatch strain between a deposited semiconductor material and a semiconductor substrate

Also Published As

Publication number Publication date
JPH06232045A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JP3819730B2 (en) Nitride-based semiconductor device and method for forming nitride semiconductor
US5256594A (en) Masking technique for depositing gallium arsenide on silicon
US6274518B1 (en) Method for producing a group III nitride compound semiconductor substrate
JP3114809B2 (en) Semiconductor device
JP2000331947A (en) Semiconductor base material and manufacture thereof
JP2000331937A (en) Semiconductor base material and manufacture thereof
JP3780832B2 (en) Manufacturing method of semiconductor crystal
JP2001102668A (en) Manufacturing method of semiconductor substrate
KR101236213B1 (en) Process for making a GaN substrate
US7109530B2 (en) Nitride-based semiconductor element
JP2706592B2 (en) Crystal substrate manufacturing method
JP4257815B2 (en) Semiconductor device
KR100323710B1 (en) method for fabricating GaN semiconductor laser substate
JP2000077770A (en) Semiconductor laser and formation method of there
JP3350855B2 (en) Method for manufacturing group III nitride semiconductor substrate
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
KR20050029735A (en) Method for manufacturing thick gan layer capable of reducing defects and easily separating
KR20040036381A (en) METHOD FOR MANUFACTURING GaN SUBSTRATE
JPH05267175A (en) Compound semiconductor substrate
JP3150373B2 (en) Crystal substrate manufacturing method
JP2001102303A (en) Manufacturing method of compound semiconductor substrate
JP2845551B2 (en) Crystal substrate and method of manufacturing the same
JP2862018B2 (en) Semiconductor substrate
JP4369782B2 (en) Manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970916

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees