JP4298354B2 - 位置制御システムおよび位置制御方法 - Google Patents

位置制御システムおよび位置制御方法 Download PDF

Info

Publication number
JP4298354B2
JP4298354B2 JP2003099586A JP2003099586A JP4298354B2 JP 4298354 B2 JP4298354 B2 JP 4298354B2 JP 2003099586 A JP2003099586 A JP 2003099586A JP 2003099586 A JP2003099586 A JP 2003099586A JP 4298354 B2 JP4298354 B2 JP 4298354B2
Authority
JP
Japan
Prior art keywords
drive
drive source
amount
driving
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099586A
Other languages
English (en)
Other versions
JP2004005548A (ja
JP2004005548A5 (ja
Inventor
禎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003099586A priority Critical patent/JP4298354B2/ja
Priority to US10/419,537 priority patent/US6859006B2/en
Priority to CN03122162.9A priority patent/CN1243293C/zh
Publication of JP2004005548A publication Critical patent/JP2004005548A/ja
Publication of JP2004005548A5 publication Critical patent/JP2004005548A5/ja
Application granted granted Critical
Publication of JP4298354B2 publication Critical patent/JP4298354B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts
    • G03G2221/1651Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts
    • G03G2221/1657Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts transmitting mechanical drive power

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動源の駆動力を動力伝達機構を介して被駆動部材に伝達する駆動系に用いられる位置制御システムおよび位置制御方法に関するものである。
【0002】
【従来の技術】
駆動源と被駆動部材との間には通常、動力伝達機構が設けられている。プリンター等の多色画像形成装置の現像器切替え器のように、比較的大きな慣性をもつ被駆動部材(負荷)を位置制御する場合には、駆動源であるモータの効率、配置等を考えて、モータと負荷の間をギア列等の動力伝達機構で結合する場合が多い。
【0003】
また、駆動源が直流モータの場合には、高速駆動している場合に効率が良いのでこの傾向が強い。
【0004】
ところで、動力伝達機構にはギア列のバックラッシやガタ等のいわゆる機械的不感帯(以下、遊びという)が必ず存在するが、ロータリエンコーダなどの位置検出器を負荷に直接結合すると、ギア列等の遊びにより制御系が不安定になりやすい。
【0005】
また必要な解像度を得るのに高パルスのエンコーダが必要となりコストが高くなる。
【0006】
そこで、位置検出器をモータ軸に結合する場合が多く、これはいわゆるセミクローズ制御系と称される。
【0007】
また、高精度かつ静粛に位置制御するために、特許文献1に記載されたような速度テーブルによってモータを制御する方法がよく行われている。
【0008】
また、制御法に関しては種々の手法が提案されているが、設計調整のしやすさ、特別なハードが不要なことから、特許文献2で提案されているような比例積分微分制御(以下、PID制御と略称する。また、比例(Proportional)をPと、積分(Integral)をIと、微分(Derivative)をDと略称する)がよく用いられている。
【0009】
モータが目標位置に達するまでの理想的なモータの速度値を速度テーブルとして記憶させ、実際のモータの速度値と速度テーブルから読み出した速度値のズレをPID制御によって修正するものである。
【0010】
【特許文献1】
特開昭57−132797号公報
【特許文献2】
特開平9−128033号公報
【0011】
【発明が解決しようとする課題】
上述したように動力伝達機構には遊びが存在するが、例えば、多色画像形成装置の現像器切替え器のような比較的大きな慣性をもつ被駆動部材を駆動する場合は、減速比を大きくとるので動力伝達機構の遊びも大きくなる。
【0012】
この遊びによるズレを考慮すると、被駆動源の停止位置での精度を高めるためには、駆動源が停止する直前まで駆動源と被駆動部材との慣性負荷が分離しないことが望ましい。
【0013】
このような駆動系をセミクローズ系でPID制御により位置制御する場合、速度テーブルにより得られた目標位置と実際のモータの駆動位置とズレを早く解消しようとして積分ゲインを大きくすると、簡単に発振してしまうことがある。
【0014】
積分ゲインが大きい場合は、モータの実際の駆動位置が速度テーブルを基に得られた位置よりも少しでも進み過ぎてしまうと、モータがその向きを反転させようとする。
【0015】
これに対して、被駆動体は自身の慣性によりそれまでと同じ方向に進もうとする。
【0016】
動力伝達部材に遊びがあるために、反転させようとするモータと慣性で進もうとする被駆動部材との間で衝突が起こる。
【0017】
これは、モータの駆動速度と比較してモータの駆動位置を検出するためのサンプリング時間が十分に早いとは言えない場合に生じやすい。
【0018】
通常、速度テーブルは、モータが徐々に駆動速度を上げていき、目標位置に近づくと徐々に駆動速度を下げるように設定されている。
【0019】
したがって、積分ゲインが大きいと、駆動速度の遅い駆動開始付近と、駆動停止付近を除いた個所では、衝突離脱を繰り返してしまい大きな振動を発生してしまう恐れがある。
【0020】
しかし、この振動を抑制しようとして積分ゲインを小さくすると、停止するための収束に時間がかかったり、残差が大きくなってしまったりする恐れがある。
【0021】
そこで、本発明は、動力伝達機構に遊びが存在し、かつ駆動源に位置検出手段が結合されている場合でも、被駆動部材を正確に位置制御することができるようにした位置制御システムおよび位置制御方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記の目的を達成するために、本願第1の発明にかかる制御方法は、動力伝達機構を介して被駆動部材を駆動する駆動源と、前記駆動源の駆動位置を検出する位置検出手段とを備え、前記駆動源に速度指令値を出して速度制御を行う駆動装置に適用され、前記位置検出手段による検出位置が目標位置に到達するように制御を行う位置制御方法であって、前記駆動源の前記目標位置までの残り駆動量と前記動力伝達機構の遊びによる機械的不感帯量とを比較するステップと、前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を求めるステップと、前記残り駆動量が前記機械的不感帯量より大きい間は、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例微分演算により前記駆動源を位置制御するステップと、前記残り駆動量が前記機械的不感帯量より小さくなったときには、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により前記駆動源を位置制御するステップとを含むことを特徴とする。
【0023】
同様に上記の目的を達成するために、本願第2の発明にかかる制御システムは、駆動源と、前記駆動源の出力を被駆動部材に伝達する動力伝達機構と、前記駆動源の駆動位置を検出する位置検出手段と、速度指令値を用いて前記駆動源の速度制御を行って前記位置検出手段による検出位置が目標位置に到達するように前記駆動源の位置制御を行う駆動制御手段を備えた位置制御システムであって、前記駆動制御手段は、比例演算、積分演算および微分演算が可能な演算器を有し、前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を得て、前記目標位置までの残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より大きい間は、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例微分演算により位置制御を行い、前記残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より小さくなったときには、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により位置制御を行うことを特徴とする。
【0024】
【発明の実施の形態】
(第1実施形態)
図1は、本発明の第1実施形態である位置制御システムのブロック図である。
【0025】
図1では、各構成要素の電気的な接続を点線で、機械的な接続を実線で示す。
【0026】
ロータリエンコーダ2(位置検出手段)は、駆動源である直流モータ4の軸に伝達機構を介さずに直接取り付けられている。
【0027】
また、ロータリエンコーダ2は位置カウンタ1に接続され、回転方向の情報を含むパルス信号を位置カウンタ1に出力する。
【0028】
このパルス信号を位置カウンタ1でアップダウンカウントすることによって、モータ4の駆動位置(回転量)情報を得ることができる。
【0029】
ギア列(単数のギア列からなるものも含む)5(動力伝達機構)は、モータ4で発生した回転を減速するとともにトルクを増大させる。
【0030】
また、ギア列5には機械的な不感帯としての遊びが存在し、その量はあらかじめ計測することによりほぼ正確に知ることができる。
【0031】
記憶回路7には、負荷としての被駆動部材6を位置制御する際の速度テーブル(速度指令値)および制御の諸パラメータが記憶されている。
【0032】
記憶回路7はマイコン3(駆動制御手段)に接続し、マイコン3の要求に応じて、上記速度テーブル等を出力する。
【0033】
また、マイコン3は記憶回路7あるいは不図示の記憶媒体に記録されたプログラムを読み出して実行することによって各実施形態における処理を行う。
【0034】
マイコン3は記憶回路7から読み出した速度テーブルを積分して得られる指令位置と、位置カウンタ1から得られた現在の駆動位置とを比較して、位置偏差に対して比例、積分、微分演算等を行い、直流モータ4に与える駆動信号のパルス幅(デューティー比)を増減制御することによって直流モータ4を速度テーブルの速度指令値に追従させる。
【0035】
図2は、位置制御システムにおけるマイコンを中心とした制御回路の詳細なブロック図である。
【0036】
図2において、1、2は位置カウンタとロータリエンコーダ、3はマイコン、4は直流モータである。11は速度テーブルを記憶する記録回路7内の速度テーブル記憶部、12は積分回路、13は微分回路、14は積分回路、15は比例ゲイン回路、16は微分ゲイン回路、17は積分ゲイン回路、18はギア列5の機械的な遊び量のデータを記憶する記憶回路7内の遊び量記憶部、19はマイコン内部のメモリの定数記憶部、20はスイッチ、21は目標位置のデータを記憶する記憶回路7内の目標位置記憶部、22は比例ゲイン回路、微分ゲイン回路およびスイッチ20の出力を加算する加算器、23はPWMドライバ、24は目標位置記憶部21から読み出した目標位置のデータから位置カウンタ1の出力を減算する減算器、25は減算器24の出力から遊び量記憶部18から読み出した遊び量のデータを減算する減算器、26は積分回路12の出力から位置カウンタ1の出力を減算する減算器である。
【0037】
また、Aは速度テーブル記憶部11から読み出した速度テーブルを積分回路12により積分して得られる指令位置のデータ、Bはエンコーダ2および位置カウンタ1の出力から求めた現在の直流モータ4の駆動位置(以下、現在位置という)のデータ、Cはあらかじめ目標位置記憶部21に記憶された目標位置のデータ、Dはあらかじめ遊び量記憶部8に記憶されたギア列5の機械的な遊び量のデータである。
【0038】
そして、指令位置Aと現在位置Bの偏差に応じて制御出力を出すのがPID演算器である。比例ゲイン回路15によってP(比例)演算器が構成され、微分回路13および微分ゲイン回路16によってD(微分)演算器が構成され、積分回路14および積分ゲイン回路17によってI(積分)演算器が構成されている。
【0039】
図3は、上記マイコン3が行う制御内容を表すフローチャートである。なお、図中ではステップをSと略している。
【0040】
ステップ1では、マイコン3がロータリエンコーダ2および位置カウント1より直流モータ4の現在位置Bを検出する。
【0041】
ステップ2では、現在位置Bと目標位置Cとを比較して、現在位置Bが目標位置Cに達したか否かを判別する。目標位置Cに達していればステップ9へ進み、達していなければステップ3に進む。
【0042】
ステップ3では、速度テーブルから駆動時間に応じた速度値を読み出し、積分回路12で積分して指令位置Aとして設定(更新)する。
【0043】
ステップ4では、ステップ3で設定した指令位置Aと現在位置Bとの偏差を減算器26によって計算し、マイコン3内の不図示のメモリに記憶する。
【0044】
ステップ5では、現在位置Bから目標位置Cまでの残りの駆動量C−Bが遊び量記憶部18に記憶された遊び量Dより大きいか否かを判別し、大きければステップ6、小さければステップ7に進む。
【0045】
ステップ6では、ステップ4でメモリに記憶した値を入力値として、P演算器15およびD演算器13、16の出力と、定数記憶部19に記憶された定数0を加算して速度指令信号を生成する。
【0046】
ステップ7では、P演算器15、D演算器13、16およびI演算器14、17の出力をすべて加算して速度指令信号を生成する。
【0047】
ステップ8では、速度指令信号をPWMドライバ23に出力し、直流モータ4の制御信号を更新する。
【0048】
ステップ6での定数記憶部19に記憶された値と、ステップ7でのI演算器14、17の出力との選択は、スイッチ20を切り換えることによって行う。
【0049】
すなわち、目標位置Cから現在位置Bを減算器24で減算して残り駆動量C−Bを算出し、この残り駆動量C−Bから遊び量Dを減算器25で減算してその減算結果が正のとき(残り駆動量C−Bが遊び量Dより大きいとき)はスイッチ20を定数記憶部19側に切り換えて、加算器22によりP演算の結果とD演算の結果のみを加算させる。一方、減算器25の減算結果が負または0のとき(残り駆動量C−Bが遊び量Dと等しいか遊び量Dよりも小さいとき)はスイッチ20をI演算器14、17側に切り換えて、加算器22によりP演算の結果、D演算の結果、および、I演算の結果のすべてを加算させる。
【0050】
ステップ8で直流モータ4の制御信号を更新した後はステップ1に戻り、現在位置Bが目標位置Cに達するまでステップ1からステップ8までを繰り返し行う。
【0051】
現在位置Bが目標位置Cに達すると、ステップ2からステップ9へ進む。
【0052】
ステップ9では、PWMドライバ23への出力を0とし、モータ4を停止させる。
【0053】
このように、残り駆動量C−Bがギア列5の遊び量Dよりも大きい間は積分制御を行わずにPD制御のみを行う。I制御を行わないので、モータ4が発振を行わないのでモータ4とギア列5が遊びの中で衝突離脱を繰り返したり、その影響によって停止時に大きなハンチングを残したりすることを防止できる。
【0054】
その後、残り駆動量C−Bがギア列5の遊び量Dよりも小さくなると、PID制御を行う。
【0055】
これにより、停止時の収束を早くすることができる。残り駆動量C−Bがギア列5の遊び量Dよりも小さいときは、モータの目標位置Bまでの距離があとわずかであるため、速度テーブルによってモータの駆動速度は遅く設定されている。
【0056】
つまり、モータの駆動速度と比較してモータの駆動位置を検出するためのサンプリング時間が十分に早い状態になっている。
【0057】
したがって、モータの実際の駆動位置が速度テーブルから得られた指令位置よりも大幅に進みすぎることはなく、積分制御を行っても発振を起こさずにゲインを高めることができる。
【0058】
なお、ディジタル回路で積分を実現する場合は、オーバーフローを防ぐために演算値の最大値に上限を設けるとよい。
【0059】
図9は、ギア列5等の動力伝達機構の遊び量の検出シーケンスを表すフローチャートである。このフローチャートの動作は、位置制御システムの初期化時などに、所定の駆動開始位置でだけ行えばよい。
【0060】
ステップ41では、マイコン3はモータ4を微速で通常の進行方向と逆方向に駆動、すなわち後退させる。
【0061】
ステップ42では、モータが負荷側に突き当たることにより速度が0、あるいは、突き当たる衝撃でバウンドして速度が正(通常の進行方向)となる位置を検出する。
【0062】
このとき、負荷側を駆動せずにモータ4のみを駆動可能なように、モータのトルクは小さく設定されている。
【0063】
この位置の検出ができた場合はステップ43及びステップ44進み、位置の検出ができなければステップ41を繰り返す。
【0064】
ステップ43では、ステップ2で検出した位置をP0として記憶回路7に記憶させる。このP0は動力伝達機構による遊びの一端の位置を示している。
【0065】
ステップ44では、モータ4と被駆動部材6を駆動するために必要なトルクを得るために十分なステップ状の駆動指令を与えて、モータ4を通常の進行方向に駆動する。このときのモータ4の速度変化を示したのが図10である。
【0066】
ステップ45では、モータが負荷側に突き当たって動力伝達機構が弾性変形を開始するため、モータ4の加速度が正から負へと変化する位置を検出する。
【0067】
この位置の検出ができた場合はステップ46及びステップ47に進み、位置の検出ができなければステップ44を繰り返す。
【0068】
ステップ46では、ステップ45で検出した位置をP1として記憶回路7に記憶させる。このP1は動力伝達機構による遊びが最大のときの遊びの他端の位置を示している。
【0069】
ステップ47では、P1−P0を計算して、動力伝達機構の最大遊び量Dを求める。
【0070】
ステップ48では、ステップ47で求めた最大遊び量Dを遊び量記憶部18に記憶させる。
【0071】
なお、被駆動部材6をロック保持する固定機構がある場合には、あらかじめ被駆動部材6を固定しておくとよい。
【0072】
なお、本実施形態では、駆動源として直流モータを用いる場合について説明したが、ギア列等の動力伝達機構を介して被駆動部材を駆動し、駆動源の出力部の駆動位置を位置センサより取得した位置に基づいて駆動源のフィードバック制御を行う駆動系であれば、どのような駆動源を用いてもよい。
【0073】
例えば、図4には、振動型モータを用いた、カメラ等のレンズ鏡筒の駆動ユニットを示している。
【0074】
60はペンシル型の振動型モータ、50はギア、52はギアであり50とともに減速ギア列ユニット(動力伝達機構)を構成している。54はパルス板、53はこのパルス板54とともに位置検出器を構成するフォトインタラプタ等からなるエンコーダである。
【0075】
51はギア50と噛みあう被駆動部材(負荷)としてのレンズ鏡筒の構成部品であり、例えば、ズームレンズを光軸方向に駆動するカムリング等である。
【0076】
なお、振動型モータ60は、弾性体61と、弾性体61に固定された圧電素子62と、弾性体61の端面にバネ力により圧接されているロータ63と、ロータ63と一体に回転し、ギア52と噛みあうギア64とを有している。
【0077】
圧電素子62への交番信号を供給することによって弾性体61の端面には進行波が発生し、この弾性体61の端面に圧接しているロータ63が回転駆動される。
【0078】
そして、ロータ63の回転は、ギア64からギア列ユニット52、50を介してレンズ鏡筒の構成部材51に伝達される。
【0079】
この例では振動型モータを使っているが、ギア列によりトルクを伝達しているため本実施形態と同様の制御方法が有効である。
【0080】
なお、振動型モータを駆動源とした場合は、圧電素子62に供給する交番信号のパルス幅を調整することにより駆動速度を制御することができるが、交番信号の周波数を調整することによって駆動速度を制御するほうが、より広いダイナミックレンジを得ることができる。
【0081】
(第2実施形態)
図5は、本発明の第2実施形態である位置制御システムにおけるマイコン3を中心とした制御回路の詳細なブロック図である。なお、第1実施形態と共通する構成要素には第1実施形態と同じ符号を付している。
【0082】
図5において、Aは速度テーブル記憶部11から読み出した速度テーブルを積分回路12により積分して得られる指令位置のデータ、Bはエンコーダ2および位置カウンタ1の出力から求めた現在の直流モータ4の駆動位置のデータ、Cはあらかじめ目標位置記憶部21に記憶された目標位置のデータ、Dは第1実施形態と同様な方法であらかじめ遊び量記憶部18に記憶されたギア列5の機械的な遊び量のデータである。
【0083】
そして、指令位置Aと現在位置Bの偏差に応じて制御出力を出すのがPID演算器である。比例ゲイン回路15によってP演算器が構成され、微分回路13および微分ゲイン回路16によってD演算器が構成されている。
【0084】
本実施形態では第1実施形態と異なり、積分回路14、積分ゲイン回路17、第2の積分ゲイン回路27およびスイッチ20によってI演算器が構成されている。
【0085】
第2の積分ゲイン回路27は、積分ゲイン回路17よりもそのゲインが小さい。
【0086】
図6は、マイコン3が行う制御内容を表すフローチャートである。
【0087】
ステップ11では、マイコン3がロータリエンコーダ2および位置カウント1の出力より直流モータ4の現在位置Bを検出する。
【0088】
ステップ12では、現在位置Bと目標位置Cとを比較して、現在位置Bが目標位置Cに達したか否かを判別し、達していなければステップ13に進む。
【0089】
ステップ13では、速度テーブルから駆動時間に応じた速度値を読み出し、積分回路12で積分して指令位置Aとして設定(更新)する。
【0090】
ステップ14では、ステップ13で設定した指令位置Aと現在位置Bとの偏差を減算器26によって計算し、マイコン3内の不図示のメモリに記憶する。
【0091】
ステップ15では、現在位置Bから目標位置Cまでの残りの駆動量C−Bが遊び量記憶部18に記憶された遊び量Dより大きいか否かを判別し、大きければステップ16、小さければステップ17に進む。
【0092】
ステップ16では、ステップ14でメモリに記憶した値を入力値として、ゲインが小さいほうの第2の積分ゲイン回路27を用いたI演算器14、27の出力と、P演算器15およびD演算器13、16の出力とを加算して速度指令信号を生成する。
【0093】
ステップ17では、ステップ14でメモリに記憶した値を入力値として、ゲインが大きいほうの積分ゲイン回路17を用いたI演算器14、17の出力と、P演算器15およびD演算器13、16の出力とを加算して速度指令信号を生成する。
【0094】
ステップ18では、速度指令信号をPWMドライバ23に出力し、直流モータ4の制御信号を更新する。
【0095】
積分ゲイン回路17と、第2の積分ゲイン回路27との選択は、スイッチ20を切り換えることによって行う。
【0096】
すなわち、目標位置Cから現在位置Bを減算器24で減算して残り駆動量C−Bを算出し、この残り駆動量C−Bから遊び量Dを減算器25で減算してその減算結果が正のとき(残り駆動量C−Bが遊び量Dより大きいとき)はスイッチ20を第2の積分ゲイン回路27側に切り換えて、残りの駆動量C−Bが遊び量Dより小さいときよりも小さなゲインで積分制御を行う。
【0097】
一方、減算器25の減算結果が負または0のとき(残り駆動量C−Bが遊び量Dと等しいか遊び量Dよりも小さいとき)はスイッチ20を積分ゲイン回路17側に切り換えて、残りの駆動量C−Bが遊び量Dより大きいときよりも大きなゲインで積分制御を行う。
【0098】
ステップ18で直流モータ4の制御信号を更新した後はステップ1に戻り、現在位置Bが目標位置Cに達するまでステップ11からステップ18までを繰り返し行う。
【0099】
現在位置Bが目標位置Cに達すると、ステップ12からステップ19へ進む。
【0100】
ステップ19では、PWMドライバへの出力を0とし、モータ4を停止させる。
【0101】
このように、残り駆動量C−Bがギア列5の遊び量Dよりも大きい間はI演算器のゲインを小さくし、制御余裕を大きくしてPID制御を行う。
【0102】
これにより、モータ4が発振を小さくすることができ、モータ4とギア列5が遊びの中で衝突離脱を繰り返したり、その影響によって停止時に大きなハンチングを残したりすることを防止できる。
【0103】
さらに、残り駆動量C−Bがギア列5の遊び量Dよりも小さくなると、I演算器のゲインを大きくしてPID制御を行う。これにより、第1実施形態と同様に停止時の収束を早くすることができる。このときのモータの駆動速度と比較してモータの駆動位置を検出するためのサンプリング時間が十分に早い状態になっているため、モータの実際の駆動位置が速度テーブルから得られた指令位置よりも大きく進みすぎることはなく、積分制御を行っても発振を起こさずにゲインを高めることができる。
【0104】
(第3実施形態)
図7は、本発明の第3実施形態である位置制御システムにおけるマイコン3を中心とした制御回路の詳細なブロック図である。なお、第1実施形態と共通する構成要素には第1実施形態と同符号を付している。
【0105】
図7において、Aは速度テーブル記憶部11から読み出した速度テーブルを積分回路12により積分して得られる指令位置のデータ、Bはエンコーダ2および位置カウンタ1の出力から求めた現在の直流モータ4の駆動位置のデータ、Cはあらかじめ目標位置記憶部21に記憶された目標位置のデータ、Dは第1実施形態と同様な方法であらかじめ遊び量記憶部18に記憶されたギア列5の機械的な遊び量のデータである。
【0106】
そして、指令位置Aと現在位置Bの偏差に応じて制御出力を出すのがPID演算器である。
【0107】
比例ゲイン回路15によってP演算器が構成され、微分回路13および微分ゲイン回路16によってD演算器が構成されている。
【0108】
本実施形態では第1、2実施形態と異なり、積分回路28、第2積分回路29、スイッチ20、積分ゲイン回路17によってI演算器が構成されている。第2の積分回路29は積分回路28よりもI演算器の上限値が小さい。
【0109】
図8は、マイコン3が行う制御内容を表すフローチャートである。
【0110】
ステップ21では、マイコン3がロータリエンコーダ2および位置カウント1より直流モータ4の現在位置Bを検出する。
【0111】
ステップ22では、現在位置Bと目標位置Cとを比較して、現在位置Bが目標位置Cに達したか否かを判別し、達していなければステップ23に進む。
【0112】
ステップ23では、速度テーブルから駆動時間に応じた速度値を読み出し、積分回路12で積分して指令位置Aとして設定(更新)する。
【0113】
ステップ24では、ステップ23で設定した指令位置Aと現在位置Bとの偏差を減算器26によって計算し、マイコン3内の不図示のメモリに記憶する。
【0114】
ステップ25では、現在位置Bから目標位置Cまでの残りの駆動量C−Bが遊び量記憶部18に記憶された遊び量Dより大きいか否かを判別し、大きければステップ26、小さければステップ27に進む。
【0115】
ステップ26では、ステップ24でメモリに記憶した値を入力値として、I演算器の上限値が小さいほうの第2の積分回路29を用いたI演算器29、20、17の出力と、P演算器15およびD演算器13、16の出力を加算して速度指令信号を生成する。
【0116】
ステップ27では、ステップ24でメモリに記憶した値を入力値として、I演算器の上限値が大きいほうの積分回路28を用いたI演算器28、10、17の出力と、P演算器15およびD演算器13、16の出力とを加算して速度指令信号を生成する。
【0117】
ステップ28では、速度指令信号をPWMドライバ23に出力し、直流モータ4の制御信号を更新する。
【0118】
積分回路28と、第2の積分回路29との選択は、スイッチ20を切り換えることによって行う。
【0119】
すなわち、目標位置Cから現在位置Bを減算器24で減算して残り駆動量C−Bを算出し、この残り駆動量C−Bから遊び量Dを減算器25で減算してその減算結果が正のとき(残り駆動量C−Bが遊び量Dより大きいとき)はスイッチ20を第2の積分回路29側に切り換えて、残りの駆動量C−Bが遊び量Dより小さいときよりもI演算の上限値を小さくして積分制御を行う。
【0120】
一方、減算器25の減算結果が負または0のとき(残り駆動量C−Bが遊び量Dと等しいか遊び量Dよりも小さいとき)はスイッチ20を積分回路28側に切り換えて、残りの駆動量C−Bが遊び量Dより大きいときよりもI演算の上限値を大きくして積分制御を行う。
【0121】
ステップ28で直流モータ4の制御信号を更新した後はステップ21に戻り、現在位置Bが目標位置Cに達するまでステップ21〜ステップ28を繰り返し行う。
【0122】
現在位置Bが目標位置Cに達すると、ステップ22からステップ29へ進む。
【0123】
ステップ29では、PWMドライバ23への出力を0とし、モータ4を停止させる。
【0124】
このように、残り駆動量C−Bがギア列5の遊び量Dよりも大きい間はI演算の上限値を小さくしてPID制御を行う。これにより、モータ4がオーバーシュートしにくく、つまり、発振を行いにくくすることができ、モータ4とギア列5が遊びの中で衝突離脱を繰り返したり、その影響によって停止時に大きなハンチングを残したりすることを防止できる。
【0125】
さらに、残り駆動量C−Bがギア列5の遊び量Dよりも小さくなると、I演算の上限値を大きくしてPID制御を行う。これにより、第1実施形態と同様に停止時の収束を早くすることができる。
【0126】
このときのモータの駆動速度と比較してモータの駆動位置を検出するためのサンプリング時間が十分に早い状態になっているため、モータの実際の駆動位置が速度テーブルから得られた指令位置よりも大きく進みすぎることはなく、積分制御を行っても発振等を起こさずにゲインを高めることができる。
【0127】
(第4実施形態)
図11は、上述した位置制御システムを備えた多色画像形成装置の構成を示す図である。
【0128】
30は表面にレーザー光等を受けて感光し、潜像を形成する感光ドラム、32は感光ドラム30に形成された潜像に順に各色の感光剤を付加することによって可視像を現出させる回転型現像器、31は回転型現像器32によって現像された単色の可視画像を記録シートに転写し、各色の可視画像を重ね合わせることによってカラー画像を形成する中間転写ドラムである。
【0129】
被駆動部材の慣性が大きく、また動力伝達機構の遊びが大きい系に対して上述した位置制御システムは有効である。
【0130】
図11でいえば、回転型現像器32、感光ドラム30および中間転写ドラム31が被駆動部材にあたる。
【0131】
図12は、図11に示した回転型現像器の部分拡大図である。駆動源である直流モータ35には、ロータリエンコーダ36が直結されていて、直流モータ35の位置を検出できるようになっている。
【0132】
モータ駆動力は、ギア列33、34(動力伝達機構)によって被駆動部材である回転型現像器32に導かれている。
【0133】
回転型現像器32は、各色の現像剤を含むカートリッジを保持するような機構となっていて、決められた色順となるよう現像位置に配置されている。
【0134】
図13は、図11に示した感光ドラム30および中間転写ドラム31の部分拡大図である。感光ドラム30および中間転写ドラム31には、それぞれギア列37〜43を介してモータ35から駆動力が導かれる。
【0135】
ギア列40は段ギア列となっていて、感光ドラム30と中間転写体ドラム31の2つの負荷に動力を分配している。
【0136】
回転型現像器32が大きな慣性モーメントを持っていて、さらにギア列の段数が多く、その減速比も大きいため、エンコーダ36から見た被駆動部材の遊び量は大きな値となる。
【0137】
したがって、頭出し等のためにこれらの駆動系を位置出しする場合、上述した位置制御方法は非常に有効な手段となる。
【0138】
なお、上記実施形態では、レンズ鏡筒や画像形成装置の駆動系に本発明の実施形態にかかる位置制御方法を適用した場合について説明したが、これらに限らず、駆動源の駆動力を動力伝達機構を介して被駆動部材に伝達する駆動系を有した各種機器に適用することができる。
【0139】
また、本実施形態を実行するためのプログラム、及び、このプログラムを格納した記憶媒体についても同様に適用することができるものである。
【0140】
さらに、以上説明した各実施形態は、上記各発明を実施した場合の一例でもあり、上記各実施形態に様々な変更や改良が加えられて実施されるものである。
【0141】
【発明の効果】
以上説明したように、本発明によれば、駆動源の駆動位置を検出して被駆動部材の位置制御を行う場合であっても、機械的不感帯が存在する動力伝達機構の初期条件にかかわらず、特別な機構や部品を用いることなく、安定して正確な被駆動部材の位置制御を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の位置制御システムの概略構成を示すブロック図。
【図2】本発明の第1実施形態である位置制御システムのマイコンを中心とした詳細構成を示すブロック図。
【図3】第1実施形態の位置制御システムによる制御内容を示すフローチャート。
【図4】第1実施形態の位置制御システムを適用するレンズ鏡筒の駆動ユニットの断面図。
【図5】本発明の第2実施形態である位置制御システムのマイコンを中心とした詳細構成を示すブロック図。
【図6】第2実施形態の位置制御システムによる制御内容を示すフローチャート。
【図7】本発明の第3実施形態である位置制御システムのマイコンを中心とした詳細構成を示すブロック図。
【図8】第3実施形態の位置制御システムによる制御内容を示すフローチャート。
【図9】第1実施形態の位置制御システムにおける遊び量の検出フローチャート。
【図10】上記位置制御システムにおける遊び量の検出方法の説明図。
【図11】本発明の第4実施形態である、上記各実施形態の位置制御システムを適用する多色画像形成装置の断面図。
【図12】図11の多色画像形成装置の回転型現像器を示す図。
【図13】図11の多色画像形成装置の感光ドラムと中間転写ドラムを示す図。
【符号の説明】
1:位置カウンタ
2:エンコーダ
3:マイコン
4:直流モータ
5:ギア列
6:被駆動部材
7:記憶回路

Claims (10)

  1. 動力伝達機構を介して被駆動部材を駆動する駆動源と、前記駆動源の駆動位置を検出する位置検出手段とを備え、前記駆動源に速度指令値を出して速度制御を行う駆動装置に適用され、前記位置検出手段による検出位置が目標位置に到達するように制御を行う位置制御方法であって、
    前記駆動源の前記目標位置までの残り駆動量と前記動力伝達機構の遊びによる機械的不感帯量とを比較するステップと、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を求めるステップと、
    前記残り駆動量が前記機械的不感帯量より大きい間は、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例微分演算により前記駆動源を位置制御するステップと、
    前記残り駆動量が前記機械的不感帯量より小さくなったときには、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により前記駆動源を位置制御するステップと、を含むことを特徴とする位置制御方法。
  2. 動力伝達機構を介して被駆動部材を駆動する駆動源と、前記駆動源の駆動位置を検出する位置検出手段とを備え、前記駆動源に速度指令値を出して速度制御を行う駆動装置に適用され、前記位置検出手段による検出位置が目標位置に到達するように制御を行う位置制御方法であって、
    前記駆動源の前記目標位置までの残り駆動量と前記動力伝達機構の遊びによる機械的不感帯量とを比較するステップと、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を求めるステップと、
    前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により前記駆動源を位置制御するステップと、を含み、
    前記残り駆動量が前記機械的不感帯量より小さくなったときの積分演算値のゲインを、前記残り駆動量が前記機械的不感帯量より大きいときの積分演算値のゲインよりも大きくすることを特徴とする位置制御方法。
  3. 動力伝達機構を介して被駆動部材を駆動する駆動源と、前記駆動源の駆動位置を検出する位置検出手段とを備え、前記駆動源に速度指令値を出して速度制御を行う駆動装置に適用され、前記位置検出手段による検出位置が目標位置に到達するように制御を行う位置制御方法であって、
    前記駆動源の前記目標位置までの残り駆動量と前記動力伝達機構の遊びによる機械的不感帯量とを比較するステップと、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を求めるステップと、
    前記指令位置に対する前記位置検出手段による検出位置の偏差を比例積分微分演算し、かつ、積分演算値に上限を設けることにより前記駆動源を位置制御するステップと、を含み、
    前記残り駆動量が前記機械的不感帯量より小さくなったときの積分演算値の上限を、前記残り駆動量が前記機械的不感帯量より大きいときの積分演算値の上限よりも大きくすることを特徴とする位置制御方法。
  4. あらかじめ前記機械的不感帯量が最大となるよう前記駆動源を駆動し、このときの前記位置検出手段による検出位置と、前記機械的不感帯がなくなるように前記駆動源を駆動したときの前記位置検出手段による検出位置との差に基づいて前記機械的不感帯量を求めて記憶し、前記駆動源の前記目標位置までの残り駆動量と記憶した前記機械的不感帯量とを比較することを特徴とする請求項1から3のいずれか1つに記載の位置制御方法。
  5. 駆動源と、前記駆動源の出力を被駆動部材に伝達する動力伝達機構と、前記駆動源の駆動位置を検出する位置検出手段と、速度指令値を用いて前記駆動源の速度制御を行って前記位置検出手段による検出位置が目標位置に到達するように前記駆動源の位置制御を行う駆動制御手段とを備えた位置制御システムであって、
    前記駆動制御手段は、比例演算、積分演算および微分演算が可能な演算器を有し、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を得て、
    前記目標位置までの残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より大きい間は、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例微分演算により位置制御を行い、前記残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より小さくなったときには、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により位置制御を行うことを特徴とする位置制御システム。
  6. 駆動源と、前記駆動源の出力を被駆動部材に伝達する動力伝達機構と、前記駆動源の駆動位置を検出する位置検出手段と、速度指令値を用いて前記駆動源の速度制御を行って前記位置検出手段による検出位置が目標位置に到達するように前記駆動源の位置制御を行う駆動制御手段とを備えた位置制御システムであって、
    前記駆動制御手段は、比例演算、積分演算および微分演算が可能な演算器を有し、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を得て、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により位置制御を行い、
    前記目標位置までの残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より小さくなったときの積分演算値のゲインを、前記残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より大きいときの積分演算値のゲインよりも大きくすることを特徴とする位置制御システム。
  7. 駆動源と、前記駆動源の出力を被駆動部材に伝達する動力伝達機構と、前記駆動源の駆動位置を検出する位置検出手段と、速度指令値を用いて前記駆動源の速度制御を行って前記位置検出手段による検出位置が目標位置に到達するように前記駆動源の位置制御を行う駆動制御手段と、を備えた位置制御システムであって、
    前記駆動制御手段は、比例演算、積分演算および微分演算が可能な演算器を有し、
    前記駆動源の駆動開始後は徐々に駆動速度を上げ、前記位置検出手段による検出位置が前記目標位置に近付くにつれて徐々に駆動速度を下げるよう設定された前記速度指令値を積分して指令位置を得て、前記指令位置に対する前記位置検出手段による検出位置の偏差の比例積分微分演算により位置制御を行い、
    かつ積分演算値に対して上限を設け、前記目標位置までの残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より小さくなったときの積分演算値の上限を、前記残り駆動量が前記動力伝達機構の遊びによる機械的不感帯量より大きいときの積分演算値の上限よりも大きくすることを特徴とする位置制御システム。
  8. 前記駆動制御手段は、あらかじめ前記機械的不感帯量が最大となるよう前記駆動源を駆動し、このときの前記位置検出手段による検出位置と、前記機械的不感帯がなくなるように前記駆動源を駆動したときの前記位置検出手段による検出位置との差に基づいて前記機械的不感帯量を求め、前記記憶手段に記憶することを特徴とする請求項5から7のいずれか1つに記載の位置制御システム。
  9. 請求項5から8のいずれか1つに記載の位置制御システムを備え、前記駆動源の駆動力により画像形成に関わる被駆動部材を駆動することを特徴とする画像形成装置。
  10. コンピュータに請求項1から3のいずれか1つに記載の位置制御方法を実行させるためのコンピュータプログラム。
JP2003099586A 2002-04-24 2003-04-02 位置制御システムおよび位置制御方法 Expired - Fee Related JP4298354B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003099586A JP4298354B2 (ja) 2002-04-24 2003-04-02 位置制御システムおよび位置制御方法
US10/419,537 US6859006B2 (en) 2002-04-24 2003-04-21 Position control system for use in driving system transmitting driving force of driving source to driven member through power transmission mechanism, image forming apparatus, position control method, program for performing the position control method, and storage medium having the program stored thereon
CN03122162.9A CN1243293C (zh) 2002-04-24 2003-04-22 对驱动系统进行位置控制的方法及装置、图像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002122951 2002-04-24
JP2003099586A JP4298354B2 (ja) 2002-04-24 2003-04-02 位置制御システムおよび位置制御方法

Publications (3)

Publication Number Publication Date
JP2004005548A JP2004005548A (ja) 2004-01-08
JP2004005548A5 JP2004005548A5 (ja) 2006-06-15
JP4298354B2 true JP4298354B2 (ja) 2009-07-15

Family

ID=29253632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099586A Expired - Fee Related JP4298354B2 (ja) 2002-04-24 2003-04-02 位置制御システムおよび位置制御方法

Country Status (3)

Country Link
US (1) US6859006B2 (ja)
JP (1) JP4298354B2 (ja)
CN (1) CN1243293C (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414379B2 (en) * 2005-10-14 2008-08-19 Cambridge Technology, Inc. Servo control system
JP4919679B2 (ja) * 2006-03-15 2012-04-18 株式会社リコー 回転体駆動装置、プロセスカートリッジ、及び画像形成装置
KR100715848B1 (ko) * 2006-03-29 2007-05-11 삼성전자주식회사 Dc 모터의 저속 구동 제어 장치 및 방법
JP2009181242A (ja) * 2008-01-29 2009-08-13 Panasonic Corp デジタルpid制御装置
US7884566B2 (en) * 2008-05-15 2011-02-08 Honeywell International Inc. Adaptive servo control system and method
DE102011005774A1 (de) * 2011-03-18 2012-09-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption einer Kommutierung für eine elektronisch kommutierte elektrische Maschine
US8928270B2 (en) 2011-09-26 2015-01-06 Ricoh Company, Ltd. Electric motor system and motor control method
US9285057B2 (en) 2012-10-05 2016-03-15 Fisher Controls International Llc Methods and apparatus for process device calibration
TW201517502A (zh) * 2013-09-03 2015-05-01 Fairchild Taiwan Corp 驅動電動機的控制電路和控制電動機的速度的方法
JP6233586B2 (ja) * 2014-02-25 2017-11-22 株式会社リコー 画像形成装置
JP2017134269A (ja) * 2016-01-28 2017-08-03 オリンパス株式会社 レンズ駆動装置およびレンズ駆動方法
CN112731797B (zh) * 2020-12-10 2021-11-23 清华大学 一种平面电机运动控制方法、装置及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563735A (en) * 1982-03-26 1986-01-07 Tokyo Shibaura Denki Kabushiki Kaisha Process controlling method and system involving separate determination of static and dynamic compensation components
JP2735153B2 (ja) * 1995-03-03 1998-04-02 工業技術院長 精密位置制御装置及び精密位置制御方法
FR2738613B1 (fr) * 1995-09-08 1997-10-24 Thomson Csf Procede d'asservissement d'une servovalve hydraulique pouvant etre asservie en debit et en pression
US6272401B1 (en) * 1997-07-23 2001-08-07 Dresser Industries, Inc. Valve positioner system

Also Published As

Publication number Publication date
US20030202821A1 (en) 2003-10-30
JP2004005548A (ja) 2004-01-08
CN1243293C (zh) 2006-02-22
CN1453673A (zh) 2003-11-05
US6859006B2 (en) 2005-02-22

Similar Documents

Publication Publication Date Title
JP4298354B2 (ja) 位置制御システムおよび位置制御方法
US5433541A (en) Control device for controlling movement of a printing head carriage and control method for controlling the same
US8928270B2 (en) Electric motor system and motor control method
US5585875A (en) Camera having anti-vibration function
JP4298353B2 (ja) 位置制御方法、位置制御システム、画像形成装置およびコンピュータプログラム
JP2005102479A (ja) 振動型アクチュエータ駆動制御装置および振動型アクチュエータ駆動制御方法
US5389997A (en) Apparatus for correcting camera shake
JP7069894B2 (ja) 駆動装置、駆動システム、ロボット、画像形成装置、および搬送装置
JP2006333677A (ja) 超音波モータ制御装置
JP3814509B2 (ja) モータの制御のための方法及び装置
KR100387155B1 (ko) 프린터용 벨트구동 제어회로
JP2013094037A (ja) 駆動装置及びそれを備えた画像形成装置
US4870448A (en) Original scanning apparatus
JP2000312492A (ja) モータ駆動制御装置、モータ駆動制御方法、画像形成装置及びその制御方法
JP2002120425A (ja) 記録装置
JPH05252778A (ja) 複写機光学系の速度異常時制御方法
US5448267A (en) Laser beam printer having rotational control of image bearing member and deflecting device
JP6919353B2 (ja) 接離システム、画像形成装置、接離方法
JP3949353B2 (ja) 回転体の駆動制御装置と駆動制御方法及び画像形成装置
JP4510774B2 (ja) 画像形成装置に用いられる駆動装置
JP3808826B2 (ja) モータ制御装置
JP3342251B2 (ja) 交換レンズ及びそれを用いたカメラシステム
JP2006106209A (ja) 駆動機構制御装置、画像形成装置、駆動機構制御方法、及びプログラム
JP2004122623A (ja) 記録装置
JP2007148648A (ja) 位置決め制御方法、位置決め制御装置及び画像形成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees