JP2017134269A - レンズ駆動装置およびレンズ駆動方法 - Google Patents

レンズ駆動装置およびレンズ駆動方法 Download PDF

Info

Publication number
JP2017134269A
JP2017134269A JP2016014587A JP2016014587A JP2017134269A JP 2017134269 A JP2017134269 A JP 2017134269A JP 2016014587 A JP2016014587 A JP 2016014587A JP 2016014587 A JP2016014587 A JP 2016014587A JP 2017134269 A JP2017134269 A JP 2017134269A
Authority
JP
Japan
Prior art keywords
speed
lens
stepping motor
loop control
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016014587A
Other languages
English (en)
Inventor
谷 尚明
Naoaki Tani
尚明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2016014587A priority Critical patent/JP2017134269A/ja
Priority to US15/411,688 priority patent/US10721387B2/en
Priority to CN201710057332.7A priority patent/CN107015420A/zh
Publication of JP2017134269A publication Critical patent/JP2017134269A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/365Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque

Abstract

【課題】レンズの動き出し時にレンズの駆動が不安定になることを防止したレンズ駆動装置およびレンズ駆動方法を提供する。【解決手段】レンズを駆動するステッピングモータ6と、ステッピングモータの回転位置を指示する励磁位置変更信号生成処理#11と、ステッピングモータの回転位置を検出するGMRセンサ9と、GMRセンサによって検出された位置検出情報と、励磁位置変更信号生成処理#11の指示する位置情報の差から追従遅れを算出する追従遅れ算出#3と、を備え、励磁位置変更処理信号生成処理#11は、予め決められたパターンで位置指示を行う開ループ制御と、追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する。【選択図】 図5A

Description

本発明は、レンズ一体型の撮像装置およびレンズ交換式の撮像装置等におけるレンズ駆動装置およびレンズ駆動方法に関する。
デジタルカメラ等の撮像装置では撮像素子の高速化や高画素化に伴い、オートフォーカスの高速化や高精度化が要求されている。また、大口径で明るいレンズや焦点距離の長い望遠レンズ、撮影倍率の高いマクロレンズなど特徴のあるレンズの要求が高まってきている。そのため、フォーカスレンズの駆動装置に対しては、大きく重いレンズを動かしたり、長いストロークを高速に動かしたりすることが要求される。
フォーカスレンズの駆動には、コストやサイズの観点からステッピングモータを使用することが多い。ステッピングモータは負荷に対して速度が速すぎると脱調という現象が発生することがある。脱調が発生すると、指示した位置と実際の位置にズレが生じてしまうため、設計で想定される負荷に対して十分な安全率を確保して最大の速度を決定している。
脱調を考慮して十分な安全率を確保しようとすると、ステッピングモータの性能を最大限引き出すことができず、非効率である。そこで、特許文献1には、ステッピングモータにセンサを取り付け、常時ステッピングモータの回転位置を検出し、モータ位置指令信号との差が零となるようにフィードバック制御を行い、ステッピングモータの性能を最大限に引き出す方法が提案されている。
特開2001−178193号公報
特許文献1に開示のレンズ駆動装置では、ステッピングモータの始動時からフィードバック制御、すなわち常時フィードバック制御を行っている。常時フィードバック制御を行った場合、モータの位置指令信号の動き出しに対して、静止摩擦や慣性により負荷の追従が遅れることから現在位置とモータ指令信号との差が一時的に大きくなり、これを打ち消すように急激にモータの速度や回転方向を制御してしまう。このため、極端な速度低下や一時的な逆転現象が発生しフィードバック制御が不安定になり、滑らかにかつ短時間に動作開始できないことがあった。さらに、比較的短い距離でも目標位置に到達するまでに時間がかかったり、目標速度に到達するまで時間がかかりオートフォーカスの時間がかかったり、不安定な駆動により音が発生したりすることがあった。
本発明は、このような事情を鑑みてなされたものであり、レンズの動き出し時にレンズの駆動が不安定になることを防止したレンズ駆動装置およびレンズ駆動方法を提供することを目的とする。
上記目的を達成するため第1の発明に係るレンズ駆動装置は、レンズを駆動するステッピングモータと、上記ステッピングモータの回転位置を指示する位置指示部と、上記ステッピングモータの回転位置を検出する回転検出センサと、上記回転検出センサによって検出された位置検出情報と、上記位置指示部の指示する位置情報の差から追従遅れを算出する追従遅れ算出部と、を備え、上記位置指示部は、予め決められたパターンで位置指示を行う開ループ制御と、上記追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、上記レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、上記速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する。
第2の発明に係るレンズ駆動装置は、上記第1の発明において、上記所定値は、上記閉ループ制御で制御する速度の可変範囲の下限である。
第3の発明に係るレンズ駆動装置は、上記第1又は第2の発明において、上記位置指示部は、上記速度パターンに対応する速度が所定値に達するとともに、上記追従遅れの量または変化に応じて上記閉ループ制御に移行する。
第4の発明に係るレンズ駆動装置は、上記第1ないし第3の発明のいずれかにおいて、上記位置指示部は、上記速度パターンに対応する速度が上記所定値に対応する速度よりも大きい速度に対応する第2の所定値に達すると、上記閉ループ制御に移行する。
第5の発明に係るレンズ駆動装置は、上記第1ないし第4の発明のいずれかにおいて、上記位置指示部は、上記閉ループ制御で上記ステッピングモータの位置を進める速度の目標速度を設定し、上記閉ループ制御に移行後、上記目標速度に達するまでは、上記閉ループ制御で制御可能な速度の上限に対応する固定のパターンにより、上記ステッピングモータの位置を進める速度を制限する。
第6の発明に係るレンズ駆動装置は、上記第1ないし第5の発明のいずれかにおいて、上記位置指示部は、上記閉ループ制御の追従遅れ量と上記追従遅れ量の目標値の差に基づいて、上記閉ループ制御を行う。
第7の発明に係るレンズ駆動方法は、レンズを駆動するステッピングモータと、上記ステッピングモータの回転位置を検出する回転検出センサと、を備えるレンズ駆動装置のレンズ駆動方法において、上記ステッピングモータの回転位置を指示する位置指示ステップと、上記回転検出センサによって検出された位置検出情報と、上記位置指示ステップにおいて指示された位置情報の差から追従遅れを算出する追従遅れ算出ステップと、を有し、上記位置指示ステップは、予め決められたパターンで位置指示を行う開ループ制御と、上記追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、上記レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、上記速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する。
本発明によれば、レンズの動き出し時にレンズの駆動が不安定になることを防止したレンズ駆動装置およびレンズ駆動方法を提供することができる。
本発明の一実施形態に係るカメラの構成を示すブロック図である。 本発明の一実施形態に係るカメラのGMRセンサによる回転位置検出を説明する図である。 本発明の一実施形態に係るカメラの回転位置検出信号処理を説明する図である。 本発明の一実施形態に係るカメラにおいて、フィードバック制御の効果を説明する図である。 本発明の一実施形態に係るカメラのフィードバック制御ループを説明する図である。 本発明の一実施形態に係るカメラのフィードバック制御ループを説明する図である。 本発明の一実施形態に係るカメラの位相補償用フィルタの構成を示すブロック図である。 本発明の一実施形態に係るカメラにおいて、駆動開始から駆動終了までの速度プロファイルを示す図である。 従来からのステッピングモータ使用時の駆動制御を説明するグラフであり、図8(a)はフィードバック制御を行わない等速駆動時の動作を示すグラフであり、図8(b)はフィードバック制御を行わない加速駆動時の挙動を示すグラフであり、図8(c)は駆動開始時からフィードバック制御を行った場合の挙動を示すグラフである。 本発明の一実施形態に係るカメラにおいて、駆動開始時を固定駆動パターンとして条件成立後フィードバック制御を行った場合の挙動を示すグラフである。
以下、本発明の一実施形態としてデジタルカメラに適用した例について説明する。このカメラは、レンズ鏡筒部内の光学レンズによって形成された被写体像を、撮像部によって被写体像を画像データに変換し、この変換された画像データに基づいて、被写体像を本体の背面に配置した表示部にライブビュー表示し、また記録媒体に静止画や動画の画像データを記録する。レリーズ釦の半押し操作等に連動し、コントラスト法や位相差法等による焦点検出がなされ、焦点検出の結果に応じて、光学レンズを合焦位置にステッピングモータの駆動によって移動させる。
光学レンズの合焦位置への移動にあたっては、駆動開始時は予め決められたパターンで開ループ制御(「オープンループ制御」、または「オープン制御」ともいう)によってステッピングモータの駆動を行い、駆動速度が所定値に達する等、所定の条件を満たすと、閉ループ制御(「フィードバック制御」ともいう)によってステッピングモータの駆動を行う(例えば、図5AのFB開始判定処理、図7のフィードバック制御開始時点T2参照)。
以下、図面に従って本発明を適用したカメラを用いて好ましい一実施形態について説明する。図1は、本発明の一実施形態に係るカメラのレンズ駆動部の機械的な構成と、カメラのレンズ駆動に関わる主として電気的な構成を示すブロック図である。
レンズ駆動部1は、レンズ一体型のカメラまたはレンズ交換式カメラの交換レンズ内に配置されている。レンズ駆動部1内には、光学レンズ(以下「レンズ」と略称する)2、レンズ枠3、ガイド軸4a、4b、バネ5、ステッピングモータ6、リードスクリュー7、スケール磁石8、GMR(Giant Magneto Resistive Effect:巨大磁気抵抗効果)センサ9、フォトインタラプタ10が備えられている。
レンズ2は、複数または単数の光学レンズを有し、被写体像を形成する。レンズ2は、レンズ枠3に保持されている。ガイド軸4aとガイド軸4bは、レンズ2の光軸方向に沿って延びた軸であり、レンズ鏡枠等に固定されている。バネ5は引っ張りバネであり、レンズ枠3とレンズ鏡枠の固定部材との間に設けられ、レンズ枠3に対して、図中、右側向きの付勢力を与えている。
前述のレンズ枠3は、レンズ2の光軸方向とは直角方向に延びた固定部3aと、この固定部3aと一体であり、ガイド軸4bに嵌合した嵌合部3bを有する。またレンズ枠3は、リードスクリュー7が貫通する貫通孔3cと、遮光ハネ3eを有する。遮光ハネ3eは、固定部3aと一体であり固定部3aの一端側に設けられている。後述するように、遮光ハネ3eは、レンズ2が基準位置に移動した際に、フォトインタラプタ10の発光部から投光された光を遮光する。
ステッピングモータ6は、モータ駆動回路(モータドライバ)24から、モータ駆動信号としてA相、B相からなる2相のパルス信号を受け、回転駆動する。ステッピングモータ6は、レンズを駆動するステッピングモータである。ステッピングモータ6の回転駆動軸は、リードスクリュー7と一体である。このため、リードスクリュー7は、ステッピングモータ6に印加されたモータ駆動信号に応じて、正転・逆転する。リードスクリュー7が正転・逆転すると、リードスクリュー7に噛み合ったナット11を介して、レンズ2は光軸方向に沿って移動する。このナット11はレンズ枠3とは別体である。バネ5によってレンズ枠3は図1の右側向きに引っ張られ、貫通孔3cの周囲がリードスクリュー7に噛み合うナット11に当て付けられた状態となる。ナット11の回転止め(不図示)がレンズ枠3に設けられてので、リードスクリュー7が回転するとナット11は右または左方向に移動し、そこに当て付けられているレンズ枠3も光軸方向に移動する。
スケール磁石8は、リードスクリュー7の一端側に一体に設けられており、円周面に沿って、S極とN極が交互に帯磁されている。GMRセンサ9は、スケール磁石8と対向する位置に配置されており、スケール磁石8のS極、N極によって生成される磁場に応じて2相信号を出力する。スケール磁石8およびGMRセンサ9によって、ステッピングモータ6の相対的な回転位置(レンズ2の相対的な光軸方向の位置)を検出することができる。スケール磁石8とGMRセンサ9は、ステッピングモータの回転位置を検出する回転検出センサとして機能する。スケール磁石8およびGMRセンサ9による回転位置検出については、図2を用いて詳述する。
フォトインタラプタ10は、レンズ鏡枠等に固定されており、発光部と受光部を有する。レンズ2が基準位置に移動してくると、発光部からの投光が遮光ハネ3eによって遮光される。受光部は遮光状態になると出力が変化し、これによって、レンズ2が基準位置にあることを検知することができる。すなわち、遮光ハネ3eとフォトインタラプタ10によって、レンズ2の絶対的な位置検出することができる。フォトインタラプタ10からの位置検出信号はIOポート32に出力される。
このように、本実施形態におけるレンズ駆動部1においては、ステッピングモータ6によって駆動されるリードスクリュー7の回転によりナット11を直線移動させ、レンズ枠3をガイド軸4a、4bに沿って移動させる。これによって、レンズ枠3に固定されたレンズ2が光軸方向に駆動する。また、リードスクリュー7の先端にはGMRセンサ8と対向する位置にスケール磁石9が取り付けられており、リードスクリューが正転または逆転すると、スケール磁石9も同方向に回転する。
GMRセンサ9の出力は、増幅回路21に接続されている。増幅回路21は、GMRセンサ9からの2相のアナログのセンサ出力信号をそれぞれ増幅し、センサ信号のノイズ除去処理を行う。増幅回路21で処理された増幅センサ信号は、A/Dコンバータ33と2値化回路22に出力される。
2値化回路22は、増幅回路21からの2相のセンサ出力信号について、それぞれ2値化し、アップ/ダウンカウンタ(2相カウンタ)34に2値化信号を出力する。2値化にあたって、2値化回路22は、D/Aコンバータ35からの閾値電圧を入力し、この閾値電圧を用いて2値化する。
マイクロコンピュータ30は、CPU(Central Processing Unit)31とその周辺回路を有し、レンズ駆動全体の制御を行う。具体的には、マイクロコンピュータ30は、例えば、レンズ駆動部1からの各種信号に応じて、ステッピングモータ6の駆動のための各種信号を生成する。周辺回路としては、IO(Input/Output)ポート32、A/D(Analog/Digital)コンバータ33、アップ/ダウンカウンタ34、D/A(Digital/Analog)コンバータ35、パルス発生器36、通信ポート37、タイマ38、メモリ39が設けられている。
IOポート32は、フォトインタラプタ10から位置検出信号を入力し、この位置検出信号に基づいて、レンズ2が基準位置にあることを示す信号をCPU31に出力する。
A/Dコンバータ33は、増幅回路21からA相およびB相の増幅センサ信号を入力し、それぞれの信号に対してAD変換を行って、A相およびB相の増幅センサ信号をデジタルデータに変換しCPU31に出力する。
D/Aコンバータ35は、CPU31から閾値電圧に相当するデジタル値を入力し、アナログ電圧に変換し、2値化回路22に閾値電圧として出力する。図3を用いて後述するように、増幅センサ信号の中点電位は、GMRセンサ9の特性や増幅回路21によってばらつきがある。そこで、予めA相およびB相の中点電位を調整値としてメモリ39に記憶しておき、2値化回路22は、この中点電位を閾値電圧として使用し、2値化を行う。
アップ/ダウンカウンタ34は、2値化回路22から2値化信号を入力し、アップ/ダウンカウントを行う。GMRセンサ9は、A相およびB相センサ信号を出力しており、2値化信号を入力する度にアップ/ダウンカウントを行う。これにより、スケール磁石8が正転しているか、逆転している、即ち、レンズ2がいずれの方向に移動しているかを判定することができる。
メモリ39は、電気的に書き換え可能な揮発性メモリ(例えば、DRAM(Dynamic Random Access Memory)等)と、電気的に書き換え可能な不揮発性メモリ(例えば、フラッシュROM(Flash Read Only Memory)等)を有する。メモリ39には、CPU31で実行するためのプログラム、レンズの各種調整値(例えば、前述の中点電位に関する値)、レンズ駆動用の設定値等、種々のデータが記憶される。
タイマ38は、フィードバック制御の制御周期を発生させたり、レンズの各種動作の時間を行うための計時動作を行う。また、カレンダ機能等を有する。通信ポート37は、CPU31の外部との信号のやり取りを行うためのポートである。本実施形態においては、通信ポート37を介して種々の通信が行われるが、例えば、通信ポート37からモータ駆動回路24への設定信号が送出される。
パルス発生器36は、CPU31からの制御信号を受け、ステッピングモータ6の駆動用にモータ駆動回路24に出力するクロック信号(パルス信号)を発生する。すなわち、パルス発生器36は、モータ駆動回路24にクロック信号を出力し、ステッピングモータの励磁位置を進める。
モータ駆動回路24は、モータ電源23から電源電圧の供給を受け、またパルス発生器36からクロック信号と通信ポート37からの設定信号を入力し、ステッピングモータ6に2相の電圧信号からなるモータ駆動信号を出力する。また、モータ駆動回路24は、モータ駆動信号の出力にあたって、CPU31からの設定信号に基づいて、モータ駆動信号の最大印加電圧の調整を行う。モータ電源23は、電池等の電源を有し、図示しない定電圧回路等によって定電圧化されてモータ駆動回路24に電源を供給する。
モータ駆動信号の生成にあたって、マイクロコンピュータ30内のCPU31は、GMRセンサ9が検出したセンサ出力信号に基づいて演算を行い、モータ駆動回路24が出力する駆動パルスの管理、駆動速度の設定、駆動電圧の設定、フィードバック制御に必要なデジタルデータの各種演算処理を行う。
次に、図2を用いて、本実施形態におけるスケール磁石8の回転検出について説明する。ステッピングモータ6の回転軸に取り付けられた円筒形のスケール磁石8は、円周方向に交互にN極とS極が繰り返し等間隔に着磁されている。ステッピングモータ6の回転軸が回転すると、GMRセンサ9に対向する磁極の位置が変化する。この結果、GMRセンサ9からは、センサ出力信号として略90度の位相差を持ったA相およびB相の正弦波信号が出力される。例えば図中のaの方向にスケール磁石8が回転する場合には、図2に示す如く、A相に対しB相が90度進んだ位相関係の信号が得られ、bの方向に回転した場合はA相に対しB相が90度遅れた位相関係の信号が得られる。
次に、図3を用いてパルス検出処理について説明する。GMRセンサ9から出力されたA相およびB相の正弦波信号は増幅回路21により増幅され、A/Dコンバータ33と2値化回路22に出力される。A/Dコンバータ33は、A相B相それぞれの増幅センサ信号をデジタルデータに変換する。増幅センサ信号の中点電位にはGMRセンサ9の特性や増幅回路21などの個体ばらつきがある。このため、予めA相B相それぞれの中点電位を調整値としてメモリ39に記憶しておき、デジタルデータに変換されたGMRセンサ9の信号からA相B相の周期を細分化し、駆動パルスと同じ分解能の検出パルス値を算出する演算過程で使用する(CPU31内の逓倍処理31a参照)。
また、中点電位に関する調整値は、増幅センサ信号を2値化する2値化回路22の閾値電圧としても使用する。すなわち、調整値をD/Aコンバータ35に設定し、A相B相それぞれの閾値電圧を2値化回路22に出力する。これにより、増幅センサ信号の中点電位に個体ばらつきがあってもデューティが約50%の理想的な2値化信号を得ることができ、アップ/ダウンカウンタ(2相カウンタ)34において、カウントのアップ/ダウンを正確に行える。
マイクロコンピュータ30内の演算処理部(CPU31)は、A/Dコンバータ33が取り込んだA相B相のデジタルデータを用いて、A相B相1周期内の4倍よりも大きい逓倍処理を行い(逓倍処理31a参照)、1周期をパルス管理に必要な分解能まで細分化する。基本的にはこの細分化して得た位相角を元に検出パルスの値を算出する。すなわち、磁気スケール8の回転位置(位相角)を示す検出パルスを算出する(パルス値演算31c参照)。
しかし、この処理は例えばフィードバック制御の制御周期で行われるため、モータの駆動速度が速くなり、制御周期毎に取り込んだデジタルデータが前回の取り込み時点からA相B相1周期の1/2を超えてしまった場合には変化の方向を正しく判定することができなくなる。そこで、2値化信号の変化方向を含めてカウントアップ/ダウンを常に行っているアップ/ダウンカウンタ(2相カウンタ)34のカウント値を利用してA相B相1周期の1/2を超えてしまった場合でも方向を正しく判定し、常に正しい検出パルスを算出する(パルス値演算31c参照)。しかし、実際には2値化回路の特性ばらつきやD/Aコンバータの出力誤差などにより2値化信号の変化のタイミングと位相角の変化のタイミングに僅かなズレが生じる。このズレによって、検出パルスの算出に誤差が生じ、算出した検出パルス値が瞬間的に位相角90度相当変化する場合がある。そこで、位相角の変化タイミングを基準としてアップ/ダウンカウンタのカウント値を補正する演算を事前に行うことで(カウント値補正31b参照)、回路ばらつきなどの影響を受けずに、常に正しく検出パルスを算出する。
このように、検出パルスの大きな増減は2値化信号を基準に行い、1周期内を細分化した詳細な検出パルスの算出をA/Dコンバータ33で取り込んだA相B相のデジタルデータから行うことで、モータの駆動速度や制御周期に影響されず、常に正しい検出パルスの値を得ることができる。
次に、図4を用いて、本実施形態におけるフィードバック制御を説明する。図4において、横軸はステッピングモータの駆動速度であり、縦軸はトルクであり、トルクカーブを示す。実線で示す脱調トルク特性L1は、ステッピングモータ6が脱調を起こさず動作する限界トルクを示す。
すなわち、ステッピングモータ6の特性は駆動速度が高くなるとトルクが低下する特性があり、脱調トルク特性が負荷トルクを下回ると脱調現象を引き起こす。一旦脱調してしまうと、励磁位置を変化させた量とモータの回転位置の変化量が一致しなくなるので、ステッピングモータは励磁位置を変化させた量で値を増減させる駆動パルス数で現在位置を管理することができなくなる。脱調後に再び現在位置を正しく管理するためには、一度基準となる位置に当て付けたり、別途設けたセンサにより絶対位置を保証する動作を行う必要がある。このため、通常のステッピングモータ制御であるオープン制御では、設計上の最大負荷トルクに対して十分な安全率αを見込んで駆動速度の上限を決めている。
そこで、本実施形態においては、ステッピングモータ6の回転軸から検出した検出パルス(GMRセンサ9の出力に基づいて検出)と、励磁位置を変化させた駆動パルス(ステッピングモータ6に印加した駆動パルス)との差により脱調限界に対する余裕量を監視し、脱調しないように速度を制御するフィードバック制御を採用している。これによって、安全率分を使って速度の上限(図4の速度制御拡張範囲Vc参照)を高めることができる。
また、図4はステッピングモータ6に印加する電圧が一定の場合の脱調トルク特性を示している。ステッピングモータ6に印加する印加電圧を変化させると、脱調トルク特性は図4の縦軸方向に変化する。オープン制御ではできるだけ速度上限を高めるために、印加できる最大の電圧での特性に安全率を見込んで速度(図4のオープン制御上限速度Vomax参照)を決めている。このため、負荷によらず印加電圧は固定であり負荷が軽い状態でも必要以上にモータは電力を消費する。
これに対して、フィードバック制御の場合は、フィードバック制御の速度上限(図4のフィードバック制御上限速度Vfmax参照)に達した状態で、実際の負荷が設計最大負荷トルクに満たない場合など、なお脱調限界に対する余裕量がある場合には電圧制御を行うようにしている(図4の電圧制御範囲Ec参照)。このため、印加電圧を下げることが可能となり、余計な電力消費を抑えることができる。フィードバック制御上限速度Vfmax以下の速度を指定された場合も同様であり、例えばオープン制御上限速度Vomaxで駆動する場合、実際の負荷が設計最大負荷トルクと等しい状態では、脱調トルク特性がL2となるまで印加電圧を下げることができる。負荷の変動に応じて印加電圧をフィードバック制御するので、脱調を防いで電力消費を抑えることができる。
次に、図5Aおよび図5Bを用いて、本実施形態における制御ループについて説明する。図5A、図5Bは、フィードバック制御周期毎の処理の流れを示しており、図中、GMRセンサ9、モータ駆動回路24、ステッピングモータ6以外の#を付したブロックは、CPU31がメモリ39に記憶されたプログラムに従って、マイクロコンピュータ30内の各部およびカメラ内の各部を制御することにより実行する。
制御ループにおいて、まず、制御周期毎に位置センサであるGMRセンサ9からの位置検出信号(センサ出力信号)に基づいて、図3を用いて説明した位置検出処理により現在位置を示す検出パルス値を求める(#1)。すなわち、A/Dコンバータ33で取り込んだA相B相のデジタルデータを逓倍処理して得られた位相角より検出パルス値が算出される。
次に、現在の励磁位置による駆動パルス値の駆動開始からの変化量と検出パルス値の駆動開始からの変化量を比較しその差を追従遅れとする(#3)。ここでは、後述する#11において、ステッピングモータ6の現在励磁位置を変更するための信号を生成すると同時に駆動パルス値の変更管理を行っているので、この駆動パルス値と、#1で算出された検出パルス値の差分を求める。この#3の差分算出処理は、回転検出センサによって検出された位置検出情報と、位置指示部(例えば、後述する#11の処理)の指示する位置情報(例えば、駆動パルス値)の差から追従遅れを算出する追従遅れ算出部および追従遅れ算出ステップとして機能する。
次に、追従遅れと第1の遅れ量(目標追従遅れ)との差である制御偏差を求める(#5)。第1の遅れ量は、目標追従遅れ量として予めメモリ39に記憶しておく。第1の遅れ量としては、適宜設定すればよいが、例えば、脱調を起こしてしまう追従遅れの半分程度を設定しておく。ここでは、#3で算出された追従遅れと、設定されている第1の遅れ量との差分を算出し、この値を制御偏差とする。この制御偏差に基づいて速度制御や電圧制御を行う(追従遅れの1つ目の用途)。
一方、追従遅れは第2の遅れ量(一時停止基準追従遅れ)と比較し、追従遅れが一時停止基準追従遅れよりも大きい場合には励磁位置変更の一時停止を行う(図5Bの#25)(追従遅れの2つ目の用途)。第2の遅れ量としては、適宜設定すればよいが、例えば、脱調を起こしてしまう追従遅れより僅かに小さい程度としておく。第2の遅れ量は第1の遅れ量よりも大きい値である。
#25において、一時停止判断を行うと、励磁位置変更一時停止指示を#11の励磁位置変更信号生成処理に伝え、モータ駆動回路24への励磁位置変更信号の出力を停止し、ステッピングモータ6の一時停止を行う。一時停止を行うことにより、予期せぬ外乱でフィードバック制御が不安定になっても、ステッピングモータ6の回転軸の追従遅れを現在の励磁位置に対して制御可能な範囲に確実に復帰させることが可能になる。一時停止の解除は、追従遅れの復帰と制御周期を基準とした経過時間で判断を行う。
#3で算出された追従遅れと、後述する#11の現在励磁位置変更速度を入力し、フィードバックを開始するかの判定処理を行う(追従遅れの3つ目の用途)(#15)。駆動を開始してから現在励磁位置変更速度がフィードバック制御下限速度を超えると、FB開始判定処理#15はフィードバック制御の開始を指示する(図7のA、T1、図9のA、T11)。また、追従遅れの絶対値または変化量が所定値を超えると、同様に、フィードバック制御の開始を指示する(図7のB、T2、図9のB、T12)。このフィードバック制御の開始指示は、励磁位置変更速度リミット処理#9および最大励磁電圧指示処理#23に出力される。フィードバック制御下限速度は、フィードバック制御の際に、脱調しないように速度を可変させる下限の速度である。
#5で生成された制御偏差は、速度制御用と電圧制御用の2系統の位相補償フィルタ(#7、#21)を通してそれぞれ励磁位置変更速度増減指示値と最大励磁電圧増減指示値となる。速度制御用位相補償フィルタ(#7))と、電圧制御用位相補償フィルタ(#21)については、図6を用いて後述する。
#7の速度制御用位相補償フィルタによって処理された励磁位置変更速度増減指示値は、現在設定されている現在励磁位置変更速度に加算され新たな励磁位置変更速度指示値となる。FB開始判定処理#15においてフィードバック制御を行う場合には、この励磁位置変更速度指示値と、速度上限を比較し、励磁位置変更速度リミット処理を行う(#9)。
#9において、速度上限は、加速・減速パターン生成部#17から生成される。加速・減速パターンは、駆動開始から停止までの加速制御、定速制御、減速制御などを管理する。加速・減速パターンは、メモリ39に予め記憶されている。#17では、メモリ39に記憶された加速・減速パターンの中から位置駆動開始からの駆動パルス値の変化量に対応する速度を速度上限として読み出す。
#9のリミット処理は、#7で生成された励磁位置変更速度増減指示値と現在設定されている現在励磁位置変更速度に加算された新たな励磁位置変更速度指示が、#17において読み出した速度上限を超えている場合には、励磁位置変更速度指示値のリミット処理を行う。これにより、追従遅れが大きくなって速度を低下させる必要が生じた場合を除いて、予め定められた速度プロファイルに従って速度制御を行うことができる。更に、加速期間中や減速期間中に過剰に速度が上がることを防ぎ、安定した加速・減速を可能にしている。なお、#9のリミット処理では、最大励磁電圧指示処理#23からの最大励磁電圧上限到達状態を監視し、最大励磁電圧が上限に達していない状態で励磁位置変更速度指示値が現在励磁位置変更速度を低下する方向の値であった場合、励磁位置変更速度指示値の加算を行わず、現在励磁位置変更速度を新たな励磁位置変更速度指示値として出力する。特に加速時にこの処理を追加することで、最大励磁電圧が上限に達していない状態での速度の低下を防ぎ、加速時間を短くすることが可能になる。
また、図5A、図5Bには、図示しないが、フィードバック制御下限速度Vfmin(図7参照)により低速側のリミットを設け、フィードバック制御中に必要以上に設定速度が下がりすぎて制御が不安定にならないようにしている。
また、FB開始判定処理#15において、フィードバック制御を開始しないと判定された(すなわち、オープン制御を行う)場合には、#17の加速・減速パターン生成処理で生成された速度パターンに基づいて、励磁位置変更速度指示値を出力する。
#9でリミット処理により生成された励磁位置変更速度指示値に基づいて、励磁位置変更信号生成処理が行われ、モータ駆動回路24に対する励磁位置変更信号として出力される(#11)。具体的には、前述したステッピングモータ6の励磁位置を変更するタイミングを指示するためのクロック信号のエッジ間隔が、励磁位置変更速度指示値に従って変更される。
また、励磁位置変更信号生成処理#11においては、駆動パルス値が生成され、前述の差分算出#3と加速・減速パターン生成処理#17に出力される。さらに、励磁位置変更信号生成処理#11において生成された現在励磁位置変更速度をFB開始判定処理#15に出力する。
前述の#9の励磁位置変更速度リミット処理と#11の励磁位置変更信号生成処理は、ステッピングモータの回転位置を指示する位置指示部および位置指示ステップとして機能する。この位置指示部および位置指示ステップは、予め決められたパターンで位置指示を行う開ループ制御と、追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する。前述の所定値は、閉ループ制御で制御可能な速度の下限である(例えば、図7の制御下限速度Vfmin参照)。
また、位置指示部は、速度パターンに対応する速度が所定値に達するとともに、追従遅れの量または変化に応じて閉ループ制御に移行する(例えば、#15のFB開始判定処理は、#3の追従遅れに基づいて判定する)。また、位置指示部は、速度パターンに対応する速度が所定値に対応する速度よりも大きい速度に対応する第2の所定値に達すると、#15のFB判定開始処理からのFB制御ON指示を受け、閉ループ制御に移行する。第2の所定時は、オープン制御での上限速度(図4および図7、図9のオープン制御上限速度Vomax参照)と等しくしているが、それ以下でもよい。
また、位置指示部は、閉ループ制御でステッピングモータの位置を進める速度の目標速度(例えば、図9の目標速度Vob参照)で駆動する場合、閉ループ制御に移行後、目標速度に達するまでは、閉ループ制御で制御可能な速度の上限に対応する固定のパターンにより、ステッピングモータの位置を進める速度を制限する(例えば、#17で生成される速度上限参照)。また、位置指示部は、閉ループ制御の追従遅れ量と追従遅れ量の目標値の差に基づいて、閉ループ制御を行う。
一方、電圧制御用位相補償フィルタ#21によって処理され出力された最大励磁電圧増減指示値は、最大励磁電圧指示処理が施され、最大電圧指示値が出力される(図5Bの#23)。ここの最大励磁電圧指示処理では、FB開始判定処理#15によってフィードバック制御が開始されている判定された場合には、最大励磁電圧増減指示値が現在の最大励磁電圧設定値に加算されて最大電圧指示値となる。最大励磁電圧指示処理において、求められた最大電圧指示値は、通信ポート37(図1参照)を経てモータ駆動回路24に設定される。この設定により、ステッピングモータ6を駆動する駆動電圧が制御周期毎に変更される。
最大励磁電圧指示処理#23では、温度に応じてステッピングモータ6に印加する電圧を制限するための上限電圧と、フィードバック制御を安定にするための下限電圧によりリミット処理を行う。なお、フィードバック制御がオフの間は、最大電圧指示値は温度に応じてステッピングモータに印加する電圧を制限するための上限電圧に固定され、脱調に対する安全率が確保された状態になる。更に、最大励磁電圧指示処理#23では、現在の最大電圧指示値が上限電圧に到達しているか否かの状態を出力する。
このように、本実施形態における制御ループにおいては、GMRセンサ9からの出力信号に基づいてステッピングモータ6の回転位置を検出し、この回転位置の検出情報(検出パルス)と、ステッピングモータ6に印加される駆動パルスに基づく位置情報の差分から追従遅れ量を算出している(#3参照)。この追従遅れ量と、ステッピングモータ6に対して速度変更を指示するための現在励磁位置変更速度を用いて、フィードバック制御を開始するか否かを判定する(#15)。
また、制御ループにおいては、励磁位置変更速度リミット処理(#9)および励磁位置変更信号生成処理(#11)で、#15のFB開始判定処理によってフィードバック制御を開始すると判定するまでは、GMRセンサからの出力信号には関わらずに、ステッピングモータ6の制御を行う。すなわち、予め設定されている速度パターンに従って、オープン制御により駆動する。この場合、駆動トルクおよび駆動速度は、図4に示した設計最大負荷トルクおよびオープン制御上限速度Vomax以下での制御となる。
一方、#15のFB開始判定処理によって、フィードバック制御を開始すると判定されると、GMRセンサ9からの出力信号を用いて、フィードバック制御を行う。すなわち、追従遅れ量から制御偏差を求め、この制御偏差に応じてモータ駆動回路24へのクロック信号のエッジ間隔を調整し、ステッピングモータ6の駆動速度を調整する(励磁位置変更信号生成処理#11)。この場合、駆動トルクおよび駆動速度は、図4に示した脱調トルク特性L1およびフィードバック制御上限速度Vfmax以下までに制御範囲が広がる。
次に、図6を用いて、位相補償用フィルタについて説明する。この位相補償用フィルタは、CPU内部のプログラムとして実装され、数値演算式により構成される。この位相補償用フィルタは、マイクロコンピュータ30内に一体化、もしくは別体として設けられたDSP(Digital Signal Processor)で構成されてもよい。この位相補償用フィルタは、図5において、#7の速度制御用位相補償フィルタおよび#21の電圧制御用位相補償フィルタにおいて、使用される。
追従遅れと目標追従遅れの差分である制御偏差は、速度制御用と電圧制御用の2系統の位相補償用フィルタに入力され、それぞれ励磁位置変更速度増減指示値、最大励磁電圧増減指示値として出力される。速度制御用の位相補償フィルタは速度制御用フィルタ41、42、47および加算器45から構成され、制御偏差は速度制御用フィルタ41、42を経て、それぞれの出力は加算器45で加算値となり、更に速度制御用フィルタ47を経て励磁位置変更速度増減指示値として出力される。電圧制御用の位相補償フィルタは電圧制御用フィルタ43、44、48および加算器46で構成され、制御偏差は電圧制御用フィルタ43、44を経て、それぞれの出力は加算器46で加算値となり、更に電圧制御用フィルタ48を経て最大励磁電圧増減指示値として出力される。
前述の速度制御用フィルタ41、42、47、電圧制御フィルタ43、44,48は、それぞれ2タップのFIR(Finite Impulse Response Filter)フィルタと2タップのIIR(Infinite Impulse Response Filter)フィルタで構成され、全て独立したパラメータが設定可能で速度制御や電圧制御に適した位相補償特性およびゲイン特性が設定可能に構成されている。具体的なフィルタチューニングについてはフィードバック制御の安定化手法として様々な方法が行われているので詳細な説明は省略する。
次に、図7を用いて、駆動開始から駆動終了までの速度プロファイルについて説明する。図7において、横軸は時間、縦軸は速度を示し、オープン制御での速度プロファイルPo、フィードバック制御中の速度上限のプロファイルPfを示す。
オープン制御では、ステッピングモータ6のプルイントルクに対して余裕を持って設定された初速Vminで駆動開始し(時刻T0)、脱調に対して十分余裕を持たせた加速テーブルTaiに従って速度を上昇させる。図7では、所定パルス毎に速度を変更する様子を示しているが、駆動時間に対して滑らかに速度を変える加速でもよい。狙いの駆動速度(図7ではオープン制御上限速度Vomax)に達したら(時刻T3)、速度を一定にし、目標の停止位置から所定のパルス手前(時刻T5参照)から減速テーブルTadに従って速度を低下させ、最終的に目標位置までステッピングモータ6の励磁相を進めてモータ駆動を終了する(時刻T6参照)。指示速度がオープン制御上限速度Vomax以下である場合には、同様に指示速度まで加速した後、指示速度で速度を一定にする。
フィードバック制御は駆動速度がフィードバック制御の下限速度Vfminを越えたAの時点(時刻T1)から開始することができる。ここで、図示しない追従遅れが所定の条件を満たしていなければ、条件を満足したBの時点(時刻T2)でフィードバック制御に移行する。Bの時点でフィードバック制御に移行した場合のフィードバック制御中の速度制御範囲を、図7にハッチングで示している。この制御範囲は、加速中の速度設定(図7のプロファイルPf1)と、一定速指示速度Vfa(図7のプロファイルPf2)と、減速テーブルの速度設定を上限としフィードバック制御下限速度(図7のプロファイルPf3)を下限とする範囲である。
フィードバック制御の条件を満足したBの時点(時刻T2)から、フィードバック制御用に記憶している加速度パラメータに従って加速中の速度設定を演算する。減速時(時刻T4参照)は目標の停止位置から所定のパルス手前から減速テーブルTadに従って速度設定を下げる。例えばオープン制御上限速度Vomaxを下回った時点(T5)でフィードバック制御を終了する。フィードバック制御を終了するタイミングは、この例に限定されるものではなく、フィードバック制御下限速度Vfminまでの範囲で適宜設定すればよい。
フィードバック制御に移行する条件がAやBの時点で整わない場合には、オープン制御上限速度VomaxになったCの時点で強制的にフィードバック制御に移行する。これにより、一定速指示速度Vfaに達するまでの時間が延びることを防止できる。
次に、本実施形態における効果について、図8および図9を用いて説明する。まず、図8を用いて、オープン制御と従来のフィードバック制御について説明する。図8(a)〜(c)において、横軸は時間であり、縦軸は駆動速度と追従遅れを表し、縦軸のFlimは追従遅れ限界、Vobは目標速度、Fvは目標速度での追従遅れを表す。また、実線は駆動速度Dv1〜Dv3の時間的変化を示し、破線は追従遅れFd1〜Fd3の時間的変化を示す。
図8(a)は、フィードバック制御を行わず、駆動開始とともに目標速度Vobまで一気に駆動速度Dv1を上げる場合を示す。この場合には、追従遅れFd1は駆動開始直後にオーバーシュートが発生し、振動的な挙動を示しながら振幅が収束し、最終的に安定した状態の追従遅れFvに達する。しかし、目標速度が高くなりオーバーシュート部分が追従遅れ限界を超えると、目標速度での追従遅れが追従遅れ限界に対して余裕があっても脱調STが発生する。
図8(b)は、フィードバック制御を行わず、初速Voで駆動開始し、加速期間Taの間、目標速度Vobまで徐々に駆動速度Dv2を上げる場合を示す。この場合には、駆動開始直後の駆動速度を低めに設定し目標速度まで徐々に速度を上げることにより、駆動開始直後の追従遅れのオーバーシュートを低く抑えることができ、最終的に安定した状態の追従遅れFvに達する。このため、目標速度Vobを高くしても、脱調を回避しながら目標速度に達することができる。
しかし、図8(b)に示す制御では、フィードバック制御を行わないことから、目標速度付近での追従遅れ限界に対して十分な安全率を見込む必要があり、目標速度を上げることが難しかった。十分な安全率をとらないと、追従遅れによって脱調を引き起こすおそれがある。
図8(c)は、駆動開始時からフィードバック制御を行う場合を示す。この場合には、目標速度Vobを設定しフィードバック制御をかけた状態で駆動を開始する。駆動開始時点では追従遅れが無く目標速度での追従遅れに対して十分に余裕があるため、駆動速度Dv3は一気に目標速度Vobに向かって上昇する。追従遅れFd3は駆動速度Dv3の上昇にやや遅れたタイミングで増加し始め、等速駆動時(図8(a)参照)のようにオーバーシュートが発生する。
オーバーシュートの発生後は、フィードバック制御の働きによりオーバーシュートを抑制するように駆動速度Dv3は低下するが、追従遅れFd3のタイミングとのズレにより過剰に速度を低下させることになる。このため、駆動速度Dv3の下限リミットや駆動方向の制限を設けないと、一旦駆動が停止したり、図8(c)に示すように負の速度すなわち逆転する現象が発生する(図中の符号Ne参照)。このように、駆動開始時からフィードバック制御を行うと、フィードバック制御が不安定になり、滑らかにかつ短時間に動作開始できないことがあった。
図9は、本実施形態におけるフィードバック制御を示す。図9において、横軸は時間であり、縦軸は駆動速度と追従遅れを表し、縦軸のVobは目標速度、Flimは追従遅れ限界、Vomaxはオープン制御上限速度、Vfminはフィードバック制御下限速度を表す。また、実線は駆動速度Dvの時間的変化を示し、破線は追従遅れFdの時間的変化を示す。
時刻T10で駆動を開始し、オープン制御で加速駆動する場合と同じ駆動速度変化を与える。このため、追従遅れの変化は前述のようにオーバーシュートを低く抑えられ、脱調することは無い。Aの時点(時刻T11)で現在励磁位置変更速度がフィードバック制御下限速度Vfminを超えると、速度判定条件が成立する(FB開始判定処理#15)。速度判定条件が成立すると、フィードバック制御に切り替えることができる。この場合には、加速パターンにより制限された上限速度と下限速度Vfminの間で、フィードバック制御で速度を制御することができる。また、外乱が入り、追従遅れ限界Flim付近まで追従遅れが増加しても、駆動速度Dvを制御して脱調を回避することが可能になる。
加えて、速度判定条件成立だけでなく、Bの時点(時刻T12)で追従遅れに関する判定条件が成立(追従遅れの絶対値または変化量が所定値を超える)した後にフィードバック制御に移行すれば(FB開始判定処理#15)、フィードバック制御への移行と共に開始される駆動電圧制御の影響も合わせて追従遅れが急激に増加することを防げる。このため、より安定してフィードバック制御への移行が可能になる。追従遅れに関する判定条件は、追従遅れの絶対値や、追従遅れの変化の状態などに使用する。図9では、フィードバック下限速度Vfminを超えて追従遅れが減少する方向になったときにフィードバック制御に移行する様を示している。
時刻T13になり、駆動速度Dvが目標速度Vobに達すると、加速期間Tbが終了し、フィードバック制御により、ほぼ一定の駆動速度を維持し、また追従遅れも殆どなくなる。
このように、本発明の一実施形態においては、レンズ2の動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し(例えば、図9のT10〜T11またはT12まで)、所定の条件が成立すると閉ループ制御に移行するようにしている(例えば、図9のT11またはT12〜T13)。このため、レンズの動き出し時にレンズの駆動が不安定になることを防止することができる。
なお、本発明の一実施形態においては、回転位置検出用として、GMRセンサ9を用いたが、これに限らず、光学的エンコーダ等、位置を検出することが可能な位置センサであればよい。
また、本発明の一実施形態においては、フィードバック制御開始の判定(FB開始判定処理#15)は、速度(現在励磁位置変更速度)および追従遅れに基づいて判定していた。しかし、これに限らず、いずれか一方でもよく、また他の条件で判定するようにしてもよい。
また、本発明の一実施形態においては、撮影のための機器として、デジタルカメラを用いて説明したが、カメラとしては、デジタル一眼レフカメラでもコンパクトデジタルカメラでもよく、ビデオカメラ、ムービーカメラのような動画用のカメラでもよく、さらに、携帯電話、スマートフォン、携帯情報端末、パーソナルコンピュータ(PC)、タブレット型コンピュータ、ゲーム機器等に内蔵されるカメラでも構わない。いずれにしても、レンズの駆動制御を行う機器であれば、本発明を適用することができる。
また、本明細書において説明した技術のうち、主にフローチャートで説明した制御に関しては、プログラムで設定可能であることが多く、記録媒体や記録部に収められる場合もある。この記録媒体、記録部への記録の仕方は、製品出荷時に記録してもよく、配布された記録媒体を利用してもよく、インターネットを介してダウンロードしたものでもよい。
また、特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず」、「次に」等の順番を表現する言葉を用いて説明したとしても、特に説明していない箇所では、この順で実施することが必須であることを意味するものではない。
本発明は、上記実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1・・・レンズ駆動部、2・・・レンズ、3・・・レンズ枠、3a・・・固定部、3b・・・嵌合部、3c・・・貫通孔、3e・・・遮光ハネ、4a・・・ガイド軸、4b・・・ガイド軸、5・・・バネ、6・・・ステッピングモータ、7・・・リードスクリュー、8・・・スケール磁石、9・・・GMRセンサ、10・・・フォトインタラプタ、11・・・ナット、21・・・増幅回路、22・・・2値化回路、23・・・モータ電源、24・・・モータ駆動回路、30・・・マイクロコンピュータ、31・・・CPU、31a・・・逓倍処理、31b・・・カウント値補正、31c・・・パルス値演算、32・・・IOポート、33・・・A/Dコンバータ、34・・・アップ/ダウンカウンタ、35・・・D/Aコンバータ、36・・・パルス発生器、37・・・通信ポート、38・・・タイマ、39・・・メモリ

Claims (7)

  1. レンズを駆動するステッピングモータと、
    上記ステッピングモータの回転位置を指示する位置指示部と、
    上記ステッピングモータの回転位置を検出する回転検出センサと、
    上記回転検出センサによって検出された位置検出情報と、上記位置指示部の指示する位置情報の差から追従遅れを算出する追従遅れ算出部と、
    を備え、
    上記位置指示部は、予め決められたパターンで位置指示を行う開ループ制御と、上記追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、上記レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、上記速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する、
    ことを特徴とするレンズ駆動装置。
  2. 上記所定値は、上記閉ループ制御で制御する速度の可変範囲の下限であることを特徴とする請求項1に記載のレンズ駆動装置。
  3. 上記位置指示部は、上記速度パターンに対応する速度が所定値に達するとともに、上記追従遅れの量または変化に応じて上記閉ループ制御に移行することを特徴とする請求項1又は2に記載のレンズ駆動装置。
  4. 上記位置指示部は、上記速度パターンに対応する速度が上記所定値に対応する速度よりも大きい速度に対応する第2の所定値に達すると、上記閉ループ制御に移行することを特徴とする請求項1から3のいずれか1項に記載のレンズ駆動装置。
  5. 上記位置指示部は、上記閉ループ制御で上記ステッピングモータの位置を進める速度の目標速度を設定し、
    上記閉ループ制御に移行後、上記目標速度に達するまでは、上記閉ループ制御で制御可能な速度の上限に対応する固定のパターンにより、上記ステッピングモータの位置を進める速度を制限する、
    ことを特徴とする請求項1から4のいずれか1項に記載のレンズ駆動装置。
  6. 上記位置指示部は、上記閉ループ制御の追従遅れ量と上記追従遅れ量の目標値の差に基づいて、上記閉ループ制御を行うことを特徴とする請求項1から5のいずれか1項に記載のレンズ駆動装置。
  7. レンズを駆動するステッピングモータと、
    上記ステッピングモータの回転位置を検出する回転検出センサと、
    を備えるレンズ駆動装置のレンズ駆動方法において、
    上記ステッピングモータの回転位置を指示する位置指示ステップと、
    上記回転検出センサによって検出された位置検出情報と、上記位置指示ステップにおいて指示された位置情報の差から追従遅れを算出する追従遅れ算出ステップと、
    を有し、
    上記位置指示ステップは、予め決められたパターンで位置指示を行う開ループ制御と、上記追従遅れに基づいて位置指示を行う閉ループ制御を切り替え可能であり、上記レンズの動き始めは開ループ制御でステッピングモータの位置を進める速度を固定の速度パターンに基づいて変更して加速し、上記速度パターンに対応する速度が所定値に達すると閉ループ制御に移行する、
    ことを特徴とするレンズ駆動方法。
JP2016014587A 2016-01-28 2016-01-28 レンズ駆動装置およびレンズ駆動方法 Pending JP2017134269A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016014587A JP2017134269A (ja) 2016-01-28 2016-01-28 レンズ駆動装置およびレンズ駆動方法
US15/411,688 US10721387B2 (en) 2016-01-28 2017-01-20 Lens driving apparatus and lens driving method
CN201710057332.7A CN107015420A (zh) 2016-01-28 2017-01-26 镜头驱动装置和镜头驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014587A JP2017134269A (ja) 2016-01-28 2016-01-28 レンズ駆動装置およびレンズ駆動方法

Publications (1)

Publication Number Publication Date
JP2017134269A true JP2017134269A (ja) 2017-08-03

Family

ID=59387308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014587A Pending JP2017134269A (ja) 2016-01-28 2016-01-28 レンズ駆動装置およびレンズ駆動方法

Country Status (3)

Country Link
US (1) US10721387B2 (ja)
JP (1) JP2017134269A (ja)
CN (1) CN107015420A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461675B2 (en) 2017-05-10 2019-10-29 Canon Kabushiki Kaisha Control device, optical apparatus, control method, and storage medium
US10715064B2 (en) 2017-05-10 2020-07-14 Canon Kabushiki Kaisha Control device, optical device, control method, and storage medium
JP2020536576A (ja) * 2018-07-19 2020-12-17 ケーティー・アンド・ジー・コーポレーション エアロゾル生成装置のヒータのオーバーシュートを防止する方法及びその方法を具現するためのエアロゾル生成装置
US11183954B2 (en) 2018-08-09 2021-11-23 Canon Kabushiki Kaisha Motor driving device and control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219766A (ja) * 2016-06-09 2017-12-14 オリンパス株式会社 レンズ制御装置およびレンズ制御方法
CN109991714A (zh) * 2018-01-03 2019-07-09 深圳光峰科技股份有限公司 自动对焦方法、自动对焦系统以及投影设备
CN110798106B (zh) * 2018-08-02 2022-06-17 格科微电子(上海)有限公司 电磁马达的驱动方法
CN110365266A (zh) * 2018-10-12 2019-10-22 上海北昂医药科技股份有限公司 基于arm平台建构的多步进电机控制系统
JPWO2020149002A1 (ja) * 2019-01-18 2021-11-25 パナソニックIpマネジメント株式会社 モータ制御装置
US11693208B2 (en) * 2019-02-01 2023-07-04 Tdk Taiwan Corp. Optical sensing system
CN110138292A (zh) * 2019-04-30 2019-08-16 厦门汉印电子技术有限公司 一种步进马达的输出扭矩控制方法、装置、设备和存储介质
CN111880283A (zh) * 2020-08-24 2020-11-03 长春通视光电技术有限公司 一种变焦距光学系统的控制系统
CN113296225B (zh) * 2021-05-19 2023-05-30 深圳天德钰科技股份有限公司 镜头对焦方法、镜头对焦控制电路和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178193A (ja) * 1999-12-10 2001-06-29 Matsushita Electric Ind Co Ltd ステッピングモータ制御装置とそれを用いたレンズ装置
JP2012050303A (ja) * 2010-08-30 2012-03-08 Canon Inc モータ駆動装置および光学機器
JP2015023677A (ja) * 2013-07-19 2015-02-02 キヤノン株式会社 ステッピングモータの制御装置、ステッピングモータの制御方法および光学機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298354B2 (ja) * 2002-04-24 2009-07-15 キヤノン株式会社 位置制御システムおよび位置制御方法
US7366213B2 (en) * 2003-05-19 2008-04-29 Lambda Physik Ag MOPA excimer or molecular fluorine laser system with improved synchronization
CN101984554B (zh) * 2010-12-01 2013-01-02 东元总合科技(杭州)有限公司 基于无传感器的电机启动方法
JP6207223B2 (ja) * 2013-05-01 2017-10-04 キヤノン株式会社 モータ駆動装置およびその制御方法
JP6155403B2 (ja) * 2014-12-02 2017-06-28 富士フイルム株式会社 撮像装置及び像振れ補正方法
WO2016157668A1 (ja) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 撮像装置
JP2017022942A (ja) * 2015-07-14 2017-01-26 キヤノン株式会社 振動型アクチュエータの制御装置とその制御方法、駆動装置、撮像装置、及び自動ステージ
JP6702821B2 (ja) * 2016-07-28 2020-06-03 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178193A (ja) * 1999-12-10 2001-06-29 Matsushita Electric Ind Co Ltd ステッピングモータ制御装置とそれを用いたレンズ装置
JP2012050303A (ja) * 2010-08-30 2012-03-08 Canon Inc モータ駆動装置および光学機器
JP2015023677A (ja) * 2013-07-19 2015-02-02 キヤノン株式会社 ステッピングモータの制御装置、ステッピングモータの制御方法および光学機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461675B2 (en) 2017-05-10 2019-10-29 Canon Kabushiki Kaisha Control device, optical apparatus, control method, and storage medium
US10715064B2 (en) 2017-05-10 2020-07-14 Canon Kabushiki Kaisha Control device, optical device, control method, and storage medium
JP2020536576A (ja) * 2018-07-19 2020-12-17 ケーティー・アンド・ジー・コーポレーション エアロゾル生成装置のヒータのオーバーシュートを防止する方法及びその方法を具現するためのエアロゾル生成装置
US11183954B2 (en) 2018-08-09 2021-11-23 Canon Kabushiki Kaisha Motor driving device and control method thereof

Also Published As

Publication number Publication date
US10721387B2 (en) 2020-07-21
CN107015420A (zh) 2017-08-04
US20170223257A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP2017134269A (ja) レンズ駆動装置およびレンズ駆動方法
US10237486B2 (en) Image-capturing apparatus, lens apparatus and image-capturing system
US10564387B2 (en) Lens drive device and lens drive method
JP2006149106A (ja) ステッピングモータのサーボ駆動方法、駆動機構及び撮像装置
US20140300792A1 (en) Focusing apparatus and method for controlling the same, and image pickup apparatus
US9658428B2 (en) Optical instrument and control method for lens
US9756236B2 (en) Photographing apparatus and control method for photographing apparatus
JP2017003760A (ja) レンズユニット、カメラシステム、及び絞り制御方法
US10985675B2 (en) Drive controller, imaging apparatus and drive control method
JP2013257486A (ja) 光学装置、撮像装置、および光学装置の制御方法
US11575833B2 (en) Control apparatus, image pickup apparatus, control method, and memory medium
US9281771B2 (en) Drive controller, image pickup apparatus, drive control method, and storage medium
JP6673762B2 (ja) レンズ駆動装置およびレンズ駆動制御方法
JP2008193361A (ja) 撮像装置及びその制御方法
KR102029487B1 (ko) 자동 초점 조절 장치 및 그를 구비한 촬상 시스템
JP2006065176A (ja) 撮影装置
JP2017151208A (ja) レンズ制御装置およびレンズ制御方法
JP2017219766A (ja) レンズ制御装置およびレンズ制御方法
JP2015081950A (ja) 撮像装置およびその制御方法
JP2015023700A (ja) アクチュエータの制御装置および制御方法
JP2007033811A (ja) 位置制御装置、撮像装置、及び位置制御方法
JP6019625B2 (ja) 焦点調節装置
JP2017026911A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP5294549B2 (ja) 撮像装置及び制御方法
JP6270530B2 (ja) ステッピングモータの制御方法、プログラム、絞り制御装置および光学機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200417