JP4293637B2 - コバラミンを製造し得る生合成方法 - Google Patents

コバラミンを製造し得る生合成方法 Download PDF

Info

Publication number
JP4293637B2
JP4293637B2 JP54057397A JP54057397A JP4293637B2 JP 4293637 B2 JP4293637 B2 JP 4293637B2 JP 54057397 A JP54057397 A JP 54057397A JP 54057397 A JP54057397 A JP 54057397A JP 4293637 B2 JP4293637 B2 JP 4293637B2
Authority
JP
Japan
Prior art keywords
cobalamin
microorganism
threonine
strain
phospho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54057397A
Other languages
English (en)
Other versions
JP2000509992A (ja
Inventor
ブランシユ,フランシス
カメロン,ベアトリス
クルーゼ,ジヨエル
ドウビユツシユ,ロラン
テイボー,ドウニ
レミ,エリザベト
Original Assignee
ローヌ−プーラン・ロレ・エス・アー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9492055&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4293637(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ローヌ−プーラン・ロレ・エス・アー filed Critical ローヌ−プーラン・ロレ・エス・アー
Publication of JP2000509992A publication Critical patent/JP2000509992A/ja
Application granted granted Critical
Publication of JP4293637B2 publication Critical patent/JP4293637B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/42Cobalamins, i.e. vitamin B12, LLD factor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、コバラミンを製造し得る生合成方法に関する。より詳細には本発明は、組換えDNA技術及び/または新規なコバラミン前駆物質の添加によってコバラミンの産生を増加させる方法、特にB12補酵素の産生を増加させる方法に関する。最後に本発明は、本発明のコバラミンの製造方法に有用な組換え菌株の作製方法に関する。
ビタミンB12はコバラミンと呼ばれる分子のクラスに属しており、その構造は特に国際特許WO91/11518に開示されている。
コバラミンはほぼ例外なく、同じく国際特許WO91/11518に記載された複合プロセスによって細菌から合成されている。生合成メカニズムが極めて複雑であるため、工業的レベルのコバラミンの産生、特にビタミンB12の産生は主として、Pseudomonas denitrificansPropionobacterium shermanii及びPropionobacterium freudenreichiiのような細菌の大量培養によって行われている。
また、いくつかの微生物が、アミノレブリン酸、S−アデノシル−L−メチオニン、コバルト、グルタミン、R1−アミノ−2−プロパノール及び5,6−ジメチルベンズイミダゾールの基質からコバラミンを合成することも公知である。
上記に挙げた前駆物質のうちで、5,6−ジメチルベンズイミダゾールは、コバラミン産生性微生物によって合成される。5,6−ジメチルベンズイミダゾールの生合成には2つの経路が存在すると考えられる。一方の経路は、分子酸素を利用する好気性微生物に特有の経路である。他方の経路は、嫌気性微生物によって使用される経路である。嫌気性経路に関与する遺伝子だけが単離されている。この遺伝子は、ネズミチフス菌(Salmonella thyphimurium)のcobT遺伝子である(Trzebiatowskiら,1994)。5,6−ジメチルベンズイミダゾールを合成する好気性微生物の遺伝子は現在まで全く同定されていない。多くの場合、微生物によって合成される5,6−ジメチルベンズイミダゾールの量には限界がある。
このため、5,6−ジメチルベンズイミダゾールを化学的に製造して産生用培地に添加している。従って、培地に対するこのような添加の必要をなくすことができれば有利になることは確かである。
従来のどのようなコバラミンの工業的製造方法も、コバルト及び5,6−ジメチルベンズイミダゾール以外の前駆物質の添加に言及したことはない。最近になって、培地がR1−アミノ−2−プロパノールを含有するときにだけコバラミンを産生するいくつかの菌株が記載された(Crouzetら,1990、Grabauら,1992)。従って、R1−アミノ−2−プロパノールもコバラミンの産生を増進するために使用し得るであろう。しかしながら、この物質は、工業的発酵に使用できるとしても、その使用が難しく費用も高い。その理由の1つは、R1−アミノ−2−プロパノールが刺激性及び揮発性の物質であるからであり、いま1つの理由は、この物質が微生物の増殖を阻害するからである。従って、R1−アミノ−2−プロパノール残基以外の、上記の欠点を有していないコバラミンの前駆物質を見つけることが特に有益であると考えられる。この観点から、幾つかの微生物ではL−トレオニンからアミノアセトンを経由してR1−アミノ−2−プロパノールを生合成する経路が存在することは開示されている。しかしながら、L−トレオニンは上記に引用した菌株を補完することができない。
より一般的に、コバラミンの産生を増進するためには、培地中のコバラミンの前駆物質の量を増加させるのが有利であろう。コバラミンの前駆物質が制限的である場合には特にこのような増加が有利である。この方法は、制限的前駆物質またはその誘導体もしくはその類似体の1つを培地に直接添加することによって、あるいは、遺伝子技術、特に組換えDNA技術を使用して産生性菌株中でこの前駆物質のin situ合成を増進することによって行う。
従って、コバラミンの産生を増進するために重要な段階は、コバラミン及びその前駆物質の生合成経路を明らかにすることである。
最近には、ビタミンB12の生合成経路の大部分の段階がPseudomonas denitrificansで解明された(Blancheら,1995)。コバラミンの生合成に関与する22個以上のcob遺伝子が単離され、これらの遺伝子によってコードされたポリペプチドの殆どについてその機能が同定された。
別の微生物においても、コバラミンまたはその前駆物質の生合成に関与すると推測される別の遺伝子が単離された。これらの遺伝子の殆どについてその機能は未だ解明されていない。これらの遺伝子の機能またはその効果を正確に決定することさえできれば、これらの遺伝子の応用が可能になるであろう。例えば、通性光合成細菌Rhodobacter capsulatus中で、光合成器官の形成に必要な少なくとも1つの遺伝子を含むDNAフラグメントが最近になって配列決定された(Pollichら,1993、Pollichら,1995a)。単離された8個の遺伝子のうちの5個の遺伝子が、前述のP.denitrificansの22個のcob遺伝子のうちの5個の遺伝子に高度な相同性を有するという理由でコバラミンの生合成遺伝子であると示唆された。逆に、残りの3つの遺伝子、即ちbluB遺伝子、bluE遺伝子及びbluF遺伝子に関しては、これらの遺伝子が直接に担当する正確な機能を明らかにすることができなかった。それらのプロモーター配列を含むbluB遺伝子、bluE遺伝子及びbluF遺伝子は、Pollichら,1995aによってその配列が決定され開示された。
本発明によって、コバラミンの新規な前駆物質が知見された。その結果として本発明は、O−ホスホ−L−トレオニンを含有する培地によってコバラミンの産生を増進することに成功した。これまでに記載されたことのないこのコバラミンの前駆物質は、既に公知であった別の前駆物質R1−アミノ−2−プロパノールと同等の機能を有している。しかしながら、O−ホスホ−L−トレオニンは、無毒の物質である、及び、取り扱い容易な物質である、という点でR1−アミノ−2−プロパノールよりも有利である。更に、コバラミンの産生増進に対してO−ホスホ−L−トレオニンが示す効率は、R1−アミノ−2−プロパノールが示す効率の1,000倍以上である。
本発明の目的はまた、コバラミンの産生増進を達成するためまたは所与の細胞のO−ホスホ−L−トレオニンもしくは5,6−ジメチルベンズイミダゾールのin situ合成もしくはこのような合成の増進を達成するために、Rhodobacter capsulatusのDNAフラグメントを使用することである。
本発明によれば、Rhodobacter capsulatusの、特にbluE遺伝子及びbluF遺伝子を含むDNAフラグメントを使用することによって、R1−アミノ−2−プロパノールまたはO−ホスホ−L−トレオニンを含有しない培地においてコバラミンの産生を増進することが可能であった。
最後に、本発明によれば、Rhodobacter capsulatusの、特にbluB遺伝子を含むDNAフラグメントを導入することによって、5,6−ジメチルベンズイミダゾールを含有しない培地においてコバラミンの産生を増進することが可能であった。
本発明の1つの目的は、コバラミン産生性原核細胞微生物の発酵によるコバラミンの生合成方法を提供することである。本発明によるこの方法の特徴は、
−O−ホスホ−L−トレオニンの生合成経路に関与する酵素をコードする少なくとも1つのDNAフラグメントによって形質転換された微生物を使用し、前記酵素が発現しコバラミンが産生され得る条件下で前記微生物を培養する段階、及び/または、
−前記微生物の培養培地にO−ホスホ−L−トレオニンを添加する段階、または、
−5,6−ジメチルベンズイミダゾールの生合成経路に関与する酵素をコードする少なくとも1つのDNAフラグメントによって形質転換された好気性微生物を使用し、前記酵素が発現しコバラミンが産生され得る条件下で前記好気性微生物を培養する段階、
を含むことである。
微生物は、上記に特定した遺伝子を内在的に含んでいてもよい。この場合には、本発明方法によって酵素が超発現し得る。しかしながらまた、微生物がこの種の遺伝子を内在的に含んでいなくてもよい。
“O−ホスホ−L−トレオニンまたは5,6−ジメチルベンズイミダゾールの生合成経路に関与する酵素をコードするDNAフラグメント”なる表現は、このDNAフラグメントの発現によってO−ホスホ−L−トレオニンまたは5,6−ジメチルベンズイミダゾールが細胞内で合成され、場合によってはその後に培養培地中に遊離されることを意味する。
培養は、バッチ培養でもよく、または、連続培養でもよい。また、コバラミンの精製は既存の工業的方法によって行うことができる(Florent,1986)。
1つの実施態様においては、Rhodobacter capsulatusのbluE遺伝子及びbluF遺伝子を含みO−ホスホ−L−トレオニンの生合成経路に関与するポリペプチドをコードするDNAフラグメントによって形質転換されたか、または、相同フラグメント、即ち、これらのbluE遺伝子及びbluF遺伝子とハイブリダイズし且つこれらの遺伝子と同様にO−ホスホ−L−トレオニンの生合成経路に関与する酵素をコードする機能を有しているフラグメントによって形質転換された微生物が使用される。
別の実施態様においては、Rhodobacter capsulatusのbluB遺伝子を含み5,6−ジメチルベンズイミダゾールの生合成経路に関与する酵素をコードするDNAフラグメントによって形質転換されたか、または、相同フラグメント、即ち、このbluB遺伝子とハイブリダイズし且つこの遺伝子と同様に5,6−ジメチルベンズイミダゾールの生合成経路に関与する酵素をコードする機能を有しているフラグメントによって形質転換された微生物が使用される。
本発明は、天然、合成または組換えによって得られたDNAフラグメント及び相同フラグメントの使用を含む。フラグメントなる用語は、遺伝コードの縮重性に由来するフラグメント、または、少なくとも25%の配列相同性を有しており同じ機能のポリペプチドをコードするフラグメントを意味する。
好気性条件下で培養される微生物を使用し、5,6−ジメチルベンズイミダゾールの好気性条件下の生合成経路に関与する酵素をコードするDNAフラグメントを使用するのが好ましい。
本発明の目的はまた、遺伝子工学技術を用い、O−ホスホ−L−トレオニンまたは5,6−ジメチルベンズイミダゾールの生合成経路に関与する酵素をコードする少なくとも1つの上記のようなDNAフラグメントによって微生物を形質転換させることを特徴とするコバラミン産生性原核細胞微生物の組換え菌株の製造方法を提供することである。
また、本発明の菌株の製造方法によって得られた組換え菌株を提供することも本発明の目的の1つである。
ポリペプチドをコードする少なくとも1つのDNA配列を含み、1つまたは複数のこれらの配列が発現シグナルのコントロール下に配置されている組換えDNAを本発明方法に使用することも本発明に包含される。
この観点から、特に、DNA配置の5′にプロモーター領域を配置し得る。このような領域は、DNA配列に同種(homologous)の領域でもよくまたは異種(heterologous)の領域でもよい。特に、強い細菌プロモーター、例えば、大腸菌のトリプトファンオペロンのプロモーターPtrpもしくはラクトースオペロンのプロモーターPlac、ラムダバクテリオファージの左もしくは右のプロモーター、コリネバクテリウム(corynebacterium)のような細菌のファージの強いプロモーター、大腸菌のプロモーターPtacのようなグラム陰性菌中で機能性のプロモーター、プラスミドTOLのキシレンの異化遺伝子のプロモーターPxylS、枯草菌(Bacillus subtilis)のアミラーゼのプロモーターPamyを使用し得る。また、ホスホグリセリン酸キナーゼ、グリセルアルデヒド−3−リン酸デヒドロゲナーゼ、ラクターゼまたはエノラーゼをコードする遺伝子のプロモーターのような、酵母の解糖遺伝子に由来のプロモーターも例示し得る。これらのプロモーターは、組換えDNAを真核細胞宿主に導入するときに使用できる。また、DNA配列の5′端にリボソーム結合部位を配置してもよい。この部位は、同種部位でもよく、または、ラムダバクテリオファージのII遺伝子のリボソーム結合部位のような異種部位でもよい。
転写の終結に必要なシグナルはDNA配列の3′に配置され得る。
本発明方法で使用される組換えDNAは、選択された発現シグナルに適合性の宿主細胞に直接導入されてもよく、または、問題のDNA配列を宿主細胞に安定に導入できるようにプラスミドベクターにクローニングされてもよい。
本発明方法は公知の方法と同様に、ポリペプチドをコードするDNA配列を含むプラスミドの使用を包含する。更にこれらのプラスミドは公知のプラスミドと同様に、機能性複製系と選択マーカーとを含む。
多様な種類のベクターを使用し得る。本発明の範囲内では、RK2型のベクター、即ち、RK2複製起点を有するベクターを使用するのが好ましい。特定例としては、ベクターRK2(Sauruggerら,1986)、ベクターpXL435(Cameronら,1989)、ベクターpRK290(米国特許第4,590,163号、Dittaら,1985)、及び、ベクターpXL1635(国際特許WO91/16439)を挙げることができる。特に有利なベクターはベクターpXL1635である。その他のベクターは国際特許出願WO91/16439に記載されている。
変形実施態様においては、後出の実施例に記載したように、2種類の前駆物質、即ち、O−ホスホ−L−トレオニン及び5,6−ジメチルベンズイミダゾールの合成をコードするプラスミドpER1(図1)の6.8kbのBamHIフラグメントから成るDNAフラグメントによって形質転換された微生物が使用される。
O−ホスホ−L−トレオニンの合成に関与するポリペプチドの発現に特に好適な実施態様では、後出の実施例に記載したようなプラスミドpER2(図2)の2.1kbのEcoRI/ClaIフラグメントから成るDNAフラグメントが使用される。
O−ホスホ−L−トレオニンの合成に関与するポリペプチドの発現に特に好適な実施態様では、後出の実施例に記載したようなプラスミドpER2(図2)の1.6kbのEcoRI/EcoRVフラグメントから成るDNAフラグメントが使用される。
5,6−ジメチルベンズイミダゾールの合成に関与するポリペプチドの発現に特に好適な別の実施態様では、後出の実施例に記載したようなプラスミドpER1の6.8kbのBamHIフラグメントから成るDNAフラグメントが使用される。
本発明によって使用され得る宿主原核細胞微生物は、E.coliPseudomonas denitrificansAgrobacterium radiobacterAgrobacterium tumefaciensまたはRhizobium melitotiあるいはRhodobacter capsulatus属の細菌である。他の細菌は国際特許WO91/11518に記載されている。
いずれにしても、P.denitrificansまたはA.radiobacter属の細菌の使用が特に有利である。
本発明の別の特徴及び利点は以下の詳細な記載より明らかにされるであろう。
実施例1及び2は、Pseudomonas denitrificansまたはRhodobacter capsulatusの菌株の培養培地にO−ホスホ−L−トレオニンを添加することによってコバラミンを産生させるのが可能であることを示している。実施例2は、産生培養中のR1−アミノ−2−プロパノールをO−ホスホ−L−トレオニンで代替することがどのように有利であるかを示している。同量のコバラミンを産生するために必要なR1−アミノ−2−プロパノールの量はO−ホスホ−L−トレオニンの1,000倍である。
実施例2はまた、Rhodobacter capsulatusのbluE遺伝子及びbluF遺伝子を含む染色体の領域が、O−ホスホ−L−トレオニンの合成に関与することを示している。実施例3は、Rhodobacter capsulatusのDNAフラグメントを出発材料としたbluE遺伝子及びbluF遺伝子を含むプラスミドの構築を記載している。この実施例3は特に、これらのプラスミドがR1−アミノ−2−プロパノールまたはO−ホスホ−L−トレオニンの添加に依存してコバラミンを産生する菌株中に導入されたときに、R1−アミノ−2−プラスミドまたはO−ホスホ−L−トレオニン非含有の培地でどのようにしてコバラミンを産生し得るかを示している。実施例4は、Rhodobacter capsulatusのbluB遺伝子を含む染色体の領域が、5,6−ジメチルベンズイミダゾールの合成に関与することを示している。
【図面の簡単な説明】
図1はプラスミドpER1の制限地図を表す。
図2はプラスミドpER2の制限地図を表す。
図3はプラスミドpER3の制限地図を表す。
図1から図3は夫々、プラスミドpER1、pER2及びpER3を表す。
1.菌株及びプラスミド
Rhodobacter capsulatus菌のAH2株及びBB1株(Pollichら,1995a)を、37b4株(DSM938)から構築した。Pseudomonas denitrificans菌G2650株は、SBL 27 Rifr株を出発材料とし、トランスポゾンTn5の挿入によって構築した(Crouzetら,1990)。先ず、テトラサイクリン耐性遺伝子を含むトランスポゾンTn5を用いてG2650〔Tet〕株を構築した。次に、G2650〔Tet〕株を出発材料とし、トランスポゾンTn5のテトラサイクリン耐性遺伝子をスペクチノマイシン耐性遺伝子で置換することによってG2650〔Sp〕株を構築した。SBL 27 Rifr株はMB580株に由来する(米国特許US3,018,225)。
プラスミドpBBW1(Pollichら,1995a)をRhodobacter capsulatusのDNAフラグメントから構築した。プラスミドpBBW1からプラスミドpAHW25(Pollich & Klug,1995a)を構築した。
2.分子技術
DNA操作の汎用技術に関しては実験概論書(Sambrookら,1989)を参考として使用する。
酵素はNew England Biolabs及びBoehringer Mannheimの研究所から入手し、製作者の指示通りに使用する。
使用した技術は本質的に以下の2段階から成る。
−制限酵素による消化、及び、
−T4バクテリオファージのリガーゼによるDNA分子の結合。
3.形質転換技術
大腸菌の形質転換を電気穿孔によって行う(Dowerら,1988)。
4.結合技術
大腸菌S17−1株とP.denitrificansの種々の菌株との結合は、Simonらによって記載されたプロトコル(Simonら,1986)を応用して行う。Pseudomonasの菌株の形質転換は遺伝子工学の他の任意の技術によって行う。
5.コバラミン産生培地の調製
P.denitrificansの菌株によるコバラミンの産生に使用した培地は、Cameronら,1989、によって記載されたPS4培地である。
Rhodobacter capsulatusの菌株によるコバラミンの産生に使用した培地は、Pollich,1995b、によって記載されたRA培地である。
6.産生されたコバラミンの定量アッセイ
産生されたコバラミンの量を、微生物学的アッセイまたは高性能液体クロマトグラフィー(HPLC)によって測定する。
−微生物学的アッセイ
ビタミンB12要求性の大腸菌指示株113−3(Davis & Mingioli,1950)を用い、半定量的方法によってコバラミンの産生量を測定する。
この指示株は、B12依存性のホモシステインメチルトランスフェラーゼ(EC2.1.1.13)だけを有している大腸菌のmetE変異株である。この菌株が最小培地中で増殖するためにはビタミンB12の存在だけが必要である。(この菌株の増殖に必要なビタミンB12が欠乏した)ゲル状のM9最小培地(Miller,1972)の上層にこの菌株が含まれているときにビタミンB12を定量することが可能である。即ち、上層の表面にビタミンB12を含む溶液のサンプルを滴下し、37℃で16時間インキュベーション後、滴下した箇所に円形増殖斑が出現する。サンプルに含まれているビタミンB12が拡散して、寒天に含まれている細菌を増殖させ得るからである。円形増殖斑の直径はサンプル中のビタミンB12の濃度に比例する。
サンプルは以下のプロトコルで細胞を溶解させることによって得られる。
24mg/mlのリゾチーム(Boehringer Mannheim)を含む0.1mlの溶液(100mMのトリス−HCl,pH=8、20mMのEDTA、200g/リットルのショ糖)を、0.5mlの定量すべき細胞培養物と混合する。37℃で30分間インキュベーション後、30g/リットルの濃度のドデシル硫酸ナトリウムの溶液を60μl添加し、混合物の渦流を数秒間維持する。得られた10μlの細胞溶解液、あるいはこれを任意に1/50に希釈した液を、上層の表面に導入する。
−HPLCアッセイ
高性能液体クロマトグラフィーによるコバラミンの定量方法としては、Blancheら,1990、に記載された方法を使用する。
実施例1
Pseudomonas denitrificansの菌株によるコバラミンの産生に対するO−ホスホ−L−トレオニンの効果
100mlのエルレンマイヤーフラスコを用い、2μg/mlのテトラサイクリンを含む25mlのPS4培地でPseudomonas denitrificans菌G2650〔Tet〕株を培養する。撹拌下(250rpm)、30℃で24時間発酵後、10g/リットルのO−ホスホ−L−トレオニンの溶液を、0.16ml、0.32mlまたは1.5mlの量で培地に添加する。これらは夫々、66mg/リットル、132mg/リットル及び600mg/リットルの最終濃度に対応する。これらの各条件下で産生されたコバラミンの量を、148時間発酵後にHPLCによって定量する。結果(表1)は、G2650〔Tet〕株がPS4培地中でビタミンB12を産生しないことを示す。これに反して、O−ホスホ−L−トレオニンが培地中に存在すると、同じこの菌株によってB12が産生される。添加するO−ホスホ−L−トレオニンの量の増加に伴って産生されるビタミンB12の量が増加する。
Figure 0004293637
実施例2
Rhodobacter capsulatusの菌株によるコバラミンの産生に対するO−ホスホ−L−トレオニン及びR1−アミノ−2−プロパノールの効果の比較
100mlのエルレンマイヤーフラスコを用い、10μg/mlのカナマイシンと種々の濃度のO−ホスホ−L−トレオニン及びR1−アミノ−2−プロパノールを存在させた70mlのRA培地でRhodobacter capsulatus菌AH2株を培養する。撹拌下(100rpm)、30℃で24〜48時間発酵後、種々の条件下のコバラミンの産生量を微生物学的アッセイによって測定する。
結果を表2に示す。表中の、“−”は、指示株の円形増殖斑が存在しないことを表し、“+”は円形増殖斑が存在することを表し、“+”の数が多いほど増殖斑の直径が大きいことを表している。これらの結果は、RA培地で培養したR.capsulatus菌AH2株がビタミンB12を産生しないことを示す。これに反して、O−ホスホ−L−トレオニンまたはR1−アミノ−2−プロパノールの存在下では、この菌株がビタミンB12を産生し得る。これらの結果はまた、R1−アミノ−2−プロパノールによってO−ホスホ−L−トレオニンと同じ結果を得るためには約6×103の添加量が必要であることを示している。
Figure 0004293637
実施例3
コバラミン産生性でないG2650株中のプラスミドpBBW1に由来のDNAフラグメントの存在の効果
3.1.プラスミドpER1の構築(図1)
ベクターpXL435(Cameronら,1989)のBamHI部位に、プラスミドpBBW1(Pollich & Klug,1995)から精製した6.8kbのBamHI DNAフラグメントをクローニングすることによって、17.4kbのプラスミドpER1を構築した。
3.2.P.denitrificans菌G2650株へのプラスミドpER1の導入
第一段階で、大腸菌S17−1株にプラスミドpER1を電気穿孔によって導入し、第二段階で、プラスミドpER1を含む大腸菌S17−1株に結合させることによって、プラスミドpER1をP.denitrificans菌G2560〔Tet〕株に導入した。50μg/mlのリファンピシン及び100μg/lのリビドマイシンに耐性のトランスコンジュガントを選択した。分析した9個のクローンがプラスミドpER1を含んでいた。
同様の手順で、ベクターpXL435だけを含む対照G2650〔Tet〕株を構築した。
3.3.プラスミドpER1を含むG2650株によるコバラミンの産生
プラスミドpER1を含むクローンG2650〔Tet〕とプラスミドpXL435を含む2つのクローンとを、PS4培地中、リファンピシン、テトラサイクリン及びリビドマイシンの存在下で培養した。撹拌下(250rpm)、30℃で140時間発酵後、微生物学的アッセイ及びHPLCによってコバラミンの産生量を測定した。結果を表3に示す。
Figure 0004293637
G2650〔Tet〕株及びプラスミドpXL435を含む菌株の双方がPS4培地中でビタミンB12を産生しないが、pER1を含む同じ菌株はB12を約3.5mg/リットルの濃度で産生し得る。プラスミドpXL435を含むG2650〔Tet〕株、即ちプラスミドpER1の構築に使用されるクローニングベクターだけを含むG2650〔Tet〕株はB12を産生しない。従って、B12が産生される理由は、プラスミドpBBW1に由来の6.8kbのDNAフラグメントの存在であることが判明する。
即ち、プラスミドpBBW1から精製された6.8kbのBamHI DNAフラグメントは、P.denitrificans菌G2650〔Tet〕株に、PS4培地中でビタミンB12を産生する能力を与える。
3.4.サブクローニング
bluE遺伝子及びbluF遺伝子を含む6.8kbのBamHI DNAフラグメントの領域を、クローニングベクターpLX435にサブクローニングしてプラスミドを作製し、中間構築物に基づいてプラスミドpER2及びpER3と命名した。
12.9kbのプラスミドpER2(図2)は、プラスミドpBBW1から精製されベクターpXL435にクローニングされた2.1kbのEcoRI/ClaIフラグメントを含む。このDNAフラグメントは、プラスミドpBluescript II SK+(Stratagene)のEcoRI/ClaI部位に予めクローニングされ、次いでこの組換えプラスミドからBamHI/SalI DNAフラグメントの形態で精製されてベクターpXL435にクローニングできるようにしたものである。
11.9kbのプラスミドpER3(図3)は、プラスミドpBBW1から精製されベクターpXL435にクローニングされた1.2kbのPstIフラグメントを含む。このフラグメントは、プラスミドpBluescript II SK+のPstI部位に予めクローニングされ、次いでこの組換えプラスミドからBamHI/SalI制限フラグメントの形態で精製されてベクターpXL435にクローニングできるようにしたものである。
プラスミドpAHW25(Pollich & Klug,1995a)は、プラスミドpBBW1から精製され、ベクターpRK415(Keenら,1988)にクローニングされた1.6kbのEcoRI/EcoRVフラグメントを含む。bluE遺伝子はベクターのlacプロモーターから転写される。
プラスミドpER2またはpER3を、これらのプラスミドを含む大腸菌S17−1株に結合させることによってP.denitrificans菌G2650〔Tet〕株に導入した。プラスミドpER2、pER3またはpXL435を含むG2650〔Tet〕株のクローンを、5mlのPS4培地中、リファンピシン、テトラサイクリン及びリビドマイシンの存在下で培養した。プラスミドpAHW25及びpRK415を、これらのプラスミドを含む大腸菌S17−1株に結合させることによってP.denitrificans菌G2650〔Sp〕株に導入した。プラスミドpAHW25またはpRK415を含むG2650〔Sp〕株のクローンを25mlのPS4培地中、リファンピシン、リビドマイシン及びスペクチノマイシンの存在下で培養した。撹拌下(250rpm)、30℃で140時間発酵後、コバラミンの産生量を微生物学的アッセイ及びHPLCによって測定する。
表4に示した結果は、プラスミドpER2またはpAHW25を含むG2650株のクローンだけがPS4培地中でビタミンB12を産生し得ることを示す。
Figure 0004293637
実施例4
bluB遺伝子は、B12の既知の前駆物質である5,6−ジメチルベンズイミダゾール(DBI)の生合成に関与する
Rhodobacter capsulatusは、bluB遺伝子にインターポゾンを挿入することによって得られた突然変異株である。この株はbluB−である(Pollichら,1995)。100mlのエルレンマイヤーフラスコを用い、70mlのRA培地中、10μg/mlのカナマイシン及び種々の濃度のDBIの存在下でBB1株を培養する。種々の条件下でこの菌株によって産生されるコバラミンの量を、撹拌下(100rpm)、30℃で24〜48時間発酵後に、微生物学的アッセイによって測定する。表5にまとめた結果は、突然変異株BB1がRA単独培地中ではB12産生性でないが、培地中に14nM以上のDBIが存在するときにはこの分子を合成することを示す。従って、bluB遺伝子は5,6−ジメチルベンズイミダゾールの生合成に関与する。
Figure 0004293637
Figure 0004293637
Figure 0004293637

Claims (7)

  1. コバラミン産生性原核細胞微生物の発酵によるコバラミンの生合成方法であって、
    O−ホスホ−L−トレオニンの生合成経路に関与する酵素をコードする少なくとも1つのDNAフラグメントによって形質転換された微生物を使用し、但し、当該DNAフラグメントはプラスミドpER1の6.8kbのBamHIフラグメント、プラスミドpER2のEcoRI/ClaIフラグメントおよびプラスミドpAHW25もしくはpER2の1.6kbのEcoRI/EcoRVフラグメントから成る群より選択されるフラグメントを含み、前記酵素が発現しコバラミンが産生され得る条件下で前記微生物を培養すること、及び/または、
    前記微生物の培養培地にO−ホスホ−L−トレオニンを添加することを特徴とするコバラミンの生合成方法。
  2. ロドバクター・カプスラタス(Rhodobacter capsulatusのbluE遺伝子及びbluF遺伝子を含みO−ホスホ−L−トレオニンの生合成経路に関与するポリペプチドをコードするDNAフラグメントによって形質転換されるか、または、相同フラグメント、及び/または、前記bluE遺伝子及びbluF遺伝子とハイブリダイズし且つO−ホスホ−L−トレオニンの生合成経路に関与する酵素をコードする機能を有しているフラグメントによって形質転換された微生物を使用することを特徴とする請求項1に記載の方法。
  3. 請求項1または2のいずれか一項に記載のビタミンB12の製造方法。
  4. 前記微生物がシュードモナス・デニトリフィカンス(Pseudomonas denitrificansまたはアグロバクテリウム・ラジオバクター(Agrobacterium radiobacterの菌株であることを特徴とする請求項1からのいずれか一項に記載の方法。
  5. 遺伝子工学技術を用い、請求項1またはのいずれか一項に記載のO−ホスホ−L−トレオニンの生合成経路に関与する酵素をコードする少なくとも1つのDNAフラグメントによって微生物を形質転換させることを特徴とするコバラミン産生性原核細胞微生物の組換え菌株の製造方法。
  6. 請求項に記載の方法によって得られた組換え微生物。
  7. シュードモナス・デニトリフィカンス(Pseudomonas denitrificansまたはアグロバクテリウム・ラジオバクター(Agrobacterium radiobacterの菌株であることを特徴とする請求項に記載の微生物。
JP54057397A 1996-05-13 1997-05-05 コバラミンを製造し得る生合成方法 Expired - Lifetime JP4293637B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR96/05896 1996-05-13
FR9605896A FR2748492B1 (fr) 1996-05-13 1996-05-13 Procede de biosynthese permettant la preparation de cobalamines
PCT/FR1997/000793 WO1997043421A1 (fr) 1996-05-13 1997-05-05 Procede de biosynthese permettant la preparation de cobalamines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009029392A Division JP2009142289A (ja) 1996-05-13 2009-02-12 コバラミンを製造し得る生合成方法

Publications (2)

Publication Number Publication Date
JP2000509992A JP2000509992A (ja) 2000-08-08
JP4293637B2 true JP4293637B2 (ja) 2009-07-08

Family

ID=9492055

Family Applications (2)

Application Number Title Priority Date Filing Date
JP54057397A Expired - Lifetime JP4293637B2 (ja) 1996-05-13 1997-05-05 コバラミンを製造し得る生合成方法
JP2009029392A Pending JP2009142289A (ja) 1996-05-13 2009-02-12 コバラミンを製造し得る生合成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009029392A Pending JP2009142289A (ja) 1996-05-13 2009-02-12 コバラミンを製造し得る生合成方法

Country Status (16)

Country Link
US (1) US6156545A (ja)
EP (1) EP0906430B1 (ja)
JP (2) JP4293637B2 (ja)
CN (1) CN1148451C (ja)
AT (1) ATE334204T1 (ja)
AU (1) AU2781297A (ja)
CA (1) CA2254717C (ja)
DE (1) DE69736387T2 (ja)
DK (1) DK0906430T3 (ja)
EA (1) EA002588B1 (ja)
ES (1) ES2270458T3 (ja)
FR (1) FR2748492B1 (ja)
HU (1) HU230179B1 (ja)
PT (1) PT906430E (ja)
SI (1) SI0906430T1 (ja)
WO (1) WO1997043421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142289A (ja) * 1996-05-13 2009-07-02 Rhone-Poulenc Rorer Sa コバラミンを製造し得る生合成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489157B1 (en) * 1999-04-16 2002-12-03 The Government Of The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Medium for cultivating microorganisms
TWI328612B (en) 2002-07-25 2010-08-11 Dsm Ip Assets Bv Genes and their encoded polypeptides involved in the biosynthetic pathway of vitamin b12, vectors and host cells comprising the genes, and process for producing vitamin b12
WO2006060898A1 (en) * 2004-12-06 2006-06-15 Aegera Therapeutics Inc Method for treating inflammatory disorders
CN109837320A (zh) * 2019-03-27 2019-06-04 山东泓达生物科技有限公司 一种提高脱氮假单胞杆菌产维生素b12的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657622B1 (fr) * 1990-01-31 1994-11-25 Rhone Poulenc Sante Polypeptides impliques dans la biosynthese des cobalamines et/ou des cobamides, sequences d'adn codant pour ces polypeptides, procede de preparation, et leur utilisation.
FR2663646B1 (fr) * 1990-06-20 1992-10-09 Rambach Alain Souches de e. coli productrices de vitamine b12 et procede de preparation de la vitamine b12 par culture de ces souches.
EP0647717A1 (en) * 1993-10-06 1995-04-12 Takeda Chemical Industries, Ltd. Method of producing vitamin B12
FR2748492B1 (fr) * 1996-05-13 1998-06-19 Rhone Poulenc Rorer Sa Procede de biosynthese permettant la preparation de cobalamines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142289A (ja) * 1996-05-13 2009-07-02 Rhone-Poulenc Rorer Sa コバラミンを製造し得る生合成方法

Also Published As

Publication number Publication date
HU230179B1 (hu) 2015-09-28
JP2000509992A (ja) 2000-08-08
ES2270458T3 (es) 2007-04-01
AU2781297A (en) 1997-12-05
CA2254717C (fr) 2012-07-10
US6156545A (en) 2000-12-05
WO1997043421A1 (fr) 1997-11-20
FR2748492A1 (fr) 1997-11-14
DE69736387T2 (de) 2007-09-13
EP0906430A1 (fr) 1999-04-07
DE69736387D1 (de) 2006-09-07
CA2254717A1 (fr) 1997-11-20
EA002588B1 (ru) 2002-06-27
EP0906430B1 (fr) 2006-07-26
PT906430E (pt) 2006-12-29
DK0906430T3 (da) 2006-11-27
SI0906430T1 (sl) 2006-12-31
ATE334204T1 (de) 2006-08-15
JP2009142289A (ja) 2009-07-02
HUP9902730A2 (hu) 1999-12-28
CN1218508A (zh) 1999-06-02
EA199801007A1 (ru) 1999-04-29
HUP9902730A3 (en) 2000-03-28
CN1148451C (zh) 2004-05-05
FR2748492B1 (fr) 1998-06-19

Similar Documents

Publication Publication Date Title
MX2007001195A (es) Alanina 2,3-aminomutasas.
JPH10229885A (ja) 新規アルコールアルデヒド脱水素酵素
JP2009142289A (ja) コバラミンを製造し得る生合成方法
KR20000060322A (ko) 슈도모나스 플루오레슨스 유래의 외래단백질 분비촉진유전자
JPH08501694A (ja) ビオチンの生物工学的製造方法
US20220411837A1 (en) Recombinant methanotrophic bacteria for indigo biosynthesis and methods thereof
JP3488924B2 (ja) ベタインの異化に関して改変された細胞、それらの調製、および特に、代謝産物または酵素の生産のための使用
HU220798B1 (hu) A butiro-betain/krotono-betain-L-karnitin-anyagcsere génjeit kódoló DNS-molekulák és alkalmazásuk L-karnitin mikrobiológiai előállítására
CN111117942A (zh) 一种产林可霉素的基因工程菌及其构建方法和应用
WO2003072726A2 (en) Nad phosphite oxidoreductase a novel catalyst from bacteria for regeneration of nad(p)h
JP2722504B2 (ja) 新規微生物及びそれを用いるd−ビオチンの製法
EP1543026B1 (en) Transcriptional activator gene for genes involved in cobalamin biosynthesis
EP1249494B1 (en) Process for the biological production of l-pipecolic acid
Dijkhuizen et al. Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes
RU2817252C1 (ru) Штамм Escherichia coli - продуцент L-треонина
CN115109793B (zh) 一种从头合成络缌的重组大肠杆菌及其构建方法和应用
WO2000008170A1 (fr) Gene participant a la production d'acide homoglutamique, et utilisation associee
JP4329129B2 (ja) ビオチン生合成遺伝子を含むdna断片およびその利用
CN118147245A (zh) 水杨胺的生物合成方法及体系
WO2023130191A1 (en) Production of psychedelic compounds
CN115850406A (zh) L-酪氨酸产量相关蛋白yedZ及其生物材料和应用
CN105849083B (zh) [s,s]-edds生物合成基因和蛋白和用于生物合成[s,s]-edds的方法
JP3169927B2 (ja) 水素光産生収率を向上したロドバクタースフェロイデスRVのポリヒドロキシアルカノイン酸類(PHAs)欠損株の単離
KR20220170657A (ko) NADH:quinone 산화환원효소의 발현이 조절된 재조합 미생물 및 이를 이용한 O-포스포세린, 시스테인 및 이의 유도체의 생산방법
CN115094016A (zh) 敲除葡萄糖-6-磷酸异构酶基因的重组大肠杆菌及其在生产1,2,4-丁三醇中的应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070328

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070521

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term