JP4289213B2 - 光ヘッド装置及び光学式情報記録再生装置 - Google Patents

光ヘッド装置及び光学式情報記録再生装置 Download PDF

Info

Publication number
JP4289213B2
JP4289213B2 JP2004147816A JP2004147816A JP4289213B2 JP 4289213 B2 JP4289213 B2 JP 4289213B2 JP 2004147816 A JP2004147816 A JP 2004147816A JP 2004147816 A JP2004147816 A JP 2004147816A JP 4289213 B2 JP4289213 B2 JP 4289213B2
Authority
JP
Japan
Prior art keywords
birefringence
optical
optical axis
light
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004147816A
Other languages
English (en)
Other versions
JP2005332435A (ja
Inventor
龍一 片山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2004147816A priority Critical patent/JP4289213B2/ja
Publication of JP2005332435A publication Critical patent/JP2005332435A/ja
Application granted granted Critical
Publication of JP4289213B2 publication Critical patent/JP4289213B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/18Function characteristic adaptive optics, e.g. wavefront correction

Description

本発明は、光記録媒体の保護層の複屈折による入射光又は反射光への影響を補正することにより、良好な記録再生特性が得られる、光ヘッド装置及び光学式情報記録再生装置に関するものである。

図15[1]に、従来の一般的な光ヘッド装置の構成を示す。光源である半導体レーザ1からの出射光は、コリメータレンズ2で平行光化され、偏光ビームスプリッタ3にP偏光として入射してほぼ100%が透過し、1/4波長板4を透過して直線偏光から円偏光に変換され、対物レンズ6で光記録媒体であるディスク7上に集光される。ディスク7からの反射光は、対物レンズ6を逆向きに透過し、1/4波長板4を透過して円偏光から往路と偏光方向が直交した直線偏光に変換され、偏光ビームスプリッタ3にS偏光として入射してほぼ100%が反射され、円筒レンズ8、凸レンズ9を透過して光検出器10で受光される。

ところで、光記録媒体の保護層には通常は安価なポリカーボネートが用いられるが、ポリカーボネートは複屈折を有する。図15[1]において、光記録媒体であるディスク7の保護層に複屈折があると、ディスク7上に形成される集光スポットの径が拡大するとともに、光検出器10における受光量が低下する。

ここで、基板を通して記録面へ光を入射させる構成の光記録媒体を用いる場合、保護層とは基板を指すものとし、カバー層を通して記録面へ光を入射させる構成の光記録媒体を用いる場合、保護層とはカバー層を指すものとする。

ディスク7の保護層に複屈折がない場合、ディスク7からの反射光は、1/4波長板4を透過することにより、偏光ビームスプリッタ3に対するS偏光となる。したがって、この光は、偏光ビームスプリッタ3においてほぼ100%が反射されて、光検出器10で受光される。しかし、ディスク7の保護層に複屈折がある場合、ディスク7からの反射光は、1/4波長板4を透過することにより、一般に楕円偏光になる。すなわち、偏光ビームスプリッタ3に対するS偏光成分が減少し、P偏光成分が生じる。したがって、S偏光成分は偏光ビームスプリッタ3においてほぼ100%が反射されて光検出器10で受光されるが、P偏光成分は偏光ビームスプリッタ3においてほぼ100%が透過して半導体レーザ1へ戻る。光検出器10における受光量が低下するのはこのためである。

光記録媒体の保護層の複屈折には、下記非特許文献1に記載されているように、面内複屈折と垂直複屈折がある。ここで、図15[2]に示すように、光記録媒体であるディスク7とXYZ座標の関係を定める。X軸、Y軸、Z軸はそれぞれディスク7の半径方向、接線方向、法線方向である。光記録媒体の保護層は通常は二軸の屈折率異方性を有しており、その三つの主軸はX軸、Y軸、Z軸とほぼ一致する。これに対応する三つの主屈折率をそれぞれn、n、nとし、面内複屈折、垂直複屈折をそれぞれΔn、Δnとすると、面内複屈折はΔn=|n−n|で定義され、垂直複屈折はΔn=|(n+n)/2−n|で定義される。

面内複屈折及び垂直複屈折は、どちらも光記録媒体上に形成される集光スポットの径を拡大させるとともに、光検出器における受光量を低下させる。しかし、光記録媒体の保護層を透過する光への影響の仕方は両者で異なる。面内複屈折による影響は光記録媒体への入射角に依存しないが、垂直複屈折による影響は光記録媒体への入射角に依存し、入射角が0°の光は影響を受けないが、入射角が大きい光ほど影響を大きく受ける。このため、一般に記録再生特性への影響は面内複屈折より垂直複屈折の方が大きい。垂直複屈折による集光スポットの径の拡大及び受光量の低下は、再生信号における分解能の低下及びクロストークの増加につながる。

図16に、光記録媒体の保護層の垂直複屈折と集光スポット径との関係の計算例を示す。計算条件は、光源の波長が405nm、対物レンズの開口数が0.65、光記録媒体の保護層の厚さが0.6mmである。垂直複屈折の増加に伴って集光スポット径が急激に拡大することがわかる。光記録媒体の保護層の垂直複屈折は材料によりほぼ一意的に決まっており、ポリカーボネートを用いた場合は約0.0007である。したがって、垂直複屈折がない場合の集光スポット径は約0.523μmであるが、ポリカーボネートに相当する垂直複屈折がある場合の集光スポット径は約0.540μmに拡大する。

また、下記特許文献1に開示されている光ヘッド装置は、光記録媒体の保護層の面内複屈折による入射光又は反射光への影響を補正する液晶パネルを備えている。この液晶パネルは、一定の光学軸方向を有し、透過する光に対して一定の位相差を与えることにより、面内複屈折によって発生した位相差を打ち消している。

吉沢,「光磁気記録用PC基盤の光学的異方性の解析」,光学,1985年10月,第15巻,第5号,p414−421 特開2000−268398号公報

しかしながら、上記特許文献1における液晶パネルでは、補正の効果が不十分であった。なぜなら、垂直複屈折による入射光又は反射光への影響を補正するための光学軸方向、及び垂直複屈折によって発生した位相差は液晶パネル内の位置に応じて異なるにもかかわらず、液晶パネル内のどの位置においても液晶分子の向きが同じになっているからである。

そこで、本発明の目的は、従来の光ヘッド装置における上に述べた課題を解決し、光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響を高精度に補正することにより、良好な記録再生特性が得られる光ヘッド装置及び光学式情報記録再生装置を提供することにある。

本発明に係る光ヘッド装置は、光源と、この光源からの出射光を光記録媒体上に集光する対物レンズと、前記光記録媒体からの反射光を受光する光検出器と、前記出射光と前記反射光とを分離する光分離素子と、前記光記録媒体の保護層の複屈折による前記出射光又は前記反射光への影響を補正する複屈折補正素子と、を備えたものである。そして、前記複屈折補正素子は前記光分離素子と前記対物レンズとの間に設けられるとともに光学軸を有し、当該光学軸の方向が、当該複屈折補正素子の面内の位置に応じて変化するとともに、当該光学軸に平行な方向の偏光成分と当該光学軸に垂直な方向の偏光成分との位相差が、当該複屈折補正素子の面内の前記出射光又は前記反射光の光軸からの距離に応じて2次関数状に連続的又は離散的に変化する。

光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響は、入射光又は反射光の光軸を中心とする所定の分布を示す。この影響を打ち消すには、前述した光学軸及び位相差を有するように複屈折補正素子を設計すればよい。このことについては、後述するように数式を用いて詳しく説明する。

前記光源からの出射光の波長が405nm、前記対物レンズの開口数が0.65、前記光記録媒体の保護層の厚さが0.6mmである、としてもよい。

前記複屈折補正素子は、前記出射光及び前記反射光が当該複屈折補正素子を透過する際に、当該出射光及び当該反射光が前記光記録媒体の保護層を透過する際に生じる位相差を打ち消す位相差を生じる、としてもよい。

前記複屈折補正素子は、一軸の屈折率異方性を有する材料を含む、としてもよい。このとき、前記複屈折補正素子は、前記出射光又は前記反射光の光軸を通る直線で当該光軸の周りに複数の領域に分割されているとともに、当該光軸の周りに分割された複数の領域のそれぞれが、当該光軸を中心とする円で更に半径方向に複数の領域に分割されている、としてもよい。また、前記光軸の周りに分割された複数の領域における前記光学軸の方向は、各領域内では一定であり、各領域の分割線間の中心部では当該光軸を中心とする円の半径方向又は接線方向である、としてもよい。また、前記半径方向に分割された複数の領域における前記位相差は、各領域内では一定であり、当該半径方向に沿って内側の領域から外側の領域へ向かって単調に増加する、としてもよい。更に具体的には、前記一軸の屈折率異方性を有する材料が液晶高分子である、としてもよい。

また、前記複屈折補正素子は、屈折率等方性の材料に構造複屈折を利用して一軸の屈折率異方性を持たせたものである、としてもよい。このとき、前記複屈折補正素子は、前記入射光又は前記反射光の光軸を中心とする同心円状の格子を有する、としてもよい。更に具体的には、前記格子は凸部と凹部とからなり、当該格子の1周期において当該凸部及び当該凹部が占める割合の比をデューティ比としたとき、このデューティ比が、前記光軸からの距離に応じて連続的に変化している、としてもよい。

本発明に係る光学式情報記録再生装置は、本発明に係る光ヘッド装置と、前記光源を駆動する第一の回路と、前記光検出器の出力信号に基づいて再生信号及び誤差信号を生成する第二の回路と、前記誤差信号に基づいて前記対物レンズの位置を制御する第三の回路と、を備えたものである。前記第一の回路は、前記出射光のパワーが記録信号に基づいて変化するように前記光源を駆動する、又は前記出射光のパワーが一定値になるように前記光源を駆動する、としてもよい。

換言すると、本発明の光ヘッド装置は、光源と、この光源からの出射光を光記録媒体上に集光する対物レンズと、前記光記録媒体からの反射光を受光する光検出器と、前記光源からの出射光と前記光記録媒体からの反射光とを分離する光分離素子とを有する光ヘッド装置において、前記光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響を補正する複屈折補正素子を更に有することを特徴とする。

また、本発明の光学式情報記録再生装置は、本発明の光ヘッド装置と、前記光源を駆動する第一の回路と、前記光検出器の出力信号に基づいて再生信号及び誤差信号を生成する第二の回路と、前記誤差信号に基づいて前記対物レンズの位置を制御する第三の回路とを有することを特徴とする。

光記録媒体の保護層に垂直複屈折があると、光が光記録媒体の保護層を透過する際に、所定の方向の偏光成分とそれに直交する方向の偏光成分との間に所定の位相差が生じる。しかし、本発明においては、光が複屈折補正素子を透過する際に、上述の位相差を打ち消す位相差が生じる。このため、垂直複屈折がない場合と同様に、光記録媒体上に形成される集光スポットの径が拡大しないので、光検出器における受光量が低下しない。したがって、再生信号における分解能の低下及びクロストークの増加が抑制されるので、良好な記録再生特性が得られる。

本発明によれば、光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響が入射光又は反射光の光軸を中心として所定の分布を示すので、この分布に対応した光学軸及び位相差を有するように複屈折補正素子を設計することにより、光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響を高精度に補正できる。すなわち、入射光又は反射光の光軸を中心とする円の接線方向又は半径方向の光学軸を有するとともに、光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差が光軸から離れるに従い増加するように、複屈折補正素子を設計することによって、光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響を高精度に打ち消すことができる。

また、複屈折補正素子を複数の領域に分割し、各領域内で光学軸の向き及び位相差の大きさを一定とすることにより、製造を容易化できる。

換言すると、本発明の効果は、光記録媒体の保護層の垂直複屈折による入射光又は反射光への影響を補正することにより、良好な記録再生特性が得られることである。その理由は、光が光記録媒体の保護層を透過する際に生じる位相差と、光が複屈折補正素子を透過する際に生じる位相差とが互いに打ち消し合うことにより、垂直複屈折がない場合と同様に、光記録媒体上に形成される集光スポットの径が拡大しないので、光検出器における受光量が低下しないためである。

以下に図面を参照して本発明の実施形態について説明する。

図1に、本発明の光ヘッド装置の第一実施形態を示す。光源である半導体レーザ1からの出射光は、コリメータレンズ2で平行光化され、偏光ビームスプリッタ3にP偏光として入射してほぼ100%が透過し、1/4波長板4を透過して直線偏光から円偏光に変換され、複屈折補正素子5aを透過し、対物レンズ6でディスク7上に集光される。ディスク7からの反射光は、対物レンズ6を逆向きに透過し、複屈折補正素子5aを透過し、1/4波長板4を透過して円偏光から、往路と偏光方向が直交した直線偏光に変換され、偏光ビームスプリッタ3にS偏光として入射してほぼ100%が反射され、円筒レンズ8、凸レンズ9を透過して光検出器10で受光される。光検出器10は、円筒レンズ8、凸レンズ9の二つの焦線の中間に設置されており、ディスク7の半径方向に平行な分割線及び接線方向に平行な分割線で四分割された受光部を有する。各受光部からの出力に基づき、非点収差法によるフォーカス誤差信号、位相差法又はプッシュプル法によるトラック誤差信号、及びRF信号が得られる。

図2は複屈折補正素子5aの平面図である。複屈折補正素子5aは、光軸を通る90°間隔の二つの直線によって、周方向に四つの領域に分割されており、光軸を中心とする三つの同心円によって、各領域が更に半径方向に四つの領域に分割されている。なお、図中の点線は対物レンズ6の有効径を示している。また、複屈折補正素子5aは一軸の屈折率異方性を有する材料を含んでおり、図中の矢印は各領域における光学軸の方向を示している。

図中右側の領域11a、12a、13a、14a及び図中左側の領域11c、12c、13c、14cにおける光学軸の方向は、図中のx軸に対して0°の方向である。図中上側の領域11b、12b、13b、14b及び図中下側の領域11d、12d、13d、14dにおける光学軸の方向は、図中のx軸に対して90°の方向である。光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差は、次のとおりである。最も中心側の領域11a、11b、11c、11dでは0°である。その外側の領域12a、12b、12c、12dでは18°である。その外側の領域13a、13b、13c、13dでは36°である。最も外側の領域14a、14b、14c、14dでは54°である。

以上述べたように、本実施形態の光ヘッド装置では、光学系における対物レンズ6の手前に、一軸の屈折率異方性を有する材料を含む複屈折補正素子5aを設ける。複屈折補正素子5aは、光軸を通る90°間隔の二つの直線によって周方向に四つの領域に分割され、かつ、光軸を中心とする三つの同心円によって各領域が更に半径方向に四つの領域に分割されている。領域11a〜14a及び領域11c〜14cにおける光学軸の方向は図2中のx軸方向であり、領域11b〜14b及び領域11d〜14dにおける光学軸の方向は図2中のy軸方向である。光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差は、領域11a〜11d、領域12a〜12d、領域13a〜13d、領域14a〜14dの順に大きくなる。

本発明の光ヘッド装置の第二実施形態は、第一実施形態における複屈折補正素子5aを複屈折補正素子5bに置き換えたものであり、その他の構成は図1に示すものと同じである。

図3は複屈折補正素子5bの平面図である。複屈折補正素子5bは、光軸を通る90°間隔の二つの直線によって、周方向に四つの領域に分割されており、光軸を中心とする三つの同心円によって、各領域が更に半径方向に四つの領域に分割されている。なお、図中の点線は対物レンズ6の有効径を示している。また、複屈折補正素子5bは一軸の屈折率異方性を有する材料を含んでおり、図中の矢印は各領域における光学軸の方向を示している。

図中右側の領域15a、16a、17a、18a及び図中左側の領域15c、16c、17c、18cにおける光学軸の方向は、図中のx軸に対して90°の方向である。図中上側の領域15b、16b、17b、18b及び図中下側の領域15d、16d、17d、18dにおける光学軸の方向は、図中のx軸に対して0°の方向である。光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差は、次のとおりである。最も中心側の領域15a、15b、15c、15dでは0°である。その外側の領域16a、16b、16c、16dでは18°である。その外側の領域17a、17b、17c、17dでは36°である。最も外側の領域18a、18b、18c、18dでは54°である。

本発明の光ヘッド装置の第三実施形態は、第一実施形態における複屈折補正素子5aを複屈折補正素子5cに置き換えたものであり、その他の構成は図1に示すものと同じである。

図4は複屈折補正素子5cの平面図である。複屈折補正素子5cは、光軸を通る45°間隔の四つの直線によって、周方向に八つの領域に分割されており、光軸を中心とする三つの同心円によって、各領域が更に半径方向に四つの領域に分割されている。なお、図中の点線は対物レンズ6の有効径を示している。また、複屈折補正素子5cは一軸の屈折率異方性を有する材料を含んでおり、図中の矢印は各領域における光学軸の方向を示している。

図中右側の領域19a、20a、21a、22a及び図中左側の領域19c、20c、21c、22cにおける光学軸の方向は、図中のx軸に対して0°の方向である。図中上側の領域19b、20b、21b、22b及び図中下側の領域19d、20d、21d、22dにおける光学軸の方向は、図中のx軸に対して90°の方向である。図中右上側の領域19e、20e、21e、22e及び図中左下側の領域19g、20g、21g、22gにおける光学軸の方向は、図中のx軸に対して45°の方向である。図中左上側の領域19f、20f、21f、22f及び図中右下側の領域19h、20h、21h、22hにおける光学軸の方向は、図中のx軸に対して135°の方向である。光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差は、次のとおりである。最も中心側の領域19a、19b、19c、19d、19e、19f、19g、19hでは0°である。その外側の領域20a、20b、20c、20d、20e、20f、20g、20hでは18°である。その外側の領域21a、21b、21c、21d、21e、21f、21g、21hでは36°である。最も外側の領域22a、22b、22c、22d、22e、22f、22g、22hでは54°である。

本発明の光ヘッド装置の第四実施形態は、第一実施形態における複屈折補正素子5aを複屈折補正素子5dに置き換えたものであり、その他の構成は図1に示すものと同じである。

図5は複屈折補正素子5dの平面図である。複屈折補正素子5dは、光軸を通る45°間隔の四つの直線によって、周方向に八つの領域に分割されており、光軸を中心とする三つの同心円によって、各領域が更に半径方向に四つの領域に分割されている。なお、図中の点線は対物レンズ6の有効径を示している。また、複屈折補正素子5dは一軸の屈折率異方性を有する材料を含んでおり、図中の矢印は各領域における光学軸の方向を示している。

図中右側の領域23a、24a、25a、26a及び図中左側の領域23c、24c、25c、26cにおける光学軸の方向は、図中のx軸に対して90°の方向である。図中上側の領域23b、24b、25b、26b及び図中下側の領域23d、24d、25d、26dにおける光学軸の方向は、図中のx軸に対して0°の方向である。図中右上側の領域23e、24e、25e、26e及び図中左下側の領域23g、24g、25g、26gにおける光学軸の方向は、図中のx軸に対して135°の方向である。図中左上側の領域23f、24f、25f、26f及び図中右下側の領域23h、24h、25h、26hにおける光学軸の方向は、図中のx軸に対して45°の方向である。光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差は、次のとおりである。最も中心側の領域23a、23b、23c、23d、23e、23f、23g、23hでは0°である。その外側の領域24a、24b、24c、24d、24e、24f、24g、24hでは18°である。その外側の領域25a、25b、25c、25d、25e、25f、25g、25hでは36°である。最も外側の領域26a、26b、26c、26d、26e、26f、26g、26hでは54°である。

次に、複屈折補正素子の設計方法について述べる。図15[2]に示すようにディスク7に対する入射光又は反射光の光軸に垂直な断面内にX軸、Y軸を定め、図1に示すディスク7の保護層のジョーンズ行列をSとすると、Sは下式で与えられる。

ただし、φは下式で与えられる。

ここで、ディスク7の保護層における屈折率楕円体の光線に垂直な断面である楕円を考えたとき、αは楕円の長軸方向の偏光成分と短軸方向の偏光成分との位相差であり、θは楕円の長軸方向又は短軸方向を表わす角度である。α、θの求め方は、上述の非特許文献1に記載されている。

複屈折補正素子のジョーンズ行列をBとすると、複屈折補正素子によってディスク7の保護層の垂直複屈折による入射光又は反射光への影響を補正するには、Bが面内複屈折のない場合におけるSの逆行列であれば良い。このとき、複屈折補正素子は、光学軸の方向がθ+φで定められ、光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差がαで定められる波長板となる。ただし、θ+φ及びαはx、yの関数であるため、光学軸の方向及び位相差は、複屈折補正素子の面内の位置により変化することになる。これにより、光がディスク7の保護層を透過する際に生じる位相差が、光が複屈折補正素子を透過する際に生じる位相差で打ち消される。

上述の光学軸の方向を計算すると、光軸に関して回転対称で、光軸を中心とする円の半径方向又は接線方向となる。すなわち、光学軸の方向は、図2乃至図5に示すx軸に対する角度に応じて連続的に変化する。実際には、光学軸の方向を、連続的に変化させる代わりに、離散的に変化させても良い。光学軸の方向を離散的に変化させると、垂直複屈折による入射光又は反射光への影響の補正の効果はやや落ちるが、複屈折補正素子の作製は容易になる。

図2に示す複屈折補正素子5aにおいては、光学軸の方向が、x軸に対する角度に応じて周方向に四つの領域に分割されて離散的に変化している。領域11a、12a、13a、14aの分割線間の各中心部、領域11b、12b、13b、14bの分割線間の各中心部、領域11c、12c、13c、14cの分割線間の各中心部、及び領域11d、12d、13d、14dの分割線間の各中心部では、光学軸の方向は光軸を中心とする円の半径方向である。しかし、各領域群の分割線間の中心部から隣接する領域群との境界部へ近づくに従って、光学軸の方向は光軸を中心とする円の半径方向からずれていく。

図3に示す複屈折補正素子5bにおいては、光学軸の方向が、x軸に対する角度に応じて周方向に四つの領域に分割されて離散的に変化している。領域15a、16a、17a、18aの分割線間の各中心部、領域15b、16b、17b、18bの分割線間の各中心部、領域15c、16c、17c、18cの分割線間の各中心部、及び領域15d、16d、17d、18dの分割線間の各中心部では、光学軸の方向は光軸を中心とする円の接線方向である。しかし、各領域群の分割線間の中心部から隣接する領域群との境界部へ近づくに従って、光学軸の方向は光軸を中心とする円の接線方向からずれていく。

図4に示す複屈折補正素子5cにおいては、光学軸の方向が、x軸に対する角度に応じて周方向に八つの領域に分割されて離散的に変化している。領域19a、20a、21a、22aの分割線間の各中心部、領域19b、20b、21b、22bの分割線間の各中心部、領域19c、20c、21c、22cの分割線間の各中心部、領域19d、20d、21d、22dの分割線間の各中心部、領域19e、20e、21e、22eの分割線間の各中心部、領域19f、20f、21f、22fの分割線間の各中心部、領域19g、20g、21g、22gの分割線間の各中心部、及び領域19h、20h、21h、22hの分割線間の各中心部では、光学軸の方向は光軸を中心とする円の半径方向である。しかし、各領域群の分割線間の中心部から隣接する領域群との境界部へ近づくに従って、光学軸の方向は光軸を中心とする円の半径方向からずれていく。

図5に示す複屈折補正素子5dにおいては、光学軸の方向が、x軸に対する角度に応じて周方向に八つの領域に分割されて離散的に変化している。領域23a、24a、25a、26aの分割線間の各中心部、領域23b、24b、25b、26bの分割線間の各中心部、領域23c、24c、25c、26cの分割線間の各中心部、領域23d、24d、25d、26dの分割線間の各中心部、領域23e、24e、25e、26eの分割線間の各中心部、領域23f、24f、25f、26fの分割線間の各中心部、領域23g、24g、25g、26gの分割線間の各中心部、及び領域23h、24h、25h、26hの分割線間の各中心部では、光学軸の方向は光軸を中心とする円の接線方向である。しかし、各領域群の分割線間の中心部から隣接する領域群との境界部へ近づくに従って、光学軸の方向は光軸を中心とする円の接線方向からずれていく。

一方、上述の光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差を計算すると、光軸に関して回転対称で、光軸を中心とする円の半径方向に沿って内側から外側へ向かって単調に増加する。図6に、複屈折補正素子における光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差の計算例を示す。計算条件は、光源の波長が405nm、対物レンズの開口数が0.65、光記録媒体の保護層の厚さが0.6mm、光記録媒体の保護層の垂直複屈折が0.0007である。また、対物レンズの焦点距離は3mmであるため、対物レンズの有効半径は3mm×0.65=1.95mmとなる。図6に実線で示すように、位相差は、光軸からの距離に応じて2次関数状に連続的に変化する。実際には、このように位相差を連続的に変化させる代わりに、離散的に変化させても良い。位相差を離散的に変化させると、垂直複屈折による入射光又は反射光への影響の補正の効果はやや落ちるが、複屈折補正素子の作製は容易になる。

図2乃至図5に示す複屈折補正素子5a〜5dにおいては、図6に点線で示すように、位相差が、光軸からの距離に応じて半径方向に四つの領域に分割されて離散的に変化している。領域11a〜11d、15a〜15d、19a〜19h、23a〜23hでは位相差は0°、領域12a〜12d、16a〜16d、20a〜20h、24a〜24hでは位相差は18°、領域13a〜13d、17a〜17d、21a〜21h、25a〜25hでは位相差は36°、領域14a〜14d、18a〜18d、22a〜22h、26a〜26hでは位相差は54°である。位相差が0°の領域と位相差が18°の領域のと境界は半径0.75mm、位相差が18°の領域と位相差が36°の領域との境界は半径1.28mm、位相差が36°の領域と位相差が54°の領域との境界は半径1.64mmである。

図7は複屈折補正素子5aの断面図である。複屈折補正素子5aは、ガラス製の基板27aと基板27bとの間に、一軸の屈折率異方性を有する液晶高分子28a〜28dを挟んだ構成である。図中の矢印は液晶高分子28a〜28dの長手方向を示している。複屈折補正素子5aにおける光学軸の方向は、液晶高分子28a〜28dの長手方向の面内方向への射影で定められる。また、複屈折補正素子5aにおける位相差は、液晶高分子28a〜28dの長手方向と面内方向との角度で定められる。液晶高分子28a〜28dの長手方向と面内方向との角度が小さいほど、位相差は大きくなる。図7[a]〜[d]は、それぞれ位相差が0°、18°、36°、54°の場合に対応している。

複屈折補正素子5aの領域11a、12a、13a、14a及び領域11c、12c、13c、14cにおいては、光学軸の方向がx軸に対して0°の方向になるように、液晶高分子28a〜28dの長手方向の面内方向への射影が所定の状態に揃えられる。領域11b、12b、13b、14b及び領域11d、12d、13d、14dにおいては、光学軸の方向がx軸に対して90°の方向になるように、液晶高分子28a〜28dの長手方向の面内方向への射影が所定の状態に揃えられる。

また、複屈折補正素子5aの領域11a、11b、11c、11dにおいては、位相差が0°になるように、図7[a]に示すように、液晶高分子28aの長手方向と面内方向との角度が所定の状態に揃えられる。領域12a、12b、12c、12dにおいては、位相差が18°になるように、図7[b]に示すように、液晶高分子28bの長手方向と面内方向との角度が所定の状態に揃えられる。領域13a、13b、13c、13dにおいては、位相差が36°になるように、図7[c]に示すように、液晶高分子28cの長手方向と面内方向との角度が所定の状態に揃えられる。領域14a、14b、14c、14dにおいては、位相差が54°になるように、図7[d]に示すように、液晶高分子28dの長手方向と面内方向との角度が所定の状態に揃えられる。

液晶高分子28a〜28dの方向を所定の状態に揃えることは、例えば、配向膜による液晶のラビング処理、液晶材料の選択、液晶への印加電圧の調整、などにより実現できる。

なお、複屈折補正素子5b〜5dの断面図も図7に示すものと同じである。複屈折補正素子における光学軸の方向を、複屈折補正素子5a、5cのように近似的に光軸を中心とする円の半径方向にするか、複屈折補正素子5b、5dのように近似的に光軸を中心とする円の接線方向にするかは、図15[2]の説明で述べた(n+n)/2−nの符号、及び液晶高分子28a〜28dが正結晶の性質を有するか負結晶の性質を有するかにより決定される。

次に、光記録媒体上に形成される集光スポットの径、及び光検出器における受光量について述べる。図1の偏光ビームスプリッタ3に対するP偏光方向、S偏光方向が、図15[2]のX軸方向、Y軸方向にそれぞれ相当するものとする。また、図1の半導体レーザ1からの出射光の偏光方向が、偏光ビームスプリッタ3に対するP偏光方向であるとする。半導体レーザ1からの出射光の電界分布をE(x,y)、図1の1/4波長板4のジョーンズ行列をQとすると、半導体レーザ1から図1のディスク7へ向かう往路において、1/4波長板4、複屈折補正素子、ディスク7の保護層を透過した光の電界分布は、ジョーンズベクトルを用いて下式で表わされる。

ただし、Qは下式で与えられる。

図1のディスク7上のニアフィールドにおいて、図15[2]のX軸、Y軸に平行にそれぞれU軸、V軸を定める。図1の半導体レーザ1の波長をλ、図1の対物レンズ6の焦点距離をfとすると、ディスク7上に形成される集光スポットの電界分布は、ジョーンズベクトルを用いて下式で表わされる。

集光スポットの強度分布は下式で表わされる。

この式に基づいて、光記録媒体の保護層の複屈折と集光スポットの径の関係を計算することができる。

ディスク7の複素反射率分布をR(u,v)とすると、ディスク7からの反射光の電界分布は、ジョーンズベクトルを用いて下式で表わされる。

ここで、R(u,v)は、ディスク7上に形成されているピットの形状により決まる関数である。

ディスク7から図1の光検出器10へ向かう復路において、ディスク7の保護層、複屈折補正素子、1/4波長板4を透過した光の電界分布は、ジョーンズベクトルを用いて下式で表わされる。

光検出器10における受光量をLとすると、Lは下式で与えられる。

この式に基づいて、光記録媒体の保護層の複屈折と再生信号における分解能及びクロストークとの関係を計算することができる。

図8に、光記録媒体の保護層の面内複屈折と集光スポット径との関係の計算例を示す。計算条件は、光源の波長が405nm、対物レンズの開口数が0.65、光記録媒体の保護層の厚さが0.6mmである。図中の●は垂直複屈折が0の場合、○は垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合、△は垂直複屈折が0.0007で、図2及び図3に示す周方向に四つの領域に分割された複屈折補正素子5a又は複屈折補正素子5bによる補正を行った場合、□は垂直複屈折が0.0007で、図4及び図5に示す周方向に八つの領域に分割された複屈折補正素子5c又は複屈折補正素子5dによる補正を行った場合の各計算結果である。

垂直複屈折が0の場合の集光スポット径は、面内複屈折に依存せず約0.523μmである。しかし、垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合の集光スポット径は、面内複屈折に僅かに依存し、面内複屈折が0のとき約0.540μmに拡大する。これに対し、垂直複屈折が0.0007で、周方向に四つの領域に分割された複屈折補正素子による補正を行った場合の集光スポット径は、面内複屈折に殆んど依存せず約0.530μmである。また、垂直複屈折が0.0007で、周方向に八つの領域に分割された複屈折補正素子による補正を行った場合の集光スポット径は、面内複屈折に殆んど依存せず約0.524μmである。

このことから、複屈折補正素子を用いることにより、垂直複屈折による集光スポット径の拡大を抑制できることがわかる。集光スポット径の拡大の抑制効果は、周方向に四つの領域に分割された複屈折補正素子よりも周方向に八つの領域に分割された複屈折補正素子の方が大きく、後者では集光スポット径の拡大をほぼ完全に抑制できる。

なお、光記録媒体の保護層の面内複屈折は、半径位置に応じて変化し、ポリカーボネートを用いた場合は約±0.00003の範囲内で変化する。すなわち、複屈折補正素子による補正を行わない場合、集光スポット径は半径位置に応じて変化することになる。これは記録再生を行う上で好ましくない。複屈折補正素子を用いれば、このような集光スポット径の半径位置に応じた変化も抑制することができる。

図9に、光記録媒体の保護層の面内複屈折と再生信号における分解能との関係の計算例を示す。計算条件は、図8で述べた条件に加え、光記録媒体上に形成されているピットのうち、最短ピット(1−7変調の2Tに相当)の長さが0.205μm、最長ピット(1−7変調の8Tに相当)の長さが0.820μm、トラックピッチが0.4μmである。図の縦軸に示す2T/8T分解能は、2T信号のキャリアレベルと8T信号のキャリアレベルとの比で定義される。図中の●は垂直複屈折が0の場合、○は垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合、△は垂直複屈折が0.0007で、図2及び図3に示す周方向に四つの領域に分割された複屈折補正素子5a又は複屈折補正素子5bによる補正を行った場合、□は垂直複屈折が0.0007で、図4及び図5に示す周方向に八つの領域に分割された複屈折補正素子5c又は複屈折補正素子5dによる補正を行った場合の各計算結果である。

垂直複屈折が0の場合の2T/8T分解能は、面内複屈折に依存せず約−15.4dBである。しかし、垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合の2T/8T分解能は、面内複屈折に大きく依存し、面内複屈折が0のとき約−19.0dBに低下する。これに対し、垂直複屈折が0.0007で、周方向に四つの領域に分割された複屈折補正素子による補正を行った場合の2T/8T分解能は、面内複屈折に僅かにしか依存せず、面内複屈折が0のとき約−16.8dBである。また、垂直複屈折が0.0007で、周方向に八つの領域に分割された複屈折補正素子による補正を行った場合の2T/8T分解能は、面内複屈折に殆んど依存せず約−15.7dBである。

このことから、複屈折補正素子を用いることにより、垂直複屈折による再生信号における分解能の低下を抑制できることがわかる。再生信号における分解能の低下の抑制効果は、周方向に四つの領域に分割された複屈折補正素子よりも周方向に八つの領域に分割された複屈折補正素子の方が大きく、後者では再生信号における分解能の低下をほぼ完全に抑制できる。また、複屈折補正素子を用いれば、再生信号における分解能の光記録媒体の半径位置に応じた変化も抑制することができる。

図10に、光記録媒体の保護層の面内複屈折と再生信号におけるクロストークとの関係の計算例を示す。計算条件は図9で述べた条件と同じである。図の縦軸に示す2Tクロストークは、隣接トラックから漏れ込む2T信号のキャリアレベルと自トラックにおける2T信号のキャリアレベルとの比で定義される。図中の●は垂直複屈折が0の場合、○は垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合、△は垂直複屈折が0.0007で、図2及び図3に示す周方向に四つの領域に分割された複屈折補正素子5a又は複屈折補正素子5bによる補正を行った場合、□は垂直複屈折が0.0007で、図4及び図5に示す周方向に八つの領域に分割された複屈折補正素子5c又は複屈折補正素子5dによる補正を行った場合の各計算結果である。

垂直複屈折が0の場合の2Tクロストークは、面内複屈折に依存せず約−17.4dBである。しかし、垂直複屈折が0.0007で複屈折補正素子による補正を行わない場合の2Tクロストークは、面内複屈折に僅かに依存し、面内複屈折が0のとき約−8.3dBに増加する。これに対し、垂直複屈折が0.0007で、周方向に四つの領域に分割された複屈折補正素子による補正を行った場合の2Tクロストークは、面内複屈折に殆んど依存せず約−7.6dBである。また、垂直複屈折が0.0007で、周方向に八つの領域に分割された複屈折補正素子による補正を行った場合の2Tクロストークは、面内複屈折に殆んど依存せず約−17.2dBである。

このことから、周方向に四つの領域に分割された複屈折補正素子を用いた場合は、垂直複屈折による再生信号におけるクロストークの増加を必ずしも抑制できないが、周方向に八つの領域に分割された複屈折補正素子を用いた場合は、垂直複屈折による再生信号におけるクロストークの増加をほぼ完全に抑制できることがわかる。また、複屈折補正素子を用いれば、再生信号におけるクロストークの光記録媒体の半径位置に応じた変化も抑制することができる。

図2及び図3に示す複屈折補正素子5a又は複屈折補正素子5bは、周方向に四つの領域に分割されており、各領域が更に半径方向に四つの領域に分割されている。また、図4及び図5に示す複屈折補正素子5c又は複屈折補正素子5dは、周方向に八つの領域に分割されており、各領域が更に半径方向に四つの領域に分割されている。しかし、複屈折補正素子における周方向に分割された領域の数は4又は8に限らずいくつでも良く、半径方向に分割された領域の数も4に限らずいくつでも良い。複屈折補正素子を用いることによる、集光スポット径の拡大の抑制効果、再生信号における分解能の低下及びクロストークの増加の抑制効果は、複屈折補正素子における周方向に分割された領域の数、半径方向に分割された領域の数が多いほど大きい。一方、複屈折補正素子の製作の容易性は、複屈折補正素子における周方向に分割された領域の数、半径方向に分割された領域の数が少ないほど高い。

本発明の光ヘッド装置の第五実施形態は、第一実施形態における複屈折補正素子5aを複屈折補正素子5eに置き換えたものであり、その他の構成は図1に示すものと同じである。

図11は複屈折補正素子5eの平面図である。複屈折補正素子5eは、光軸を中心とする同心円状の格子を有する構成であり、一軸の屈折率異方性を有する材料を含んでおらず、屈折率等方性の材料に構造複屈折を利用して一軸の屈折率異方性を持たせたものである。この場合、複屈折補正素子5eにおける光学軸の方向は、格子に平行又は垂直な方向となる。したがって、格子を同心円状に形成することにより、光学軸の方向を、光軸に関して回転対称で、光軸を中心とする円の半径方向又は接線方向とすることができる。すなわち、光学軸の方向を連続的に変化させることができる。

格子の周期が入射光の波長に比べて十分に小さい場合、この格子は、入射光を回折させず、入射光に対して波長板として作用する。格子を形成する二つの媒質の屈折率をn及びn、格子の1周期においてそれぞれの媒質が占める割合をq及び1−q(qは格子のデューティ比)、格子に平行及び垂直な方向の偏光成分に対する実効的な屈折率をそれぞれn及びnとすると、n、nは下式で与えられる。

図12に、格子のデューティ比と実効的な屈折率との関係の計算例を示す。ここでは、二つの媒質を空気及び石英としており、n=1、n=1.47である。図中の●は格子に平行な方向の偏光成分(TE偏光)に対する実効的な屈折率n、○は格子に垂直な方向の偏光成分(TM偏光)に対する実効的な屈折率nの計算結果である。Δn=n−nとすると、q=0でΔnは最小値0をとり、q=0.45でΔnは最大値0.0887をとる。

図13は複屈折補正素子5eの断面図である。複屈折補正素子5eは、石英製の基板29の上に、格子30a〜30dが形成された構成である。pは格子30a〜30dの周期、hは格子30a〜30dの高さである。pは入射光の波長に比べて十分に小さい。複屈折補正素子5eにおける位相差は、入射光の波長をλとすると、2πhΔn/λで与えられる。図13[a]の格子30aのデューティ比は0、図13[d]の格子30dのデューティ比は0.45であり、図13[a]〜[d]の格子30a〜30dのデューティ比はこの順に大きくなる。したがって、図13[a]〜[d]の複屈折補正素子5eにおける位相差はこの順に大きくなる。

複屈折補正素子5eにおいては、光軸からの距離に応じて格子のデューティ比を0〜0.45の間で連続的に変化させることにより、図6に実線で示すように、位相差を光軸からの距離に応じて2次関数状に連続的に変化させることができる。光軸上では、q=0すなわちΔn=0とすれば位相差は0°となる。一方、光軸からの距離が対物レンズの有効半径である1.95mmの場合は、q=0.45すなわちΔn=0.0887とし、位相差が65.7°となるようにhを定めれば良い。このとき、λ=405nmとするとh=833nmとなる。

このように、複屈折補正素子5eは、格子の高さと周期の比が大きいため製作が困難である。しかし、複屈折補正素子5eを用いれば、垂直複屈折による集光スポット径の拡大、再生信号における分解能の低下及びクロストークの増加を完全に抑制することができる。

本発明の光ヘッド装置の第一乃至第五実施形態は、偏光ビームスプリッタと1/4波長板を用いた偏光光学系と呼ばれる構成である。これに対し、本発明の光ヘッド装置の他の実施形態としては、無偏光ビームスプリッタを用いた無偏光光学系と呼ばれる構成も考えられる。

無偏光ビームスプリッタを用いた構成においては、半導体レーザからの出射光は、無偏光ビームスプリッタに入射して例えば約50%が透過し、対物レンズでディスク上に集光される。ディスクからの反射光は、無偏光ビームスプリッタに入射して例えば約50%が反射され、光検出器で受光される。

無偏光ビームスプリッタを用いた構成においては、光記録媒体の保護層に複屈折があっても、光検出器における受光量は低下しない。したがって、偏光ビームスプリッタと1/4波長板とを用いた構成と異なり、垂直複屈折による受光量の低下が原因で、再生信号における分解能の低下及びクロストークの増加が生じることはない。しかし、光記録媒体の保護層に複屈折があると、光記録媒体上に形成される集光スポットの径が拡大する。したがって、偏光ビームスプリッタと1/4波長板とを用いた構成と同様に、垂直複屈折による集光スポットの径の拡大は、再生信号における分解能の低下及びクロストークの増加につながる。すなわち、無偏光ビームスプリッタを用いた構成においても、複屈折補正素子を用いることにより、垂直複屈折による再生信号における分解能の低下及びクロストークの増加を抑制することができる。

図14に、本発明の光学式情報記録再生装置の一実施形態を示す。本実施形態は、図1に示す本発明の光ヘッド装置の第一実施形態に、コントローラ31、変調回路32、記録信号生成回路33、半導体レーザ駆動回路34、増幅回路35、再生信号処理回路36、復調回路37、誤差信号生成回路38、対物レンズ駆動回路39を付加したものである。

変調回路32は、ディスク7へ記録すべきデータを、変調規則に従って変調する。記録信号生成回路33は、変調回路32で変調された信号を基に、記録ストラテジに従って半導体レーザ1を駆動するための記録信号を生成する。半導体レーザ駆動回路34は、記録信号生成回路33で生成された記録信号を基に、半導体レーザ1へ記録信号に応じた電流を供給して半導体レーザ1を駆動する。これによりディスク7へのデータの記録が行われる。

一方、増幅回路35は、光検出器10の各受光部からの出力を増幅する。再生信号処理回路36は、増幅回路35で増幅された信号を基に、RF信号の生成、波形等化及び二値化を行う。復調回路37は、再生信号処理回路36で二値化された信号を、復調規則に従って復調する。これによりディスク7からのデータの再生が行われる。

また、誤差信号生成回路38は、増幅回路35で増幅された信号を基に、フォーカス誤差信号及びトラック誤差信号の生成を行う。対物レンズ駆動回路39は、誤差信号生成回路38で生成された誤差信号を基に、対物レンズ6を駆動する図示しないアクチュエータへ誤差信号に応じた電流を供給して対物レンズ6を駆動する。

更に、ディスク7を除く光学系は図示しないポジショナによりディスク7の半径方向へ駆動され、ディスク7は図示しないスピンドルにより回転駆動される。これによりフォーカス、トラック、ポジショナ及びスピンドルのサーボが行われる。

変調回路32から半導体レーザ駆動回路34までのデータの記録に関わる回路、増幅回路35から復調回路37までのデータの再生に関わる回路、及び増幅回路35から対物レンズ駆動回路39までのサーボに関わる回路は、コントローラ31により制御される。

本実施形態は、ディスク7に対して記録及び再生を行う記録再生装置である。一方、本発明の光学式情報記録再生装置の他の実施形態としては、ディスク7に対して再生のみを行う再生専用装置も考えられる。この場合、半導体レーザ1は、半導体レーザ駆動回路34によって記録信号に基づいて駆動されるのではなく、出射光のパワーが一定の値になるように駆動される。

また、本発明の光学式情報記録再生装置の他の実施形態としては、本発明の光ヘッド装置の第二乃至第五実施形態のいずれかに、コントローラ31、変調回路32、記録信号生成回路33、半導体レーザ駆動回路34、増幅回路35、再生信号処理回路36、復調回路37、誤差信号生成回路38、対物レンズ駆動回路39を付加した形態も可能である。

本発明の光ヘッド装置の第一実施形態を示す構成図である。 本発明の光ヘッド装置の第一実施形態に用いる複屈折補正素子の平面図である。 本発明の光ヘッド装置の第二実施形態に用いる複屈折補正素子の平面図である。 本発明の光ヘッド装置の第三実施形態に用いる複屈折補正素子の平面図である。 本発明の光ヘッド装置の第四実施形態に用いる複屈折補正素子の平面図である。 本発明に用いられる複屈折補正素子における光学軸に平行な方向の偏光成分と光学軸に垂直な方向の偏光成分との位相差の計算例を示すグラフである。 本発明の光ヘッド装置の第一実施形態に用いる複屈折補正素子の断面図である。 光記録媒体の保護層の面内複屈折と集光スポット径との関係の計算例を示すグラフである。 光記録媒体の保護層の面内複屈折と再生信号における分解能との関係の計算例を示すグラフである。 光記録媒体の保護層の面内複屈折と再生信号におけるクロストークとの関係の計算例を示すグラフである。 本発明の光ヘッド装置の第五実施形態に用いる複屈折補正素子の平面図である。 本発明の光ヘッド装置の第五実施形態に用いる複屈折補正素子における格子のデューティ比と実効的な屈折率との関係の計算例を示すグラフである。 本発明の光ヘッド装置の第五実施形態に用いる複屈折補正素子の断面図である。 本発明の光学式情報記録再生装置の一実施形態を示す構成図である。 図15[1]は従来の一般的な光ヘッド装置を示す構成図である。図15[2]は光記録媒体とXYZ座標との関係を示す斜視図である。 光記録媒体の保護層の垂直複屈折と集光スポット径との関係の計算例を示すグラフである。

符号の説明

1 半導体レーザ
2 コリメータレンズ
3 偏光ビームスプリッタ
4 1/4波長板
5a、5b、5c、5d、5e 複屈折補正素子
6 対物レンズ
7 ディスク
8 円筒レンズ
9 凸レンズ
10 光検出器
11a、11b、11c、11d 領域
12a、12b、12c、12d 領域
13a、13b、13c、13d 領域
14a、14b、14c、14d 領域
15a、15b、15c、15d 領域
16a、16b、16c、16d 領域
17a、17b、17c、17d 領域
18a、18b、18c、18d 領域
19a、19b、19c、19d、19e、19f、19g、19h 領域
20a、20b、20c、20d、20e、20f、20g、20h 領域
21a、21b、21c、21d、21e、21f、21g、21h 領域
22a、22b、22c、22d、22e、22f、22g、22h 領域
23a、23b、23c、23d、23e、23f、23g、23h 領域
24a、24b、24c、24d、24e、24f、24g、24h 領域
25a、25b、25c、25d、25e、25f、25g、25h 領域
26a、26b、26c、26d、26e、26f、26g、26h 領域
27a、27b 基板
28a、28b、28c、28d 液晶高分子
29 基板
30a、30b、30c、30d 格子
31 コントローラ
32 変調回路
33 記録信号生成回路
34 半導体レーザ駆動回路
35 増幅回路
36 再生信号処理回路
37 復調回路
38 誤差信号生成回路
39 対物レンズ駆動回路

Claims (13)

  1. 光源と、この光源からの出射光を光記録媒体上に集光する対物レンズと、前記光記録媒体からの反射光を受光する光検出器と、前記出射光と前記反射光とを分離する光分離素子と、前記光記録媒体の保護層の複屈折による前記出射光及び前記反射光への影響を補正する複屈折補正素子と、を備えた光ヘッド装置において、
    前記複屈折補正素子は前記光分離素子と前記対物レンズとの間に設けられるとともに光学軸を有し、当該光学軸の方向が、当該複屈折補正素子の面内の位置に応じて変化するとともに、当該光学軸に平行な方向の偏光成分と当該光学軸に垂直な方向の偏光成分との位相差が、当該複屈折補正素子の面内の前記出射光又は前記反射光の光軸からの距離に応じて2次関数状に連続的又は離散的に変化する、
    ことを特徴とする光ヘッド装置。
  2. 前記光源からの出射光の波長が405nm、前記対物レンズの開口数が0.65、前記光記録媒体の保護層の厚さが0.6mmである、
    請求項1記載の光ヘッド装置。
  3. 前記複屈折補正素子は、一軸の屈折率異方性を有する材料を含む、
    請求項1又は2記載の光ヘッド装置。
  4. 前記複屈折補正素子は、前記出射光又は前記反射光の光軸を通る直線で当該光軸の周りに複数の領域に分割されているとともに、当該光軸の周りに分割された複数の領域のそれぞれが、当該光軸を中心とする円で更に半径方向に複数の領域に分割されている、
    請求項1乃至のいずれかに記載の光ヘッド装置。
  5. 前記光軸の周りに分割された複数の領域における前記光学軸の方向は、各領域内では一定であり、各領域の分割線間の中心部では当該光軸を中心とする円の半径方向又は接線方向である、
    請求項記載の光ヘッド装置。
  6. 前記半径方向に分割された複数の領域における前記位相差は、各領域内では一定であり、当該半径方向に沿って内側の領域から外側の領域へ向かって単調に増加する、
    請求項4又は5記載の光ヘッド装置。
  7. 前記一軸の屈折率異方性を有する材料が液晶高分子である、
    請求項記載の光ヘッド装置。
  8. 前記複屈折補正素子は、屈折率等方性の材料に構造複屈折を利用して一軸の屈折率異方性を持たせたものである、
    請求項記載の光ヘッド装置。
  9. 前記複屈折補正素子は、前記入射光又は前記反射光の光軸を中心とする同心円状の格子を有する、
    請求項記載の光ヘッド装置。
  10. 前記格子は凸部と凹部とからなり、当該格子の1周期において当該凸部及び当該凹部が占める割合の比をデューティ比としたとき、このデューティ比が、前記光軸からの距離に応じて連続的に変化している、
    請求項記載の光ヘッド装置。
  11. 請求項1乃至10のいずれかに記載の光ヘッド装置と、前記光源を駆動する第一の回路と、前記光検出器の出力信号に基づいて再生信号及び誤差信号を生成する第二の回路と、前記誤差信号に基づいて前記対物レンズの位置を制御する第三の回路と、
    を備えた光学式情報記録再生装置。
  12. 前記第一の回路は、前記出射光のパワーが記録信号に基づいて変化するように前記光源を駆動する、
    請求項11記載の光学式情報記録再生装置。
  13. 前記第一の回路は、前記出射光のパワーが一定値になるように前記光源を駆動する、
    請求項11記載の光学式情報記録再生装置。
JP2004147816A 2004-05-18 2004-05-18 光ヘッド装置及び光学式情報記録再生装置 Expired - Fee Related JP4289213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147816A JP4289213B2 (ja) 2004-05-18 2004-05-18 光ヘッド装置及び光学式情報記録再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147816A JP4289213B2 (ja) 2004-05-18 2004-05-18 光ヘッド装置及び光学式情報記録再生装置
US11/130,184 US7599276B2 (en) 2004-05-18 2005-05-17 Optical head device and optical information recording/reproduction apparatus

Publications (2)

Publication Number Publication Date
JP2005332435A JP2005332435A (ja) 2005-12-02
JP4289213B2 true JP4289213B2 (ja) 2009-07-01

Family

ID=35375029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147816A Expired - Fee Related JP4289213B2 (ja) 2004-05-18 2004-05-18 光ヘッド装置及び光学式情報記録再生装置

Country Status (2)

Country Link
US (1) US7599276B2 (ja)
JP (1) JP4289213B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260635A (ja) * 2004-12-28 2006-09-28 Konica Minolta Holdings Inc 光ピックアップ装置及び位相差発生部材
WO2006135053A1 (ja) * 2005-06-17 2006-12-21 Hitachi Maxell, Ltd. 光ピックアップ装置、再生装置及び複屈折補正板
WO2007055196A1 (ja) 2005-11-08 2007-05-18 Nec Corporation 光学式情報記録/再生装置と、光学式情報記録/再生方法
CN101421786B (zh) * 2006-03-16 2011-04-20 旭硝子株式会社 光头装置
WO2008044403A1 (fr) * 2006-10-06 2008-04-17 Nec Corporation Dispositif à tête optique, enregistreur/reproducteur d'informations optiques, procédé de génération de signal d'erreur
WO2008072519A1 (ja) * 2006-12-14 2008-06-19 Konica Minolta Holdings, Inc. 波長板素子及び光ピックアップ装置
EP1968048A1 (en) * 2007-03-08 2008-09-10 Deutsche Thomson OHG Optical storage medium and apparatus for reading of respective data
JPWO2008117642A1 (ja) * 2007-03-28 2010-07-15 日本電気株式会社 光ヘッド装置および光学式情報記録再生装置
JP5041925B2 (ja) * 2007-08-31 2012-10-03 オリンパスメディカルシステムズ株式会社 撮像ユニット
JP4489131B2 (ja) * 2008-07-31 2010-06-23 株式会社東芝 収差補正素子、光ヘッド及び光ディスク装置
CN105635555B (en) * 2014-11-07 2020-12-29 青岛海尔智能技术研发有限公司 Camera focusing control method, camera shooting device and wearable intelligent terminal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145921A (ja) 1995-11-24 1997-06-06 Nikon Corp 周方向に等方的な位相板
JPH09167347A (ja) 1995-12-15 1997-06-24 Sony Corp 光学的記録再生装置および光学的記録再生方法
JP3413067B2 (ja) 1997-07-29 2003-06-03 キヤノン株式会社 投影光学系及びそれを用いた投影露光装置
US6151154A (en) * 1998-03-12 2000-11-21 Pioneer Electronic Corporation Optical pickup, aberration correction unit and astigmatism measurement method
JP2000242959A (ja) 1999-02-22 2000-09-08 Nikon Corp 光学的情報記録再生装置
JP3730045B2 (ja) 1999-03-18 2005-12-21 パイオニア株式会社 光ピックアップ、情報記録装置及び情報再生装置
JP2001176114A (ja) * 1999-12-20 2001-06-29 Pioneer Electronic Corp ピックアップ装置及び情報記録再生装置
JP2002342975A (ja) 2000-12-28 2002-11-29 Sony Corp 光ディスク記録及び/又は再生装置及び収差調整方法
JP4621965B2 (ja) 2001-06-20 2011-02-02 コニカミノルタホールディングス株式会社 光ピックアップ用光学系、光ピックアップ装置及び記録・再生装置
JP4022119B2 (ja) 2001-10-02 2007-12-12 松下電器産業株式会社 光学的情報記録方法、光学的情報記録再生装置、および光学的情報記録媒体
JP2004024083A (ja) 2002-06-24 2004-01-29 Nihon Pharmaceutical Co Ltd 動物飼育ケージ及び給餌箱
TW200601313A (en) * 2004-04-23 2006-01-01 Matsushita Electric Ind Co Ltd Optical disk apparatus

Also Published As

Publication number Publication date
US7599276B2 (en) 2009-10-06
JP2005332435A (ja) 2005-12-02
US20050259553A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3778316B2 (ja) 光ピックアップ装置
US7511887B2 (en) Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
US6920101B2 (en) Optical information processor and optical element
US7283439B2 (en) Optical disk apparatus using mechanism for controlling spherical aberration
US8102749B2 (en) Object lens, optical pickup, and optical disc device
US7746736B2 (en) Optical head and optical disk device capable of detecting spherical aberration
KR100542173B1 (ko) 초점 조정 방법 및 광픽업 장치
US7248409B2 (en) Optical element, optical lens, optical head apparatus, optical information apparatus, computer, optical information medium player, car navigation system, optical information medium recorder, and optical information medium server
JP4171378B2 (ja) 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
EP1391884A2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
TWI240263B (en) Optical pickup apparatus
JP4522829B2 (ja) 光ピックアップ及び補正用収差発生方法とこれを用いた光情報処理装置
US6963522B2 (en) Optical head apparatus and optical information recording and reproducing apparatus
JP3200171B2 (ja) 光ディスクプレーヤ
KR20070015369A (ko) 광학 시스템
JP3384393B2 (ja) 光ヘッド装置及び光学式情報記録再生装置並びにラジアルチルト検出方法
US7778140B2 (en) Optical head device and optical information device
JP2004145906A (ja) 光ヘッド装置及びそれを用いた光情報装置
JP4896884B2 (ja) 光学ヘッド
JP2002358677A (ja) 光ヘッド及び光ディスク装置
JPH1092002A (ja) 回折格子レンズ
JP2004355790A (ja) ホログラム結合体およびその製造方法、ホログラムレーザユニットならびに光ピックアップ装置
JP2005515579A (ja) 光走査デバイス
US20040090901A1 (en) Optical head unit and optical information writing/reading device
JPH10247330A (ja) 収差補正装置及び情報記録媒体再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees