JP2004213768A - 光ヘッド及び光記録媒体駆動装置 - Google Patents

光ヘッド及び光記録媒体駆動装置 Download PDF

Info

Publication number
JP2004213768A
JP2004213768A JP2002382280A JP2002382280A JP2004213768A JP 2004213768 A JP2004213768 A JP 2004213768A JP 2002382280 A JP2002382280 A JP 2002382280A JP 2002382280 A JP2002382280 A JP 2002382280A JP 2004213768 A JP2004213768 A JP 2004213768A
Authority
JP
Japan
Prior art keywords
optical
recording medium
aberration
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002382280A
Other languages
English (en)
Inventor
Noriaki Nishi
紀彰 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002382280A priority Critical patent/JP2004213768A/ja
Publication of JP2004213768A publication Critical patent/JP2004213768A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】光記録媒体から戻る復路において発生している収差に影響されずに、光記録媒体に向かう光の往路において発生している収差のみを正確に検出することができるようにして、この検出結果に基づく良好な収差補正が行えるようにする。
【解決手段】光源212から対物レンズ220に至る光路上に、光束を主光束と一対の副光束とに分岐させる回折光学素子225を有する。各副光束は、互いに逆方向の極性を有する一定の収差を有し、光ディスク102の信号記録層上に主スポットに対して離間した位置に一対の副スポットを形成する。そして、光ディスク102からの一対の副光束の反射光束における回折強度分布に基づいて収差検出を行い、収差補正素子228により検出された収差と逆極性の同種の収差を発生させて収差補正を行う。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、光記録媒体に対する情報信号の書込み及び/又は読出しを行う光ヘッド及びこの光ヘッドを備え光記録媒体に対する情報信号の記録及び/又は再生を行う光記録媒体駆動装置に関する。
【0002】
【従来の技術】
従来、光記録媒体に対する情報信号の書込み及び読出しを行う光ヘッド及びこのような光ヘッドを備えた光記録媒体駆動装置が提案されている。このような光ヘッドは、光源から発せられた光を対物レンズによって光記録媒体の記録層上に集光させて照射するとともに、この記録層からの反射光(戻り光)を検出することによって、この記録層に対する情報信号の書込み及び読出しを行うように構成されている。
【0003】
このような光ヘッドにおいては、光記録媒体に書込む情報信号の高密度化の実現のため、対物レンズの高開口数(高NA)化、記録膜の多層化が提案されている。例えば、対物レンズの開口数が0.85で、2層の記録膜を有するディスク状光記録媒体のフォーマットが提案されている。
【0004】
このようなディスク状光記録媒体を用いる場合には、一の記録層から他の記録層への切換えを行うことによって、20μm乃至30μmという層間距離分に相当する距離だけ、ディスク基板の表面から記録層に至るまでのディスク基板の厚みが変化することとなる。このようにしてディスク基板の厚みに変化が生ずると、球面収差の発生量が変化し、情報信号の書込み及び読出しが不可能になってしまうことがある。このような球面収差の発生量は、対物レンズの開口数の4乗に比例し、開口数が大きくなるにつれて大きくなるので、高NA化を図った光ヘッドにおいては、ディスク基板厚の僅かな変動も大きな影響を及ぼすのである。
【0005】
また、同一の記録層のみについて考えても、高NA化を図った光ヘッドにおいては、光記録媒体の製造精度によっては、球面収差の発生量の大きな変化やばらつきが生ずることがあり、このような球面収差量の変化やばらつきは、光学特性の劣化を招来してしまう。
【0006】
このような問題に対して、特開2001−307349公報に記載されているように、光記録媒体からの戻り光の光束の内側と外側とにおける合焦位置の違いを用いて、球面収差量を検出することが提案されている。
【0007】
【特許文献1】
特開2001−307349公報
【特許文献2】
特開2002−56559公報
【特許文献3】
特開2002−56568公報
【0008】
【発明が解決しようとする課題】
ところが、上述のようにして球面収差量を検出しようとする場合には、以下のような問題がある。
【0009】
(1)検出されている球面収差が、光記録媒体に向かう光の往路において発生しているものか、光記録媒体から戻る復路において発生しているものであるかを判別することができない。
【0010】
したがって、検出された球面収差量に基づいて、例えば、液晶素子を球面収差補正素子として用い、光の往路のみについて収差補正を行った場合、光の復路において発生する球面収差をも検出してしまい、補正が充分ではないと見えてしまうという問題点がある。
【0011】
(2)経時変化などによって、復路光学系自体のもつ球面収差量が変化してしまった場合、このような球面収差量の変化にも影響を受けてしまうという問題点がある。
【0012】
(3)戻り光における球面収差量を検出しているため、本来は記録再生信号に影響しない復路光学系における球面収差発生量を小さく抑える必要があり、復路光学系コストアップになってしまうという問題点がある。
【0013】
そこで、本発明は、上述の実情に鑑みて提案されるものであって、光記録媒体から戻る復路において発生している収差に影響されずに、光記録媒体に向かう光の往路において発生している収差のみを正確に検出することができ、この検出結果に基づいて良好な収差補正が行え、また、復路光学系における収差発生についての許容量が大きくなされた光ヘッド及びこのような光ヘッドを用いる光記録媒体駆動装置を提供しようとするものである。
【0014】
【課題を解決するための手段】
上述の課題を解決するため、本発明に係る光ヘッドは、光源と、この光源から発せられた光束を光記録媒体の信号記録層上に集光させて照射する集光手段と、光記録媒体の信号記録層からの反射光束を受光する光検出手段と、光源から出射された光束の集光手段に至る光路上に設けられ光束を信号記録層に対して情報信号の記録及び/又は再生を行うための主スポットを該信号記録層上に形成する主光束と互いに逆方向の極性を有する一定の収差を有し該信号記録層上において主スポットに対して離間した位置に一対の副スポットを形成する一対の副光束とに分岐させる回折光学素子と、上記光記録媒体からの上記一対の副光束の収差による反射光束の回折強度分布の変化を検出する収差検出手段とを備えていることを特徴とするものである。
【0015】
この光ヘッドにおいては、互いに逆方向の極性を有する一定の収差を有する一対の副光束が光記録媒体の信号記録層上に照射され、収差検出手段により、光記録媒体からの一対の副光束の反射光束における収差の変化が検出されるので、収差検出手段は、光記録媒体から戻る光束の復路において発生した収差に影響されずに、光記録媒体に向かう光束の往路及び光記録媒体において発生した収差を検出することができる。
【0016】
この光ヘッドにおいては、互いに逆方向の極性を有する一定の収差を有する一対の副光束が光記録媒体の信号記録層上に照射され、収差検出手段により、光記録媒体からの一対の副光束の反射光束における回折強度分布によって収差の変化が検出されるので、収差検出手段は、光記録媒体から戻る光束の復路において発生した収差に影響されずに、光記録媒体に向かう光束の往路及び光記録媒体において発生した収差を検出することができる。
【0017】
復路において発生した収差に影響されないのは、この光ヘッドにおいては、記録媒体上における回折によって生じる回折強度分布が主に回折光学素子及び収差補正素子によって付与されている収差によってどう変化するかを用いているからであり、この回折強度分布は、復路において発生する収差の影響をほとんど受けないからである。
【0018】
また、本発明に係る光記録媒体駆動装置は、光源とこの光源から発せられた光束を光記録媒体に集光させて照射する光集光手段とを有する光ヘッドを備え、光ヘッドは、光源から出射された光束の集光手段に至る光路上に設けられ光束を信号記録層に対して情報信号の記録及び/又は再生を行うための主スポットを該信号記録層上に形成する主光束と互いに逆方向の極性を有する一定の収差を有し該信号記録層上において主スポットに対して離間した位置に一対の副スポットを形成する一対の副光束とに分岐させる回折光学素子と、上記光記録媒体からの上記一対の副光束の収差による反射光束の回折強度分布の変化を検出する収差検出手段とを備えていることを特徴とするものである。
【0019】
この光記録媒体駆動装置の光ヘッドにおいては、互いに逆方向の極性を有する一定の収差を有する一対の副光束が光記録媒体の信号記録層上に照射され、収差検出手段により、光記録媒体からの一対の副光束の反射光束における回折強度分布によって収差の変化が検出されるので、収差検出手段は、光記録媒体から戻る光束の復路において発生した収差に影響されずに、光記録媒体に向かう光束の往路及び光記録媒体において発生した収差を検出することができる。
【0020】
復路において発生した収差に影響されないのは、この光記録媒体駆動装置においては、記録媒体上における回折によって生じる回折強度分布が主に回折光学素子及び収差補正素子によって付与されている収差によってどう変化するかを用いているからであり、この回折強度分布は、復路において発生する収差の影響をほとんど受けないからである。
【0021】
【発明の実施の形態】
以下、本発明に係る光ヘッド及び光記録媒体駆動装置の実施の形態について、図面を参照しながら詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において、特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0022】
〔光記録媒体駆動装置の概要的構成〕
本発明に係る光記録媒体駆動装置は、図1に示すように、光記録媒体となる光ディスク102を回転操作する駆動手段としてのスピンドルモータ103と、本発明に係る光ヘッド104と、その駆動手段としての送りモータ105とを備えている。
【0023】
ここで、スピンドルモータ103は、ディスク種類判別手段ともなるシステムコントローラ107及びサーポ制御回路109により駆動制御され、所定の回転数で駆動される。
【0024】
また、光ディスク102としては、光変調記録を用いる記録再生デイスクである種々の方式(いわゆる「光磁気記録」、「相変化記録」及び「色素記録」等を含む)の光ディスク(例えば、いわゆる「CD−R/RW」、「DVD−RAM」、「DVD−R/RW」、「DVD+RW」等)、または、各種光磁気記録媒体である。
【0025】
さらに、この光ディスク102としては、記録層上における最適な記録及び/又は再生光パワーの異なる少なくとも2種類以上の光ディスクから選択的に使用してもよく、また、最適な記録及び/又は再生光パワーの異なる少なくとも2以上の記録領域に記録層が分割された光ディスク、複数の記録層(記録層)が透明基板を介して積層された光ディスクをも使用することができる。
【0026】
記録層上における最適な記録及び/又は再生光パワーの差異は、光ディスクにおける記録方式そのものが異なることによるものの他、光ディスクの回転操作される速度(光ヘッドに対する線速度)の違いによるもの(いわゆる標準速ディスクに対するn倍速ディスク)であってもよい。
【0027】
また、この光ディスク102としては、最適な記録及び/又は再生光パワーの異なる、または、同一の少なくとも2以上の記録層を有する多層光ディスクを使用することもできる。この場合においては、多層光ディスクの設計のしかたにより、各記録層についての最適な記録及び/又は再生光パワーの違いが生ずる。
【0028】
なお、これら光ディスクの記録及び/又は再生光の波長としては、例えば、405nm、あるいは、400nm程度乃至780nm程度のいずれかが考えられる。
【0029】
光ヘッド104は、光ディスク102の記録層に対して光束を照射し、この光束の記録層による反射光を検出する。また、光ヘッド104は、光ディスク102の記録層からの反射光に基づいて、後述するような各種の光束を検出し、各光束に対応する信号をプリアンプ部120に供給する。
【0030】
このプリアンプ部120の出力は、信号変復調部及びECCブロック108に送られる。この信号変復調部及びECCブロック108は、信号の変調、復調及びECC(エラー訂正符号)の付加を行う。光ヘッド104は、信号変復調部及びECCブロック108の指令にしたがって、回転する光ディスク102の記録層に対して、光照射を行う。このような光照射により、光ディスク102に対する信号の記録または再生が行われる。
【0031】
プリアンプ部120は、各光束に対応する信号に基づいて、フォーカスエラー信号、トラッキングエラー信号、RF信号等を生成するように構成されている。記録または再生の対象媒体とされる光記録媒体の種類に応じて、サーポ制御回路109、信号変復調部及びECCブロック108等により、これらの信号に基づく復調及び誤り訂正処理等の所定の処理が行われる。
【0032】
これにより、復調された記録信号は、光ディスク102が、例えばコンピュータのデータストレージ用であれば、インターフェイス111を介して外部コンピュータ130等に送出される。そして、外部コンピュータ130等は、光ディスク102に記録された信号を再生信号として受け取ることができるようになっている。
【0033】
また、光ディスク102がいわゆる「オーディオ・ビジュアル」用であれば、D/A,A/D変換器112のD/A変換部でデジタル/アナログ変換され、オーディオ・ビジュアル処理部113に供給される。そして、このオーディオ.ビジュアル処理部113に供給された信号は、このオーディオ.ビジュアル処理部113においてオーディオ・ビデオ信号処理を行われ、オーディオ・ビジュアル信号入出力部114を介して、外部の撮像・映写機器に伝送される。
【0034】
上記光ヘッド104は、送りモータ105により、光ディスク102上の所定の記録トラックまで移動操作される。スピンドルモータ103の制御と、送りモータ105の制御と、光ヘッド104において光集光手段となる対物レンズを保持する二軸アクチュエータのフォーカシング方向の駆動及びトラッキング方向の駆動の制御は、それぞれ、サーボ制御回路109により行われる。
【0035】
また、サーポ制御回路109は、本発明に係る光ヘッド104内に配設された光結合効率可変素子を動作させ、光ヘッド104における光結合効率、すなわち、光源となる半導体レーザ素子等のレーザ光源から出射する光束の総光量と光ディスク102上に集光する光量との比率を、記録モード時と再生モード時とで、及び、光ディスク102の種類に応じて、異なるように制御する。
【0036】
また、レーザ制御部121は、光ヘッド104におけるレーザ光源を制御する。特に、この実施の形態においては、レーザ光源の出力パワーを、記録モード時と再生モード時とで、及び、光ディスク102の種類に応じて、異ならせる制御する動作を行なう。
【0037】
また、光ディスク102が、記録層上における最適な記録及び/又は再生光パワーの異なる少なくとも2種類以上の光ディスクから選択的に使用されたものである場合(記録方式の異なるもの、分割された記録領域のいずれであるか、積層された記録層のうちのいずれであるか、光束に対する相対線速度が異なるものなどのいずれも含む)には、ディスク種類判別センサ115が、装着された光ディスク102の種類を判別する。光ディスク102としては、上述したように、光変調記録を用いた種々の方式の光ディスク、または、各種光磁気記録媒体が考えられ、これらは、記録層上における最適な記録及び/又は再生光パワーの異なるものも含んでいる。ディスク種類判別センサ115は、光ディスク102の表面反射率やその他の形状的、外形的な違いなどを検出する。
【0038】
そして、システムコントローラ107は、ディスク種類判別センサ115より送られる検出結果に基づいて、光ディスク102の種類を判別する。
【0039】
さらに、光記録媒体の種類を判別する手法としては、カートリッジに収納された光記録媒体においては、このカートリッジの検出穴を設けておくことが考えられる。また、光記録媒体の、例えば、最内周にあるプリマスタードピットや、グルーブ等に記録された目録情報(Table of Contents:TOC)による情報をもとに、「ディスク種別」もしくは「推奨記録パワー及び推奨再生パワー」を検出し、その光記録媒体の記録及び再生に適した記録及び再生光パワーを設定することが考えられる。
【0040】
そして、光結合効率制御手段となるサーポ制御回路109は、システムコントローラ107に制御されることにより、ディスク種類判別センサ115の判別結果に応じて、光ヘッド104における光結合効率を、装着された光ディスク102の種類に応じて制御する。
【0041】
また、光ディスク102として、最適な記録及び/又は再生光パワーの異なる少なくとも2以上の記録領域に記録層が分割された光ディスクを使用する場合には、記録領域識別手段により、記録及び/又は再生をしようとする記録領域を検出する。複数の記録領域が光ディスク102の中心からの距離に応じて同心円状に分割されている場合には、記録領域識別手段としては、サーポ制御回路109を用いることができる。サーポ制御回路109は、例えば、光ヘッド104と光ディスク102との相対位置を検出する(ディスク102に記録されたアドレス信号をもとに位置検出する場合を含む)ことによって、記録及び/又は再生をしようとする記録領域を判別することができる。そして、サーポ制御回路109は、記録及び/又は再生をしようとする記録領域の判別結果に応じて、光ヘッド104における光結合効率を制御する。
【0042】
さらに、光ディスク102が、最適な記録及び/又は再生光パワーの異なる少なくとも2以上の記録層を有する多層光ディスクである場合には、記録層識別手段により、記録及び/又は再生をしようとする記録層を判別する。記録層識別手段としては、サーポ制御回路109を用いることができる。サーポ制御回路109は、例えば、光ヘッド104と光ディスク102との相対位置を検出することによって、記録及び/又は再生をしようとする記録層を検出することができる。そして、サーポ制御回路109は、記録及び/又は再生をしようとする記録層の判別結果に応じて、光ヘッド104における光結合効率を制御する。
【0043】
なお、これら光ディスクの種類、記録領域、記録層についての情報は、各光ディスクに記録されたいわゆるTOCなどの目録情報を読み取ることによっても判別することができる。
【0044】
〔光ヘッドの構成〕
そして、上述の光記録媒体駆動装置において使用される本発明に係る光ヘッドは、図2に示すように、光源となる半導体レーザ素子212、コリメータレンズ213、光結合効率可変手段を構成する光結合効率可変素子となる液晶素子214及び図3に示す偏光ビームスプリッタ膜面215Rを有するアナモルフィックプリズム215を有している。
【0045】
また、この光ヘッドは、図2に示すように、例えば1/2(二分の一)波長板等である位相板217、入射した光束を回折させて3本の光束に分離させる回折光学素子225、光分離手段となるビームスプリッタ218、このビームスプリッタ218において反射された光束が集光レンズ226を介して入射され半導体レーザ素子212の発光パワーを検出するための光検出器であるFAPC(Front Auto Power Control)用検出素子219を有している。
【0046】
さらに、この光ヘッドは、ビームスプリッタ218を透過した光束を反射して光路を曲げるミラー227、収差補正素子228、1/4(四分の一)波長板224、光集光手段となる対物レンズ220を有し、これらを経た光束を光ディスク120の信号記録層上に集光させる。この対物レンズ220の開口数(NA)は、例えば、0.85となっている。
【0047】
さらに、この光ヘッドは、信号記録層上に集光された光束の該信号記録層による反射光束を受光する光学系として、この反射光束が対物レンズ220、1/4(四分の一)波長板224、収差補正素子228及びミラー227を経てビームスプリッタ218に戻り、このビームスプリッタ218において反射された光束が順次入射される検出レンズ221、マルチレンズ222及び光検出手段となる光検出素子223を備えている。
【0048】
この光ヘッドは、上述したような各光学部品が、図示しない光学系ブロック内において個別にマウントされることによって、構成されている。
【0049】
この光ヘッド104においては、半導体レーザ素子212から出射された直線偏光の拡散光束は、コリメータレンズ213に入射されて平行な光束となされ、液晶素子214に入射される。そして、この液晶素子214を通過した光束は、アナモルフィックプリズム215、位相板217、回折光学素子225及びピームスブリッタ218に順次入射される。
【0050】
アナモルフィックプリズム215は、半導体レーザ素子212から出射された光束の断面形状を、楕円形から略々円形に整形する。すなわち、半導体レーザ素子212から出射された光束は、直線偏光であって、図3中矢印Pで示す偏光状態を短径方向とする楕円形の断面形状を有している。そして、この光束は、断面形状の短径方向に対して傾斜されたアナモルフィックプリズム215の入射面から入射されることにより、この短径方向についてビーム径を拡げられて、略々円形の光束に整形される。
【0051】
光結合効率可変手段は、半導体レーザ素子212からの光束が入射されこの光束の偏光状態を変化させる液晶素子214と、この液晶素子214を経た光束が入射される偏光ビームスプリッタ膜215Rとからなり、半導体レーザ素子212とビームスプリッタ218との間に設けられている。
【0052】
この光結合効率可変手段は、液晶素子214によって光束の偏光状態を変化させることによって、半導体レーザ素子212から出射される総光量に対する光ディスク102上に集光される光量の比率である光結合効率を変化させるものである。液晶素子214は、印加電圧に基づいて透過光の偏光状態を変化させる。液晶素子214に対する印加電圧は、図2に示すように、サーポ制御部109によって制御される。液晶素子214を透過した光束は、偏光の状態が変化された状態で、アナモルフィックプリズム215に入射する。
【0053】
アナモルフィックプリズム215の偏光ビームスプリッタ膜面215Rは、図3に示すように、入射光束の光軸に対して所定の角度の傾斜を有する平面状となされ、P偏光を略々100%透過させ、S偏光を略々100%反射するようになされている。したがって、液晶素子214を透過する光束がほぼ入射偏光(直線偏光)と同様であるとき(Open状態)には、略々100%の光束がアナモルフィックプリズム215の偏光ビームスプリッタ膜面215Rを透過する。
【0054】
一方で、液晶素子214を透過する光束が入射偏光(直線偏光)に対して、偏光方向及び/又は状態が変化(楕円偏光になる等)した状態にあるとき(Close状態)には、所定の比率の光束がアナモルフィックプリズム215の偏光ビームスプリッタ膜面215Rを透過し、残りの光束は偏光ビームスプリッタ膜面215Rによって反射される。
【0055】
この光ヘッド104においては、半導体レーザ素子212から出射された光束は、記録時には、記録に必要な盤面パワーを確保しつつ、再生時には、レーザ元出射パワーがレーザノイズが十分小さくなるように、光記録媒体の種類・記録領域・記録層・記録速度及び記録/再生モードの違い等に応じて、上記により光結合効率を切換えるようになされて光ディスク102に入射される。すなわち、この光ヘッド104においては、半導体レーザ素子212に必要とされるダイナミックレンジを小さくすることができる。
【0056】
アナモルフィックプリズム215の偏光ビームスプリッタ膜面215Rにおいて反射された光束は、全反射防止素子(光出射部)215Tを経て、光結合効率検出手段となる光分岐量モニタ用光検出素子216に受光される。全反射防止素子215Tは、偏光ビームスプリッタ膜面215Rにおいて反射された光束がアナモルフィックプリズム215の内面において全反射されることを防ぐようになっており、図4に示すように、光束に略々直交する複数の面を有する階段状に形成され、アナモルフィックプリズム215に光学的に密着して配設されている。
【0057】
なお、この全反射防止素子215Tは、図5に示すように、光束に略々直交する面を有する三角プリズムとして形成し、アナモルフィックプリズム215に光学的に密着して配設し、あるいは、図6に示すように、アナモルフィックプリズム215と一体的に形成するようにしてもよい。
【0058】
そして、光分岐量モニタ用光検出素子216の出力は、図2に示すように、プリアンプ120に送られる。この光分岐量モニタ用光検出素子216の出力は、半導体レーザ素子212の発光出力とアナモルフィックプリズム215の偏光ビームスプリッタ膜面215Rにおける光分岐率との積に対応したものとなっており、この光ヘッド104における光結合効率に略々対応したものとなっている。なお、この光ヘッドにおいては、光結合効率が高いときには、光分岐量モニタ用光検出素子216に入射される光量は減り、光結合効率が低いときに、光分岐量モニタ用光検出素子216に入射される光量が増える関係となっている。光分岐量モニタ用光検出素子216に入射される光量は、『100%−〔光結合効率可変手段の通過率(%)〕』と『レーザ出射パワー』との積に比例した量である。
【0059】
そして、回折光学素子225は、例えば、ホログラム光学素子から構成されており、入射された光束を、主光束(0次光)と一対の副光束(±1次光)とに分岐させる。主光束は、光ディスク102の信号記録層に対して情報信号の記録及び/又は再生を行うための主スポットを信号記録層上に形成する光束である。一対の副光束は、互いに逆方向の極性を有する一定の収差を有し、光ディスク102の信号記録層上において主スポットに対して離間した位置に一対の副スポットを形成する光束である。
一対の副光束が有する収差は、互いに逆方向の極性を有する球面収差、または、非点収差、あるいは、球面収差及び非点収差である。 非点収差の方向は、光ディスク102の信号記録層上に形成される記録トラックの接線方向に対してほぼ45度方向となっている。
【0060】
こうしてアナモルフィックプリズム215、位相板217及び回折光学素子225を経てピームスブリッタ218に入射した各光束は、このピームスブリッタ218が有する入射光束の光軸に対して傾斜された平面状の反射面に対して略々P偏光となされている。なお、位相板217は、入射光束の偏光状態をピームスブリッタ218の反射面に対するP偏光とするように、光軸回りに回転調整されている。
【0061】
ビームスプリッタ218は、半導体レーザ素子212から出射された光束を、このビームスプリッタ218を透過して光ディスク102の記録層に向う光と、記録層に向かう光束の光量をモニタするためのFAPC用検出素子219に入射する光とに一定の比率で分離させる(例えば、95%以下の一定の比率を光ディスク102の記録層に向わせる)。ビームスプリッタ218を透過した光は、ミラー227を経て、収差補正素子228及び1/4波長板224を透過し、この1/4波長板224によって円偏光となされて、対物レンズ220に入射される。
【0062】
収差補正素子228は、液晶素子からなる。すなわち、この収差補正素子228は、例えば、特開2002−56559にも記載されているように、一対のガラス基板が例えばエポキシ系樹脂を主成分とするシール材により接着されて形成された液晶セルを有して構成されている。シール材には、例えば、ガラス製のスペーサと、樹脂の表面に金などを被膜した導電性スペーサとが含まれている。
【0063】
一方のガラス基板の内側表面には、内側表面から電極、シリカなどを主成分とする絶縁膜及び配向膜がこの順に、また、他方のガラス基板の内側表面にも、内側表面から電極、シリカなどを主成分とする絶縁膜及び配向膜がこの順に被膜されている。この液晶セルの内部には、液晶が充填されている。この液晶をなす液晶分子は、一方向に配向されたホモジニアス配向の状態にある。また、液晶セルの外側表面には、反射防止膜を被膜させてもよい。
【0064】
配向膜の材料としては、液晶分子のプレチルト角が2°乃至10°となれば好ましく、ポリイミド膜を所定方向にラビングしたものや、シリカ膜を斜め蒸着したものなどが好ましい。また、液晶の常光屈折率と異常光屈折率との差を大きくして、液晶セルの間隔(厚み)を小さくした方が、応答性を高くできる。しかし、液晶セルの間隔が小さくなるほど、液晶セルの製作が困難になるため、液晶の常光屈折率と異常光屈折率との差は、0.1乃至0.2程度、液晶セルの間隔は2μm乃至5μm程度とすることが好ましい。
【0065】
そして、この収差補正素子228においては、各電極の少なくとも一方の面内の異なる位置に、異なる電圧を印加するための複数の給電部が形成されている。これら給電部は、上述の金などを被膜した導電性スペーサを介して、接続線によってサーポ制御回路109とそれぞれ独立的に接続されている。
【0066】
この収差補正素子228においては、各電極の複数の給電部への印加電圧を適宜に選択調整することにより、この収差補正素子228を透過する光束の位相状態を補正し、球面収差に相当する位相状態とすることができる。
【0067】
なお、この収差補正素子228においては、一対の基板の両方ともが透明であり、光束はこの収差補正素子228を透過するため、電極をなす材料としては、透過率の高いものが好ましく、ITO膜、酸化亜鉛膜の如き透明導電膜を使用すればよい。
【0068】
そして、対物レンズ220に入射された光束は、この対物レンズ220によって、光ディスク102の記録層上に集光されて照射される。この対物レンズ220は、図示しない二軸アクチュエータによって、図2中の矢印Fで示すフォーカス方向及び図2中の矢印Radで示すトラッキング方向(ラジアル方向)に駆動される。
【0069】
一方、ビームスプリッタ218の反射面によって反射された入射光束(例えば、5%以上の一定の比率)は、FAPC用検出素子219に入射する。このFAPC用検出素子219の出力は、レーザ制御部121に送られ、オートパワーコントロールの動作が実行される。すなわち、レーザ制御部121は、FAPC用検出素子219からの出力が所定の値となるように、半導体レーザ素子212に供給する駆動電流を制御して、この半導体レーザ素子212の発光出力を制御する。この制御により、光ディスク102の記録層上における照射光束の出力(盤面パワー)が一定となされる。レーザ制御部121は、光ヘッド104の外部にあってもよく、光ヘッド104に搭載されていてもよい。
【0070】
なお、光ディスク102の記録層上において所定の値となされる照射光束の出力値は、記録モードと再生モードとでは異なる値であり、光ディスクの種類等によっても異なる(なお、光変調記録方式の場合には、パルス発光となる)。
【0071】
そして、光ディスク102の記録層で反射された反射光束は、対物レンズ220を経て、1/4波長板224を透過することによって、往光路の光束の偏光状態に対して直交する方向の直線偏光となされて、収差補正素子228及びミラー227を経て、ビームスプリッタ218に戻る。
【0072】
このとき、反射光束は、ピームスブリッタ218の反射面に対して略々S偏光となされており、この反射面によって略々全量が反射され、半導体レーザ素子212からの光路に対して分離される。半導体レーザ素子212からの光路に対して分離された反射光束は、ビームスプリッタ218より出射されて、検出レンズ221で収束光に変換され、マルチレンズ222によってフォーカスエラー信号を非点収差法によって得るための非点収差を付与され、光検出素子223に入射される。マルチレンズ222は、一方の面が凹面で、他方の面がシリンドリカル面となされたレンズである。そして、光検出素子223が受光して出力する信号に基づいて、RF信号、フォーカスエラー信号、トラッキングエラー信号等が生成される。
【0073】
また、光検出素子223が受光して出力する信号に基づいて、回折光学素子225が一対の副光束に生じさせた収差と同種類の収差、もしくはその一部となる収差、すなわち、球面収差、または、非点収差、あるいは、球面収差及び非点収差についての収差量の検出を行う。
【0074】
光検出素子223の受光面のパターンは、図7に示すように、主スポットからの主反射光束を受光する主受光部230、第1の副スポットからの第1の副反射光束を受光する第1の副受光部231、第2の副スポットからの第2の副反射光束を受光する第2の副受光部232を有して構成されている。
【0075】
主受光部230は、いわゆる「非点収差法」によるフォーカスエラー信号の検出を行うため、中心部分を介して放射状に配列された状態の4個の受光素子a,b,c,dからなる。この主受光部230において、受光素子a,c及び受光素子b,dは、互いに主受光部230の中心部分を介して対角で対向する位置となっている。これら4面の受光素子a,b,c,dからは、それぞれ独立的な光検出信号a,b,c,dが出力される。これら光検出信号a,b,c,dの和(a+b+c+d)は、フォーカスサーボの引き込みのためのPull−in信号及び記録媒体の反射率の変化等に対するAGC(Automatic Gain Control:自動的なゲイン(振幅)調整)の基準として用いられるとともに、そのAC成分は、光ディスク102から読み出される、いわゆるRF信号となる。
【0076】
また、各副受光部231,232は、それぞれいわゆる「非点収差法」と同様なたすきがけ演算を行うため中心部分を介して放射状に配列された状態の4個の受光素子e,f,g,h、i,j,k,lからなる。第1の副受光部231において、受光素子e,g及び受光素子f,hは、互いに第1の副受光部231の中心部分を介して対角で対向する位置となっている。これら4面の受光素子e,f,g,hからは、それぞれ独立的な光検出信号e,f,g,hが出力される。第2の副受光部232において、受光素子i,k及び受光素子j,lは、互いに第2の副受光部232の中心部分を介して対角で対向する位置となっている。これら4面の受光素子i,j,k,lからは、それぞれ独立的な光検出信号i,j,k,lが出力される。
なお、各副受光部231,232からの光検出信号e,f,g,h、i,j,k,lについては、必ずしもフォーカスエラー信号の生成に使用する必要はない。
【0077】
〔収差の検出〕
本発明に係る光ヘッドにおいては、以下のように、各副光束の反射光束における光ディスク102による回折強度分布の違いにより、球面収差及び非点収差(特に球面収差)を検出することができる。
【0078】
ここでは、回折光学素子225において各副光束(±1次光)に生じさせる収差を互いに逆符号の45度方向の非点収差及び/又は逆符号の球面収差であるとする。一般に、基板厚、対物レンズの開口数(NA)、波長及び球面収差の間には、以下の関係式が成立している。
【0079】
球面収差∝ΔD×{(n−1)/n}×NA/λ
(ただし、Dは、基板厚、ΔDは、基板厚の差、nは、基板の屈折率である。)ここで、対物レンズ220の開口数(NA)が0.85であり、レーザ光源の発光波長が405nmであるとする。また、光ディスク102は、記録層までの基板厚(カバー層厚)が、100μm及び75μmの2層ディスクであることとする。この場合には、開口数(NA)が0.60、レーザ光源の発光波長が650nmである場合(すなわち、「DVD」(商標名)の場合)と比較すると、ΔDに対する許容量は、0.155倍となっている。したがって、この場合には、良好な記録再生特性を実現するには、基板厚の差(25μm)により発生する球面収差を精度よく補正することが不可欠となる。
【0080】
この光ヘッドにおいては、このような収差を検出したうえで、収差補正素子228によって収差を補正し、良好な記録再生特性を実現するものである。この光ヘッドにおける収差の補正は、以下に示すようにしてシステムコントローラ107において収差が検出され、この検出結果に基づいてサーボ制御回路109を介して収差補正素子228を制御する球面収差補正サーボが実行されることによって行われる。
【0081】
まず、この光ヘッドにおいて、光検出素子223からの光検出信号からは、以下の信号が生成される。
【0082】
RF(主スポットについてのRF信号)
=(a+b+c+d)の変調成分
PI(プルイン信号:フォーカス引き込み信号:主スポットについての総和信号)
=a+b+c+d
FCS(フォーカスエラー信号(主スポットについての非点収差信号))
=(a+c)−(b+d)
MPP(主スポットについてのプッシュプル信号)
={(a+d)−(b+c)}
SPP1(第1の副スポットについてのプッシュプル信号)
={(e+h)−(f+g)}
SPP2(第2の副スポットについてのプッシュプル信号)
={(i+l)−(j+k)}
TRK(トラッキングエラー信号)
=MPP−K・(SPP1+SPP2)/2
SAS1(第1の副スポットについてのたすきがけ演算信号)
={(e+g)−(f+h)}
SAS2(第2の副スポットについてのたすきがけ演算信号)
={(i+k)−(j+l)}
CTS(トラック判別信号)
=SAS1−SAS2
SA(球面収差信号)
=SAS1+SAS2=SAS1−(−SAS2)
SPI1(第1の副スポットについての総和信号)
=e+f+g+h
SPI2(第2の副スポットについての総和信号)
=i+j+k+l
また、光ディスク102の記録層の反射率の変化や、パルス記録時の光量変化に対して、上述の各信号を安定させるために、サーボ信号のそれぞれについて、AGC(Automatic Gain Control:自動的なゲイン(振幅)調整)を行ってもよい。この場合には、上述の各信号は、以下のように示される。
【0083】
FCS(AGC)(AGCを行ったフォーカスエラー信号)
=FCS/PI
TRK(AGC)(AGCを行ったトラッキングエラー信号)
=MPP/PI−K・(SPP1/SPI1+SPP2/SPI2)/2
CTS(AGC)(AGCを行ったトラック判別信号)
=SAS1/SPI1−SAS2/SPI2
SA(AGC)(AGCを行った球面収差信号)
=SAS1/SPI1−(−SAS2)/SPI2
なお、以下に示すデータについては、光ディスク102におけるトラックピッチTpが0.32μm、グルーブ幅が0.13μm、グルーブの位相深さがλ/12であるプリグルーブディスクを使用した場合のものである。
【0084】
この光ヘッドにおいて、各副光束に生じさせる45度方向の非点収差量を変化させた場合のトラック判別信号(CTS)の振幅及び各副スポットについてのプッシュプル信号(SPP1、SPP2)の振幅については、図9に示すように、各副スポットについての非点収差が大きくなると、各副スポットについてのプッシュプル信号(SPP1、SPP2)がほとんど出なくなる(振幅がなくなる)領域があることがわかる。
【0085】
なお、トラック判別信号(CTS)とトラッキングエラー信号(TRK)とは、図8(図9において、サイド非点収差量(Z6)が0.200近辺である場合)に示すように、光ディスク102上の記録トラックに対して互いに90°の位相ずれを有している関係になっている。
【0086】
そして、各副光束に生じさせる非点収差量と、トラック判別信号(CTS)の振幅及び各副スポットについてのプッシュプル信号(SPP1、SPP2)の振幅との関係について、横軸を「フリンジ−ゼルニケの収差多項式」におけるZ6として示すと、図9に示すように、Z6が0.25を越えるあたりから、各副スポットについてのプッシュプル信号(SPP1、SPP2)がほとんど出なくなっていることがわかる。
【0087】
ここで、「フリンジ−ゼルニケの収差多項式」に関して、簡単に説明しておく。これは半径とアジマスの円多項式で、定義される単位円の範囲内で直交しているため、波面を表すのに有効であり、干渉計においてよく使われているものである。この多項式を用いて波面を表すと、半径1の単位円に対して、Rを半径方向の距離、Aを回転角度として、
Z1×1 ピストン
+ Z2×Rcos(A) ティルト
+ Z3×Rsin(A) ティルト
+ Z4×(R−1) デフォーカス
+ Z5×Rcos(2A) 0度方向非点収差
+ Z6×Rsin(2A) 45度方向非点収差
+ Z7×{(3R−2R)cos(A)}コマ収差(+ティルト)
+ Z8×{(3R−2R)sin(A)}コマ収差(+ティルト)
+ Z9×(6R−6R+1) 球面収差(+デフォーカス)
+ ・・・・・
のようになる。
【0088】
そして、球面収差信号(SA)は、図10及び図11に示すように、第1の副スポットについてのたすきがけ演算信号(SAS1)から、第2の副スポットについてのたすきがけ演算信号の逆符号の信号(−SAS2)を引いたものである。
【0089】
ここで、これら信号SAS1及び信号−SAS2は、基本的には、SPP1及びSPP2とほぼ90度位相の異なる信号(すなわち、SAS1及び−SAS2がcosθ、SPP1,SPP2がsinθのような関係、ただし、Z6が0.33前後でsinθ出力は0となる)であり、サイドスポットを通常の差動プッシュプル法と同様に、メインスポットをグルーブ(溝状の記録トラック)上、サイドスポットをランド(突条状の記録トラック)上のように配置すると、トラッキングがかかった状態(θ=0に相当)で、ほぼ演算出力が最大(cos0に相当)となる。
【0090】
この出力レベル、すなわちcosθ信号の振幅は、球面収差が大きくなるほど小さくなる。2つのサイドスポットに逆符号球面収差±Aを与えておくことで、ディスク基板等によって生じる球面収差をB,収差補正量をCとしたときに、トータルとしての収差に、
B+C+A
B+C−A
という非対称性が生じ、cosθ信号振幅に差異が生じることになる。この振幅がほぼ同等になようにすることで、
B+C→0
の状態にすることが可能となる。
【0091】
これは即ち、トラッキングサーボON時における球面収差信号(SA)の演算出力が0となるようにすることを意味する。
【0092】
この球面収差信号出力(SA)は、B+Cの変化に対して、十分に広い範囲で線形に変化する。
【0093】
以下に計算例として、各副光束に、各副スポットについてのプッシュプル信号(SPP1、SPP2)振幅がほぼ0となる逆符号の45度非点収差(「フリンジ−ゼルニケの収差多項式」におけるZ6が略々0.345)を与えたときに、この球面収差信号(SA)に基づいて、残留球面収差量を検出することができることを示す。
ここで、「フリンジ−ゼルニケの収差多項式」におけるZ9を、0.05乃至0.35まで変化させた場合の、球面収差信号(SA)及び各副スポットについての非点収差信号(SAS1、−SAS2)の振幅の変化を、図12中の(a)乃至(g)に示す。また、このように、Z9を0.05乃至0.35まで変化させた場合の、球面収差信号(SA)の変化を、図13に示す。この球面収差信号(SA)は、残留球面収差量に対して線形性のよい信号となっており、球面収差量検出信号として用いることができることがわかる。
【0094】
また、球面収差信号(SA)の引き込み範囲としては、いずれの場合にも、Z9換算で±0.25程度であり、これは、開口数(NA)0.85、光源の発光波長405nmの光学系においては、±10μm程度に相当する。
【0095】
したがって、各副スポットに与える非点収差量は、以下の条件にしたがって決定することができる。
【0096】
(1)他の光学部品によって発生する非点収差との合成によって、所望の非点収差量からずれることを防止する必要がある。他の光学部品によって発生する非点収差は、経験上、Z6として0.02程度である。したがって、Z6について、下記の条件が必要となる。
Z6≧0.05
(2)十分なトラック判別信号(CTS)の振幅を得るために、下記の条件が必要となる。
Z6=0.05〜0.5
(3)特に、トラック判別信号(CTS)を最大にするためには、下記の条件が必要となる。
Z6≒0.23
(4)また、各副スポットについてのプッシュプル信号(SPP1,SPP2)の振幅を略0とすることで、副スポットの位置(トラック位相の主スポットとの位置関係、通常の差動プッシュプル法では180度である)によるトラッキングエラー信号(TRK)の振幅の変動を抑圧するためには、下記の条件が必要となる。
Z6>0.2(特に、Z6≒0.33で、SPPがほぼ0となる)
これらの条件に基づいて、光学系全体のバランスを考慮して、与える収差量を選定することができる。
【0097】
また、各副スポットに与える球面収差量としては、図13に示すように、「フリンジ−ゼルニケの収差多項式」におけるZ9を変化させたときの球面収差信号(SA)のグラフに基づいて、以下の条件にしたがって決定することができる。
【0098】
(1)球面収差信号(SA)が検出できるようにするため、下記の条件が必要となる。
Z9≧0.05
(2)球面収差信号(SA)の振幅を最大にするには、下記の条件が必要となる。
Z9=0.2〜0.35
(3)また、球面収差信号(SA)の0近傍におけるS/N(シグナル−ノイズ比)を考えると、元となる各副スポットについての非点収差信号(SAS1、−SAS2)の振幅が大きいほうがよい。したがって、下記の条件が満たされていることが望ましい。
Z9≦0.30
そして、球面収差量の与え方としては、「フリンジ−ゼルニケの多項式」表示にあるような、以下のような標準的なものでもよい。
6(R−R
この場合における回折光学素子225のパターンは、図14に示すように、光束がどの位置を通過するかで、付与される収差が変化してしまうパターンとなる(なお、この図14においては、有効径を2として示している。図中境界線は、回折光学素子の凹凸が形成される境界を意味する)。具体的には、通常、各副光束は、回折によって進行方向が変化するため、主光束の通過する位置を挟んで互いに反対側にシフトした位置を通過する(図14中において円で示している)。これにより、副光束には、所望の収差以外に、コマ収差が付与されてしまうことになる。このコマ収差は、各副光束について同一の極性になってしまうため、対物レンズの軸外収差と干渉して収差の非対称成分を増幅させてしまう虞れがある。
【0099】
このような現象を回避するためには、回折光学素子225のパターンを、副光束の収差が通過位置のずれによる影響を受けないようなパターンとする必要がある。すなわち、図15に示すように、以下のような、1次元方向のみの収差を付与するものにするとよい。
6(X−X
このようなパターンを有する回折光学素子225を用いることにより、各副光束に付与される収差の非対称性を大きく低減することができる。
【0100】
さらに、回折光学素子225のパターンとしては、以下に示すような、球面収差項Rとデフォーカス項Rとの比率を変化させたものとしてもよい。これは、1次元方向のみの収差を付与するパターンについても同様のことがいえる。
(A・R−B・R) (∵A,Bは適当な係数)
なお、上記のにおいては、収差量に関する条件を、「フリンジ−ゼルニケの多項式」の係数Z6,Z9によって表しているので、他の波長や開口数(NA)においても、そのまま適用することが可能である。
【0101】
次に、上述のようにして検出された球面収差信号(SA)を用いた場合のレイヤジャンプ(Layer Jump)に関して、図16に基づいて説明する。レイヤジャンプとは、一の記録層に対して記録及び/又は再生をしていた状態から、この一の記録層に積層された他の記録層に対して記録及び/又は再生をする状態に移行する動作のことである。
【0102】
(1)まず、トラッキングエラー信号(TRK)及び球面収差信号(SA)についてのサーボ動作を停止する(図16中の「TRK OFF」)。すなわち、一の記録層について、トラッキングサーボ及び球面収差補正サーボがかかっている状態から、これらトラッキングサーボ及び球面収差補正サーボを停止させる。
【0103】
(2)次に、球面収差の粗調整を行う(図16中の「粗調整」)。すなわち、典型的な層間補正量を予め定めておき、このように定められた補正量に応じて、粗調整を行う。
【0104】
このとき、第1の副スポットについての非点収差信号(SAS1)は、球面収差量の変化に伴って、一旦振幅が大きくなってから小さくなる。また、第2の副スポットについての非点収差信号(SAS2)は、一様に振幅が小さくなる。
【0105】
このような粗調整により、目的とする他の記録層におけるフォーカスエラー信号特性が良好になる。
【0106】
この粗調整は、球面収差信号の引き込み範囲がおよそ±10μmであることから、±数μmに入っていればよい。
【0107】
(3)そして、対物レンズを光軸方向に移動させ、レイヤジャンプの動作を行う(図16中の「Layer Jump」)。
【0108】
(4)次に、トラッキングエラー信号(TRK)の振幅が最大となるように球面収差の調整を行う(図16中の「球面収差調整」)。これにより、トラッキングサーボの安定化を図ることができる。この過程は簡略化のために省略することも可能である。
【0109】
(5)球面収差の調整が完了したならば、トラッキングサーボ及び球面収差補正サーボを動作させる(図16中の「TRK ON」)。
【0110】
(6)次に、球面収差の微調整を行う(図16中の「球面収差微調整」)。すなわち、球面収差補正サーボのターゲット(サーボ目標値)を補正し、球面収差量が所望の値になるように微調整する。このとき、球面収差信号(SA)を0とするようにしてもよいし、例えば、光ヘッドのばらつき等の要因により、RF信号(RF)の最良点とのずれがあることがあらかじめわかっている場合などには、図16に示すように、球面収差信号(SA)が一定のオフセットを持つようにしてもよい。
(7)その後は、球面収差補正サーボが作動していることにより、光ディスク102の基板厚(カバー層厚)が変動したり、温度によって収差補正素子228をなす液晶素子による収差補正量が変動しても、残留球面収差量を一定に保つことができる。
【0111】
なお、上述の説明においては、球面収差補正サーボにおける球面収差補正量のターゲットを変化させたいときには、球面収差信号(SA)のターゲット自体にオフセットを持たせている。この場合には、光ディスク102における溝構造のばらつき等によって生ずる各副スポットについての非点収差信号(SAS1,SAS2)の振幅変動がそのままオフセットとなって現れてしまう。また、各副スポットについての非点収差信号(SAS1,SAS2)の振幅の球面収差による変化は、各副スポットにおける収差量の非対称性によって、非対称性を有する場合がある。
【0112】
これらの影響を回避するためには、球面収差信号(SA)を下記の演算によって求めるようにして、この球面収差信号(SA)のターゲット自体は0付近となるようにするとよい。
SA=SAS1/SPI1+K・SAS2/SPI2 (∵Kは適当な係数)
上述した実施の形態においては、たすきがけ演算をするための「田の字」形に4分割された光検出素子を用いる一般的な例として、フォーカスエラー信号の検出に非点収差法を用いる構成としている。
【0113】
この場合、フォーカスエラー信号(FCS)が0でないとき(FCS≠0)、すなわち、フォーカスバイアスをずらして用いる場合、球面収差信号(SA)にもオフセットを生じてしまう。
【0114】
これを回避するため、球面収差信号(SA)を下記の演算によって求めるようにしてもよい。
SA=SAS1+SAS2+K・FB(∵Kは適当な係数、FBはフォーカスバイアス)
また、上述の光ヘッドにおいて、光検出素子223は、上述したような「たすきがけ演算」による強度分布の変化が検出できればよいので、この光検出素子223の受光面のパターンについては、図17に示すように、主受光部230及び各副受光部231,232において、各戻り光スポットの中央部分のみを受光する受光面m,n,oを設けることとしてもよい。
この場合にも、上述した各演算方法により、フォーカスエラー信号(FCS)、トラッキングエラー信号(TRK)、トラック判別信号(CTS)、RF信号(RF)等を生成することができる。
【0115】
球面収差信号のもととなる、トラッキングON時に出力最大となる演算信号としては、サイドスポットに非点収差を加えずに逆符号の球面収差のみを付与し、サイドスポットをメインスポットに対してほぼ1/4トラック(トラック位相±90deg)ずらしたときの信号SPP1,SPP2を用いることも可能である。この場合の信号SPP1,SPP2も、上記の信号SAS1,−SAS2と同様に、球面収差によって振幅が減少していく。
【0116】
この場合には、
CTS=SPP1−SPP2
SA=SPP1+SPP2
とすればよい。この場合には、トラッキングエラー信号(TRK)として差動プッシュプル法を用いた場合、サイドスポットのずらし量によるトラッキングエラー信号(TRK)の振幅変動が大きくなってしまうため、メインスポットとサイドスポットとの間隔を小さくする等に留意する必要がある。
【0117】
また、上記においては、光ディスク上のランド(突条状の記録トラック)もしくはグルーブ(溝状の記録トラック)上の一方のみを用いる場合について述べたが、いわゆる「ランド−グルーブ記録方式」により、ランド及びグルーブの双方を用いる場合には、ランド上にいるときと、グルーブ上にいるときとで、各副スポットについての非点収差信号(SAS1,SAS2)の極性、すなわち、球面収差信号(SA)の極性が反転するので、それに応じて、極性を逆にして用いることが望ましい。
【0118】
その他、本発明は、上述した実施の形態に限定されることなく、この発明の要旨を逸脱しない範囲で種種の応用及び変形が考えられる。
【0119】
【発明の効果】
上述のように、本発明に係る光ヘッド及び光記録媒体駆動装置においては、構成を複雑化させることなく、光記録媒体上の集光位置における収差量をそのまま検出することができるため、高精度、かつ、信頼性の高い球面収差量の検出を行うことができる。
【0120】
また、球面収差信号だけでなく、コマ収差を付加することによって、光記録媒体の光軸に対するスキュー量の検出を行うこともできる。
【0121】
すなわち、本発明は、光記録媒体から戻る復路において発生している収差に影響されずに、光記録媒体に向かう光の往路において発生している収差のみを正確に検出することができ、この検出結果に基づいて良好な収差補正が行え、また、復路光学系における収差発生についての許容量が大きくなされた光ヘッド及びこのような光ヘッドを用いる光記録媒体駆動装置を提供することができるものである。
【図面の簡単な説明】
【図1】本発明に係る光記録媒体記録再生装置の構成を示すブロック図である。
【図2】本発明に係る光ヘッドの構成を示す平面図である。
【図3】上記光ヘッドの光結合効率可変手段の構成を示す側面図である。
【図4】上記光結合効率可変手段を構成するアナモルフィックプリズムの構成を示す側面図である。
【図5】上記アナモルフィックプリズムの構成の他の例を示す側面図である。
【図6】上記アナモルフィックプリズムの構成のさらに他の例を示す側面図である。
【図7】上記光ヘッドの光検出素子における受光面のパターン及び光検出素子上における光スポットの状態を示す平面図である。
【図8】上記光ヘッドにおけるトラッキングエラー信号(TRK)及びトラック判別信号(CTS)の関係を示すグラフである。
【図9】上記光ヘッドにおけるトラック判別信号(CTS)及び各副スポットについてのプッシュプル信号(SPP1、SPP2)の関係を「フリンジ−ゼルニケの収差多項式」におけるZ6を基準として示すグラフである。
【図10】上記光ヘッドにおける球面収差信号(SA)と各副スポットについての非点収差信号(SAS1,SAS2)との関係を示すグラフである。
【図11】上記光ヘッドにおける球面収差信号(SA)と各副スポットについての非点収差信号(SAS1,SAS2)との関係を球面収差量を基準として示すグラフである。
【図12】上記光ヘッドにおける球面収差信号(SA)と各副スポットについての非点収差信号(SAS1,SAS2)との関係を「フリンジ−ゼルニケの収差多項式」におけるZ9を基準として示すとともに、このZ9を異なる値とした場合の変化を示すグラフである。
【図13】上記光ヘッドにおける球面収差信号(SA)と各副スポットについての非点収差信号(SAS1,SAS2)との関係を「フリンジ−ゼルニケの収差多項式」におけるZ9を基準としこのZ9として複数の値を用いて示すグラフである。
【図14】一般的な回折光学素子225のパターンを示す平面図である。
【図15】1次元方向のみの収差を付与するようにした回折光学素子225のパターンを示す平面図である。
【図16】本発明に係るトラック光記録媒体駆動装置において、レイヤジャンプを行う場合におけるトラッキングエラー信号(TRK)、球面収差信号(SA)及び各副スポットについての非点収差信号(SAS1,SAS2)のレベルの変化を示すグラフである。
【図17】上記光ヘッドの光検出素子における受光部のパターンの他の例及び光検出素子上における光スポットの状態を示す正面図である。
【符号の説明】
101 光記録媒体駆動装置、102 光ディスク、103 スピンドルモータ、104 光ヘッド、107 システムコントローラ、109 サーボ制御回路、212 半導体レーザ素子、214 液晶素子、215 アナモルフィックプリズム、216 光分岐量モニタ用光検出素子、218 ビームスプリッタ、219 FAPC用検出素子、220 対物レンズ、223 光検出素子、230 主受光部、231,232 副受光部

Claims (28)

  1. 光源と、
    上記光源から発せられた光束を光記録媒体の信号記録層上に集光させて照射する集光手段と、
    上記光記録媒体の信号記録層からの反射光束を受光する光検出手段と、
    上記光源から出射された光束の上記集光手段に至る光路上に設けられ、上記光束を、上記信号記録層に対して情報信号の記録及び/又は再生を行うための主スポットを該信号記録層上に形成する主光束と、互いに逆方向の極性を有する一定の収差を有し上記信号記録層上において上記主スポットに対して離間した位置に一対の副スポットを形成する一対の副光束とに分岐させる回折光学素子と、
    上記光記録媒体からの上記一対の副光束の、収差による反射光束の回折強度分布の変化を検出する収差検出手段とを備えている
    ことを特徴とする光ヘッド。
  2. 上記収差検出手段による反射光束の回折強度分布の変化の検出は、上記光記録媒体の信号記録層上において集光手段が光束を集光させて照射する位置が、突条状の記録トラック上であるか、または、溝状の記録トラック上であるかによって、極性が略々反転する演算出力を用いて行うことを特徴とする請求項1記載の光ヘッド。
  3. 上記光記録媒体の信号記録層上において集光手段が光束を集光させて照射する位置が、突条状の記録トラック上であるか、または、溝状の記録トラック上であるかによって、上記反射光束の回折強度分布の変化の検出結果の極性を切換えることを特徴とする請求項2記載の光ヘッド。
  4. 上記光源から出射された光束の上記集光手段に至る光路上に設けられ、上記各光束について、上記収差検出手段により検出された収差と逆極性の同種の収差を含む収差を発生させて上記各光束における収差を補正する収差補正素子とを備えていることを特徴とする請求項1記載の光ヘッド。
  5. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、球面収差であることを特徴とする請求項1記載の光ヘッド。
  6. 上記球面収差は、光記録媒体の信号記録層上に形成される記録トラックを横切る方向に対応した成分だけであることを特徴とする請求項5記載の光ヘッド。
  7. フリンジ−ゼルニケの収差多項式におけるZ9について、
    Z9=0.05〜0.35
    が成立していることを特徴とする請求項5記載の光ヘッド。
  8. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、非点収差であることを特徴とする請求項1記載の光ヘッド。
  9. 上記非点収差の方向は、光記録媒体の信号記録層上に形成される記録トラックの接線方向に対して45度をなす方向であることを特徴とする請求項8記載の光ヘッド。
  10. フリンジ−ゼルニケの収差多項式におけるZ6について、
    Z6=0.05〜0.5
    が成立していることを特徴とする請求項8記載の光ヘッド。
  11. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、球面収差及び非点収差であることを特徴とする請求項1記載の光ヘッド。
  12. 上記非点収差の方向は、光記録媒体の信号記録層上に形成される記録トラックの接線方向に対して45度をなす方向であることを特徴とする請求項11記載の光ヘッド。
  13. 上記球面収差は、光記録媒体の信号記録層上に形成される記録トラックを横切る方向に対応した成分だけであることを特徴とする請求項11記載の光ヘッド。
  14. フリンジ−ゼルニケの収差多項式におけるZ6及びZ9について、
    Z6=0.05〜0.5
    Z9=0.05〜0.35
    が成立していることを特徴とする請求項11記載の光ヘッド。
  15. 光源とこの光源から発せられた光束を光記録媒体に集光させて照射する光集光手段とを有する光ヘッドを備え、
    上記光ヘッドは、上記光源から出射された光束の上記集光手段に至る光路上に設けられ上記光束を上記信号記録層に対して情報信号の記録及び/又は再生を行うための主スポットを該信号記録層上に形成する主光束と互いに逆方向の極性を有する一定の収差を有し該信号記録層上において上記主スポットに対して離間した位置に一対の副スポットを形成する一対の副光束とに分岐させる回折光学素子と、上記光記録媒体からの上記一対の副光束の、収差による反射光束の回折強度分布の変化を検出する収差検出手段とを備えている
    ことを特徴とする光記録媒体駆動装置。
  16. 上記収差検出手段による反射光束の回折強度分布の変化の検出は、上記光記録媒体の信号記録層上において集光手段が光束を集光させて照射する位置が、突条状の記録トラック上であるか、または、溝状の記録トラック上であるかによって、極性が略々反転する演算出力を用いて行うことを特徴とする請求項15記載の光記録媒体駆動装置。
  17. 上記光記録媒体の信号記録層上において集光手段が光束を集光させて照射する位置が、突条状の記録トラック上であるか、または、溝状の記録トラック上であるかによって、上記反射光束の回折強度分布の変化の検出結果の極性を切換えることを特徴とする請求項16記載の光記録媒体駆動装置。
  18. 上記光源から出射された光束の上記集光手段に至る光路上に設けられ、上記各光束について、上記収差検出手段により検出された収差と逆極性の同種の収差を含む収差を発生させて上記各光束における収差を補正する収差補正素子とを備えていることを特徴とする請求項15記載の光記録媒体駆動装置。
  19. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、球面収差であることを特徴とする請求項15記載の光記録媒体駆動装置。
  20. 上記球面収差は、光記録媒体の信号記録層上に形成される記録トラックを横切る方向に対応した成分だけであることを特徴とする請求項19記載の光記録媒体駆動装置。
  21. フリンジ−ゼルニケの収差多項式におけるZ9について、
    Z9=0.05〜0.35
    が成立していることを特徴とする請求項19記載の光記録媒体駆動装置。
  22. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、非点収差であることを特徴とする請求項15記載の光記録媒体駆動装置。
  23. 上記非点収差の方向は、光記録媒体の信号記録層上に形成される記録トラックの接線方向に対して45度をなす方向であることを特徴とする請求項22記載の光記録媒体駆動装置。
  24. フリンジ−ゼルニケの収差多項式におけるZ6について、
    Z6=0.05〜0.5
    が成立していることを特徴とする請求項22記載の光記録媒体駆動装置。
  25. 上記一対の副スポットが有する互いに逆方向の極性を有する一定の収差は、球面収差及び非点収差であることを特徴とする請求項15記載の光記録媒体駆動装置。
  26. 上記非点収差の方向は、光記録媒体の信号記録層上に形成される記録トラックの接線方向に対して45度をなす方向であることを特徴とする請求項25記載の光記録媒体駆動装置。
  27. 上記球面収差は、光記録媒体の信号記録層上に形成される記録トラックを横切る方向に対応した成分だけであることを特徴とする請求項25記載の光記録媒体駆動装置。
  28. フリンジ−ゼルニケの収差多項式におけるZ6及びZ9について、
    Z6=0.05〜0.5
    Z9=0.05〜0.35
    が成立していることを特徴とする請求項25記載の光記録媒体駆動装置。
JP2002382280A 2002-12-27 2002-12-27 光ヘッド及び光記録媒体駆動装置 Abandoned JP2004213768A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382280A JP2004213768A (ja) 2002-12-27 2002-12-27 光ヘッド及び光記録媒体駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382280A JP2004213768A (ja) 2002-12-27 2002-12-27 光ヘッド及び光記録媒体駆動装置

Publications (1)

Publication Number Publication Date
JP2004213768A true JP2004213768A (ja) 2004-07-29

Family

ID=32817890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382280A Abandoned JP2004213768A (ja) 2002-12-27 2002-12-27 光ヘッド及び光記録媒体駆動装置

Country Status (1)

Country Link
JP (1) JP2004213768A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010596A1 (fr) 2006-07-20 2008-01-24 Sony Corporation Dispositif de disque optique, circuit de génération de signal d'erreur de suivi, procédé de correction de signal d'erreur de suivi, et programme
JP2011060370A (ja) * 2009-09-09 2011-03-24 Pioneer Electronic Corp 多層光記録媒体、光記録媒体ドライブ装置及びフォーカス引き込み方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010596A1 (fr) 2006-07-20 2008-01-24 Sony Corporation Dispositif de disque optique, circuit de génération de signal d'erreur de suivi, procédé de correction de signal d'erreur de suivi, et programme
JP2011060370A (ja) * 2009-09-09 2011-03-24 Pioneer Electronic Corp 多層光記録媒体、光記録媒体ドライブ装置及びフォーカス引き込み方法

Similar Documents

Publication Publication Date Title
US7227819B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
KR100819625B1 (ko) 광 픽업 장치, 광 디스크 장치 및 트랙 인식 신호 검출방법
JP2005085311A (ja) 光ディスク記録再生方法,光ディスク装置及び光ピックアップ
US20080165655A1 (en) Optical pickup device
JP4329364B2 (ja) 光学ヘッド、記録及び/又は再生装置
US6700842B1 (en) Optical head, photodetector, optical information recording and reproducing apparatus and focus error detecting method
US20080002555A1 (en) Optical pickup and optical disc apparatus
JP4941670B2 (ja) 光ヘッド装置ならびに光学式情報記録/再生装置
US20080130431A1 (en) Optical pickup device
JP4023365B2 (ja) 記録及び/又は再生装置、光学ヘッド、トラック誤差信号検出方法
US7251203B2 (en) Optical disc drive apparatus, information reproducing or recording method
JP2004213768A (ja) 光ヘッド及び光記録媒体駆動装置
JP2004318958A (ja) 光学ヘッド、記録及び/又は再生装置
JP2001357557A (ja) 光学ヘッド
JP4250865B2 (ja) 光ヘッド、受発光素子、及び光記録媒体記録再生装置
JP3361178B2 (ja) トラックエラー検出装置
JPH09270167A (ja) 光ディスク種別判別装置及び光ディスクプレーヤ装置
JP4505979B2 (ja) 光ヘッド、受発光素子および光記録媒体記録再生装置
JP2004310811A (ja) 光ヘッド及び収差検出方法、並びに光記録媒体記録再生装置
JP2005063572A (ja) 光ピックアップおよび光ディスク再生装置
JPH1069678A (ja) 光磁気記録媒体、並びにその再生装置及び再生方法
JPH10124909A (ja) 光ピックアップ装置
JP2002157759A (ja) 光ヘッド、光検出素子、及び光記録媒体記録再生装置
JPH10124887A (ja) 受発光素子、光学ピックアップ装置及びフォーカスエラー信号検出方法
CN101140770A (zh) 光拾取器及光盘装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070622