JPWO2007105767A1 - 光ヘッド装置 - Google Patents

光ヘッド装置 Download PDF

Info

Publication number
JPWO2007105767A1
JPWO2007105767A1 JP2008505191A JP2008505191A JPWO2007105767A1 JP WO2007105767 A1 JPWO2007105767 A1 JP WO2007105767A1 JP 2008505191 A JP2008505191 A JP 2008505191A JP 2008505191 A JP2008505191 A JP 2008505191A JP WO2007105767 A1 JPWO2007105767 A1 JP WO2007105767A1
Authority
JP
Japan
Prior art keywords
light
optical
polarization
regions
depolarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008505191A
Other languages
English (en)
Inventor
村田 浩一
浩一 村田
大井 好晴
好晴 大井
幸宏 垰
幸宏 垰
浩司 宮坂
浩司 宮坂
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006072671 priority Critical
Priority to JP2006072671 priority
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to PCT/JP2007/055123 priority patent/WO2007105767A1/ja
Publication of JPWO2007105767A1 publication Critical patent/JPWO2007105767A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Abstract

本発明は、光源と、前記光源からの出射光を光ディスクの情報記録面上に集光させる対物レンズと、集光されて光ディスクの情報記録面によって反射された戻り光を、前記出射光の光路とは異なる光路に偏向分離するビームスプリッタと、偏向分離された前記戻り光を検出する光検出器とを備える光ヘッド装置であって、前記ビームスプリッタと前記光検出器との間の光路中に、入射した戻り光を、偏光度を低下させて透過させる偏光解消素子が設置されている光ヘッド装置を提供する。

Description

本発明は、例えばCD、DVD等の光記録媒体(以下「光ディスク」という。)、特に複数層の情報記録層を有する複層光ディスクに対して記録再生を行う必要のある光ヘッド装置に関する。

光ディスクには、情報記録層が単層の単層光ディスクと、複数層ある複層光ディスクとがある。例えば2層の記録層を有する2層光ディスクに対して情報の記録再生を行うとき、光検出器に戻る戻り光は、光源からの出射光を集光させた情報記録層により反射された光のみならず、隣接した情報記録層により反射された光の影響を受ける。複層光ディスクの記録再生をおこなう光ヘッド装置では、このような層間クロストークがサーボ信号に影響を与えないような構成にする必要がある。なお、本明細書で用いる「記録再生」という文言は、光ディスクに対する記録若しくは再生、又は、記録及び再生を総称するものである。

従来の複層光ディスクの記録再生をおこなう光ヘッド装置における2層光ディスク再生時の光路の模式図を図17に示す。2層光ディスクの光入射面から近い層をL1層、遠い層をL2層とすると、L1層の再生時に光検出器に受光される光L11に対し、L2層で反射された光L12は、その焦点が光L11より前方に位置する。一方、L2層の再生時に光検出器に受光される光L22に対し、L1層で反射された光L21は、その焦点が光L22より後方に位置する。

L1層の再生時においてL1層からの戻り光は、回折素子で回折された0次回折光、±1次回折光がそれぞれ光検出器の検出面上に集光される。L2層より反射された戻り光は、ビーム径が大きく光密度は低いものの光検出器の検出面上に迷光となって照射されて、L1層からの戻り光と光検出器上で干渉を生じる。情報記録層の層間隔や光源波長の変化によって光の干渉条件が変化すると、信号強度が変化して読み取り性能が低下する問題を引き起こす。

この対策として、例えば特許文献1に示すような光ヘッド装置が提案されている。これは、図18に示すようなホログラム素子を光束中に配置し、光ディスクからの戻り光の一部を回折して、サブビームの光検出器に照射される迷光を取り除くものである。

特開2005−203090号公報

しかしながら、特許文献1に示された構成では、L2層からの迷光のみならず、本来情報を読み出したいL1層からの光もホログラム素子で回折することになり、光検出器に入る信号光強度も低下してしまうという問題があった。

本発明は、従来技術のかかる問題を解決するためになされたものであり、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができる光ヘッド装置を提供することを目的とする。

(1)本発明の光ヘッド装置は、光源と、前記光源からの出射光を光ディスクの情報記録面上に集光させる対物レンズと、集光されて光ディスクの情報記録面によって反射された戻り光を前記出射光の光路とは異なる光路に偏向分離するビームスプリッタと、偏向分離された前記戻り光を検出する光検出器とを備える光ヘッド装置であって、前記ビームスプリッタと前記光検出器との間の光路中に、入射した戻り光を、偏光度を低下させて透過させる偏光解消素子が設置されている構成を有している。

この構成により、光源から光ディスクへ照射される光源光の偏光度を低下させて光ディスクへの集光特性を低下させることなく、光ディスクからの戻り光が光検出器上に照射されて検出されるときの偏光度を低下させることができる。その結果、複層光ディスクに対して読み取りまたは書き込みをおこなうときに、光検出器上において、複層ディスクのそれぞれの層からの戻り光の偏光度を低下させて、それらの光の干渉性を低減させることができる。それにより、複層ディスクの層間隔の変化や光源光波長の変化によって、読み取りまたは書き込みをおこなう自層および他層からの光の干渉条件が変化しても、信号強度が変化して読み取り性能が低下することが抑制できて、良好な特性で複層光ディスクを記録再生することができる。

(2)本発明の光ヘッド装置は、(1)の態様において、前記偏光解消素子が複屈折材料からなる複屈折層を有していて、前記偏光解消素子に入射した戻り光が前記偏光解消素子の素子面上の位置により異なる偏光状態とされて透過されるように、前記複屈折層の位相差および光学軸のいずれか一方又は両方が前記素子面上の位置により異なる構成を有していることが好ましい。

光検出器上の同じ位置に照射される光ディスクの各層からの戻り光は、フォーカス状態が互いに異なるので、偏光解消素子上では異なる位置を透過している。この構成により、本発明の光ヘッド装置は、偏光解消素子の素子面を透過する位置により互いに異なる偏光状態として透過させるので、光検出器上におけるそれぞれの層からの戻り光の干渉を低減することができる。

(3)本発明の光ヘッド装置は、(1)または(2)の態様において、前記偏光解消素子は、透過する光の偏光度が0.5以下となるよう前記偏光状態を変化させる構成を有していることが好ましい。

この構成により、光検出器上における、複層ディスクのそれぞれの層からの戻り光の干渉性をより低減することができる。さらに、偏光度を0.25以下、さらに概ねゼロすなわち偏光していない状態とすることで、より干渉性を低減できる。干渉性を低減すると、複層ディスクの層間隔の変化や光源波長の変化に対する、信号の強度変化を抑えて、読み取り性能の低下を抑制することができて好ましい。

(4)本発明の光ヘッド装置は、(2)または(3)の態様において、前記光源光が入射される入射光束径内の前記複屈折層が、複数の領域に分割されていて、隣接する領域を透過する光の偏光状態が互いに異なっている構成を有していることが好ましい。

この構成により、光ディスクの各層からの戻り光が偏光解消素子に入射される位置ごとに、透過する光の偏光状態を変えることができるので、光検出器上におけるそれぞれの層からの戻り光の干渉を効果的に低減することができる。

(5)本発明の光ヘッド装置は、(4)の態様において、前記入射光束径内の前記複屈折層が、前記偏光解消素子の光軸を中心とした放射状に複数の領域に分割され、前記領域を透過した光が、前記偏光解消素子の光軸を中心に360度/j(jは2以上の整数)の回転周期で同じ偏光状態となっている構成を有していることが好ましい。

この構成により、入射光束径内の一部だけの光束に対しても偏光度Vが低減されて干渉性が低減されるので好ましい。また、4分割や2分割された受光エリアをもつ光検出器を用いた場合に、それぞれの受光エリアに異なる偏光状態に変換された戻り光が複数入射されるようになって、読み取り特性が向上される。

(6)本発明の光ヘッド装置は、(4)の態様において、前記領域が、前記入射光束径内の前記複屈折層が光軸を中心とした同心円状に分割されてなる構成を有していることが好ましい。

この構成により、入射光が偏心しても偏光度Vの変動が小さく抑えられて、良好な読み取り特性が維持される。

(7)本発明の光ヘッド装置は、(4)、(5)または(6)の態様において、前記光源光が入射される前記偏光解消素子の入射光束径内の前記複屈折層が複数の領域に分割され、その領域ごとに透過する光の偏光状態が異なっており、隣接する2つの領域を透過する光の偏光状態を基準化ストークスパラメータ(S0k=1,S1k,S2k,S3k)を用いてそれぞれ(1,S10,S20,S30)及び(1,S11,S21,S31)で表すと、これらのパラメータの間に式(1):
0<(S10−S11+(S20−S21
+(S30−S31≦3 (1)
の関係が成立している構成を有していることが好ましい。

複数の領域に分割された偏光解消素子を透過した光が、隣り合う領域間での偏光状態の差γが大きいと、その領域境界での光の回折が生じ、光の利用効率が低下する。隣り合う領域間の偏光状態の差をγ(=(S10−S11+(S20−S21+(S30−S31)とするとき、0<γ≦3とすることで、隣り合う領域間で生じる回折を抑制でき好ましい。

例えば、γ=4の場合のようにγが非常に大きいときは、回折効率が40%(±1次光の和)に達し、回折しない透過光の効率が50%程度と減少してしまい、透過率の低下が大きい。これに対して、分割する領域の数を増やして、隣り合う領域間の位相差または光学軸の変化を小さくして、隣り合う領域間の偏光状態の差γを小さくすることが好ましく、γ=3では、回折しない透過光の効率が75%以上となり、透過率の低下は実用上問題の無いレベルとなるので好ましい。さらに、γ=2では、回折しない透過光の効率が85%以上となり、透過率の低下はより小さくなり実用上問題の無いレベルとなるのでより好ましい。さらに好ましくは、γ=1.5、さらにγ≦1とすることで、回折ロスがより低減できて好ましい。

(8)本発明の光ヘッド装置は、(4)、(5)または(6)の態様において、前記複屈折層が4つ以上の領域数に分割されていて、そのうち概ね90度の位置の関係にある2つの領域を透過する光の偏光状態を基準化ストークスパラメータ(S0k=1,S1k,S2k,S3k)を用いてそれぞれ(1,S13,S23,S33)及び(1,S14,S24,S34)で表すと、これらのパラメータの間に式(2):
2≦(S13−S14+(S23−S24
+(S33−S34≦4 (2)
の関係が成立している構成を有していることが好ましい。

概ね90度の位置の関係にある2つの領域を透過する光の偏光状態の差γ=(S13−S14+(S23−S24+(S33−S34が、式(2)の関係を満足するように構成されていると、フォーカスサーボ方式として非点収差法を用いた光ヘッド装置において、複層光ディスクに対して読み取りまたは書き込みをおこなうときに、読み取りまたは書き込みをおこなう自層からの光と、自層以外の他層からの迷光とが、光検出器の検出面上に、光軸を中心に90度回転させて集光させるとともに、大きく異なる偏光状態で集光されるようにすることができて、それにより、干渉性を低減することができる。尚、本明細書において、“概ね90度”とは、67.5度〜112.5度であることを意味する。
さらに、前記複屈折層が8つ以上の領域に分割されていて、概ね90度の位置の関係にある2つの領域を透過する光の偏光状態が式(2)の関係を満たすとともに、隣り合う領域を透過する光の偏光状態の差γが式(1)の関係を満たすことがより好ましい。

(9)本発明の光ヘッド装置は、(2)、(3)または(4)の態様において、前記光源光が入射される前記偏光解消素子の入射光束径内の前記複屈折層が、複数の領域からなり、それぞれの領域は、中心間の距離が30μm以上かつ3mm以下の間隔であって、それぞれの領域内で光学軸の方向が放射状または同心円状である構成を有していることが好ましい。

この構成により、偏光解消素子の中心から偏心して入射光が入射された時でも、非常に小さい偏光度の光が透過されるので、光ヘッド装置の組立て調整が容易になり、また、対物レンズシフト特性を向上することができる。

(10)本発明の光ヘッド装置は、(2)、(3)または(4)の態様において、前記複屈折層の位相差の大きさが一定で光学軸の方向が光軸を中心とする放射状または同心円状とされている構成を有していることが好ましい。

この構成により、複層光ディスクの情報記録層から戻り光が、光検出器に対して、それぞれの受光エリアの中心を中心として90度回転対称な偏光状態で入射されて、それぞれの受光領域内での偏光度Vが0に近づくため、干渉性が低減されて、良好な読み取り特性が実現される。
この場合、偏光解消素子の光軸を中心として概ね90度の位置の関係にある2つの領域を透過する光の偏光状態を基準化ストークスパラメータを用いてそれぞれ(1,S13,S23,S33)及び(1,S14,S24,S34)で表すと、これらのパラメータの間に式(2):
2≦(S13−S14+(S23−S24
+(S33−S34≦4 (2)
の関係を成立していることが、(8)の態様の場合と同様の理由により好ましい。

(11)本発明の光ヘッド装置は、(4)〜(10)のいずれかの態様において、前記複屈折層の位相差の大きさが入射光波長λの1/2の奇数倍である構成を有していることが好ましい。

この構成により、透過光の偏光度を効果的に低減させることができる。前記位相差は入射光波長λの1/2とすることがより好ましい。

(12)本発明の光ヘッド装置は、(5)の態様において、前記複屈折層が90度ずつに分割された4つの領域からなり、隣接する前記領域の光学軸が互いに90度の角度をなすとともに、入射される光源光の偏光方向と45度の角度をなすようにされた構成を有していることが好ましい。

この構成により、自層からの戻り光が他層からの戻り光と干渉する層間の光干渉が低減され、クロストークが低減される。

(13)本発明の光ヘッド装置は、(4)の態様において、前記入射光束径内の前記複屈折層が、前記光軸を中心に配置された第1の領域と、他の部分からなる第2の領域とに分割されてなる構成を有していることが好ましい。

この構成により、作製が容易な簡単な構成の偏光解消素子により、偏光解消素子を透過する光の偏光度Vを低減させ、メインビームと迷光との干渉性を低下させることができる。

(14)本発明の光ヘッド装置は、(4)の態様において、前記入射光束径内の前記複屈折層が、前記光軸を中心に対称に配置された第1および第2の領域と、他の部分からなる第3の領域とに分割されてなる構成を有していることが好ましい。

この構成により、光検出器の受光エリアにおいて、自層からのサブビームの戻り光と、他層からの迷光との、偏光状態を大きく違えることができて、干渉が低減され、クロストークが低減される。

本発明は、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができるという効果を有する光ヘッド装置を提供することができるものである。

本発明の一実施の形態に係る光ヘッド装置の概念的な構成を示す図 本発明の一実施の形態に係る光ヘッド装置の光検出器が受光する集光スポットの一例を示す模式図 (a)本発明に係る偏光解消素子の第1の構成例を模式的に示す平面図 (b)本発明に係る偏光解消素子の第1の構成例において、透過した光の偏光状態を模式的に示す平面図 (a)本発明に係る偏光解消素子の第2の構成例を模式的に示す平面図 (b)本発明に係る偏光解消素子の第2の構成例において、透過した光の偏光状態を模式的に示す平面図 (a)本発明に係る偏光解消素子の第3の構成例を模式的に示す平面図 (b)図5(a)の構成例の偏光解消素子を透過した光の偏光状態を模式的に示す平面図 本発明に係る偏光解消素子の第3の構成例において24領域に分割した構成の例を模式的に示す平面図 (a)本発明に係る偏光解消素子の第3の構成例において4領域に分割した構成の例を模式的に示す平面図 (b)図7(a)の構成例の偏光解消素子を透過した光の偏光状態を模式的に示す平面図 図7の偏光解消素子と組み合わせて用いることが好ましい偏光選択素子の構成例を模式的に示す平面図 (a)本発明に係る偏光解消素子の第4の構成例を模式的に示す平面図 (b)本発明に係る偏光解消素子の第3の構成例において、透過した光の偏光状態を模式的に示す平面図 本発明に係る偏光解消素子の第5の構成例を模式的に示す平面図 (b)第5の構成例における、隣接する正6角形の領域を拡大して示す模式的平面図 本発明に係る偏光解消素子の第6の構成例を模式的に示す平面図 本発明に係る偏光解消素子の第7の構成例を模式的に示す平面図 本発明に係る偏光解消素子の第7の構成例の別の形態を模式的に示す平面図 本発明に係る偏光解消素子の第8の構成例を模式的に示す平面図 本発明に係る偏光解消素子の第9の構成例を模式的に示す平面図 本発明に係る偏光解消素子において、複屈折媒質層として高分子液晶を用いて同心円状の位相差の大きさの分布を形成した場合の模式的な断面図 二層光ディスク再生時の光路の模式図 光ディスクからの戻り光の一部を回折する従来のホログラム素子の模式図

符号の説明

1 光源
2 回折素子
3 コリメータレンズ
4 ビームスプリッタ
5 対物レンズ
6 光ディスク
6a 情報記録面
7 コリメータレンズ
8 偏光解消素子
9 光検出器
11、12、13 受光エリア
15、17 サブビームの集光スポット
16 メインビームの集光スポット
18 迷光となる戻り光の集光スポット
20 偏光方向を示す矢印
21〜28、131〜138、171〜174,181〜184 分割された領域
31、32、121〜123、151〜153、161〜163 分割された領域
34、35 それぞれの領域を透過した光の偏光方向を示す矢印
41〜45 分割された領域
51、53 基板
52 高分子液晶層
54 透明媒質層
60 入射光束径
100 光ヘッド装置

図1は、本実施の形態に係る光ヘッド装置100の概念的な構成を示す図である。図1において、光ヘッド装置100は、所定の波長の光束を出射する光源1と、光源1が出射した光束の一部を回折させてメインビームと2つのサブビームの3つのビームを生成する回折素子2と、入射された光束を略平行光に変換するコリメータレンズ3と、コリメータレンズ3から出射された上記3つのビームを透過させると共に、光ディスク6の情報記録面6aにより反射された3つのビームの戻り光を偏向分離して光検出器9に導くビームスプリッタ4と、上記3つのビームを光ディスク6の情報記録面6aに集光する対物レンズ5と、上記3つのビームの戻り光を光検出器9に集光するコリメータレンズ7と、透過させる光の偏光状態を変化させ偏光度Vを低下させる偏光解消素子8と、上記3つのビームの戻り光を検出する光検出器9とを備える。

光源1により出射された光束は、その一部が回折素子2で回折されてメインビームと2つのサブビームの3つのビームにされ、コリメータレンズ3、ビームスプリッタ4をこの順で透過して、対物レンズ5により光ディスク6の所望の情報記録面6aに集光される。光ディスク6の情報記録面6aに集光された上記の3つのビームは、それぞれ、情報記録面6aで反射され、対物レンズ5を透過してビームスプリッタ4で反射され、コリメータレンズ7から偏光解消素子8を介して光検出器9に入射される。

光検出器9では、光ディスク6の所望の情報記録面6aに記録された情報の読み取り信号、フォーカスエラー信号及びトラッキングエラー信号が読み取られ出力信号が生成される。なお、光ヘッド装置100は、上記のフォーカスエラー信号に基づいてレンズを光軸方向に制御する機構(フォーカスサーボ)と、上記のトラッキングエラー信号に基づいてレンズを光軸にほぼ垂直な方向に制御する機構(トラッキングサーボ)とを備えるが、図1に示す構成図では省略されている。

光源1は、例えば、波長650nm近傍の波長かつ直線偏光の発散光束を出射する半導体レーザで構成される。なお、本発明で用いられる光源1の波長は、波長650nm近傍に必ずしも限定されず、例えば400nm近傍や780nm近傍、その他の波長であってもよい。ここで、400nm近傍、波長650nm近傍及び780nm近傍の波長とは、それぞれ、385nm〜430nm、630nm〜690nm及び760nm〜800nmの範囲にある波長を意味する。

また、光源1は、2つ又は3つの波長の光束を出射する構成としてもよい。かかる構成の光源としては、2個又は3個の半導体レーザチップが同一基板上にマウントされた、所謂ハイブリッド型の2波長レーザ光源又は3波長レーザ光源や、互いに異なる波長を発光する2個又は3個の発光点を持ったモノリシック型の2波長レーザ光源又は3波長レーザ光源を挙げることができる。

偏光解消素子8は、複屈折性を示す複屈折材料からなる複屈折層を備える。複屈折材料としては、例えば、水晶やLiNbO(ニオブ酸リチウム)のような複屈折性を示す単結晶、複屈折性を示す樹脂フィルムや樹脂の射出成型品等を用いることができる。あるいは、基板上に設けた層や基板表面を加工して、本願素子を用いる光の波長と同程度またはさらに短い周期の微細な周期構造を形成して得られる構造複屈折材料を用いることもできる。構造複屈折材料を用いると、光学軸の方向や位相差の大きさを自由に設計できるので好ましい。また、複屈折材料として液晶を高分子化した高分子液晶を用いると、液晶の配向方向を制御することで遅相軸方向を容易にまた自由に設定できるので好ましい。なお、図1においては、コリメータレンズ7と光検出器9との間に偏光解消素子8を設置した例を示しているが、本発明はこれに限定されるものではなく、ビームスプリッタ4とコリメータレンズ7との間に偏光解消素子8を設置してもよい。

多層光ディスクの情報記録層に記録された情報を読み取るときの、光検出器9の受光面上における戻り光の集光状態について図を用いて説明する。図2は、光検出器9の受光面上における戻り光の集光状態の一例を模式的に示したものである。

光検出器9の受光面は、複数の受光エリア11、12及び13を有し、光ディスクの所望の情報記録層により反射された戻り光が、その受光エリア内に集光されて集光スポット15、16及び17を形成している。集光スポット16は回折素子2から出射された0次回折光すなわちメインビームによる集光スポットであり、集光スポット15及び17は、±1次回折光すなわちサブビームによる集光スポットである。また、集光スポット18は、所望の情報記録層以外の情報記録層により反射されて生じた迷光による集光スポットを示し、光検出器9の受光面上でデフォーカス状態となっており、図2に示すような大きなスポット径を有する。

迷光の集光スポット18は、受光エリア11、12及び13に重なっているため、従来の光ヘッド装置では集光スポット15、16及び17の光と干渉してノイズを発生させる問題があった。特に、サブビームは、メインビームと比べて光量が10分の1以下と小さいので、迷光との干渉によるノイズの影響が特に大きくトラッキング性能の低下を招いていた。また、多層光ディスクの情報記録層間の間隔や光源の出射波長が変動すると、干渉条件が変化してさらにノイズが大きくなって、特に問題となっていた。

それに対して、本願発明に係る光ヘッド装置100では、偏光解消素子8を用いることで、以下述べるように光検出器9上に集光されるメインビームやサブビームの戻り光と、集光スポット18となる迷光とが共に偏光度が低下されて干渉が抑制される。それにより、本発明に係る光ヘッド装置100は、光ディスクの記録層間の間隔や光源波長の変動による信号光量変化が小さく抑えられて、記録再生特性を向上させることができる。以下、本願発明に係る光ヘッド装置100に用いられる偏光解消素子8について7つの構成例を挙げ、図を用いて具体的に説明する。

偏光解消素子8の第1の構成例は、図3(a)に示すように、複屈折性を示す複屈折媒質を含む前記複屈折層が、光軸を中心とした8つの放射状に分割されてなる領域21〜28を有している。領域21〜28は、その光学軸の向きが図中矢印の方向で示すように領域ごとに異なっている。ここで、複屈折媒質の位相差は、半導体レーザの波長の1/2になるようにする。

図3(a)の構成の偏光解消素子8に、図3(b)の矢印20で示した偏光方向の直線偏光を入射したときの、透過光の偏光方向を図3(b)に示す。偏光解消素子8の各領域21〜28をそれぞれ透過した透過光は、光軸を中心とした放射状に8つに分割された領域毎に偏光方向が異なる直線偏光であって、複数の偏光方向を持った光となるので、偏光解消素子8を透過した光束全体で見ると偏光度Vが低下する。したがって、偏光解消素子8の第1の構成例では、領域21〜28をそれぞれ透過した光の光量が等しい場合には偏光度Vは0となる。

ここで、光の偏光状態を表すために、ストークスパラメータを用いて説明する。以下、ストークスパラメータについて簡単に説明するが、ストークスパラメータの詳細な説明は、例えば培風館発行「応用光学2」第5−3章「偏光の表記」に記されている。

(x,y,z)座標系においてz方向に進む光を考えると、この光のx、y成分のEx、Eyは次式で表わされる。

=A・exp{i(ωt−k+δ)} (3)
=A・exp{i(ωt−k+δ)} (4)

ここで、ωは角周波数、kは波数ベクトル、δ、δはそれぞれx、y方向の光の位相、A、Aはそれぞれx、y方向の電場振幅を示す。

偏光状態は4つのパラメータであるストークスパラメータ(S,S,S,S)によって表すことができる。

=<A >+<A > (5)
=<A >−<A > (6)
=2<A・A・cosδ> (7)
=2<A・A・sinδ> (8)

ここで、δ=δ−δとし、記号"< >"は十分に長い時間の平均値を示す。

は光強度を表すパラメータなので、S=1で規格化した基準化ストークスパラメータによって、光の偏光状態を表すことができる。つまり、基準化ストークスパラメータは、次のように表される。

=1 (9)
={<A >−<A >}/{<A >+<A >} (10)
=2<A・A・cosδ>/{<A >+<A >} (11)
=2<A・A・sinδ>/{<A >+<A >} (12)

また、偏光度Vは次式で表すことができる。

V=(S +S +S 1/2/S (13)

ここで、図3(b)に示された領域21〜28を透過した光の偏光状態を基準化ストークスパラメータで表記すると、領域21及び25を透過した光は、(S,S,S,S)=(1,1,0,0)、領域22及び26を透過した光は、(S,S,S,S)=(1,0,1,0)、領域23及び27を透過した光は、(S,S,S,S)=(1,−1,0,0)、領域24及び28を透過した光は、(S,S,S,S)=(1,0,−1,0)と表すことができ、これらの光を足し合わせた光束の基準化ストークスパラメータは(S,S,S,S)=(1,0,0,0)となり、偏光度Vは0となる。

また、例えば隣り合う領域21、22の偏光状態を(S00,S10,S20,S30)、(S01,S11,S21,S31)で表すと、それぞれ(1,1,0,0)、(1,0,1,0)となる。この領域の偏光状態の差をγ(=(S10−S11+(S20−S21+(S30−S31)で評価すると、次式が得られる。

γ=(S10−S11+(S20−S21+(S30−S31
=(1−0)+(0−1)+(0−0)
=2 (14)

したがって、偏光解消素子8の第1の構成例によれば、γ=2とすることにより、領域間の偏光状態の差による回折を小さく抑えることができるので好ましい。また、本構成例の偏光解消素子8は、透過光が各領域において図3(b)に示した偏光状態で出射されればよく、偏光解消素子8の各領域の位相差および光学軸の方向の構成は、図3(a)の構成に限定されない。

また、本構成例の偏光解消素子8から出射された透過光は、光軸を中心に180度(j=2)回転対称な偏光状態となっている。

偏光解消素子8の第1の構成例の別の態様を図4(a)、(b)に模式的に示す。この構成例の偏光解消素子8は、複屈折層が光軸を中心とした放射状に8つに分割されてなる領域21〜28における複屈折層が、領域ごとに異なる位相差の大きさを有し、光学軸の向きは等しくしたものである。

すなわち、偏光解消素子8の第2の構成は、例えば、領域21と25との位相差を0、領域22と28との位相差をλ/4(λは光源1が出射する光の波長)、領域23と27との位相差をλ/2、領域24と26との位相差を3λ/4とする。この偏光解消素子8に対して矢印20で示した偏光方向の直線偏光を入射させると、透過光の偏光状態は図4(b)に示すように、領域により偏光方向が異なる直線偏光と回転方向が異なる円偏光となって光軸を中心とした放射状に8つに分割された領域毎に異なる偏光状態となる。

この透過光を領域ごとに基準化ストークスパラメータを表記すると、領域21及び25を透過した光は、(S,S,S,S)=(1,1,0,0)、領域22及び28を透過した光は、(S,S,S,S)=(1,0,0,1)、領域23及び27を透過した光は、(S,S,S,S)=(1,−1,0,0)、領域24及び26を透過した光は、(S,S,S,S)=(1,0,0,−1)と表すことができ、これらの光を足し合わせた光束の基準化ストークスパラメータは(S,S,S,S)=(1,0,0,0)となって偏光度Vは0となり、隣り合う領域の偏光状態の差γは2となる。また、光軸を中心として90度の位置の関係にある領域、例えば領域21、25と領域23、27の偏光状態の差γは2となる。

したがって、偏光解消素子8の第2の構成例によれば、偏光解消素子8に設けられた領域間で光学軸の向きをそろえることが可能となり、領域間の偏光状態の差による回折を小さく抑えることができるので好ましい。また、偏光解消素子8の第2の構成例のものは、製作も容易であり好ましい。また、本構成例の偏光解消素子8は、透過光が各領域において図4(b)に示した偏光状態で出射されればよく、偏光解消素子8の各領域の位相差および光学軸の方向の構成は、図4(a)の構成に限定されない。

偏光解消素子8の第1の構成例のさらに別の態様を図5に示す。この構成例の偏光解消素子8は、図5(a)に示すように、複屈折層が光軸を中心とした放射状に8つに分割されてなる8つの領域131〜138のうち、ひとつおきの4つの領域131,133,135,137は位相差が0(ゼロ)であって、他のひとつおきの4つの領域は、ともに矢印20で示す偏光方向の入射光に対して光学軸が45度の角度をなし、位相差がλ/2とされている。本構成例の偏光解消素子8に入射した上述の直線偏光の入射光は、図5(b)に示すように90度(j=4)の回転周期の領域で同じ偏光状態とされ出射される。

偏光解消素子8を、光軸を中心とした放射状の領域に分割する分割数を増やして、透過光が同じ偏光状態となる領域の回転対称の角度360度/jを小さくすると、透過光束中の部分的な光束に対しても偏光度Vを小さくすることができて、干渉性をさらに低減できる。偏光解消素子8を光ヘッド装置に用いる場合、光検出器の受光エリア11,12,13は図2に示した様に一般に2分割ないし4分割されているので、これらの受光エリア内での偏光度Vを下げてより干渉性を低減させるためには、jは4以上が好ましい。一方、jが40を超えると、偏光解消素子からの透過光束中の偏光状態の変化が急峻になり、光の回折現象が生じやすくなって好ましくない。そのため、jは4以上40以下が好ましく、さらに好ましくは4以上12以下である。

図6に示した偏光解消素子は、光軸を中心とした放射状に24分割された領域を有していて、前記領域は、ともに光学軸の方向が矢印20で示す入射光の偏光方向に対して光学軸が45度の角度とされ、隣り合う領域との位相差の差がλ/4とされている。図5の例では透過光の偏光状態が90度回転対称(j=4)であり、また隣り合う領域との位相差の差がλ/2であって、隣り合う領域間の偏光状態の差γが4であるのに対して、図6の例では透過光の偏光状態が60度回転対称(j=6)であり、また隣り合う領域との位相差の差がλ/4であって、隣り合う領域間の偏光状態の差γが2であるので、領域間での回折がより低減されて好ましい。領域間での回折をより低減するためには、隣り合う領域間の位相差の差を小さくすることが好ましい。

図7の偏光解消素子8は偏光解消素子8の第1の構成例のさらに別の態様であって、複屈折材料からなる複屈折層が光軸を中心とした放射状に4つの領域171〜174に分割されていて、隣接する領域の光学軸は互いに90度の角度をなすとともに、矢印20で示した入射光の偏光方向と45度の角度をなすように構成されている。また、それぞれの領域の位相差の大きさは入射光波長の1/4倍とされている。図7(a)に平面図を示した構成例では、光学軸の方向はそれぞれの領域内で同一方向であって前記光軸に対して概ね放射状とされているが、概ね同心円状すなわち図7(a)の光学軸方向と直交する方向とすることもできる。
また、前記4つの領域171〜174の領域間にさらに領域を設けることもできる。かかる領域を設けると、領域171〜174の間での偏光状態の差γを小さくして、領域境界での光の回折を抑制できて好ましい。

この偏光解消素子8を透過した透過光の偏光状態は、図7(b)に示したように、隣り合う領域からの透過光は左右の反対周りの円偏光となり、180度(j=2)の回転周期の領域で同じ偏光状態とされ出射される。また、90度の位置の関係にある2つの領域を透過する光の偏光状態の差γが4となるとともに、偏光解消素子8を透過した光を足し合わせた光束は偏光度Vが0(ゼロ)となり、隣り合う領域の偏光状態の差γは4となり、干渉性が十分に抑えられる。とくに、複層光ディスクを読み取り・書き込みする光ヘッド装置に用いると、自層からの戻り光が他層からの戻り光と干渉する層間光干渉を低減できて好ましい。
図1の光ヘッド装置の偏光解消素子8として図7の構成の偏光解消素子8を用い、フォーカスサーボ方式として非点収差法を用いる場合には、非点収差の焦線の方向と偏光解消素子の分割領域の分割方向を概ね平行に選ぶことで、偏光解消素子8の各領域を透過した、複層光ディスクの所望の情報記録層(自層)からの戻り光と、他層からの光とを、光検出器上で位置が90度回転して入射される様にすることができる。このとき、光検出器上の各位置では、自層からの光と他層からの光との偏光状態の差γは4となり、クロストークが低減される。これは、トラッキング方式としてDPP方式などの3ビーム方式を用いたときのメインビームや、PushPull方式などの1ビーム方式を用いたときのメインビームのクロストーク低減に効果が大きい。

図1の光ヘッド装置の偏光解消素子8として図7の構成の偏光解消素子8を用いる場合は、偏光解消素子8と光検出器9の間の光路中に、さらに不図示の偏光選択素子180を配置することが好ましい。偏光選択素子180は図8の平面図に示したように、光軸を中心とした放射状に分割された4つの領域181〜184を有していて、分割された領域ごとに異なる偏光選択性を有し、偏光選択素子180に入射された入射光をその偏光状態によって、異なる透過率で透過させるか、異なる光路に出射するように構成されている。

このような偏光選択素子180としては、分割された領域ごとに、液晶分子のねじれ方向が異なるコレステリック液晶で構成されたコレステリック液晶ミラーが例示される。図8の各領域181〜184では、図に示した回転方向と反対の回転方向の円偏光を反射し、同じ回転方向の円偏光を透過させる。また、領域ごとに同様の偏光選択性をもって異なる回折効率で入射光を回折させる偏光回折格子を用いても良い。

偏光解消素子8と偏光選択素子180とは、それぞれの4分割した領域の位置を合わせて光路中に配置することが好ましく、また、偏子選択素子180は、できるだけ光検出器9の近くに配置することが好ましい。このように構成すると、偏光解消素子8の各領域を透過した、複層光ディスクの所望の情報記録層(自層)からの戻り光を、偏光選択素子180の対応する偏光選択性を有する領域で透過させることができる。他層からの光は、非点収差により自層からの光とは位置が90度回転して偏光選択素子180上に入射される。そのため、他層からの光は偏光選択素子180の各領域で反射されて光検出器への到達量が著しく低減され、クロストークがさらに低減される。

偏光解消素子8の第2の構成例は、前述の構成例のように複数の領域に分割する代わりに、素子面内の位置により光学軸の向きや位相差の量が連続的に変化する構成を有する。図9(a)に示す本構成例では、前記光源光が入射される入射光束径内の前記複屈折層の光学軸の方向が光軸を中心とする放射状とされ、位相差が入射光波長λの1/2倍とされた構成を有する。

偏光解消素子8への入射光の偏光方向が図9(b)の矢印20で示した偏光方向である場合、透過する光の偏光方向は図9(b)に示された偏光状態となる。すなわち、偏光解消素子8を透過した光は個別には偏光しているものの、透過した光束全体で見ると、複数の偏光方向を持った光となり、偏光度Vが低下されて概ね0(ゼロ)となる。本構成例では、透過した光が素子面内の位置による偏光状態の変化が連続的であるため、領域間での偏光状態の差による回折がほとんど生じないので好ましい。なお、図9(a)及び(b)において、各矢印で示した偏光状態は、各矢印に付した丸印の位置における偏光状態を表している。複屈折媒質の位相差はλ/2の奇数倍としてもよく、λ/2とすることがより好ましい。また、本構成例の偏光解消素子の光学軸の方向は、上述のように放射状とする代わりに同心円状としても同様の効果が得られて好ましい。

偏光解消素子8の第3の構成例は、光源光が入射される入射光束径60内の複屈折層が複数の領域からなり、それぞれの領域内の複屈折材料の光学軸の方向が放射状である構成を有する。図10に示した本構成例の偏光解消素子8は、図10(a)の平面図のように、光源光が入射される入射光束径内の複屈折層が、正6角形で蜂の巣配置された複数の領域に分割されている。また、隣接する正6角形の領域を拡大して示した図10(b)のように、各領域内では、矢印で表わした光学軸の方向は各領域の中心に対して放射状とされ、複屈折媒質の位相差は入射光波長λの1/2倍とされている。すなわち、本構成例の偏光解消素子は、第2の構成例の偏光解消素子8における光学軸の向きが放射状とされた入射光束径内の複屈折層(以下、放射状の光学軸の領域という)が、複屈折層の入射光束径中に複数形成された構成を有する。隣接する放射状の光学軸の領域は、それぞれの領域の中心間の距離を30μm以上かつ3mm以下とされる。それぞれの領域の中心間の距離は、散乱光により光量損失を防ぐためには、50μm以上が好ましい。
また、他の構成例として、光源光が入射される入射光束径60内の複屈折層が、図10に示した第3の構成例の偏光解消素子8と同様に分割されているとともに、各領域内の複屈折層は、光学軸の向きおよび位相差の大きさが一定であって、領域間で光学軸の向きおよび位相差の大きさのいずれか一方または両方が異なるように構成された偏光解消素子を挙げることができる。この構成例の偏光解消素子における、領域の形状、配置や大きさ、位相差は、第3の構成例と同様である。

単一の放射状の光学軸の領域からなる第2の構成例の場合、入射された偏光光束と偏光解消素子の中心とが一致されている時は、出射光の偏光度Vが0となるが、入射された偏光光束が偏心している時は、出射光の偏光度Vが充分に低減されないおそれがある。それに対して、本構成例の偏光解消素子8は入射光束が入射される位置への依存性が小さく、入射光束が偏心しても出射光の偏光度Vは低い値に維持される。それにより、図1の光ヘッド装置100に用いた場合に、回折素子2により生成された3ビームの内、偏光解消素子8に対して偏心して入射されるサブビームに対しても出射光の偏光度が低く維持されて、それにより光検出器9の受光面における集光スポット15および17と、デフォーカス状態の集光スポット18との干渉光の変動が有効に低減され、良好な光ディスクの記録再生特性が実現される。入射光束の入射位置に対する出射光の偏光度の変動を抑えるためには、放射状の光学軸の領域は入射光束径内に2つ以上包含されることが好ましい。

放射状の光学軸の領域の形状は、図10に示した正六角形以外に、正三角形や正方形などでもよい。また、放射状の光学軸の領域の、複屈折材料の光学軸の方向は、上述のように放射状とする代わりに同心円状としても同様の効果が得られて好ましい。

偏光解消素子8の第4の構成例は、図11に示すように、光源光が入射される入射光束径60内の複屈折層が、第1の領域31及び第2の領域32を有する。領域31は複屈折性を示す複屈折媒質を含み、その光学軸の向きが図中矢印33の方向で示したように、図中矢印30で示した入射光の偏光方向と45度の角度をなすようにし、位相差の大きさを、光源光波長λの1/2の奇数倍倍とする。領域31は位相差を示さないように構成する。

本構成の偏光解消素子8に、上述の偏光方向の直線偏光、すなわち偏光度Vが概ね1である入射光が入射されると、偏光解消素子8の領域31及び32を透過した光は、それぞれ図中矢印34及び35で示すように互いに直交した直線偏光の光となる。偏光解消素子8を透過した光束は、その透過する場所により光束の偏光状態が異なる偏光が重ね合わされるため、偏光度Vが低下する。例えば、領域31及び領域32をそれぞれ透過する光量が3:1の場合は、偏光度Vは0.5となる。領域31及び32をそれぞれ透過する光量が1:1の場合には、偏光度Vは0になり、より好ましい。

なお、図11においては、偏光解消素子8の構成例の説明を簡単にするために、領域31の形状を円形とし、領域数は2つとしたが、本発明は例示した形状及び領域数に限られるものではない。

また、領域31の形状は、例えば図2に示した光検出器9の受光エリア11、12及び13の形状の相似形あるいは包絡する形状とすることができる。また、受光エリア11、12及び13に照射される、迷光の集光スポット18を構成する光の内、受光エリア11、12及び13に到達する光の偏光を例えば図11に示す矢印34方向の偏光方向とすることができる。上記構成により、記録再生する光ディスクの記録面からの、図2に示した集光スポット15、16及び17を構成する光は、図11に示す領域31及び32のように複数の領域を透過した光束として集光される。それにより、偏光解消素子8を透過する光は、偏光度Vが低減され、メインビームと迷光との干渉性が低下されて好ましい。

偏光解消素子8の第5の構成例は、図12に示すように、分割された領域151、152及び153を有し、領域151と領域152は、偏光解消素子8の光学軸を中心に対称に配置され、領域151と領域152は、位相差が実質的に等しくされている。領域151、152の位相差と領域153の位相差とは、差を入射光波長λの1/2の奇数倍とすることが好ましい。

かかる構成としては、領域151、152の位相差をともに入射光波長λの1/2倍とし、光学軸の方向をともに入射される直線偏光の偏光方向と45度の角度をなす様にし、領域153の位相差を0とする構成が好ましく例示される。かかる構成により、領域151、152を透過した光は、入射光と直交する偏光方向の直線偏光となり、領域153を透過した光は、偏光状態が変化しないため、領域151、152を透過した光と直交する偏光方向をもつ。そのため、構成例6の場合と同様に、それぞれの領域を透過する光量を適宜設定して、透過光の偏光度Vを低下させることができる。

領域151、152からの透過光と領域153からの透過光は偏光方向が互いにほぼ直交する方向となるので、図1の光ヘッド装置100の偏光解消素子8として本構成例の偏光解消素子8を用いると、光検出器18の受光エリア11、13上には、面積が広い領域153からの透過光が支配的となる自層からのサブビームの戻り光と、領域151、152を透過した他層からの迷光とが、大きく異なる偏光状態で入射されることになり、干渉が低減され、クロストークが低減されて好ましい。

図13の構成例の偏光回折素子は、第5の構成例の別の態様であって、図12の態様の偏光回折素子における領域151、152に相当する領域161、162と、図12の構成例の偏光回折素子における領域153に相当する領域163と、の境界が、位相差が連続的あるいは階段状に変化するように構成されている。かかる構成により、領域間の境界で回折が生じるのを低減できるので、例えば領域163を透過した他層の迷光成分が、領域の境界による回折現象により受光エリア11,13に混入して生じる偏光の混ざりこみを低減できる。それにより、自層からの戻り光と他層からの戻り光との間で偏光状態の大きな違いを実現し、クロストーク改善に大きな効果が得られる。

本構成例の偏光解消素子を用いると、種々の方式のトラッキング方式を用いた複層光ディスク用光ヘッド装置においてクロストークを低減する効果が得られるが、特に3ビーム方式やDPP方式など、回折格子2により、3つのビームに分けた光を用いてトラッキングエラーを検出する方式に用いると、特に大きなクロストーク低減の効果が得られる。

偏光解消素子8の第5の構成例のさらに別の態様は、図14に示すように、分割された領域121、122及び123を有し、領域121と領域122は、偏光解消素子8の光学軸を中心に対称に配置され、領域121と領域122の領域は、図9(a)に示した第2の構成例と同様、光学軸の方向が光軸を中心とする放射状とされ、複屈折媒質の位相差が入射光波長λの1/2の奇数倍とされている。領域121と領域122の領域は、光学軸方向を上述の放射状とする代わりに、同心円状としてもよい。また、それぞれの領域121、122を放射状にさらに分割して、前記さらに分割された各領域からの透過光の偏光状態が90度の回転対称となるようにした、例えば図5や図7と同様の構成としてもよい。

本構成例の偏光解消素子8における領域121と122の位置、大きさおよび形状は、複層光ディスクを読み書きする光ヘッド装置100に用いたときに、領域121と122を透過した他層からの戻り光が、図2の光検出器上でサブビーム用の受光エリア11、13に到達するように、設計することが好ましい。このように構成することにより、サブビームの受光エリアにおける他層からの戻り光の偏光度を小さくすることができるので、特にクロストークに弱いサブビームに対する検出特性を改善することができる。

本構成例の偏光解消素子8を、複層光ディスクを読み書きする光ヘッド装置100に用いた場合、自層からの戻り光は、偏光解消素子8の領域121、122および領域123を透過し、面積が大きい領域123の透過光が支配的となる。そのため、領域123の光学軸の方向および位相差の大きさは、領域123を透過した戻り光と、領域121、122を透過した上述の戻り光との干渉性が低減されるように、設計することが好ましい。

すなわち、領域123は、光学軸の方向が光軸を中心とする放射状とされ、複屈折媒質の位相差が入射光波長をλとしたときにλ/2とされた、図9(a)に示した第4の構成例と同様の状態、としたり、さらに領域分割して、さらに分割された領域ごとに偏光状態が異なるようにしたり、してもよく、あるいは、位相差が無い状態としたり、一定の位相差と光学軸の方向をもつ状態としたりしてもよい。これらどの場合でも、光検出器上における、自層と他層からの戻り光の干渉性が低減されてクロストークを改善することができる。

偏光解消素子8の第6の構成例は、図15に示すように、同心円状に分割された領域41〜45を有し、領域41〜45をそれぞれ透過する光の偏光状態を、例えば図中の矢印の方向とした構成である。ここで、隣り合う領域における直線偏光の方向が互いに約60度異なる偏光状態となっている。また、各領域41〜45の位相差の大きさは、入射光の波長λの1/2の奇数倍とすることが好ましく、より好ましくは1/2倍である。

例えば領域41と領域42との偏光状態を基準化ストークスパラメータ(S00,S10,S20,S30)、(S01,S11,S21,S31)で表すと、それぞれ(1,1,0,0)、(1,−0.5,0.866,0)と表すことができる。この領域の偏光状態の差をγ(=(S10−S11+(S20−S21+(S30−S31)で評価すると、次式が得られる。

γ=(1+0.5)+(0−0.866)+(0−0)
=3 (15)

したがって、偏光解消素子8の第9の構成例では、γ=3とすると、分割された領域間の偏光状態の差による回折を小さく抑えることができるので好ましい。

以上、本実施の形態に係る偏光解消素子8について構成例を用いて説明したが、本発明は前述の構成例に限定されるものではない。例えば、複屈折媒質の領域の分割方法は、前述の構成の他に、例えばストライプ状、市松模様状等、さまざまな構成が可能である。また、領域ごとに位相差、光学軸のどちらか、あるいは両方を変化させることもできる。さらに、連続的に位相差や光学軸の向きを変える場合にも、面内で連続的に変化させるパターンは図9の例示に限定されない。

位相差の大きさの分布は、複屈折媒質層の厚さ方向に分布を設ける方法や、複屈折媒質層の厚さを等しくして基板面に対する光学軸方向を変化させる方法により形成することができる。位相差の分布を、複屈折媒質層として高分子液晶を用いて作成する方法について、偏光解消素子8の第7の構成例である図16を用いて説明する。図16は、素子の中心から外周へ向かって増加する同心円状の位相差の分布をもつ偏光解消素子8を、複屈折媒質層として高分子液晶を用いて形成した構成の模式的な断面図であるが、本法の適用は、かかる同心円状の分布の場合に限定されない。

図16の偏光解消素子8は、透明な第1の基板51と、素子面内の半径方向に厚さの分布を有する高分子液晶層52と、透明な第2の基板53と、第1の基板51と第2の基板53との間に挟持された透明媒質層54とを備えていて、位相差の大きさが相異なる同心円状の領域を有している。

高分子液晶層52の厚さは、例えばフォトリソグラフィ及びエッティングで所望の分布に形成することができる。また、第1の基板51に所定の凹凸をつけることで高分子液晶層52の厚さを設定することも可能である。ここで、第1、第2の基板51、53としては、例えば透明なガラスやプラスティックからなる基板を用いることが好ましい。

第1の基板51と第2の基板53との間の空間は、厚さの分布を有する高分子液晶層52の薄い部分を含めてすべて透明媒質層54により埋められている。透明媒質層54は、高分子液晶層52の常光屈折率n及び異常光屈折率nのいずれか一方の値と等しいか、又は常光屈折率nと異常光屈折率nとの間の屈折率を有する透明材料からなる。かかる透明材料層54は、たとえば等方性材料からなる充填材を、高分子液晶層52の凹部を埋めるように、透明基板51、53の間を充填して形成することができる。

透明媒質層54の屈折率nを、高分子液晶層52の常光屈折率nと異常光屈折率nのいずれかと一致させるか、常光屈折率nと異常光屈折率nの平均値(n+n)/2とすると透過した光の波面の乱れを抑えることができて一層好ましい。

次に、複屈折媒質層の厚さを等しくして基板面に対する光学軸方向を変化させる方法について説明する。基板面に対する光学軸方向は、高分子液晶層のチルト角を素子面内で分布させて形成することができる。チルト角とは、高分子液晶層52の液晶分子の長軸が基板面となす角をいう。例えば、複屈折媒質層の厚さを一定としたまま、チルト角を90度に近くすなわち液晶分子を基板51と垂直に近くすると、複屈折量Δnを小さくして位相差を小さくすることができ、チルト角を0度に近くすなわち液晶分子を基板面と平行に近くすると、複屈折量Δnを大きくして位相差を大きくすることができる。

次に、光学軸方向の制御方法について説明する。複屈折層として高分子液晶層52を用いる場合には、液晶の配向方向を決める配向膜を所望の方向(例えば同心円状)にラビングする方式や、配向膜を光配向する材料を用いて配向方向を制御する方法を用いて、光学軸方向を制御することができる。

また、高分子液晶層52と接する基板面に、所望の光学軸向きの分布に応じた微小な凹凸溝を多数形成すると、その凹凸溝の長手方向に液晶分子を配向させることができる。かかる方法はとくに、図9に示すような光学軸向きが連続的に変化する偏光解消素子8を作製する場合、好適である。

本願発明にかかる偏光解消素子は、入射光が直線偏光である場合に限定されず、偏光光であれば効果的に用いることができる。すなわち、本願発明にかかる偏光回折素子は、円偏光や楕円偏光に対しても、直線偏光の場合と同様に好ましく用いることができる。

以上のように、本実施の形態に係る光ヘッド装置100によれば、ビームスプリッタ4と光検出器9との間の光路中に、透過する光の偏光度を低下させる偏光解消素子8を設置する構成としたので、複層ディスクのそれぞれの層からの戻り光が照射される光検出器9上で、それぞれの層からの戻り光の偏光度を低下させることができ、それらの光の干渉性を低減させることができる。

したがって、本実施の形態に係る光ヘッド装置100は、複層ディスクの層間隔の変化や波長の変化による異なる層からの光の干渉条件が変化することによって信号の強度変化による、読み取り性能の低下が抑制できるので、光検出器9への信号強度を低下させることなく複層光ディスクを記録再生することができる。

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。

本出願は、2006年3月16日出願の日本特許出願(特願2006−072671)に基づくものであり、その内容はここに参照として取り込まれる。

以上のように、本発明に係る光ヘッド装置は、光検出器への信号強度を低下させることなく複層光ディスクを記録再生することができるという効果を有する光ヘッド装置等として有用である。

Claims (14)

  1. 光源と、前記光源からの出射光を光ディスクの情報記録面上に集光させる対物レンズと、集光されて光ディスクの情報記録面によって反射された戻り光を、前記出射光の光路とは異なる光路に偏向分離するビームスプリッタと、偏向分離された前記戻り光を検出する光検出器とを備える光ヘッド装置であって、前記ビームスプリッタと前記光検出器との間の光路中に、入射した戻り光を、偏光度を低下させて透過させる偏光解消素子が設置されている光ヘッド装置。
  2. 前記偏光解消素子が複屈折材料からなる複屈折層を有していて、前記偏光解消素子に入射した戻り光が、前記偏光解消素子の素子面上の位置により異なる偏光状態とされて透過されるように、前記複屈折層の位相差および光学軸のいずれか一方又は両方が前記素子面上の位置により異なる請求項1に記載の光ヘッド装置。
  3. 前記偏光解消素子は、透過する光の偏光度が0.5以下となるよう前記偏光状態を変化させる請求項1又は2記載の光ヘッド装置。
  4. 前記偏光解消素子に対して前記光源光が入射される入射光束径内の前記複屈折層が、複数の領域に分割されていて、隣接する領域を透過する光の偏光状態が互いに異なっている請求項2または3に記載の光ヘッド装置。
  5. 前記領域が、前記入射光束径内の前記複屈折層が光軸を中心とした放射状に分割されてなり、前記領域を透過した光が、前記偏光解消素子の光軸を中心に360度/j(jは2以上の整数)の回転周期で同じ偏光状態となっている請求項4に記載の光ヘッド装置。
  6. 前記領域が、前記入射光束径内の前記複屈折層が光軸を中心とした同心円状に分割されてなる、請求項4に記載の光ヘッド装置。
  7. 前記領域のうち隣接する2つの領域を透過する光の偏光状態を基準化ストークスパラメータ(S0k=1,S1k,S2k,S3k)を用いてそれぞれ(1,S10,S20,S30)及び(1,S11,S21,S31)で表すと、これらのパラメータの間に式(1)の関係が成立している請求項4、5または6に記載の光ヘッド装置。
    0<(S10−S11+(S20−S21
    +(S30−S31≦3 (1)
  8. 概ね90度の位置の関係にある2つの領域を透過する光の偏光状態を基準化ストークスパラメータ(S0k=1,S1k,S2k,S3k)を用いてそれぞれ(1,S13,S23,S33)及び(1,S14,S24,S34)で表すと、これらのパラメータの間に式(2)の関係が成立している請求項4、5または6に記載の光ヘッド装置。
    2≦(S13−S14+(S23−S24
    +(S33−S34≦4 (2)
  9. 前記領域は、前記入射光束径内の前記複屈折層が中心間の距離が30μm以上かつ3mm以下の間隔で分割されてなり、それぞれの領域内で光学軸の方向が放射状または同心円状である請求項4に記載の光ヘッド装置。
  10. 前記入射光束径内の前記複屈折層の位相差の大きさが一定で光学軸の方向が放射状または同心円状とされている請求項2または3に記載の光ヘッド装置。
  11. 前記複屈折層の位相差の大きさが入射光波長λの1/2の奇数倍である請求項4〜10のいずれかに記載の光ヘッド装置。
  12. 前記複屈折層が90度ずつに分割された4つの領域からなり、隣接する前記領域の光学軸が互いに90度の角度をなすとともに、入射される光源光の偏光方向と45度の角度をなすように構成されている請求項5に記載の光ヘッド装置。
  13. 前記入射光束径内の前記複屈折層が、前記光軸を中心に配置された第1の領域と、他の部分からなる第2の領域とに分割されてなる、請求項4に記載の光ヘッド装置。
  14. 前記入射光束径内の前記複屈折層が、前記光軸を中心に対称に配置された第1および第2の領域と、他の部分からなる第3の領域とに分割されてなる、請求項4に記載の光ヘッド装置。
JP2008505191A 2006-03-16 2007-03-14 光ヘッド装置 Withdrawn JPWO2007105767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006072671 2006-03-16
JP2006072671 2006-03-16
PCT/JP2007/055123 WO2007105767A1 (ja) 2006-03-16 2007-03-14 光ヘッド装置

Publications (1)

Publication Number Publication Date
JPWO2007105767A1 true JPWO2007105767A1 (ja) 2009-07-30

Family

ID=38509583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008505191A Withdrawn JPWO2007105767A1 (ja) 2006-03-16 2007-03-14 光ヘッド装置

Country Status (5)

Country Link
US (1) US20090016191A1 (ja)
JP (1) JPWO2007105767A1 (ja)
KR (1) KR20080104282A (ja)
CN (1) CN101421786B (ja)
WO (1) WO2007105767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194221A (ja) * 2011-03-15 2012-10-11 Asahi Glass Co Ltd 偏光解消素子および投射型表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007046284A1 (ja) * 2005-10-17 2009-04-23 日本電気株式会社 光ヘッドおよび光ディスク装置
JP2007257750A (ja) * 2006-03-24 2007-10-04 Hitachi Media Electoronics Co Ltd 光ピックアップおよび光ディスク装置
JP2008234759A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 光ヘッド装置
JP2009176394A (ja) * 2007-04-06 2009-08-06 Asahi Glass Co Ltd 光ヘッド装置
JP5061400B2 (ja) * 2008-01-09 2012-10-31 富士フイルム株式会社 光学デバイス
KR20110028847A (ko) * 2009-09-14 2011-03-22 삼성전자주식회사 다분할 편광소자를 갖는 광픽업 장치
JP5751098B2 (ja) * 2010-09-08 2015-07-22 旭硝子株式会社 投射型表示装置
JP2011138605A (ja) * 2011-03-04 2011-07-14 Hitachi Media Electoronics Co Ltd 光ピックアップおよび光ディスク装置
JP5926953B2 (ja) * 2011-12-28 2016-05-25 日本分光株式会社 偏光解消板およびこれを用いた円二色性分光装置
JP5825161B2 (ja) * 2012-03-16 2015-12-02 旭硝子株式会社 走査型表示装置
WO2016040890A1 (en) * 2014-09-12 2016-03-17 Thorlabs, Inc. Depolarizers and methods of making thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150363A (ja) * 1992-11-12 1994-05-31 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置
JPH07318862A (ja) * 1994-05-20 1995-12-08 Hitachi Ltd 光記録媒体における波面収差の低減方法および光ヘッドおよび光ディスク装置
JPH10124906A (ja) * 1996-10-16 1998-05-15 Sankyo Seiki Mfg Co Ltd 波長板およびそれを用いた光ピックアップ装置
JP2001216662A (ja) * 2000-02-01 2001-08-10 Pioneer Electronic Corp ピックアップ装置及び情報記録再生装置
JP2005216430A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 光ヘッド装置
WO2007043663A1 (ja) * 2005-10-14 2007-04-19 Matsushita Electric Industrial Co., Ltd. 光学ヘッド
WO2007046284A1 (ja) * 2005-10-17 2007-04-26 Nec Corporation 光ヘッドおよび光ディスク装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214046B1 (ko) * 1995-03-27 1999-08-02 마츠시타 덴끼 산교 가부시키가이샤 초해상 광헤드장치
KR960705314A (ko) * 1994-07-29 1996-10-09 이데이 노부유키 광 픽업 장치(Optical pick-up apparatus)
JP4289213B2 (ja) * 2004-05-18 2009-07-01 日本電気株式会社 光ヘッド装置及び光学式情報記録再生装置
WO2006112480A1 (ja) * 2005-04-20 2006-10-26 Asahi Glass Company, Limited 位相板および光ヘッド装置
WO2007049738A1 (ja) * 2005-10-28 2007-05-03 Nec Corporation 光ヘッド装置ならびに光学式情報記録/再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150363A (ja) * 1992-11-12 1994-05-31 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置
JPH07318862A (ja) * 1994-05-20 1995-12-08 Hitachi Ltd 光記録媒体における波面収差の低減方法および光ヘッドおよび光ディスク装置
JPH10124906A (ja) * 1996-10-16 1998-05-15 Sankyo Seiki Mfg Co Ltd 波長板およびそれを用いた光ピックアップ装置
JP2001216662A (ja) * 2000-02-01 2001-08-10 Pioneer Electronic Corp ピックアップ装置及び情報記録再生装置
JP2005216430A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 光ヘッド装置
WO2007043663A1 (ja) * 2005-10-14 2007-04-19 Matsushita Electric Industrial Co., Ltd. 光学ヘッド
WO2007046284A1 (ja) * 2005-10-17 2007-04-26 Nec Corporation 光ヘッドおよび光ディスク装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194221A (ja) * 2011-03-15 2012-10-11 Asahi Glass Co Ltd 偏光解消素子および投射型表示装置

Also Published As

Publication number Publication date
CN101421786B (zh) 2011-04-20
KR20080104282A (ko) 2008-12-02
US20090016191A1 (en) 2009-01-15
CN101421786A (zh) 2009-04-29
WO2007105767A1 (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
US7345981B2 (en) Optical pickup
JP3778316B2 (ja) 光ピックアップ装置
US6868055B2 (en) Optical pickup
US7660226B2 (en) Optical system, optical pickup apparatus, and optical disk apparatus
US6845077B2 (en) Optical pick-up device with convergent light diffraction for recording/reading information on optical recording medium
US7656771B2 (en) Optical pickup and optical disc drive
JP4341332B2 (ja) 光ヘッド装置
US6963522B2 (en) Optical head apparatus and optical information recording and reproducing apparatus
US7242647B2 (en) Optical head unit and optical information writing/reading device
US6888787B2 (en) Optical information processor and optical element
JPWO2008053548A1 (ja) ピックアップ装置
JP4610628B2 (ja) 光ピックアップ装置および焦点調整方法
US7778140B2 (en) Optical head device and optical information device
EP1616327B1 (en) Optical pickup apparatus and optical system for optical pickup apparatus
JP2004355790A (ja) ホログラム結合体およびその製造方法、ホログラムレーザユニットならびに光ピックアップ装置
JP3384393B2 (ja) 光ヘッド装置及び光学式情報記録再生装置並びにラジアルチルト検出方法
JP2003067949A (ja) 光ピックアップヘッドおよび情報記録再生装置
JP5728658B2 (ja) 光学ヘッド、光ディスク装置及び情報処理装置
US7460448B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
US8068403B2 (en) Optical head
JP3047314B2 (ja) 光ヘッド
JP3067665B2 (ja) 二種ディスク兼用光ピックアップ装置
JP5043581B2 (ja) 光ヘッド装置及び光情報装置
JP5173656B2 (ja) 光ピックアップ装置
JP2002358668A (ja) 光ピックアップ装置及び光スポットの最適集束方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110930