JP4277138B2 - リソグラフィ装置及び装置製造方法 - Google Patents

リソグラフィ装置及び装置製造方法 Download PDF

Info

Publication number
JP4277138B2
JP4277138B2 JP2005343938A JP2005343938A JP4277138B2 JP 4277138 B2 JP4277138 B2 JP 4277138B2 JP 2005343938 A JP2005343938 A JP 2005343938A JP 2005343938 A JP2005343938 A JP 2005343938A JP 4277138 B2 JP4277138 B2 JP 4277138B2
Authority
JP
Japan
Prior art keywords
image
array
individually controllable
substrate
controllable elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005343938A
Other languages
English (en)
Other versions
JP2006157017A (ja
Inventor
− クン グイ チョン
Original Assignee
エーエスエムエル ネザーランズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー.ブイ. filed Critical エーエスエムエル ネザーランズ ビー.ブイ.
Publication of JP2006157017A publication Critical patent/JP2006157017A/ja
Application granted granted Critical
Publication of JP4277138B2 publication Critical patent/JP4277138B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus

Description

本発明はリソグラフィ装置及び装置製造方法に関する。
リソグラフィ装置は、所望のパターンを基板の対象部分に当てる機械である。リソグラフィ装置は、例えば集積回路(IC)、フラット・パネル・ディスプレイ、及び微細構造を含むその他の装置の製造で使用することができる。従来のリソグラフィ装置では、マスクやレチクルと呼ばれるパターン形成手段を使用して、ICの個々の層に対応する回路パターンを生成することができ、このパターンを、放射線感応材料(例えばレジスト)の層を有する基板(例えばシリコン・ウェハ又はガラス板)上の(例えば1つ又は複数のダイの一部を含む)対象部分に結像することができる。マスクの代わりに、パターン形成手段は、回路パターンを生成する個々に制御可能な素子のアレイを備えることができる。
一般には、単一の基板は、次々に露光される隣接する各対象部分の回路網を含むことになる。周知のリソグラフィ装置には、パターン全体を対象部分に一度に照射することによって各対象部分を照射するステッパ、及び所与の方向(「走査」方向)にビームを介してパターンを走査すると同時に、基板をこの方向に平行又は逆平行に走査することによって各対象部分を照射するスキャナが含まれる。
前述の個々に制御可能な素子のアレイを備えるパターン形成手段を含む装置に適用可能なパルス・モード及び連続スキャン・モードを含む、リソグラフィ装置のその他の可能な動作モードを以下で議論する。そのような装置では、アレイ(しばしば空間光モジュレータ−SLMとも呼ばれる)を周期的に更新して、生成された瞬間パターンが基板に転写すべきイメージにとって適切であるように保証することが望ましい。例えば、パルス・モード(以下で説明する)で動作するとき、放射システムのパルス間で必要に応じてSLMを更新することができる。連続スキャン・モードでは、ビームが基板を走査するときにSLMの迅速な更新を行うことができる。
SLMを更新するのに必要な時間、すなわち新しいイメージ・フレームをSLMにロードするのに必要な時間は、装置のスループットに関する決定因子である。例えば、フラット・パネル・ディスプレイ(FPD)製造の場合、装置は通常、パルス持続時間10/20nsec、50KHzでパルシングするレーザで、パルス走査モードで動作することができる。特に、FPDを製造するために通常走査される基板面積が広いため、そのような高い周波数は、許容できる装置スループットを与える。パルス間でSLMフレームをロードするために、個々に制御可能な素子の数が多いことに鑑みて、10〜100Gピクセル/秒以上のデータ転送速度が必要である。これにより、複雑で費用のかかるデータ処理システム及びイメージ・ドライバ・システムが必要となる可能性がある。さらに、そのような高いデータ転送速度では、データ・エラー発生の可能性が比較的高くなる可能性がある。
したがって、マスクレス・リソグラフィに必要なデータ量を低減するシステム及び方法が求められている。
本発明の一態様によれば、以下のステップを含む装置製造方法が提供される。個々に制御可能な素子のアレイで放射ビームをパターン形成するステップ。基板の対象部分にパターン形成後ビームを投射するステップ。イメージ・フレーム・ローディング操作で個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定して、投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定するステップ。状態を変更しなければならない個々に制御可能な要素だけが、フレームがロードされるごとにアドレス指定される。
任意の2つの連続するイメージ・フレーム間の状態を変更するのに実際に必要なのは、アレイの個々に制御可能な要素の合計数のうちのわずかだけでよい。例えば、複数の連続するイメージ・フレームについてある要素は「on」状態にとどまる必要があることがあり、一方複数の連続するイメージ・フレームについて別の要素は「off」状態にとどまる必要があることがある。本発明に従って新しいイメージ・フレームがアレイにロードされるごとに状態を変更しなければならない要素だけをアドレス指定することにより、データ要件を著しく低減することができる。これにより、新しいフレームをロードするのに必要な時間を所与のデータ転送に対して著しく低減することが可能となり、又は必要な時間でイメージ・フレームを更新するために必要なデータ転送を低減することが可能となる。
一実施例では、基板の対象部分を走査して、イメージを対象部分に投射することが実施される。走査オペレーションは、基板及び/又はパターン形成後放射ビームを移動して、少なくとも最初のスキャン方向でその2つの間の相対的移動を生み出すことによって実施される。例えば、ビームが放射パルスを含む場合、新しい各イメージ・フレームを放射パルス間でロードすることができる。或いは、ビームが走査動作中に連続的である放射を含む場合、パターン形成後ビームが基板を走査するときに新しいイメージ・フレームをロードすることができる。
一実施例では、任意の単一イメージ・フレームがロードされたときに状態を変更しなければならないアレイの素子数を最小限に抑える対象部分走査方向を選択することにより、データ転送要件を最小限に抑えることが可能である。走査すべき大部分のイメージについて、いくつかの可能な走査方向は、他のスキャン方向よりも多くの個々の制御可能な素子のアレイの素子の状態の変更数を必要とする。例えば、イメージ・フレームがロードされるごとに、状態を変更しなければならない素子だけがアドレス指定される。このことは、必要な変更数を最小限に抑える走査方向を選択することによって行われる。データ転送要件も同様に最小限に抑えられる。
一実施例では、走査方向は、例えば、対象部分が走査されるときのアレイのその個々に制御可能な素子にわたるイメージ・フィーチャ境界を考慮に入れて、走査動作中に投射すべきイメージに対して選択することができる。例えば、走査方向に平行に分解され、任意の瞬間にパターン形成後放射ビームに露光することのできるイメージ・フィーチャ境界の全長が、走査方向に垂直に分解され、任意の瞬間にパターン形成後放射ビームに露光することのできる全イメージ境界長以上となるように走査方向を選択することができる。イメージ・フィーチャ境界は、例えば、基板の露光エリアと非露光エリアの間のハード境界でよく、又は異なる放射線量で露光される基板のエリア間のソフト境界でよい(いわゆる「グレイ・スケーリング」)。
イメージ・フィーチャ境界の全長を走査方向と垂直に分解するように走査方向を選択することができる。
一実施例では、任意の単一イメージ・フレーム・ローディング操作に対するデータ転送要件を最小限に抑える走査方向を選択する代わりに、対象部分を走査するのに必要なすべてのフレーム・ローディング操作についての全データ要件を最小限に抑える走査方向を選択することが可能である。例えば、走査方向に平行に分解されるイメージ境界の全長が、走査方向に垂直に分解されるイメージ境界の全長以上となるように走査方向を選択することができる。
一実施例では、基板の対象部分に転写すべきイメージを、それぞれの走査ステージで別々に走査される2つ以上のイメージ部分に分割することによってデータ転送要件を低減することができる。複数の走査ステージで走査を実施する結果としての、イメージを走査するのに必要な時間の増加よりも、データ転送要件の低減の結果の方が重要である。したがって、対象部分に投射すべきイメージを少なくとも第1及び第2のイメージ部分に分割することができる。走査オペレーションをそれぞれの走査ステージで実施することができる。例えば、第1イメージ部分を基板の対象部分に投射する少なくとも第1の走査ステージと、第2イメージ部分を基板の対象部分に投射する少なくとも第2の走査ステージである。一実施例では、任意の単一フレームが各走査ステージ中にロードされるときにアドレス指定されるアレイの個々に制御可能な素子の最大数は、全体としてのイメージが単一ステージで走査される場合の、任意の単一フレームがロードされるときにアドレス指定されるアレイの個々に制御可能な素子の最大数未満である。
一実施例では、第1イメージ部分が、任意の単一フレームが第1走査ステージ中にロードされるときに状態を変更する個々に制御される素子のアレイの素子数を最小限に抑える第1走査方向に走査される。
一実施例では、第2イメージ部分が、任意の単一フレームが第2走査ステージ中にロードされるときに状態を変更する個々に制御される素子のアレイの素子数を最小限に抑える第2走査方向に走査される。
ある場合には、互いに平行な方向で異なるイメージ部分を走査することが適切であることがあり、別の場合には、適切な走査方向が互いに傾斜することがある。多くの場合、適切な走査方向は互いに垂直であると予想される。多くの典型的イメージは、2つの直交する方向に延びる直線的フィーチャを有するからである。
適切な走査方向は、前述の方式でイメージ・フィーチャ境界に対して選択することができる。
同様に、任意の単一イメージ・フレームをロードするための最大データ転送要件を最小限に抑えるように、或いはイメージを全体として転送するための全データ転送要件を低減するように走査方向を選択することができる。例えば、必要な速度でデータを送達する能力はそれ自体問題ではないが、それでも、アレイの素子のエージングを最小限に抑え、場合によってはアレイの異なる素子間のエージングの著しい差を最小限に抑えるために、アレイ内の個々の素子の状態の変化数を低減することが望ましい場合がある。
一実施例では、イメージがイメージ・ピクセルのアレイとして基板上に投射される点で、本発明がピクセル・グリッド結像方法に特に適していると考えることができる。例えば、所望のイメージを「書き込む」ために基板の表面にわたって走査されるマイクロ・レンズ・アレイのそれぞれのレンズによって投射される照明マクロ・スポットである。しかし、上述のステップ及び走査露光方法を使用することもできる。例えば、ステップ露光方法では、個々に制御可能な素子のアレイの素子を2つの連続する露光ステップの間にアドレス指定することができる。
本発明の別の実施例によれば、照明系、個々に制御可能な素子のアレイ、投射系、及びアドレス指定装置を備えるリソグラフィ装置が提供される。照明系は、放射ビームを供給する。個々に制御可能な素子のアレイがパターン形成される。投射系は、パターン形成後ビームを基板の対象部分に投射する。アドレス指定装置は、イメージ・フレーム・ローディング・オペレーションで個々に制御可能な素子のアレイの素子を周期的にアドレス指定し、投射すべきパターンにとって適切な個々に制御可能な各素子の状態を設定する。状態を変更しなければならない個々に制御可能な素子だけが、イメージ・フレームがロードされるごとにアドレス指定される。
一実施例では、アドレス指定装置は、アレイの素子が任意の2つのイメージ・フレーム間で状態を変更しなければならないことを判定し、対応する素子を適切にアドレス指定するように適合されたマトリックス・アドレス指定装置である。
本発明の別の実施例によれば、以下のステップを含む装置製造方法が提供される。個々に制御可能な素子のアレイを使用して放射ビームをパターン形成するステップ。基板の対象部分にパターン形成後ビームを投射するステップ。投射すべきパターンを周期的に更新するために個々に制御可能な素子のアレイにイメージ・データを供給するステップ。イメージ・フレーム・ローディング操作で個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定し、イメージ・データに従って、投射すべきパターンにとって適切な個々に制御可能な各素子の状態を設定するステップ。あるイメージ・フレームから次のイメージ・フレームに状態を変更しなければならない個々に制御可能な素子だけに関するデータを含むイメージ・データ。
ある場合には、各イメージ・フレーム・ローディング操作で個々に制御可能な素子のアレイのあらゆる単一素子をアドレス指定するために、(例えばバッファを含む)個々に制御可能な素子のアレイのドライバから、必要なデータを転送することが難しくないことがある。しかし、各フレーム更新についてのイメージ・データがアレイのあらゆる単一素子に関するデータを含む場合、必要なデータをアレイに送達する際にまだ問題がある可能性がある。
一実施例では、アレイに供給されるイメージは、あるイメージ・フレームから次のイメージ・フレームに状態を変更しなければならないアレイの素子に関するデータだけを含む。したがって、フレームがロードされるごとに、アレイの各素子を実際にアレイ・ドライバによってアドレス指定することができるが、例えばイメージ・ファイル記憶装置からアレイに転送されるデータは、フレーム間で状態を変更しなければならないアレイの素子に関するデータだけを含む。
ある環境では、各フレーム・ローディング操作でアレイの各素子をアドレス指定するために、必要なデータをアレイのドライバから供給することに特定の困難がない。そうであっても、アレイの持続時間を最大にするために、あるフレームから次のフレームに状態を変更することが必要なアレイの素子だけをアドレス指定することが望ましいことがある。
本発明の別の実施例は、照明系、個々に制御可能な素子のアレイ、投射系、及びイメージ供給装置を備えるリソグラフィ装置を提供する。照明系は放射ビームを供給する。個々に制御可能な素子のアレイは、ビームをパターン形成する。投射系は、パターン形成後ビームを基板の対象部分に投射する。イメージ供給装置は、投射すべきパターンを周期的に更新するために、個々に制御可能な素子のアレイにイメージ・データを供給する。個々に制御可能な素子のアレイは、イメージ・フレーム・ローディング操作でアレイの素子を周期的にアドレス指定し、投射すべきパターンに適切な個々に制御可能な各素子の状態を設定するアドレス指定装置を含む。イメージ供給装置は、あるイメージ・フレームから次のイメージ・フレームに状態を変更しなければならないアレイの素子だけに関係するイメージ・データを供給する。
例えば、本発明のこの態様による装置では、個々に制御可能な素子のアレイの各素子は、新しいイメージ・フレームがアレイにロードされるごとに状態を変更することができる。しかし、あるイメージ・フレームから次のイメージ・フレームに状態を変更しなければならないアレイの素子に関係するデータだけを、パターン・データ記憶装置から(バッファを含む)アレイのドライバに送ることができる。次いでこのデータを、アレイのあらゆる素子を先行するイメージ・フレームに適切な状態に駆動するためのデータを含むドライバ回路のバッファに存在するデータに追加することができる。したがって、アレイに転送されるデータ量(すなわちイメージ・データ要件)が著しく削減される。
本発明の一実施例は、以下のステップを含む装置製造方法を提供する。個々に制御可能な素子のアレイを使用して放射ビームをパターン形成するステップ。基板の対象部分にパターン形成後ビームを投射するステップ。投射すべきパターンを周期的に更新するためにデジタル・イメージ記憶装置からアレイにイメージ・データを供給するステップ。イメージ・フレーム・ローディング操作で個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定し、イメージ・データに従って、投射すべきパターンにとって適切な個々に制御可能な各素子の状態を設定するステップ。イメージ・データは、あるイメージ・フレームから次のイメージ・フレームに状態を変更しなければならないアレイの素子だけに関係する。
本発明の別の実施例では、照明系、個々に制御可能な素子のアレイ、投射系、及びデータ経路を備えるリソグラフィ装置が提供される。照明系は放射ビームを供給する。個々に制御可能な素子のアレイはビームをパターン形成する。投射系は、基板の対象部分にパターン形成後ビームを投射する。データ経路は、投射すべきパターンを周期的に更新するためにデジタル・イメージ記憶装置からアレイにイメージ・データを供給する。個々に制御可能な素子のアレイは、イメージ・フレーム・ローディング操作でアレイの素子を周期的にアドレス指定し、投射すべきパターンにとって適切な個々に制御可能な各素子の状態を設定する装置を含む。イメージ・データは、あるイメージ・フレームから別のイメージ・フレームに状態を変更しなければならないアレイの素子だけに関係するデータを含む。
本発明の別の実施例、特徴、及び利点、並びに本発明の様々な実施例の構造及びオペレーションを添付の図面を参照しながら以下で詳細に説明する。
概要は、本発明のすべての実施例を説明しているのではなく、本発明の1つ又は複数の例示的実施例を説明しており、したがってどんな形でも本発明又は添付の特許請求の範囲を限定するものと理解すべきでないことを理解されたい。
本明細書に組み込まれ、明細書の一部を形成する添付の図面は、本発明を図示し、説明と共に、本発明の原理を説明する働きをし、関連技術の技術者が本発明を作成及び使用することを可能にする働きをする。
これから、添付の図面を参照しながら本発明を説明する。図面では、同様の参照番号は同一又は機能的に類似の要素を示す。
概要及び用語
本文では、集積回路(IC)の製造におけるリソグラフィ装置の使用に対して特定の参照を行うことがあるが、本明細書に記載のリソグラフィ装置は、集積光学系の、磁気ドメイン・メモリ用の誘導パターン及び検出パターン、フラット・パネル・ディスプレイ、薄膜磁気ヘッド、ミクロ及びマクロ流体装置の製造などの他の応用例を有することができることを理解されたい。こうした代替応用例の状況では、本明細書での「ウェハ」又は「ダイ」という用語の使用は、それぞれより一般的な「基板」又は「対象部分」という用語と同義とみなせることを当業者は理解されよう。本明細書で参照される基板は、露光の前又は後に、例えばトラック工具(通常はレジスト層を基板に付着させ、露光したレジストを現像する工具)或いは測定工具又は検査工具で処理することができる。適用可能なら、本明細書での開示は、そのような基板処理工具又はその他の基板処理工具に適用することができる。さらに、基板を、例えば多層ICを作成するために複数回処理することができ、したがって、本明細書で使用する基板という用語は、複数回処理した層を既に含む基板も指すことがある。
ここで使用する「個々に制御可能な素子のアレイ」という用語は、基板の対象部分内に所望のパターンを作成することができるように、入射ビームにパターン形成された断面を付与することのできる任意の装置を指すものとして広く解釈すべきである。「光弁」及び「空間光モジュレータ」(SLM)という用語もこの状況で使用することができる。そのようなパターン形成装置の例を以下で論じる。
プログラム可能ミラー・アレイは、粘弾性制御層及び反射面を有するマトリックス・アドレス指定可能表面を有することができる。このような装置の背後にある基本原理は、例えば反射面のアドレス指定されたエリアが入射光を回折光として反射するのに対して、アドレス指定されないエリアが入射光を非回折光として反射することである。適切な空間フィルタを使用して、非回折光を除去し、回折光だけが基板に達するようにすることができる。このようにして、マトリックス・アドレス可能表面のアドレス指定パターンに従ってビームがパターン形成される。
代替方法として、フィルタが回折光を除去し、非回折光だけが基板に達するようにすることができることを理解されよう。回折光マイクロ・エレクトリカル・メカニカル・システム(MEMS)装置のアレイも、対応する方式で使用することができる。各回折光MEMS装置は、互いに対して変形させて入射光を回折光として反射する格子を形成することのできる複数の反射リボンを含むことができる。
別の代替実施例は、適切な局所電場を印加することによって、又は圧電作動手段を使用することによって軸の周りに個々に傾斜することができる非常に小型のミラーのマトリックス構成を使用するプログラム可能ミラー・アレイを含むことができる。この場合も、ミラーはマトリックス・アドレス指定可能であり、それによって、アドレス指定されたミラーは、アドレス指定されないミラーと異なる方向に入射ビームを反射する。このようにして、反射ビームは、マトリックス・アドレス指定可能ミラーのアドレス指定パターンに従ってパターン形成される。必要なマトリックス・アドレス指定は、適切な電子的手段を使用して実施することができる。
上述の状況のどちらでも、個々に制御可能な素子のアレイは、1つ又は複数のプログラム可能ミラー・アレイを含むことができる。ここで参照したミラー・アレイに関するより詳しい情報は、例えば、参照により全体が本明細書に組み込まれる米国特許第5296891号及び第5523193号、並びにPCT特許出願WO98/38597及びWO98/33096から得ることができる。
プログラム可能LCDアレイも使用することができる。そのような構成の一例は、参照により全体が本明細書に組み込まれる米国特許第5229872号で与えられる。
フィーチャの事前バイアシング、光近接補正機能、位相変化技法、及び多重露光技法が使用される場合、例えば、個々に制御可能な素子のアレイ上に「表示」されるパターンは、基板の層又は基板上の層に最終的に転写されるパターンとは実質上異なる可能性があることを理解されたい。同様に、基板上に最終的に生成されるパターンが、個々に制御可能な素子のアレイ上に任意の瞬間に形成されるパターンに対応しない可能性がある。これは、基板の各部分上に形成される最終的パターンが、個々に制御可能な素子のアレイ上のパターン及び/又は基板の相対位置がその間に変化する所与の期間又は所与の露光数にわたって構築される構成の場合であることがある。
本文では、ICの製造におけるリソグラフィ装置の使用に対して特定の参照を行うことがあるが、本明細書に記載のリソグラフィ装置は、例えばDNAチップの製造、MEMS、MOEMS、集積光学系、磁気ドメイン・メモリ用の誘導パターン及び検出パターン、フラット・パネル・ディスプレイ、薄膜磁気ヘッドの製造などの他の応用例を有することができることを理解されたい。こうした代替応用例の状況では、本明細書での「ウェハ」又は「ダイ」という用語の使用は、それぞれより一般的な「基板」又は「対象部分」という用語と同義とみなせることを当業者は理解されよう。本明細書で参照される基板は、露光の前又は後に、例えばトラック工具(通常はレジスト層を基板に付着させ、露光したレジストを現像する工具)或いは測定工具又は検査工具で処理することができる。適用可能なら、本明細書での開示は、そのような基板処理工具又はその他の基板処理工具に適用することができる。さらに、基板を、例えば多層ICを作成するために複数回処理することができ、したがって、本明細書で使用する基板という用語は、複数回処理した層を既に含む基板も指すことがある。
本明細書で使用する「放射」及び「ビーム」という用語は、(例えば波長365、248、193、157、又は126nmを有する)紫外(UV)放射、(例えば520nmの範囲の波長を有する)極紫外(EUV)放射、並びにイオン・ビームや電子ビームなどの粒子ビームを含むすべてのタイプの電磁放射を包含する。
本明細書で使用する「投射系」という用語は、例えば使用する露光放射にとって、又は液浸流体の使用や真空の使用などの他の因子にとって適切な屈折光学系、反射光学系、及びカタディオプトリック光学系を含む様々なタイプの投射系を包含するものとして広い意味で解釈すべきである。本明細書での「レンズ」という用語の使用は、より一般的な「投射系」という用語と同義とみなすことができる。
照明系もまた、放射ビームを誘導、成形、又は制御する屈折光学構成部品、反射光学構成部品、及びカタディオプトリック光学構成部品を含む様々なタイプの光学構成部品を包含することができ、以下ではそのような構成部品も、集合的に又は単独で「レンズ」と呼ぶことがある。
リソグラフィ装置は、2つ(例えば2重ステージ)以上の基板テーブル(及び/又は2つ以上のマスク・テーブル)を有するタイプでよい。このような「多重ステージ」マシンでは、追加のテーブルを並行して使用することができ、或いは露光のために1つ又は複数のテーブルを使用中に、1つ又は複数の他のテーブルに対して予備ステップを実施することができる。
リソグラフィ装置は、基板が比較的高い屈折率を有する液体(例えば水)中に浸され、それによって投射系の最終要素と基板との間の空間が埋められるタイプでもよい。浸液をリソグラフィ装置内の他の空間、例えば基板と投射系の第1要素との間にも適用することができる。液浸技法を使用して、投射系の開口数を向上させることができる。
さらに、装置は、(例えば、化学物質を基板に選択的に付け、又は基板の表面構造を選択的に変更するために)流体と基板の放射される部分との間の相互作用を可能にする流体処理セルを備えることができる。
リソグラフィ投影装置
図1に、本発明の一実施例によるリソグラフィ投影装置100の略図を示す。装置100は、少なくとも、放射系102、個々に制御可能な素子のアレイ104、対象テーブル106(例えば基板テーブル)、及び投射系(「レンズ」)108を含む。
放射系102を使用して放射(例えばUV放射)のビーム110を供給することができる。この特定のケースでは、放射系102は放射源112も含む。
個々に制御可能な素子のアレイ104(例えばプログラム可能ミラー・アレイ)を使用して、ビーム110にパターンを加えることができる。一般には、個々に制御可能な素子のアレイ104の位置を投射系108に対して固定することができる。しかし、代替構成では、個々に制御可能な素子のアレイ104を位置決め装置(図示せず)に接続して、投射系108に対して正確に位置決めすることができる。ここで図示するように、個々に制御可能な素子104は反射型である(例えば、個々に制御可能な素子の反射アレイを有する)。
対象テーブル106は、基板114(例えばレジスト被覆シリコン・ウェハ又はガラス基板)を保持する基板ホルダ(具体的には図示せず)を備えることができ、対象テーブル106を位置決め装置116に接続して、投射系108に対して基板114を正確に位置決めすることができる。
投射系108(例えば水晶及び/又はCaFレンズ系、或いはそのような材料から作成されたレンズ素子を備えるカタディオプトリック系、或いはミラー系)を使用して、ビーム・スプリッタ118から受け取ったパターン形成後ビームを基板114の対象部分120(例えば、1つ又は複数のダイ)上に投射することができる。投射系108は、個々に制御可能な素子のアレイ104のイメージを基板114上に投射することができる。或いは、投射系108は、2次放射源のイメージを投射することもできる。2次放射源のイメージに対して、個々に制御可能な素子のアレイ104の各素子はシャッタとして振る舞う。投射系108はまた、2次放射源を形成し、マイクロ・スポットを基板114上に投射するためのマイクロ・レンズ・アレイ(MLA)も備える。
放射源112(例えばエキシマ・レーザ)は放射ビーム122を生成することができる。ビーム122は、直接的に、又は例えばビーム拡大器などのコンディショニング装置126を横切った後に、照明系(照明器)124に供給される。照明器124は、ビーム122中の輝度分布の外径及び/又は内径範囲(一般にそれぞれσ外径及びσ内径と呼ぶ)を設定する調節装置128を備えることができる。加えて、照明器124は一般に、積分器130やコンデンサ132などの様々な他の構成部品を含む。このようにして、個々に制御可能な素子のアレイ104に入射するビーム110は、その断面内で所望の一様性及び輝度分布を有する。
図1に関して、放射源ソース112は、(例えば放射源112が水銀ランプであるときにそうであるのと同様に)リソグラフィ投射装置100のハウジング内でよい。代替実施例では、放射源112はリソグラフィ投射装置100から離れていてもよい。この場合、放射ビーム122は、(例えば適切な配向ミラーによって)装置100に向けて送られる。この後者のシナリオはしばしば、放射源112がエキシマ・レーザである場合である。これらのシナリオの両方が本発明の範囲内に企図されることを理解されたい。
その後で、ビーム110は、ビーム・スプリッタ118を使用して配向された後、個々に制御可能な素子のアレイ104を遮る。個々に制御可能な素子のアレイ104によって反射された後、ビーム110は投射系108を通過し、投射系108は、ビーム110を基板114の対象部分120上に集束させる。
位置決め装置116(及び任意選択で、干渉ビーム138をビーム・スプリッタ140を介して受けるベース・プレート136上の干渉測定装置134)により、基板テーブル6を正確に移動することができ、それによって、異なる対象部分120をビーム110の経路内に位置合せすることができる。使用する場合、個々に制御可能な素子のアレイ104用の位置決め装置を使用して、例えば走査中にビーム110の経路に対して個々に制御可能な素子のアレイ104の位置を正確に補正することができる。一般には、対象テーブル106の移動は、図1には明示的に図示していないロング・ストローク・モジュール(粗い位置決め)及びショート・ストローク・モジュール(細かい位置決め)によって実現することができる。類似のシステムを使用して、個々に制御可能な素子のアレイ104を位置決めすることもできる。別法として/加えて、ビーム110は可動にすることができ、一方、対象テーブル106及び/又は個々に制御可能な素子のアレイ104は固定の位置を有して、必要な相対運動を実現できることを理解されよう。
実施例の代替構成では、基板テーブル106を固定して、基板114を基板テーブル106上で可動とすることができる。これが行われる場合、基板テーブル106は、平坦な最上面上に多数の開口を備え、その開口を通じてガスが供給され、基板114を支持することのできるガス・クッションが設けられる。これは通常、空気支承構成と呼ばれる。基板114は、基板114をビーム110の経路に対して正確に位置決めすることのできる1つ又は複数のアクチュエータ(図示せず)を使用して、基板テーブル106上を移動する。或いは、開口を通るガスの通路を選択的に開始及び停止することによって基板114を基板テーブル106上で移動することもできる。
本明細書では本発明によるリソグラフィ装置100を基板上のレジストを露光するためのものとして説明するが、本発明はこの使用法に限定されず、装置100を使用してパターン形成後ビーム110を投射してレジストレス・リソグラフィで使用できることを理解されよう。
図示する装置100を4つの好ましいモードで使用することができる。
1.ステップ・モード:個々に制御可能な素子のアレイ104上のパターン全体が対象部分120に1回で(すなわち単一「フラッシュ」で)投射される。次いで、異なる対象部分120をパターン形成後ビーム110で照射するために、基板テーブル106が異なる位置までX方向及び/又はY方向に移動する。
2.走査モード:所与の対象部分120が単一の「フラッシュ」で露光されないことを除いて、本質的にステップ・モードと同一である。その代わりに、個々に制御可能な素子のアレイ104が所与の方向(いわゆる「走査」、例えばy方向)に速度vで可動であり、その結果、パターン形成後ビーム110が、個々に制御可能な素子のアレイ104の上を走査する。それと同時に、基板テーブル106が速度V=Mvで同一方向又は反対方向に同時に移動する。ただしMは投射系108の倍率である。このようにして、解像度を損なうことなく比較的大きな対象部分120を露光することができる。
3.パルス・モード:個々に制御可能な素子のアレイ104が本質的に静止状態に保たれ、パターン全体が、パルス放射系102を使用して基板114の対象部分120上に投射される。基板テーブル106が本質的に一定速度で移動し、それによってパターン形成後ビーム110が、基板106を横切る直線を走査する。個々に制御可能な素子のアレイ104上のパターンは、放射系102のパルス間で必要に応じて更新され、パルスは、連続する対象部分120が基板114上の必要な位置で露光されるような時間間隔にされる。したがって、パターン形成後ビーム110は、基板114のストリップに関する完全なパターンを露光するように、基板114を走査することができる。完全な基板114が線ごとに露光されるまでこの工程が反復される。
4.連続的走査モード:ほぼ一定の放射系102が使用され、パターン形成後ビーム110が基板114を走査し、基板114を露光するときに、個々に制御可能な素子のアレイ104上のパターンが更新されることを除いて、パルス・モードと本質的に同一である。
上述の使用のモードに関する組合せ及び/又は変形形態、或いは完全に異なる使用のモードも使用することができる。
上記で論じたように、現在の技術は、多くの応用例で必要なスループットを与えるのに必要なピクセルの大規模なアレイを提供することのできる単一SLMの構築を可能にしないことがある。したがって、通常は、必要なピクセル数を提供するために複数のSLMアレイ(MSA)が並行して使用される。例えば、基板上に結合イメージを形成するために、MSAの異なるSLMからのピクセルが「縫い合わ」される。このことは、運動制御技法及びグレイ・スケーリング技法を使用して行うことができる。以下の説明では、ほとんどの場合、SLMへの参照はMSAを含むと解釈することもできる。
使用する動作モードの如何に関わらず、SLMによって生成されるパターン(すなわち個々に制御可能な各素子の「オン」又は「オフ」状態−以後「SLMピクセル」と呼ぶ)が周期的に更新され、所望のイメージが基板に転写される。例えば、上述のように、パルス・モードでは、放射系のパルス間で必要に応じてSLMパターンが更新される。連続的走査モードでは、ビームが基板を走査するときにSLMパターンが更新される。ステップ・モード及び走査モードでは、各ステップ又は走査オペレーション間でパターンを更新することができる。
SLMは、従来のレチクルを置き換えるパターン生成サブシステムの一部とみなすことができる。SLMに加えて、イメージ生成サブシステムは、SLMピクセル及びデータ経路用の駆動電子回路を備える。入力イメージ・データは適切なフォーマットに変換され、データ経路によってSLMに供給される。駆動電子回路は、SLMパターンが更新されるときに各SLMピクセルを次々にアドレス指定し、すなわち、新しい各SLMイメージ・フレームを通常のマトリックス・アドレス指定によってロードすることができる。フレーム・レート、すなわち新しい各フレームをSLM上にロードするのに必要な時間は、装置のスループットに関する決定因子である。
したがって、データを十分高いレートで送達する能力は、所望の基板走査速度、すなわち製造速度を達成する際の重要な考慮すべき点である。例えば、フラット・パネル・ディスプレイ(FPD)の製造の場合、装置は通常、パルス持続時間10/20nsecで50KHzでパルシングするレーザで、パルス・スキャン・モードで動作する。FPDを製造するために走査しなければならない基板面積が広いため、受け入れられるスループットを提供するために高周波数が使用される。この周波数のパルス間でSLMフレームをロードすることは、約10から100Gピクセル/秒程度以上のデータ転送速度を必要とする可能性がある。そのような高データ転送速度を処理するのに、非常に複雑かつ費用のかかるデータ処理及びドライバ・システムが必要となる。さらに、そのような高データ転送速度では、データ・エラー発生の可能性が比例的に無視できなくなる。
以下で論じるように、本発明の1つ又は複数の実施例は、データ転送要件を低減することによってこの問題に対処する。
別段の指定がない限り、この説明の以下の部分全体を通して、「データ転送要件」という用語は、イメージ・フレームを更新するためにSLMに転送しなければならないデータ量を意味することを理解されたい。
図2に、本発明の一実施例によるリソグラフィ・システムを示す。データ転送要件を低減することにより、フレーム・レートを増加させることなく必要なデータ転送速度を低減することが可能となり、或いは所与のデータ転送速度に対するフレーム・レートを低減することが可能となる。図2に示す装置は、コントローラ2からイメージ・データを受け取るSLM1を備える。ビーム・スプリッタ3がSLM1の下に配置され、照明源4から放射5を受ける。放射ビーム5はSLM1の下面に反射する。単一のSLMピクセルを「オン」状態、すなわち、ビームの成分を、ビーム・スプリッタ3とレンズ6、7、及び8によって画定される投射光学系とを通じて反射するものとして示す。最下部のレンズ8は、ほぼテレセントリックのビームを生成する視野レンズであり、ビームは、マイクロ・レンズ・アレイ9に向けて送られる。マイクロ・レンズ・アレイ9は、小型レンズの2次元アレイを備え、各小型レンズは、入射する光を基板10の上面に集束するように構成される。したがって、「オン」状態の(すなわちミラーとして振る舞う)各SLMピクセルについて、アレイ9中のレンズの1つが照射され、光のそれぞれのスポットが、アレイ9中のそのレンズによって基板10の上面に投射される。
イメージ・コントローラ2はデータ経路を含み、通常は、「マスク・ファイル」及びラスタライザを格納する格納装置を含む。格納装置は、基板上に印刷すべきイメージ全体を含む。ラスタライザは、SLMにロードするイメージの適切な部分を、所望のイメージを基板に転送するのに必要なパターンを表すSLMピクセル値のビット・マップに変換する。コントローラは通常、新しいSLMフレームがロードされるごとのSLMのマトリックス・アドレス指定に必要な1つ又は複数のフレーム・バッファ及びその他の従来型構成部品も含む。適切なイメージ・デジタル化及びSLM駆動電子回路は、当業者には明らかとなるであろう。例えば、イメージ・コントローラはビット・マップ・ベースのマスク・ライタと非常に類似していることがあるが、使用される特定のタイプのSLMの個々のSLMピクセルをアドレス指定する適切なマトリックス・アドレス指定駆動回路が使用される。
図3に、本発明の一実施例による、図2のマイクロ・レンズ・アレイ9中の個々のレンズの配置と、基板が走査されるときの基板10の相対運動方向Sとの間の関係を概略的に示す。方向Sは、直線11と平行であり、直線11は、マイクロ・レンズ・アレイ9中のレンズの行と平行に延びる別の直線12に対して傾斜する。各レンズは、基板上のスポットの矩形アレイのうちの異なるスポットに光を投射する。その1つが番号13で識別される。スポットのアレイは、基板ピクセルを画定するとみなすことができる。レンズは、正2次元アレイとして配置され、正2次元アレイは、図示する方向Sに対してわずかに傾斜し、それによって基板の表面全体を、それぞれのSLMピクセルによってそれぞれのレンズに送達される照射ビームの適切な制御によって露光することができる。各レンズは、実際には基板10の表面上の連続的直線を「書き込む」ことができ、基板の移動方向に対するレンズの配置が与えられた場合、それらの直線は重複するのに互いに十分近い。基板の選択された2次元エリアを露光するために、基板がマイクロ・レンズ・アレイ9及び個々のレンズの下に進められ、その下で、ある時間に配置された露光すべきエリアが、関連するSLMピクセルの反射率をレンダリングすることによって照射される。
一実施例では、したがって、所与の瞬間で基板10に投射される瞬間パターンは、その瞬間にSLMによって生成されたパターンに対応する照射スポットのアレイ、すなわちSLM上にロードされるフレームを含む。上述のように、SLMフレームは、所与の瞬間で、その時間に「書き込まれる」イメージの部分に対応する正しいパターンが、基板10がMLA9に対して方向Sに移動するときに基板の適切なエリア上に投射されるように保証するために周期的に更新される。
図4aから4dは、本発明の様々な実施例による、基板上の単純な白黒矩形イメージ14を走査する4つの順次ステージを示す4つの瞬間の「スナップ・ショット」である。イメージは、イメージのすべてのエリアを露光すべきであるという意味で「白黒」である。例えば、図示する「黒い」エリアは、同一の放射線量を受ける。イメージ14は幅L、長さ3Lである。イメージ14は、イメージに対して画定される走査方向Xに走査される。すなわち、基板10は、基板上のイメージの適切な向きを考慮に入れて、走査方向Xが方向Sと一致するように基板テーブル上に配置される。したがって、「走査方向」という用語は、走査すべきイメージに対して定義される方向であり、MLAに対する基板の移動方向と揃えられることを理解されたい。
図4aから4dは略図であり、イメージ14のサイズに対するスポットのアレイ(すなわち基板ピクセル)の縮尺又は個々のスポット13のサイズを正確に表す試みは行っていないことを理解されたい。例えば、アレイは通常、約1.50μmの直径をそれぞれ有する612×1024程度のスポットを有し、各スポットは隣接するスポットから約300μm離れて配置される。アレイは通常、基板の移動方向Sに対して非常に小さい角度、例えば約0.15°だけ傾斜する。印刷すべき典型的パターンの線幅は、FPD加工物では例えば約3から10μm程度である。
図4aから4dに示す実施例では、4つの瞬間のそれぞれで「on」状態にあるSLMピクセルに対応する照射スポットにそれぞれ陰影が付けられている。適切なSLMピクセルを「オン」及び「オフ」にすることによって基板がMLAの下で走査されるときにどのようにイメージが基板の対象部分に転写されるかを明確に示すために、その瞬間に照射されないスポットも図示されているが、図示する陰影を付けたスポットは実際には「オン」であり、したがって所与の瞬間に基板10に投射されることを理解されたい。
図4aは、イメージ14で露光すべき基板10の対象部分がMLA9の下を通過し始めてすぐ後の位置を示す。図4bは、基板14の対象部分のすべてがMLA9の下にある後続の瞬間での位置を示す。図4cは、少し後の時間での位置を示す。図4dは、基板10の対象部分がMLA9の下から出始める別の瞬間での位置を示す。図が見やすいように、イメージ14及び基板の対象部分を輪郭線だけで示す。
図5に、本発明の一実施例による、重ね合わされる図4b及び4cに示す基板対象部分の位置を示す。この場合もイメージ14を輪郭線だけで示す。基板10がMLA9の下を移動するときにSLMパターンを継続的に更新することが必要な可能性があるが、あらゆるSLMピクセルが、連続するSLMフレーム間で状態を変更しなければならないわけではない。図示するように、十字で示す(各SLMピクセルに対応する)スポットは、それらの2つの位置に対応する位置に対応するSLMフレーム間で状態を変更しなければならない。これらの2つの対象部分の位置に対応するフレーム、及びその間の任意のフレームについて、両者の位置に共通するSLMピクセル(強調表示したスポットとして示す)は状態を変更する必要はなく、「オン」のままでよい。同様に、両者のイメージ位置の外側にあるスポットに対応するSLMピクセルは状態を変更する必要がなく、図示するようにオフのままでよい。
上記の実施例のうちの1つ又は複数は、新しいSLMフレームがロードされるごとに状態を変更する必要のあるSLMピクセルだけがアドレス指定される。2つの連続するフレーム間で状態を変更ピクセルの数は、全SLMピクセルのうちの小さな割合である可能性がある(ある場合にはゼロである可能性がある)。したがって、こうした実施例は、各フレームがロードされるときにSLMに転送すべきデータ量を著しく低減することができ、すなわち、必要なデータ転送速度及び/又はフレーム・レートを著しく低減することができる。
例えば、上記で参照した従来型マトリックス・アドレス指定では、SLMピクセルを表す1及び0のデータ・マトリックスとしてイメージ・フレームを表すことができる。それぞれの「1」は、「オン」状態に設定すべきSLMピクセルを表し、それぞれの「0」は、「オフ」状態に設定すべきSLMピクセルを表す。次いでSLMの各ピクセルが、データ・マトリックスに従ってアドレス指定される。一方、本発明の1つ又は複数の実施例では、類似のデータ・マトリックスが存在することができるが、この場合、それぞれの「1」は、状態を変更すべきSLMピクセル、すなわちアドレス指定すべきSLMピクセルを表すことができる。データ・マトリックスのそれぞれの「0」は、状態を変更する必要のないSLMピクセル、すなわちアドレス指定する必要のないSLMピクセルを表す。
イメージが走査されるとき、本発明のこの実施例に従ってアドレス指定されるSLMピクセルだけが、連続するSLMフレーム間のイメージ境界を横切るSLMピクセルである。任意の1フレームがロードされるときにアドレス指定しなければならないピクセル数、すなわち必要なデータ送達速度及び/又はフレーム・レートは、走査方向と垂直な方向に延び、そのフレームがロードされるときにMLA9の下を通過するイメージ境界の全長に対応する。したがって、単一フレームをロードするための最大データ転送要件(すなわち、任意の2つの連続するフレーム間で状態を変更しなければならず、したがってSLMを更新するときにアドレス指定する必要がある最大SLMピクセル数)が、(イメージのサイズに対する、MLA9によって覆われる基板の面積を考慮して)所与の時間にMLA9の下にあることのできる走査方向に垂直な最大イメージ境界長によって求められる。図4及び図5を参照すると、これは6Lに等しい(3Lは矩形イメージ14の長さである)。
一実施例では、所与のイメージを基板に転送するのに必要なデータ転送要件、すなわち最大データ転送速度及び/又はフレーム・レートをさらに低減することができる。このことは、単一のSLMフレームがロードされるときに状態を変更しなければならない(したがってアドレス指定しなければならない)SLMピクセル数を低減し、望ましくは最小限に抑えるようにイメージ走査方向を選択することによって行うことができる。このことは、所与の瞬間にMLAの下を走査方向に垂直に延びることのできる最大イメージ境界長を低減し、場合によっては最小限に抑えるように走査方向を選択することによって達成することができる。図4及び図5に示す単純な矩形イメージでは、このことは、図4及び図5の走査方向Xに垂直な方向Yでイメージを走査することによって行われる。
図6に、本発明の一実施例による、単一フレームをロードするための最大データ転送要件を最小限に抑える走査方向Yの選択を示す。この図は、走査方向Yが基板移動方向Sと揃えられることを示す。この図はまた、所与の瞬間にMLA9の下にある走査方向Yに垂直な最大境界長が2Lに対応することも示す。ただしLは矩形イメージ14の幅である。
図7に、本発明の一実施例による、X方向に対して30°に延びる走査方向Dでのイメージ14の走査を示す。XとYの間にある他の走査方向は、走査方向Xに比べてデータ転送要件が低減されることを理解されよう。この場合、所与のフレーム・ローディング操作でアドレス指定しなければならない最大SLMピクセル数は、走査方向と垂直な方向に分解されるMLA9の下の境界の長さによって決定される。したがって、関連する分解境界長は、走査方向Xの場合の6Lに対して、2Lcos30°+6Lsin30°であり、これはほぼ4.7Lに等しい。
任意の形状の特定のイメージについて、任意の2つの連続するフレーム間でアドレス指定する必要がある可能性のある最大ピクセル数を最小限に抑える走査方向を、又はある場合には複数の方向を選択することが可能となる。このことは、任意の時間にMLAの下にある可能性のある、走査方向に垂直な方向に分解される全イメージ境界長を最小限に抑える走査方向を選択することによって行うことができる。MLAがイメージに対してイメージ全体を覆うのに十分な大きさである場合、これは単に、やはり走査方向に垂直な方向に分解される、イメージ全体としての全境界長である。
一実施例では、イメージ全体を走査するのに必要なSLMピクセル・アドレス操作の合計数を最小限に抑える走査方向は、必ずしも、単一フレームをロードするときにアドレス指定する必要がある可能性のある最大SLMピクセル数を最小限に抑える走査方向に対応しない。例えば、辺Lの単純な正方形イメージを走査するのに使用される、基板の移動方向Sに距離dだけ延びるMLAアレイを考える。長さLがd未満である場合、任意の単一SLMフレームをロードする最大データ転送を低減する最適な走査方向(又はこのケースでは各方向)は、正方形の一辺に平行となる。これは、MLAがこの場合は正方形イメージ全体をカバーするのに十分な大きさであるからであり、2Lである走査方向に垂直な全境界長である。
一実施例では、走査方向は、正方形イメージの対角線に平行でよい。正方形の対角線がdよりも長い場合、走査方向に垂直な方向に分解され、任意の時間にMLAの下にある可能性のある境界の最大長は2dに等しくなる(すなわち2dtan45°)。したがって、この場合、Lが2dより大きい場合、所与の時間にMLAの下にある可能性のある走査方向に垂直な最大境界長は、正方形の対角線に平行な方向にイメージを走査することによって最小限に抑えられる。したがって、そのような場合、必要な最大データ転送速度及び/又はフレーム・レートは、この特定のイメージを対角線方向に走査することによって最小限に抑えられる。しかし、これにより、イメージ全体を走査するための全データ要件が増大する可能性がある。例えば、全体としてのイメージに関する、対角線走査方向に垂直な合計境界長は4Lcos45°、すなわち約2.8Lである。
一実施例では、基板に転写すべきイメージは一般に、いくつかの反復イメージ単位を含む。さらに、イメージ又は各イメージ単位は、単一のイメージ素子を有することができ、単一のイメージ素子は、いくつかの離散的イメージ素子の複合物でよい。データ転送要件を低減し、又は最小限に抑える本発明の1つ又は複数の実施例の応用例は、一般に単一のイメージ単位の考慮に基づく。
図8は、本発明の一実施例による、FPDの製造中に基板上に形成することのできるイメージの一部を略図で表す。例えば、TFT LCDなどのFPDを作成するためのアクティブ・マトリックス薄膜トランジスタ・ピクセル・アレイである。走査すべき典型的なイメージは、大部分は直線的であり、例えば、直線的イメージ素子からそれぞれ構成される複合イメージ単位である。イメージ全体は、データ線16の一部、ゲート線17の一部、薄膜トランジスタ18、及びFPDピクセル電極19をそれぞれ含む複数の反復イメージ単位15(破線で示す)から構成される。様々なイメージ・フィーチャの相対的寸法に応じて、必要な最大データ転送速度を低減する単一走査方向は、データ線16又はゲート線17に平行となる。この実施例では、イメージ単位15はデータ線16の方向に延びるので、走査方向はこの方向に平行となる。
図9に、本発明の一実施例による、それぞれ幅L及び長さ3Lを有する2つの矩形イメージ素子19、20を含む単純な複合イメージを示す。この実施例では、第1イメージ素子19が第2イメージ素子20に対して垂直に延びる。2つの可能な直交走査方向X及びYは、それぞれ矩形イメージ素子19、20の各長辺に平行である。上記から、イメージがX方向に走査されるか、それともY方向に走査されるかに関わらず、イメージ全体を走査するようにアドレス指定されるSLMピクセルの合計数、さらには特定のフレームをロードするときにアドレス指定される最大ピクセル数は同一であることを理解されよう。しかし、X走査方向でイメージ素子19だけを走査する第1走査ステージと、Y方向でイメージ素子20だけを走査する第2走査ステージの2ステージでイメージを走査することによってデータ転送要件を最小限に抑えることができる。
一実施例では、イメージが全体として1走査で走査方向に対して垂直に走査される。例えば、それはX又はY走査方向であり、任意の時間にMLAの下にあることができる。これは、任意の時間でアドレス指定しなければならない最大ピクセル数に対応する。これは少なくとも4Lであり、イメージ及びMLAの相対サイズに応じて2×3L+2×L、すなわち8Lもの大きさにすることができる。しかし、イメージを2ステージで走査することにより、各走査ステージで走査方向に垂直に延びる境界の最大長は2Lに等しく、その結果、単一フレームをロードする最大データ転送要件が著しく低減される。さらに、イメージ全体を走査するためにアドレス指定されるSLMピクセルの合計数も削減され、これは、それぞれの走査方向4Lに垂直な各イメージ素子の全境界長に対応する。
この実施例はイメージを2回走査するものであり、イメージ部分の位置合せは問題ではない。基板上に配置された従来の位置合せマークを、各走査方向について基板を適切に位置合せするために利用することができ、高い位置合せ精度が保証されるからである。
一実施例では、イメージ・フィーチャ忠実度又は解像度を多くの場合で改善することができる。上記の説明から、基板上に投射された各ピクセルが、走査方向に基板に沿って本質的に連続的な直線を書くことができることを理解されよう。したがって、走査方向に対して傾斜した境界線よりも高い忠実度で、走査方向に位置合せされるイメージ・フィーチャの境界を生成することができる。この結果、一般には、走査方向に位置合せされるイメージ境界が長くなり、したがって、別の方向で走査した場合よりも高い忠実度を有する。
上記の例では、2つの所望の走査方向は互いに直交する。これは、必ずしもすべてのイメージについて事実ではない。本質的に、この実施例は、イメージ(又はイメージ単位)を2つの部分に分割することを必要とし、これは、図9の場合の2つの離散的イメージ素子に対応する。次いで、各部分がそれぞれの走査で別々に走査され、それにより、どちらかの走査ステージの2つの連続するSLMフレーム間でアドレス指定する必要のある最大SLMピクセル数が最小限に抑えられる。
図10に、図9に示すイメージのわずかな変形である本発明の一実施例を示す。この実施例では、イメージ素子20はイメージ素子19に対して45°に延びる。この場合、所望の走査方向が矢印A及びBで示され、互いに90°ではなく45°傾斜する。しかし、上述のように、実際には、大部分のイメージが、2つの直交する方向に延びる1つ又は複数のイメージ素子を主に含む本質的に直線的なものとなる。この場合、2つの別々の直交する方向で走査するためにイメージを2つの部分に分割することが可能となる。第1の部分は、走査方向と垂直に延びる全イメージ境界長ほど長い、それぞれの走査方向に延びる全イメージ境界長を有することができる。第2の部分は、走査方向に垂直に延びる全イメージ境界長ほど長い、それぞれの走査方向に延びる全イメージ境界長を有することができる。
一実施例では、同じ(又は逆の)方向で走査される2つの部分にイメージを分割することができる。例えば、互いに平行に配置された、図9及び図10に示す2つの矩形イメージ素子を考える。この場合、各矩形イメージ素子を互いに別々に、同じ(適切ならば逆の)方向で走査することによってデータ転送要件を最小限に抑えることができる。
この実施例では、2つの異なる走査ステージで、場合によっては2つの異なる方向で走査される2つの別々の部分として走査されるようにイメージが分割される。与えられた単純な例では、イメージの2つの部分は、完全なイメージ(又は反復イメージ単位)を構成する離散的イメージ素子を含む。
図11、図12a、及び図12bに、本発明の実施例による、サブ素子に分割される2つの異なる方向に延び、異なる方向に走査される別々のイメージ部分に分割されるフィーチャを有する個々のイメージ素子を示す。図11は、単純な「L」形イメージを示す。このイメージは、2つの矩形が重なり合い、単一のL形イメージ素子21の枝を形成することを除いて、図9のイメージに対応する。各枝は、長さ3L及び幅Lを有する。この実施例では、図12a及び図12bに示すようにイメージを2つの部分22、23に分割することによってデータ転送要件を最小限に抑えることができる。次いでイメージ部分22、23は、矢印X及びYで示すように、互いに直交する方向で走査される。図12a及び図12bのイメージ部分21及び22は、図11に示す点線24に沿って図11のイメージを分割することによって生成される。他の分割線はデータ転送要件に対して同じ効果を生み出すことを理解されよう。例えば、代替分割線25も図11に示す。
図13a、図13b、及び図13cに、図8に示すFPDイメージを対象とする本発明の実施例を示す。図13aに、図8で識別される単一イメージ単位15を示す。図13b及び図13cでは、図13aのイメージ単位が、図示するようにそれぞれの走査方向X及びYで走査される2つの部分に分割される。全体として、図13b及び図13cの2つのイメージ部分が図13aの完全なイメージ単位15を形成する。図13b及び13cに示す各イメージ部分は、いくつかのイメージ素子の複合物である。図13bを参照すると、イメージ素子は、ピクセル電極19、薄膜トランジスタ部分18、及びデータ線16である。図13cを参照すると、イメージ素子は、ゲート線17の部分及び薄膜トランジスタ18a/18bの部分である。わずかに異なるがそれでも図13b及び図13cに示す部分と同じデータ要件の低減を実現するイメージ部分を生成するように図13aのイメージを代替の方式で分割できることを理解されよう。例えば、薄膜トランジスタ部分18bは正方形であり、どちらかのイメージ部分に含めることができる。同様に、ゲート線17と重なり合うトランジスタ18の部分が13bのイメージ部分に含まれるが、別法として13cに示すイメージ部分と共に含めることもできる。
前述の本発明のある実施例では、イメージが2つの走査ステージで走査され、図示するケースでは、2つの異なる走査方向で走査される。原理上は、イメージを3つ以上のステージ及び/又は3つ以上の方向で走査することにより、所与のイメージを走査するためのデータ転送要件をさらに低減することが可能である。しかし、実際には、追加の走査ステージが必要となるので、データ転送要件のさらなる低減よりも、スループットの遅延の方が重要である。
上記の説明では、SLMピクセルが変化する必要があるのは2つの状態間のみである白黒イメージの走査を参照して本発明を例示した。この2つの状態は、それぞれのピクセルが基板に投射される「オン」状態と、それぞれのピクセルが基板上に投射されない「オフ」状態である。SLMの個々に制御可能な素子を制御して、イメージ「グレイ・スケーリング」を提供することも知られており、言い換えれば、所与のSLMピクセルによって基板に投射される放射線量は、最大と最小の間で変化することができる。明らかに、特定のピクセルのグレイ・スケール値が変化すべきであるごとに、それぞれのSLMフレームがロードされるときにそのピクセルをアドレス指定しなければならない。したがって、ピクセルの状態の変化に対する上記の参照は、ピクセルのグレイ・スケール値の変化を含む任意のピクセル状態の変化を含むことを理解されたい。
グレイ・スケーリングを含むイメージを投射するとき、最適な走査方向を決定する際にハード・イメージ・フィーチャ境界(すなわち、基板の露光部分と非露光部分の間の境界)だけを考慮に入れることは必ずしも適切ではない。むしろ、ピクセル・グレイ・スケール値が変化するイメージの領域を考慮することが必要である。しかし、異なるグレイ・スケール値を有するイメージの異なるエリアを、グレイ・スケール値が変化する境界で分離されるものとして扱うことができる。したがって、本発明の1つ又は複数の実施例をそのようなグレイ・スケール・イメージに適用するとき、上記で使用した「境界」という用語は、基板の露光エリアと非露光エリアの間のハード境界だけでなく、異なるグレイ・スケール値の領域間の境界も含むことを理解されたい。
基板に転写すべきイメージ又はイメージ単位を走査することに対して参照を行った。複数のイメージ層から所与の装置を形成することが通常は必要であることが当業者には明らかとなるであろう。したがって、本明細書での基板上のイメージの走査に対する参照は、別段の指定がない限り、単一イメージ層を指すと理解することができる。言い換えれば、イメージの各層は異なっていてよく、異なる方式で走査することができる。最適なイメージ分割及び/又は走査方向は、異なるイメージ層間で異なることが完全に可能である。
本発明の1つ又は複数の実施例では、最大単一フレーム・データ転送要件を低減するために、任意の単一フレームをロードするのに必要な最大ピクセル・アドレス走査数の低減が望ましい。しかし、データ送達が問題ではない状況が存在する可能性がある。例えば、将来、フレームがロードされるごとにSLMのあらゆるピクセルがアドレス指定される場合であっても、データ転送速度が走査時間における速度制限因子をもはや表さない範囲にまでデータ転送技法が進歩する可能性が十分にある。
本発明の一実施例では、SLMの個々に制御可能な素子(例えばミラー)が状態を変更しなければならない回数も低減することができる。これにより、例えば、特定の個々の制御可能素子可動部の摩耗が低減される。この場合、これにより、イメージを全体として走査するSLMピクセル・アドレス操作の合計数、すなわち全イメージ・データ転送要件が最小限に抑えられる。例えば、走査方向に垂直に延びるイメージ境界の全長を最小限に抑える方向でイメージを走査し、又はイメージを2つ以上の方向で走査する結果、各走査方向に垂直に延びる全イメージ境界長の和は、単一走査方向に垂直に延びる全体としてのイメージよりも小さい。或いは、SLMの異なるピクセル間のエージングの著しい差を回避するために、SLMの任意の単一ピクセルの状態変化の最大数を最小限に抑えるように所望の走査方向を選択することができる。
上述の本発明の1つ又は複数の実施例では、各イメージ・フレーム・ローディング操作は、所望のパターンを表示するためにアレイのあらゆる単一ピクセルを2つの連続するイメージ・フレーム間で更新しなければならないことをもちろん除いて、全SLMピクセル数のサブセットのみをアドレス指定するものである。しかし、ある場合には、新しいイメージ・フレームがロードされるごとにSLMのあらゆる単一素子をアドレス指定するために、必要なデータ量をSLMに対してローカルなイメージ・ドライバからSLMピクセルに転送する際に困難がないことがある。この場合、それでも本発明の1つ又は複数の実施例を適用して、SLMに転送するのに必要なデータ量を低減することができる。例えば、SLMは、各SLMピクセル用のドライバ及びイメージ・ファイル記憶装置からイメージ・データを受け取るイメージ・バッファを備えることができる。駆動回路(バッファを含む)は、新しいフレームがロードされるごとにSLMの各ピクセルをアドレス指定するように動作することができるが、本発明の1つ又は複数の実施例によれば、あるフレームから次のフレームに状態を変更しなければならないSLMピクセルだけに関係するデータを転送することにより、イメージ・ファイル記憶装置とSLM(すなわちこの場合はバッファ)の間のデータ転送要件を低減することができる。次いで、このデータを(前のイメージ・フレームからの)バッファに既に存在するデータに追加することができ、次いで複合データがSLMドライバに送られ、各調節可能素子がアドレス指定され、それに応じてその状態が設定される。
上記の説明は、基板ピクセルを画定するスポットのアレイを投射するMLAを含むリソグラフィ装置に適用される本発明の1つ又は複数の実施例を例示する。しかし、マイクロ・スポットがMLAを介して投射されるのではなくSLMピクセルがそれ自体基板上に投射されて基板イメージ・ピクセルが画定される装置に対して本発明を等しく適用できることを理解されよう。そのようなシステムはしばしば「コヒーレント」イメージング・システムと呼ばれ、原理上はMLAベースのシステムと同様に走査モードで動作することができる。本発明の1つ又は複数の実施例は、MLAを組み込む投射系に適用されるのと全く同様にそのようなシステムに適用される。
結論
本発明の様々な実施例を上記で説明したが、それらは、限定的にではなく、例示によって提示したに過ぎない。本発明の精神及び範囲から逸脱することなく、形態及び細部の様々な変更をその中で行えることは関連技術の技術者には明らかであろう。したがって、本発明の広さ及び範囲は、上述の例示的実施例のいずれによっても限定されず、添付の特許請求の範囲及びその均等物のみによって定義されるべきである。
概要及び要約の部分ではなく、詳細な説明の部分は、特許請求の範囲を解釈するために使用されるものとすることを理解されたい。概要及び要約の部分は、本発明によって企図される本発明のすべての例示的実施例ではなく、1つ又は複数の例示的実施例を説明し、したがって、どんな形でも本発明及び添付の特許請求の範囲を限定しないものとする。
本発明の一実施例によるリソグラフィ投射装置を示す図である。 本発明の一実施例による、放射のスポットを基板上に投射するようにそれぞれ構成されたレンズのアレイを組み込むリソグラフィ投射装置の構成部品を示す略図である。 本発明の一実施例による、図2のレンズ・アレイによって投射される放射のスポットの配置を表す略図である。 本発明の一実施例による、基板に矩形イメージを転写するための図2のレンズ・アレイの下で走査される基板の露光の4つのステージの1つを表す略図である。 本発明の一実施例による、基板に矩形イメージを転写するための図2のレンズ・アレイの下で走査される基板の露光の4つのステージの1つを表す略図である。 本発明の一実施例による、基板に矩形イメージを転写するための図2のレンズ・アレイの下で走査される基板の露光の4つのステージの1つを表す略図である。 本発明の一実施例による、基板に矩形イメージを転写するための図2のレンズ・アレイの下で走査される基板の露光の4つのステージの1つを表す略図である。 本発明の一実施例による、図4aから4dに示す露光ステージのうちの2つのオーバーレイである。 本発明の一実施例による、代替走査方向で走査される図4及び図5のイメージの転写を示す略図である。 本発明の一実施例による、代替走査方向で走査されるときの図4及び図5のイメージの転写を示す略図である。 本発明の一実施例による、TFT LCDなどのFPDの製造中に基板上に形成されるアクティブ薄膜トランジスタ・ピクセル・アレイの反復イメージ単位の構成の一例を示す略図である。 本発明の一実施例による、異なる走査方向でイメージの異なる部分を走査することによる2つの別々のイメージ素子を含むイメージの転写を示す略図である。 本発明の一実施例による、2つの異なる走査方向でイメージの異なる部分を走査することによる2つの別々のイメージ素子を含むイメージの転送を示す略図である。 本発明の一実施例による、走査すべき単純な「L」形イメージ素子を示す略図である。 本発明の一実施例による、11のイメージを転写するための走査ステージでの基板の露光を示す略図である。 本発明の一実施例による、11のイメージを転写するための走査ステージでの基板の露光を示す略図である。 本発明の一実施例による、図8の反復イメージの単一イメージ単位を示す略図である。 本発明の一実施例による、2つの異なる方向で走査するためにイメージを2つの部分に分割することによる図13aのイメージ単位の基板への転写の一部分を示す略図である。 本発明の一実施例による、2つの異なる方向で走査するためにイメージを2つの部分に分割することによる図13aのイメージ単位の基板への転写の一部分を示す略図である。
符号の説明
100 リソグラフィ投影装置
102 放射系
104 個々に制御可能な素子のアレイ
106 対象テーブル
108 投射系(「レンズ」)
112 放射源
114 基板
116 位置決め装置
118 ビーム・スプリッタ
120 対象部分
124 照明系
128 調節装置
130 積分器
132 コンデンサ
134 干渉測定装置
136 ベース・プレート
138 干渉ビーム

Claims (63)

  1. 個々に制御可能な素子のアレイを使用して放射ビームをパターン形成するステップと、
    基板の対象部分にパターン形成後ビームを投射するステップと、
    イメージ・フレーム・ローディング操作で前記個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定して、投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定し、それによって、所与のイメージ・フレームがロードされるときに、状態を変更しなければならない個々に制御可能な素子だけをアドレス指定するステップと
    を含む装置製造方法。
  2. 基板の対象部分を走査して、イメージを対象部分に投射するステップであって、走査動作が、前記基板と前記パターン形成後放射ビームの少なくとも1つを移動して、少なくとも第1の走査方向でそれらの間の相対運動を生み出すことによって実施されるステップ
    をさらに含む請求項1に記載の方法。
  3. 前記ビームが、放射のパルスを含み、新しい各イメージ・フレームが放射パルス間でロードされる請求項2に記載の方法。
  4. 前記ビームが、前記走査動作中に連続的である放射を含み、
    前記パターン形成後ビームが前記基板を走査するときに新しいイメージ・フレームがロードされる
    請求項2に記載の方法。
  5. 任意の瞬間に前記基板上に投射された前記イメージが、イメージ・ピクセルのアレイを含む請求項2に記載の方法。
  6. 各イメージ・ピクセルが、前記個々に制御可能な素子のアレイのそれぞれに対応する請求項5に記載の方法。
  7. イメージ・ピクセルのアレイが、前記個々に制御可能な素子のアレイの素子がシャッタとして働く2次イメージ源のアレイに対応する請求項5に記載の方法。
  8. 前記パターン形成後ビームが、マイクロ・レンズ・アレイを介して前記基板に投射され、対応する放射スポットのアレイが前記基板上に生成される請求項2に記載の方法。
  9. 前記走査方向が、前記対象部分が走査されるときに任意の単一イメージ・フレームがロードされるときに状態を変更しなければならないアレイの個々に制御可能な素子の数を最小限に抑えるように選択される請求項2に記載の方法。
  10. 前記走査方向が、前記対象部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて、前記走査動作中に投射すべきイメージに対して選択される請求項9に記載の方法。
  11. 前記走査方向に平行に分解され、任意の瞬間に前記パターン形成後放射ビームに露光される前記イメージ・フィーチャ境界の全長が、前記走査方向に垂直に分解され、任意の瞬間に前記パターン形成後放射ビームに露光される全イメージ境界長以上となるように前記走査方向が選択される請求項10に記載の方法。
  12. 前記走査方向に垂直に分解され、任意の瞬間に前記パターン形成後放射ビームに露光される前記イメージ・フィーチャ境界の全長が最小限に抑えられるように前記走査方向が選択される請求項10に記載の方法。
  13. 前記走査方向に平行に分解される前記イメージ・フィーチャ境界の全長が、前記走査方向に垂直に分解されるイメージ境界の全長以上である請求項10に記載の方法。
  14. 前記走査方向に垂直に分解される前記イメージ境界の全長が最小限に抑えられるように前記走査方向が選択される請求項10に記載の方法。
  15. 前記対象部分に投射すべきイメージが、少なくとも第1及び第2のイメージ部分に分割され、
    前記走査動作がそれぞれの走査ステージで実施され、
    少なくとも第1の走査ステージが、前記第1イメージ部分を前記基板の前記対象部分に投射し、
    少なくとも第2の走査ステージが、前記第2イメージ部分を前記基板の前記対象部分に投射し、
    それによって、各走査ステージ中に任意の単一フレームがロードされるときにアドレス指定しなければならない前記アレイの個々に制御可能な素子の最大数が、全体としてのイメージが単一ステージで走査される場合の、任意の単一フレームがロードされるときにアドレス指定しなければならないアレイの個々に制御可能な素子の最大数未満である
    請求項2に記載の方法。
  16. 前記第1イメージ部分が、任意の単一フレームが第1走査ステージ中にロードされるときに状態を変更しなければならない個々に制御される素子のアレイの素子数を最小限に抑える第1走査方向に走査される請求項15に記載の方法。
  17. 前記第2イメージ部分が、前記第2走査ステージ中に任意の単一フレームがロードされるときに状態を変更しなければならないアレイの個々に制御可能な素子の数を最小限に抑えるように選択された第2走査方向に走査される請求項15に記載の方法。
  18. 前記第2走査方向が前記第1走査方向に対して傾斜する請求項15に記載の方法。
  19. 前記第2走査方向が前記第1走査方向と直交する請求項15に記載の方法。
  20. 前記第2走査方向が前記第1走査方向と平行である請求項15に記載の方法。
  21. 前記第1及び第2走査方向が、前記イメージのそれぞれの部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて、それぞれ前記第1及び第2イメージ部分に対して選択され、
    (a)任意の瞬間に前記パターン形成後放射ビームに露光される、前記第1走査方向に平行な方向に分解されるイメージ・フィーチャ境界の全長が、(b)任意の瞬間に前記パターン形成後放射ビームに露光される、前記第1走査方向に垂直に分解される前記第1イメージ部分の全イメージ・フィーチャ境界長以上となるように前記第1走査方向が選択される
    請求項15に記載の方法。
  22. (a)任意の瞬間に前記パターン形成後放射ビームに露光される、前記第2走査方向に平行に分解されるイメージ・フィーチャ境界の全長が、(b)任意の瞬間に前記パターン形成後放射ビームに露光される、前記第2走査方向に垂直に分解される前記第2イメージ部分の全イメージ境界長以上となるように前記第2走査方向が選択される請求項21に記載の方法。
  23. 前記第1及び第2走査方向が、前記イメージのそれぞれの部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて、それぞれ前記第1及び第2イメージ部分に対して選択され、
    任意の瞬間に前記パターン形成後放射ビームに露光される、前記第1走査方向に垂直な方向に分解されるイメージ・フィーチャ境界の全長が最小限に抑えられるように前記第1走査方向が選択される
    請求項15に記載の方法。
  24. 任意の瞬間に前記パターン形成後ビームに露光される、前記第2走査方向に垂直に分解される前記イメージ・フィーチャ境界の全長が最小限に抑えられるように前記第2走査方向が選択される請求項23に記載の方法。
  25. 前記第1及び第2走査方向が、前記イメージのそれぞれの部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて、それぞれ前記第1及び第2イメージ部分に対して選択され、
    前記第1走査方向に平行な方向に分解されるイメージ・フィーチャ境界の全長が、前記第1走査方向に垂直に分解される前記第1イメージ部分の全イメージ・フィーチャ境界長以上となるように前記第1走査方向が選択され、
    前記第2走査方向に平行に分解されるイメージ・フィーチャ境界の全長が、前記第2走査方向に垂直に分解される前記第2イメージ部分の全イメージ・フィーチャ境界長以上となるように前記第2走査方向が選択される
    請求項15に記載の方法。
  26. 前記第1及び第2走査方向が、前記イメージのそれぞれの部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて、それぞれ前記第1及び第2イメージ部分に対して選択され、
    前記第1走査方向に垂直な方向に分解されるイメージ・フィーチャ境界の全長が最小限に抑えられるように前記第1走査方向が選択され、
    前記第2走査方向に垂直な方向に分解されるイメージ・フィーチャ境界の全長が最小限に抑えられるように前記第2走査方向が選択される
    請求項15に記載の方法。
  27. 前記走査動作が、前記対象部分全体が走査されるときに前記個々に制御される素子のアレイの素子の状態の変化の合計数を最小限に抑えるように実施される請求項2に記載の方法。
  28. 前記走査方向が、任意の単一イメージ・フレームがロードされるときに状態を変更する前記アレイの個々に制御可能な素子数が所定の最大値未満となるように保証するように選択される請求項2に記載の方法。
  29. 投射すべきイメージを分割するステップと、
    前記対象部分全体が走査されるときに前記個々に制御される素子のアレイの素子の状態の変化の合計数を最小限に抑えるようにそれぞれの走査方向を選択するステップと
    をさらに含む請求項15に記載の方法。
  30. 投射すべきイメージを分割するステップと、
    任意の単一イメージ・フレームがロードされるときに状態を変更する前記個々に制御可能な素子のアレイの最大素子数が所定の最大値未満となるようにそれぞれの走査方向を選択するステップと
    をさらに含む請求項15に記載の方法。
  31. 投射すべきイメージを分割するステップと、
    前記対象部分が走査されるときに状態を変更する前記個々に制御される素子のアレイの特定の素子が走査される回数を最小限に抑えるようにそれぞれの走査方向を選択するステップと
    をさらに含む請求項15に記載の方法。
  32. 前記走査動作が、前記対象部分が走査されるときに状態を変更する前記個々に制御可能な素子のアレイの特定素子が走査される回数を最小限に抑えるように実施される請求項2に記載の方法。
  33. 前記イメージ・フィーチャ境界が、露光すべき対象部分のエリアと、対象部分が走査されるときに露光されない、対象部分の隣接エリアとの間で画定されるハード境界を含む請求項10に記載の方法。
  34. 前記イメージ・フィーチャ境界が、露光すべき対象部分のエリアと、対象部分が走査されるときに異なる放射線量で露光されない、対象部分の隣接エリアとの間で画定されるソフト境界を含む請求項10に記載の方法。
  35. 前記イメージ・フィーチャ境界が、露光すべき対象部分のエリアと、対象部分が走査されるときに露光されない、対象部分の隣接エリアとの間で画定されるハード境界を含む請求項21に記載の方法。
  36. 前記イメージ・フィーチャ境界が、露光すべき対象部分のエリアと、対象部分が走査されるときに異なる放射線量で露光されない、対象部分の隣接エリアとの間で画定されるソフト境界を含む請求項21に記載の方法。
  37. 前記パターン形成後放射ビームが、対象部分全体に単一の露光で投射され、新しい各イメージ・フレームが、露光間で個々に制御可能な素子のアレイ上にロードされる請求項1に記載の方法。
  38. 前記個々に制御可能な素子のアレイ及び前記ビームのうちの少なくとも1つが、第1の方向でそれらの間の相対運動を生み出すように移動し、それによって前記ビームが前記アレイの上を走査し、
    前記基板が前記第1方向に平行な方向に移動し、それによって前記パターン形成後ビームが対象部分にわたって走査される
    請求項1に記載の方法。
  39. 放射ビームを供給する照明系と、
    前記ビームをパターン形成する個々に制御可能な素子のアレイと、
    基板の対象部分上にパターン形成後ビームを投射する投射系と、
    イメージ・フレーム・ローディング操作で前記個々に制御可能な素子のアレイの素子を周期的にアドレス指定して、投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定する手段とを備えるリソグラフィ装置であって、
    所与のイメージ・フレームがロードされるときに、状態を変更する個々に制御可能な素子だけがアドレス指定されるリソグラフィ装置。
  40. 個々に制御可能な素子のアレイをアドレス指定する前記手段が、マトリックス・アドレス指定操作でアレイの各素子をアドレス指定するためのデータ経路及び駆動電子回路を備える請求項39に記載の装置。
  41. 前記基板及び前記パターン形成後放射ビームの少なくとも1つを移動して、少なくとも第1の方向でそれらの間の相対運動を生み出す手段
    をさらに備える請求項40に記載の装置。
  42. 前記照明系が放射のパルスを含むビームを供給し、
    前記個々に制御可能な素子のアレイをアドレス指定する前記手段が、放射パルス間で新しい各イメージ・フレームをロードするように動作する
    請求項41に記載の装置。
  43. 前記照明系が、走査動作中に連続的であるビームを生成し、
    前記個々に制御可能な素子のアレイをアドレス指定する前記手段が、前記パターン形成ビームが前記基板の対象部分を走査するときに新しい各イメージ・フレームをロードするように動作する
    請求項41に記載の装置。
  44. 前記パターン形成後放射ビームを放射スポットのアレイとして前記基板上に投射するマイクロ・レンズ・アレイをさらに備える請求項41に記載の装置。
  45. 投射すべきイメージを分析し、任意の単一イメージ・フレームが前記対象部分の走査中にロードされるときに状態を変更する前記アレイの個々に制御可能な素子数を最小限に抑える走査方向を決定する手段をさらに備える請求項41に記載の装置。
  46. 分析する前記手段が、前記対象部分が走査されたときに状態を変更する前記個々に制御可能な素子のアレイにわたるイメージ・フィーチャ境界を考慮に入れて前記走査方向を決定する請求項45に記載の装置。
  47. 分析する前記手段が、前記イメージを分析し、(a)任意の瞬間に前記パターン形成後放射ビームに露光される、前記走査方向に平行な方向に分解されるイメージ・フィーチャ境界の全長が、(b)任意の瞬間に前記パターン形成後放射ビームに露光される、前記走査方向に垂直に分解される全イメージ境界長以上となるように前記走査方向を選択する請求項46に記載の装置。
  48. 分析する前記手段が、前記イメージを分析し、任意の瞬間に前記パターン形成後放射ビームに露光される、前記走査方向に垂直に分解されるイメージ・フィーチャ境界の全長が最小限に抑えられる走査方向を決定する請求項46に記載の装置。
  49. 前記基板とパターン形成後放射ビームの間の相対運動を生成する前記手段が、少なくとも第1走査方向及び第2走査方向を含む複数の方向の相対運動を与え、
    前記対象部分上に投射すべき前記イメージの第1イメージ部分がそれぞれの第1走査方向で走査され、
    前記対象部分上に投射すべき前記イメージの第2イメージ部分がそれぞれの第2走査方向で走査される
    請求項41に記載の装置。
  50. 前記第1走査方向が前記第2走査方向と垂直である請求項49に記載の装置。
  51. 個々に制御可能な素子のアレイを備えるパターン装置を使用して放射ビームをパターン形成するステップと、
    基板の対象部分上にパターン形成後放射ビームを投射するステップと、
    前記パターン装置にイメージ・データを与えて、投射すべきパターンを周期的に更新するステップと、
    イメージ・フレーム・ローディング操作で前記個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定して、前記イメージ・データに従って投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定するステップとを含む装置製造方法であって、
    前記パターン装置に与えられる前記イメージ・データが、あるイメージ・フレームから次のイメージ・フレームに状態を変更する個々に制御可能な素子だけに関するデータを含む装置製造方法。
  52. 状態を変更する個々に制御可能な素子だけが、イメージ・フレームがロードされるごとにアドレス指定される請求項51に記載の装置製造方法。
  53. 前記パターン装置がバッファを含み、
    前記イメージ・データが前記バッファに供給され、
    前記イメージ・データが前記バッファに格納され、
    前記イメージ・データが、前記個々に制御可能な素子のアレイを周期的に更新するのに使用され、
    前記アレイの個々に制御可能な各素子が、イメージ・フレームがロードされるごとにアドレス指定される
    請求項51に記載の装置製造方法。
  54. あるイメージ・フレームに関する前記バッファに供給されるイメージ・データが、先行するイメージ・フレームに関するバッファに以前に供給されたデータに追加され、次いで累積データが、前記個々に制御可能な素子のアレイを更新するのに使用される請求項53に記載の装置製造方法。
  55. 前記累積データが、前記累積データに従って前記アレイの前記個々に制御可能な素子のそれぞれをアドレス指定するために前記アレイのドライバに供給される請求項54に記載の装置製造方法。
  56. 放射ビームを供給する照明系と、
    前記ビームをパターン形成する個々に制御可能な素子のアレイを備えるパターン装置と、
    基板の対象部分上にパターン形成後ビームを投射する投射系と、
    投射すべきパターンの周期的更新のために前記パターン装置にイメージ・データを供給する手段とを備えるリソグラフィ装置であって、
    前記個々に制御可能な素子のアレイが、イメージ・フレーム・ローディング操作でアレイの素子を周期的にアドレス指定して、投射すべきパターンにとって適切な個々に制御可能な各素子の状態を設定する手段を含み、
    イメージ・データを供給する前記手段が、あるイメージ・フレームから別のイメージ・フレームに状態を変更するアレイの素子だけに関するデータを供給するリソグラフィ装置。
  57. 前記アレイの素子を周期的にアドレス指定する前記手段が、イメージ・フレームがロードされるごとに状態を変更するアレイの素子だけをアドレス指定する請求項56に記載の装置。
  58. 前記アレイの素子を周期的にアドレス指定する前記手段が、イメージ・フレームがロードされるごとに前記アレイの各素子をアドレス指定する請求項56に記載の装置。
  59. 前記パターン装置が、前記イメージ・データを受け取るバッファをさらに備える請求項58に記載の装置。
  60. あるイメージ・フレームに関する前記バッファに供給されるイメージ・データが、先行するイメージ・フレームに関するバッファに以前に供給され、前記バッファ内に追加されたデータに追加されて累積イメージ・データが提供され、次いで累積イメージ・データが、前記個々に制御可能な素子のアレイを更新するのに使用される請求項59に記載の装置。
  61. 前記個々に制御可能な素子のアレイをアドレス指定するドライバであって、前記累積データが、前記バッファから前記アレイのドライバに供給されるドライバをさらに備える請求項54に記載の装置。
  62. 個々に制御可能な素子のアレイを使用して放射ビームをパターン形成するステップと、
    基板の対象部分にパターン形成後ビームを投射するステップと、
    投射すべきパターンを周期的に更新するためにデジタル・イメージ記憶装置から前記アレイにイメージ・データを供給するステップと、
    イメージ・フレーム・ローディング操作で前記個々に制御可能な素子のアレイの個々の素子を周期的にアドレス指定して、前記イメージ・データに従って投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定するステップとを含む装置製造方法であって、
    前記イメージ・データが、あるイメージ・フレームから次のイメージ・フレームに状態を変更する前記アレイの素子だけに関係する装置製造方法。
  63. 放射ビームを供給する照明系と、
    前記ビームをパターン形成する個々に制御可能な素子のアレイと、
    基板の対象部分にパターン形成後ビームを投射する投射系と、
    投射すべきパターンを周期的に更新するためにデジタル・イメージ記憶装置からアレイにイメージ・データを供給するデータ経路とを備えるリソグラフィ装置であって、
    前記個々に制御可能な素子のアレイが、イメージ・フレーム・ローディング操作で前記アレイの素子を周期的にアドレス指定し、投射すべきパターンに対して適切な個々に制御可能な各素子の状態を設定する手段を含み、
    前記イメージ・データが、あるイメージ・フレームから次のイメージ・フレームに状態を変更する前記アレイの素子だけに関するデータを含むリソグラフィ装置。
JP2005343938A 2004-11-30 2005-11-29 リソグラフィ装置及び装置製造方法 Active JP4277138B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/999,159 US7333177B2 (en) 2004-11-30 2004-11-30 Lithographic apparatus and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2006157017A JP2006157017A (ja) 2006-06-15
JP4277138B2 true JP4277138B2 (ja) 2009-06-10

Family

ID=36567042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343938A Active JP4277138B2 (ja) 2004-11-30 2005-11-29 リソグラフィ装置及び装置製造方法

Country Status (2)

Country Link
US (1) US7333177B2 (ja)
JP (1) JP4277138B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145636B2 (en) * 2004-12-28 2006-12-05 Asml Netherlands Bv System and method for determining maximum operational parameters used in maskless applications
JP4909779B2 (ja) * 2006-04-17 2012-04-04 パナソニック株式会社 画像データ転送方法、画像処理装置、及び撮像システム
US7751695B2 (en) * 2006-06-12 2010-07-06 Lawrence Livermore National Security, Llc High-speed massively parallel scanning
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
KR101546987B1 (ko) * 2007-10-16 2015-08-24 가부시키가이샤 니콘 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009145048A1 (ja) 2008-05-28 2009-12-03 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
JP5416867B2 (ja) * 2009-12-28 2014-02-12 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
CN102714707B (zh) * 2010-01-05 2015-06-03 皇家飞利浦电子股份有限公司 图像投影设备和方法
KR20150103774A (ko) * 2014-03-03 2015-09-14 삼성디스플레이 주식회사 디지털 노광 방법 및 이를 수행하기 위한 디지털 노광 장치
TWI759628B (zh) * 2018-09-18 2022-04-01 荷蘭商Asml荷蘭公司 用於偵測快速充電裝置中時間相依缺陷的設備及方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
ATE123885T1 (de) * 1990-05-02 1995-06-15 Fraunhofer Ges Forschung Belichtungsvorrichtung.
US5229872A (en) * 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
US6219015B1 (en) * 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
JP3224041B2 (ja) * 1992-07-29 2001-10-29 株式会社ニコン 露光方法及び装置
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP3339149B2 (ja) * 1993-12-08 2002-10-28 株式会社ニコン 走査型露光装置ならびに露光方法
US5677703A (en) * 1995-01-06 1997-10-14 Texas Instruments Incorporated Data loading circuit for digital micro-mirror device
US5530482A (en) * 1995-03-21 1996-06-25 Texas Instruments Incorporated Pixel data processing for spatial light modulator having staggered pixels
US6133986A (en) * 1996-02-28 2000-10-17 Johnson; Kenneth C. Microlens scanner for microlithography and wide-field confocal microscopy
ATE216091T1 (de) 1997-01-29 2002-04-15 Micronic Laser Systems Ab Verfahren und gerät zur erzeugung eines musters auf einem mit fotoresist beschichteten substrat mittels fokusiertem laserstrahl
US6177980B1 (en) * 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
SE509062C2 (sv) 1997-02-28 1998-11-30 Micronic Laser Systems Ab Dataomvandlingsmetod för en laserskrivare med flera strålar för mycket komplexa mikrokolitografiska mönster
US5982553A (en) * 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
SE9800665D0 (sv) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
US6379867B1 (en) * 2000-01-10 2002-04-30 Ball Semiconductor, Inc. Moving exposure system and method for maskless lithography system
KR100827874B1 (ko) * 2000-05-22 2008-05-07 가부시키가이샤 니콘 노광 장치, 노광 장치의 제조 방법, 노광 방법, 마이크로 장치의 제조 방법, 및 디바이스의 제조 방법
JP3563384B2 (ja) * 2001-11-08 2004-09-08 大日本スクリーン製造株式会社 画像記録装置
TWI298825B (en) * 2002-06-12 2008-07-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR101087930B1 (ko) * 2002-08-24 2011-11-28 매스크리스 리소그래피 인코퍼레이티드 연속적인 직접-기록 광 리소그래피 장치 및 방법
US6870554B2 (en) * 2003-01-07 2005-03-22 Anvik Corporation Maskless lithography with multiplexed spatial light modulators
EP1482373A1 (en) * 2003-05-30 2004-12-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP2006157017A (ja) 2006-06-15
US20060114446A1 (en) 2006-06-01
US7333177B2 (en) 2008-02-19

Similar Documents

Publication Publication Date Title
JP4277138B2 (ja) リソグラフィ装置及び装置製造方法
JP4339842B2 (ja) リソグラフィ装置及びデバイス製造方法
JP5160688B2 (ja) リソグラフィ装置およびデバイス製造方法
KR100545297B1 (ko) 리소그래피장치 및 디바이스 제조방법
KR100660501B1 (ko) 리소그래피 장치 및 디바이스 제조방법
JP5210370B2 (ja) リソグラフィ装置およびデバイス製造方法
KR100730060B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
JP2006179921A (ja) リソグラフィ装置及び六角形画像グリッドを使用するデバイス製造方法
JP2006165548A (ja) リソグラフィ装置及びデバイス製造方法
JP4394641B2 (ja) マスクレス適用に用いる最大動作パラメータを決定するためのシステム及び方法
JP5198381B2 (ja) リソグラフィ装置及びデバイス製造方法
US7859735B2 (en) Systems and methods for minimizing scattered light in multi-SLM maskless lithography
JP2006060215A (ja) リソグラフィ装置及びデバイス製造方法
JP4087819B2 (ja) コンピュータ・プログラム、リソグラフィ装置及びデバイス製造方法
JP4431535B2 (ja) リソグラフィ・グレイ・スケール化の方法及びシステム
US7538855B2 (en) Lithographic apparatus and device manufacturing method
JP5346356B2 (ja) リソグラフィ装置及びデバイス製造方法
JP4791179B2 (ja) リソグラフィ装置及びデバイス製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250