JP4213741B2 - デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体 - Google Patents

デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体 Download PDF

Info

Publication number
JP4213741B2
JP4213741B2 JP2006259593A JP2006259593A JP4213741B2 JP 4213741 B2 JP4213741 B2 JP 4213741B2 JP 2006259593 A JP2006259593 A JP 2006259593A JP 2006259593 A JP2006259593 A JP 2006259593A JP 4213741 B2 JP4213741 B2 JP 4213741B2
Authority
JP
Japan
Prior art keywords
noise
signal
magnitude
power
tuner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006259593A
Other languages
English (en)
Other versions
JP2008085382A (ja
Inventor
孝江 坂井
延佳 海木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006259593A priority Critical patent/JP4213741B2/ja
Priority to US11/822,530 priority patent/US7796962B2/en
Priority to CN200710136458XA priority patent/CN101155169B/zh
Publication of JP2008085382A publication Critical patent/JP2008085382A/ja
Application granted granted Critical
Publication of JP4213741B2 publication Critical patent/JP4213741B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/455Demodulation-circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42607Internal components of the client ; Characteristics thereof for processing the incoming bitstream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/443OS processes, e.g. booting an STB, implementing a Java virtual machine in an STB or power management in an STB
    • H04N21/4436Power management, e.g. shutting down unused components of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
  • Television Receiver Circuits (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Description

本発明は、デジタル復調装置、特に、変調処理が施された信号を受信してその信号に復調処理を施すデジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体に関する。
チューナが受信した信号に妨害波が含まれていると、チューナから出力される信号にノイズが発生する場合がある。チューナからの信号に含まれるノイズが過大であると、チューナからの信号を復調できなくなる。チューナからの信号に含まれるノイズの大きさは、チューナが受信する妨害波の大きさに依存する。特許文献1には、妨害波が信号に含まれているか否かを評価する装置が記載されている。
特開2005−311570号公報
ところで、チューナからの信号に含まれるノイズの大きさは、チューナを構成する回路部品への供給電力の大きさにも依存する。したがって、かかる回路部品への供給電力の大きさは、チューナからの信号に含まれるノイズの大きさが過大なものとならないように調整されなければならない。一方で、回路部品への供給電力が必要以上に大きいと、チューナの消費電力が大きくなり好ましくない。したがって、チューナからの信号に含まれるノイズの大きさが過大なものとならず且つ供給電力が必要以上に大きくならないように供給電力の大きさが適切に決定されなければならない。このためには、チューナが受信する信号に含まれる妨害波がどのようなものかが十分に把握される必要がある。しかし、特許文献1によると妨害波の有無が判定されるのみであるため、供給電力の大きさを適切に決定するために特許文献1の装置では不十分である。
本発明の目的は、チューナが受信する信号に含まれる妨害波を適切に把握してチューナを構成する回路部品への供給電力を調整するデジタル復調装置、デジタル受信装置、その制御方法、その制御プログラム及びその制御プログラムを記録した記録媒体を提供することにある。
課題を解決するための手段及び効果
本発明のデジタル復調装置は、複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、前記チューナからの信号に復調処理を施す復調器と、前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定手段と、前記第1の測定手段が前記搬送波ごとに測定したノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定手段と、前記分布推定手段が推定した前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出手段と、前記ノイズ変化導出手段が導出した前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新手段とを備えている。
また、本発明のデジタル復調装置の制御方法は、複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、前記チューナからの信号に復調処理を施す復調器とを有するデジタル復調装置の制御方法であって、前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定ステップと、前記第1の測定ステップで前記搬送波ごとに測定されたノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定ステップと、前記分布推定ステップで推定された前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出ステップと、前記ノイズ変化導出ステップで導出された前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新ステップとを備えている。
また、本発明のデジタル復調装置のためのプログラムは、複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、前記チューナからの信号に復調処理を施す復調器とを有するデジタル復調装置のためのプログラムであって、前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定ステップと、前記第1の測定ステップで前記搬送波ごとに測定されたノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定ステップと、前記分布推定ステップで推定された前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出ステップと、前記ノイズ変化導出ステップで導出された前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新ステップとをデジタル復調装置に実行させるというものである。
本発明のデジタル復調装置、その制御方法及びデジタル復調装置用プログラムによると、供給電力に対するノイズの大きさの変化を把握した上で、ノイズが基準値を超えないように供給電力の大きさが調整される。妨害波の分布態様とノイズの分布態様とが関連している場合には、ノイズの分布態様を把握することで妨害波の分布態様が把握される。妨害波の分布態様が把握されると、妨害波に起因して信号に含まれることとなるノイズの振る舞いも把握できるため、供給電力に対するノイズの大きさの変化が把握され得る。そして、供給電力の大きさに対するノイズの大きさの変化に基づいて、ノイズの大きさを基準値以下に抑制し且つチューナの消費電力が過大にならないように、回路部品への供給電力の大きさが適切に調整され得る。
また、本発明においては、前記分布推定手段が、前記チューナからの信号に含まれるノイズが前記妨害波に起因する相互変調歪によるノイズであることに基づいて、前記妨害波の分布態様を推定することが好ましい。チューナからの信号に含まれるノイズが相互変調歪に起因するものである場合には、ノイズの分布態様から妨害波の分布態様が正確に把握され得る。上記の構成によると、このような相互変調歪と妨害波との関係を利用して、ノイズの測定結果から正確に妨害波の分布態様が把握され得る。
また、本発明においては、前記電力更新手段が、前記チューナからの信号に含まれたノイズの大きさが前記ノイズ基準値を下回っている場合に、前記チューナからの信号に含まれることとなるノイズの大きさが前記ノイズ基準値を下回る範囲内で前記回路部品への供給電力をより小さいものに更新することが好ましい。この構成によると、回路部品への供給電力が削減されることにより、ノイズが基準値を超えない範囲で適切に消費電力が削減される。
また、本発明においては、前記ノイズ変化導出手段が、前記回路部品からの出力信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化と前記周波数帯域内の妨害波の分布態様との関連情報を記憶する関連記憶手段と、前記分布推定手段が推定した前記妨害波の分布態様と前記関連記憶手段が記憶している関連情報とに基づいて、前記チューナからの信号に含まれることとなるノイズの大きさの前記回路部品への供給電力に対する変化を取得するノイズ変化取得手段とを有しており、前記電力更新手段が、前記ノイズ変化取得手段が導出した前記ノイズの大きさの前記回路部品への供給電力に対する変化に基づいて前記回路部品への供給電力の大きさを更新することが好ましい。この構成によると、供給電力の大きさに対するノイズの大きさの変化とノイズの分布態様との関連を記憶させておくことにより、供給電力の大きさに対するノイズの大きさの変化を導出することが簡易な構成で可能となる。
また、本発明においては、前記チューナが受信する信号に含まれる妨害波が、前記周波数帯域内に分布するアナログテレビジョン波及びデジタルテレビジョン波の少なくとも一方であり、前記分布推定手段が、前記チューナが選択的に受信した信号に係る前記周波数帯域に隣接する前記周波数帯域内に妨害波が含まれている場合に、当該妨害波がアナログテレビジョン波であるかデジタルテレビジョン波であるかを判定する妨害波判定手段を有していることが好ましい。アナログテレビジョン波やデジタルテレビジョン波は信号の分布態様が既知のものであるので、これらの放送のいずれであるかは測定されたノイズから簡易に判断され得る。そして、アナログテレビジョン波かデジタルテレビジョン波かが一旦把握されると、周波数帯域内にどのように妨害波が分布しているかが正確に把握され得る。つまり、上記の構成によると、妨害波の正確な分布態様が簡易に把握され得る。
また、本発明においては、前記分布推定手段が、前記チューナが選択的に受信した信号に係る前記周波数帯域内にアナログテレビジョン波が含まれているか否かを判定するアナログ波判定手段を有していることが好ましい。この構成によると、チューナが選択的に受信する周波数帯域内に妨害波となるアナログテレビジョン波が含まれているか否かが判定された上で、その判定結果に基づいて、供給電力の大きさに対するノイズの大きさの変化が適切に導出され得る。
また、本発明においては、前記電力更新手段が、前記分布推定手段が推定した前記妨害波の分布態様に基づいて、前記回路部品に供給した場合に前記チューナからの信号に含まれることとなるノイズの大きさが前記ノイズ基準値を下回るような供給電力の大きさを導出する電力導出手段と、前記電力導出手段が導出した大きさの供給電力を供給する期間を決定する期間決定手段と、前記電力導出手段が導出した大きさの供給電力を前記期間決定手段が決定した期間に亘って前記回路部品に供給する一時電力供給手段と、前記電力導出手段が導出した大きさの供給電力を前記一時電力供給手段が前記回路部品に供給したことによって前記チューナからの信号に含まれることとなったノイズの大きさを測定する第2の測定手段とを有しており、前記第2の測定手段が測定したノイズの大きさが前記ノイズ基準値を下回っている場合に、前記電力導出手段が導出した大きさ以上であって更新前より小さい大きさに前記回路部品への供給電力を更新することが好ましい。この構成によると、ノイズが基準値を下回るような範囲か否かを判定するための試験的な電力供給が実際になされた上で、供給電力の更新される。したがって、より確実にノイズが基準値を下回るような範囲で供給電力の更新が行われる。
また、本発明においては、前記チューナからの信号に誤り訂正処理を施す誤り訂正手段をさらに備えており、前記ノイズ基準値が、前記誤り訂正手段が施す誤り訂正処理によって訂正が可能なノイズの大きさの上限値であることが好ましい。この構成によると、誤り訂正が可能となるような範囲内で供給電力の調整が行われる。したがって、復調処理が適切になされる範囲で供給電力の調整がなされる。
また、本発明は、文字、画像、プログラムなどのデータ、及び音声の少なくとも1つの再現処理を行う再現手段を有している携帯電話やデジタルテレビジョン等の様々なデジタル受信装置に採用され得る。このようなデジタル受信装置は、本発明のデジタル復調装置によって復調処理が施された受信信号から文字、画像、プログラムなどのデータ、音声等に係る情報を取得し、これらの文字等の再現処理を行う。本発明のチューナ又はデジタル復調装置が上記のようなデジタル受信装置に採用されていることにより、チューナからの出力信号に含まれるノイズの大きさが抑えられつつ、電力の消費も抑えられる。
なお、上記の本発明のデジタル復調装置用プログラムは、CD−ROM(Compact Disc Read Only Memory)ディスク、フレキシブルディスク(FD)、MO(Magneto Optical)ディスクなどのリムーバブル型記録媒体や、ハードディスクなどの固定型記録媒体のようなコンピュータ読み取り可能な記録媒体に記録して配布可能である他、有線又は無線の電気通信手段によってインターネットなどの通信ネットワークを介して配布可能である。また、このプログラムは、デジタル復調装置専用のものでなくてもよく、選局処理やデジタル復調処理に係るプログラムと組み合わせて使用されることにより汎用型のプロセッサなどを有する汎用の装置をデジタル復調装置として機能させるプログラムであってもよい。
以下は、本発明の好適な一実施形態である携帯通話装置についての説明である。図1は、本実施形態に係る携帯通話装置1000及び携帯通話装置1000に設けられたデジタル復調装置1の全体の概略構成を示している。
本実施形態の携帯通話装置1000(デジタル受信装置)はデジタル復調装置1を有している。携帯通話装置1000がアンテナから受信した信号Srはデジタル復調装置1によって復調される。そして、デジタル復調装置1から出力された復調信号から文字や画像や音声やプログラムなどのデータに係る情報が取り出され、これらの文字や画像や音声やプログラムなどのデータが再現される。これらの文字、画像等は、携帯通話装置1000に設けられた図示されていないディスプレイやスピーカなどを通じて携帯通話装置1000の使用者に提供される。なお、デジタル復調装置1は、携帯通話装置の他、デジタルTV(Television)、無線LAN(Local Area Network)装置、無線LANを搭載したPC(Personal Computer)等に採用されてもよい。
デジタル復調装置1はチューナ2、復調器3及び制御部4を有している。チューナ2は復調器3と電気的に接続されている。また、チューナ2は、アンテナと電気的に接続されており、アンテナからの信号Srに選局処理を施す。つまり、アンテナからの信号Srに含まれる複数のチャンネルから1つのチャンネルを選択的に受信する。そして、選択的に受信したチャンネルに係る信号をIF(Intermediate Frequency:中間周波数)信号に変換し、復調器3へと送信する。復調器3はチューナ2から送信されるIF信号を受信し、IF信号から復調信号、例えばいわゆるTS(Transport Stream)信号を生成して出力する。
なお、デジタル復調装置1は複数の回路部品から構成されている。下記において特に断りがない限り、各回路部品は、それぞれ独立した機能を果たすように特化された回路素子の集合であってもよいし、汎用のプロセッサ等と下記の各機能を果たすようにプロセッサなどのハードウェアを機能させるプログラムとからなるものでもよい。後者の場合には、ハードウェア及びプログラムが組み合わされることによって回路部品が構築される。
<受信信号>
以下は、携帯通話装置1000が受信する信号についての説明である。以下においては、本実施形態の一例として、携帯通話装置1000が受信する信号の伝送方式に日本の地上デジタル放送に係る伝送方式が採用されている場合が主に示される。日本の地上デジタル放送には、ISDB−T(Integrated Services Digital Broadcasting-Terrestrial)方式が採用されている。なお、本実施形態に係るデジタル復調装置の受信信号は、ISDB−T方式の他、DAB(Digital Audio Broadcasting)、DVB−T(Digital Video Broadcasting-Terrestrial)、DVB−H(-Handheld)方式、DMB(Digital Multimedia Broadcasting)方式、無線LANに用いられるIEEE802.11a/b/g/n方式が採用されたものでもよい。
図2は、日本の地上デジタル放送に係る伝送方式が採用された受信信号の模式図を示している。日本の地上デジタル放送においては、一事業者には約6MHzの幅の周波数帯域が割り当てられており、複数のこのような周波数帯域(例えば、ChA〜ChC)が周波数軸上で互いに隣り合っている。各周波数帯域には数千本の搬送波が含まれている。そして、各周波数帯域は図2のように13のセグメントSgに分割されている。さらに、携帯通話装置1000などの移動体向けの放送には、13セグメントのうち、1つのセグメントが割り当てられている。
ISDB−T方式による信号の変調には、OFDM(Orthogonal Frequency Division Multiplexing)方式が採用されている。OFDM方式はデータの搬送に複数の異なる周波数の搬送波が用いられるマルチキャリア方式である。そして、OFDM方式で用いられる搬送波は相互に直交する波形を有している。周波数帯域ChA〜ChCに含まれている上記の数千本の搬送波は、このような互いに直交する波形を有するものである。
データ送信の際には、送信されるデータの各値に応じて変調された複数の搬送波が重ね合わされた変調信号が生成される。つまり、送信されるデータに含まれる複数のデータ値の配列順に従って各データ値が異なる搬送波に振り分けられる。そして、振り分けられたデータ値に応じて搬送波が変調され、変調された複数の搬送波が重ね合わされることによりOFDM信号が生成される。OFDM方式においてこのようにOFDM信号を生成することは、逆フーリエ変換を行うことと同等である。なお、以下の説明において、有効シンボル長とはOFDM方式で用いられる搬送波の周波数間隔の逆数をいう。
次に、直接波以外の遅延波の影響を削減するため、上記のように変調された複数の搬送波が重ね合わされた変調信号にはさらにガードインターバルが挿入される。ガードインターバルは、上記の変調信号において有効シンボル長の領域ごとに、この領域の一端に位置する一部の領域が複写されて、他端に挿入されたものである。このようにガードインターバルが挿入された変調信号が、OFDM信号として送信される。
有効シンボル長の信号とガードインターバルとからなる信号は、1シンボルと呼ばれる。OFDM信号は複数のこのようなシンボルが連なって構成されている。OFDM信号と時間的に遅延して受信側に到達する遅延波とが重なり合った信号が受信された場合には、異なるシンボルが受信信号において重なり合う。ガードインターバルは、OFDM信号と遅延波とが重なり合って受信された場合に、異なるシンボルが重なり合っていない部分を受信信号から取り出すために用いられている。
また、地上波デジタル放送においては、OFDM信号によって伝送されるデータに対して、伝送経路上で発生する雑音や干渉波によって発生する誤りを訂正するための符号化が行われる。符号化にはリードソロモン符号(以下、「RS符号」と呼称)とビタビ符号とが用いられる。地上波デジタル放送で用いられるRS符号においては、伝送される204バイトのデータのうち、後ろ16バイト分がチェックビットであり、204バイト中最大8バイトの誤りが訂正可能である。
また、ビタビ符号においては、符号化後の伝送されるnビットに対して、符号化前のデータがkビットのときの符号化率をk/nとして、1/2から7/8が規格化されている。これらRS符号化及びビタビ符号化されたデータを元に戻すために、受信側ではRS復号及びビタビ復号が行われる。
ところで、伝送経路の状態によっては、伝送信号に対して時間的又は周波数的に誤りが集中するいわゆるバースト誤りが発生する場合がある。また、ビタビ符号化された信号を元に戻すビタビ復号後において誤り訂正できない場合には、一般的にバースト誤りが起こることが多い。RS復号を用いた誤り訂正によって上記のようなある長さの信号に発生する誤りを訂正する場合、この長さの信号あたりにおける訂正可能な誤り数には限界がある。したがって、上記のようなバースト誤りが発生すると、誤りの訂正が不可能となる場合がある。
地上デジタル放送においては、このように伝送信号にバースト誤りが発生した場合にも誤り訂正が可能となるように、伝送信号によって伝送されるデータに対して種々のインターリーブ処理が施される。インターリーブには、ビットインターリーブ、バイトインターリーブ及び時間インターリーブや周波数インターリーブがある。これらは、伝送信号に含まれる信号に対応するデータを時間的に並べ替えたり周波数的に並べ替えたりするものである。特に、時間的に連続する複数の信号を時間的に並べ替える目的のため、時間的インターリーブがある。また、周波数的に連続する複数の搬送波を周波数的にランダムに並べ替えるために周波数インターリーブがある。例えば、時間インターリーブ及び時間インターリーブが行われたデータを元に戻す時間デインターリーブは以下のように行われる。
図3は、時間インターリーブ及び時間デインターリーブの一例を示す模式図である。図3においては、インターリーブ及びデインターリーブ処理が施される前後の3つの信号Sが示されている。これらの3つの信号には、時間的に連続する複数のシンボルSbが含まれている。また、これらの3つの信号には、変調された複数の搬送波が含まれている。つまり、以下のような信号の並べ替えは、複数の搬送波に跨ってなされる。
送信装置において、信号Sは、時間インターリーブとしてあらかじめ決められた順序に従って、図3のように並べ替えられる。時間インターリーブにおいては、並べ替え前の時間的な位置よりも後ろの位置に各シンボルが移動するように並べ替えが行われる。また、各シンボル内の互いに異なる搬送波は、並べ替え後の信号において互いに別の位置に含まれることとなる。受信装置において、信号Sは、時間デインターリーブとしてあらかじめ決められた順序に従って、図3のように元の並び方に戻るように並べ替えられる。
ところで、時間インターリーブが施された信号Sの一部には、伝送経路の状態によってバースト誤りEbが発生することがある。しかし、受信装置において時間デインターリーブが行われることにより、再び元の順序に戻される。したがって、伝送経路において複数のシンボルに跨って発生したバースト誤りEbは、シンボルごとの誤りEdのように分散される。このように、時間的に誤りが集中するバースト誤りが発生した場合でも、時間デインターリーブ後には誤りが分散されるため、誤り訂正が可能となる。
信号には、時間インターリーブ以外の種々のインターリーブが施される。バイトインターリーブにおいては204バイトのRS符号化の単位でデータが分散されるように、バイト単位の信号の並べ替えが行われる。また、ビットインターリーブにおいてはビット単位で信号の並べ替えが行われる。さらに、周波数インターリーブにおいては、OFDM信号に含まれる各搬送波を跨いでシンボルの並べ替えが行われる。このような種々のインターリーブ及びデインターリーブによって伝送経路上の種々の誤りが信号内で分散された後に、誤り訂正処理が施される。したがって、インターリーブ処理がなされない場合と比べて、信号に発生した誤りが確実に訂正され得る。
地上デジタル放送においては、このほか、データの偏りによる伝送信号のエネルギーの偏りを防ぐため、エネルギー拡散が行われる。エネルギー拡散は、擬似ランダムデータと伝送信号に係るデータとのビット単位の排他的論理和をとって、データをランダム化することにより行われる。
<アナログ放送に係る搬送波>
デジタル放送に用いられている周波数帯域の周辺においてデジタル放送とアナログ放送とが共存している場合には、チューナ2にアナログ放送に係る信号が受信されることがある。図4は、このようなアナログ放送に係る搬送波の分布態様を示すグラフである。図4の横軸は周波数を、縦軸は信号の大きさをそれぞれ表す。ChA’〜ChC’は、図2のChA〜ChCと同じ周波数帯域のアナログ放送のチャンネルをそれぞれ示している。これらのアナログ放送がアナログTVに係る放送である場合には、例えば、搬送波91a〜93aのそれぞれは、映像搬送波、色副搬送波及び音声搬送波に相当する。
<チューナ>
以下は、チューナ2についての説明である。図5はチューナ2の構成を示すブロック図である。
チューナ2はRFアンプ部21、ミキサ部22、VCO・PLL部23、フィルタ部24及びIFアンプ部25を有している。チューナ2に入力された信号Srは、RFアンプ部21によって増幅されて、ミキサ部22へと出力される。一方、VCO・PLL部23は、特定のチャンネルに相当する周波数に基づくミキシング信号を生成する(選局処理)。VCO・PLL部23が生成したミキシング信号はミキサ部22へと出力される。そして、ミキサ部22は、RFアンプ部21からの出力信号SrとVCO・PLL部23からのミキシング信号とから、IF周波数に応じたIF信号Siを生成する。
ミキサ部22が生成したIF信号Siはフィルタ部24へと出力される。フィルタ部24はミキサ部22からの出力信号Siから不要な信号成分を除去する。不要な信号成分が除去された信号SiはIFアンプ部25へと主力される。IFアンプ部25はフィルタ部24からの出力信号Siを増幅すると共に、増幅した信号Siを復調器3へと出力する。
チューナ2はさらに電力供給部100を有している。電力供給部100は、RFアンプ部21、ミキサ部22、フィルタ部24及びIFアンプ部25のそれぞれに電力を供給する。RFアンプ部21等は、電力供給部100からの供給電力によって動作する。電力供給部100は電力調整部101、通常電力記憶部102及び試験電力記憶部103を有している。通常電力記憶部102にはRFアンプ部21等に供給する通常電力の大きさが記憶されている。電力調整部101は、RFアンプ部21等に供給する電力を、通常電力記憶部102及び試験電力記憶部103のいずれか一方に記憶されている電力の大きさに調整する。なお、電力供給部100は、制御部4からの指示が特にない限り、RFアンプ部21等の回路部品における通常動作のための電力として、通常電力記憶部102に記憶された通常電力の大きさの電力を回路部品に供給する。なお、本発明において一時電力供給手段の機能は、本実施形態において試験電力記憶部103が記憶している大きさの電力を電力供給部100が回路部品に供給する機能に対応する。
ところで、アナログ回路からの出力信号には各種のノイズが含まれる。したがって、RFアンプ部21等がアナログ回路によって実現されている場合に、これらの回路部品からの出力信号にはノイズが含まれる。そして、ノイズの大きさは、そのアナログ回路に供給される電力の大きさに依存する場合がある。つまり、チューナ2から出力される信号Siに含まれるノイズの大きさがRFアンプ部21等への供給電力の大きさによって変化する場合がある。一方で、チューナ2から出力された信号Siを復調器3が復調する際に信号Siに含まれるノイズの大きさがある限度を上回っていると、信号Siが正確に復調されない。このため、RFアンプ部21等への供給電力は、信号Siが正確に復調される程度に十分な大きさとなるように調整されていなければならない。
したがって、通常電力記憶部102に記憶されている通常電力の大きさは、最終的にチューナ2から出力される信号Siに含まれるノイズが信号Siを正確に復調できる範囲に収まる大きさになるように設定されている。
<復調器>
以下は、復調器3についての説明である。図6(a)は復調器3の構成を示すブロック図である。図6(a)に示されているように、復調器3は、下記に示されるADC部31等の複数の回路部品から構成されている。
復調器3は、ADC部31、AFC・シンボル同期部32、FFT部33、フレーム同期部34、検波部35、波形等化部37及び誤り訂正部36を有している。復調器3は、チューナ2からの信号Siに復調処理及び誤り訂正処理を施す。
チューナ2から出力されたIF信号SiはADC部31に入力される。ADC部31は、アナログ信号である入力された信号Siをデジタル信号に変換する共に、変換したデジタル信号をAFC・シンボル同期部32へと出力する。
AFC・シンボル同期部32は、ADC部からのデジタル信号に対してフィルタ処理などの補正処理等を行う。そして、AFC・シンボル同期部32は、後述のFFT部33によるフーリエ変換の開始点、つまり、シンボル同期点を決定してシンボル同期を取ると共に、デジタル信号をFFT部33へと出力する。これと共に、AFC・シンボル同期部32は制御部4へと、シンボル同期点に係る情報を送信する。さらに、AFC・シンボル同期部32は、有効シンボル長を示すモードに係る情報を導出し、その情報を制御部4へと送信する。なお、有効シンボル長を示すモードには、モード1(有効シンボル長252μs)、モード2(有効シンボル長504μs)及びモード3(有効シンボル長1008μs)がある。シンボル同期点の決定においては、遅延して到達する遅延波等の影響が最も少ない最適な受信が可能な点が同期点として設定される。このような同期点の決定方法として、信号の相関を参照する方法や、パイロット信号を用いて位相のずれを補正する方法等が用いられる。
FFT(Fast Fourier Transform)部33は、AFC・シンボル同期部32からのデジタル信号をフーリエ(時間−周波数)変換する。このフーリエ変換には、いわゆる高速フーリエ変換(FFT)が一般的に用いられる。つまり、このデジタル信号はOFDM信号なので、逆フーリエ変換された波形、すなわち、データ値に応じて変調された複数の搬送波が重ね合わされた波形を有している。FFT部33は、このように重ね合わされた波形から、データ値に従って変調された複数の搬送波をフーリエ変換によって取り出す。そして、FFT部33は、各搬送波に振り分けられた各データ値に対応するデジタル信号を、データの元の配列順で時間的に並ぶように並べ替えて、OFDM信号が生成される前のデータに対応するデジタル信号を再現する。そして、FFT部33はこのデジタル信号をフレーム同期部34へと出力する。
フレーム同期部34は、FFT部33から送られたデジタル信号におけるフレーム単位での同期をとる。1フレームは例えば204のシンボルからなり、1フレームの信号から1まとまりのTMCC情報が取得される。フレーム同期部34によって同期が取られたデジタル信号は波形等化部37へと出力すると共に、検波部35へも出力される。
波形等化部37は、デジタル信号に含まれるスキャッタードパイロット信号等に基づき、フレーム同期部34によって同期が取られたデジタル信号に対して波形等化を行う。そして、波形等化によって信号補正を施した後、データ値に相当するデジタル信号に復調し、復調したデジタル信号を誤り訂正部36へと出力する。
一方で、波形等化部37はCN(Carrier-Noise)比に関する測定を行う(第1及び第2の測定手段)。本実施形態においては、波形等化部37は、デジタル信号に対して波形等化を行う際に、チューナ2からの信号Srに含まれるスキャッタードパイロット信号を取得すると共に、取得したスキャッタードパイロット信号とスキャッタードパイロット信号の基準値との差を導出する。そして、導出した差に基づいてデジタル信号に含まれる搬送波ごとに波形等化を施す。その際に、波形等化部37は、波形等化が施された各搬送波のコンスタレーションとコンスタレーションの基準値との差、つまり、MER(Modulation Error Ratio)を導出する。このとき、波形等化は搬送波ごとに行われるので、搬送波ごとのMERが導出される。そして、波形等化部37は、CN比に係る情報として、算出した搬送波ごとのMERを制御部4へと送信する。
一方、検波部35はデジタル信号に含まれるTMCC情報を取り出す。そして、TMCCに係る情報とを制御部4へと送信する。TMCC情報には、64QAM、16QAM、QPSK等のキャリア変調方式、畳み込み符号化率(1/2、2/3、3/4、5/6、7/8)等の伝送方式に係る情報が含まれる。また、ガードインターバル長として、有効シンボルの1/4,1/8,1/16及び1/32の長さが採用される。
誤り訂正部36は波形等化部37からのデジタル信号に誤り訂正処理を施す。誤り訂正処理はデインターリーブ処理及び復号処理からなる。誤り訂正部36は、図6(a)に示されているように、デインターリーブ部41、復号部42及びエネルギー逆拡散部43を有している。
デインターリーブ部41は波形等化部37からのデジタル信号にデインターリーブ処理を施す。デインターリーブ部41は、図6(b)に示されているように、周波数デインターリーブ部51、時間デインターリーブ部52、ビットデインターリーブ部53及バイトデインターリーブ部54を有している。これらのデインターリーブ部51〜54は、それぞれ上述のような種々のインターリーブに対応する、周波数デインターリーブ、時間デインターリーブ、ビットデインターリーブ、及び、バイトデインターリーブを行う。種々のインターリーブ処理が施されたデジタル信号が、これらのデインターリーブ処理によりインターリーブ前のデジタル信号に戻される。
復号部42は、波形等化部37からのデジタル信号に復号処理を施す。復号部42は、図6(c)に示されているように、ビタビ復号部61及びRS復号部62を有している。これらの復号部61及び62は、それぞれ上記のようなビタビ復号及びRS復号を行う。これらの復号によってデジタル信号に含まれている信号の誤りが訂正されると共に、ビタビ符号化及びRS符号化が施されたデジタル信号が符号化前のデジタル信号に戻される。
エネルギー逆拡散部43は、波形等化部37からのデジタル信号をエネルギー拡散される前のデジタル信号に戻す。
これら種々のデインターリーブ、復号及びエネルギー逆拡散は、送信側で行われた種々のインターリーブ、符号化及びエネルギー拡散の順番に対応する順番で行われる。ISDB−Tの復調の場合には、周波数デインターリーブ、時間デインターリーブ、ビットデインターリーブ、ビタビ復号、バイトデインターリーブ、エネルギー逆拡散及びRS復号の順に行われる。
このように復調器3によって復調処理が施されたデジタル信号がTS信号として復調器3から出力される。
ところで、チューナ2からの信号Siに含まれるノイズが過大になると、信号Siに含まれることとなる誤りの量が過大になり、復調器3における復調処理が正常になされない場合がある。復調器3における復調処理が正常になされないと、チューナ2が受信した信号に含まれる映像や音声などに係る情報が正確に取得されなくなる。一方で、上記の通り、チューナ2からの信号Siに含まれるノイズには、チューナ2を構成する回路部品において発生するものが含まれている。以下は、チューナ2を構成するアナログ回路において発生するノイズについての説明である。
<出力信号に含まれるノイズ>
アナログ回路からの出力信号に発生するノイズには主に2種類のノイズがある。一方のノイズは、アナログ回路の熱雑音等に起因して発生する雑音ノイズである。雑音ノイズは、アナログ回路に含まれる抵抗素子、トランジスタのベース抵抗、エミッタ抵抗等から発生する熱によって発生するノイズを含んでいる。また、アナログ回路がpn(positive-negative)接合を含んでいる場合のようにエネルギー障壁にまたがって電荷が移動する際に発生するいわゆるショットノイズや、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)の酸化物とシリコンとの界面に電荷がトラップされる際に発生するいわゆるフリッカノイズも雑音ノイズに含まれる。
アナログ回路からの出力信号に発生する他方のノイズは、携帯通話装置1000が受信する信号Srに含まれる妨害波に起因するもの(以下、「妨害波ノイズ」と呼称)である。妨害波とは、信号Srの送信元から送信された本来の信号に相当する所望波以外の信号である。アナログ回路からの出力信号には、入力信号に対して線形な成分のみならず入力信号に対して非線形な歪みの成分が含まれる。所望波以外の妨害波が入力信号に混入している場合には、所望波及び妨害波の両方に対する非線形な歪み成分が出力信号に表れる。このような非線形成分のうち、出力信号において所望波の線形成分に影響を与えるものが妨害波ノイズである。
例えば、チューナ2が選択的に受信しようとしているチャンネルに対応する周波数帯域が、図2においてChAであったとする。このとき、同じ周波数帯域に含まれる図3のChA’、周波数軸上でChAに隣接する周波数帯域に含まれる図2のChB、ChCなどのデジタル放送に係る信号や図3のChB’、ChC’などのアナログ放送に係る信号が妨害波ノイズの原因となる。
以下は、妨害波ノイズの大きさについての定量的な説明である。あるアナログ回路において入力信号x(t)に対して出力信号y(t)が得られる場合、これらの関係は下記の数式1によって表現される。なお、α(n=0,1,2,…)はn次成分の係数であり、当該アナログ回路の回路特性を示すものである。αはアナログ回路のゲインを示す。一般にα>0であり、α<0である。
Figure 0004213741
数式1において、1次及び3次以外の歪みの影響は一般的に小さい。数式2は、簡単のため入出力の関係が1次と3次の項のみで近似されたものである。
Figure 0004213741
入力信号が2つの正弦波で表されるとする。なお、一方の正弦波の大きさ及び角速度のそれぞれがA及びωと表され、他方の正弦波の大きさ及び角速度がA及びωで表されるとする。数式3は、このときの入力信号を示している。なお、角速度ωと周波数fとの関係はω=2πfと表される。角速度と周波数との違いは2πのみであり、簡単のため以下において角速度と周波数とが同様のものとして取り扱われる。
Figure 0004213741
数式3が数式2に代入されると出力信号における各周波数成分が以下のように得られる。まず、数式4は数式2に数式3が代入されたものを表す。
Figure 0004213741
数式5は、数式4が展開された結果である。
Figure 0004213741
さらに数式5が展開されると、数式5において周波数がωおよびωである成分は数式6で表されるものになる。
Figure 0004213741
また、周波数が2ω±ωである成分は数式7で、周波数がω±2ωである成分は数式8で表されるものになる。
Figure 0004213741
Figure 0004213741
ここで、大きさA及びAで表される2つの正弦波の両方が妨害波であるとする。このとき、出力信号のスペクトルには、周波数が2ω−ω及びω−2ωの成分として数式7及び数式8で表される成分が含まれることになる。これらの成分は相互変調歪と呼ばれる。数式7及び数式8に示されているように、相互変調歪の大きさはそれぞれ3/4|α|A 及び3/4|α|A である。図7(a)には、出力信号のスペクトルに含まれるこのような相互変調歪が示されている。所望波の周波数帯域に相互変調歪の周波数が接近すると、このような相互変調歪が所望波の受信を妨げるノイズとなる。
次に、数式3において大きさAで示される正弦波が所望波であり、大きさAで示される正弦波が妨害波であるとする。このとき、出力信号のスペクトルには、所望波自体の周波数であるωの成分として数式6で表される成分が含まれることになる。この成分は混変調歪と呼ばれる。数式6に示されているように、混変調波の大きさは3/2|α|A である。図7(b)にはこのような混変調歪が示されている。所望波の他に妨害波が入力信号に含まれる場合には、所望波自身の周波数成分として混変調歪によるノイズが必ず発生する。
このように、所望波以外に妨害波が入力信号に含まれる場合には、チューナを構成するRFアンプ部21等の非線形性と妨害波とに起因して、所望波の周波数帯域に妨害波ノイズが発生する。このため、チューナから出力されるIF信号Siには妨害波ノイズが含まれることになる。
回路部品の3次の非線形性を現す指標としてIIP3(3rd order Input Intercept Point)がよく用いられる。以下はIIP3についての説明である。図8はIIP3を説明するための図である。
上記のとおり、2つの妨害波が入力される場合には相互変調歪が生じる。図8(a)は、回路部品において、大きさが共にAinであり周波数がそれぞれω及びω(ω≠ω)の2つの正弦波からなる信号が入力された場合の出力信号のスペクトルを示している。出力信号において周波数がω及びωの成分はα倍に増幅されて出力されている。これらは、入力信号に対する1次の成分である。さらに回路部品における非線形の3次の成分、すなわち相互変調歪(IM3)による成分が出力されている。
図8(b)には、入力信号の大きさに対する所望波の大きさのグラフと入力信号の大きさに対する相互変調歪によるノイズの大きさのグラフとが示されている。所望波の大きさは入力信号の大きさに比例し、相互変調歪(IM3)は入力信号の大きさの3乗に比例する。入力信号に対して1次に比例する所望波の大きさと3次に比例する相互変調歪(IM3)による成分の大きさとが一致する入力信号の大きさはIIP3、出力信号の大きさはOIP3(3rd order Output Intercept Point)と定義され、回路部品特有の非線形性を表す指標として使われている。出力信号における所望波の大きさはαinであり、相互変調歪による成分の大きさは3/4|α|Ain であるので、IIP3は以下のように求められる。
Figure 0004213741
よって、大きさが共にAinの2つの妨害波が入力された場合の相互変調によって生じる歪みの大きさは、IIP3を用いて以下のように求められる。
Figure 0004213741
さらに大きさがAの所望波と大きさがAの妨害波が入力された場合の混変調によって生じる所望波の周波数に発生する歪みの大きさは、IIP3を用いて以下のように求められる。
Figure 0004213741
以上は、数式3に示されているように、2波の正弦波が妨害波として入力された場合にアナログ回路において発生する相互変調歪による妨害波ノイズを示している。これに対して、数式12のような3波の正弦波によって発生するノイズは以下のとおりである。数式12が数式2に代入されて展開されると、各周波数成分として数式13〜15が得られる。数式13〜15は、周波数がω、ω、及びωである成分、周波数が2ω±ω(i,j=1,2,3, i≠j)である成分、及び、周波数がω+ω±ω又はω−ω±ωである成分をそれぞれ表す。このうち数式14及び15が、アナログ回路からの出力信号に妨害波ノイズとして含まれることとなり得る相互変調歪の成分である。
Figure 0004213741
Figure 0004213741
Figure 0004213741
Figure 0004213741
数式11と数式14及び15との比較から理解されるように、どのような周波数及び大きさの正弦波からなる妨害波によって発生したかによって、相互変調歪の大きさや周波数が変化する。つまり、妨害波がどのように周波数軸上に分布しているかによって、相互変調歪の分布態様も変化する。
なお、本明細書において「(周波数軸上の)分布」又は「分布態様」とは、横軸を周波数、縦軸を信号又はノイズ等の大きさとして信号又はノイズ等をグラフに描いた際に、どの周波数にどのような大きさの信号又はノイズ等が表れるかを示すものとする。つまり、「分布」又は「分布態様」とは、信号等の大きさIの周波数fに対する関数I(f)に相当するものである。ここで、信号等の大きさIは相対値である。例えば、I(f)は、定義範囲内の最大値を1として規格化されているようなものである。
数式10、11及び13〜15に示されているとおり、相互変調歪は妨害波の大きさについて3次の関数であり、混変調歪は妨害波の大きさについて2次の関数である。したがって、妨害波ノイズが問題となるほど妨害波が大きいときには、混変調歪の影響よりも相互変調歪の影響の方が大きい。下記においては、主に相互変調歪によって生じる妨害波ノイズが考慮されている。なお、相互変調歪が所望波の周波数帯に接近している場合には主に相互変調歪の影響のみが考慮され、相互変調歪が所望波の周波数帯に接近していない場合には混変調歪の影響のみが考慮されるように、デジタル復調装置1が構成されていてもよい。
チューナ2によって選択的に受信されるチャンネルが図2のChAである場合には、ChAに隣接する周波数帯域に含まれるアナログ放送やデジタル放送の信号に起因して相互変調歪が発生する。図9及び図10は、このようなアナログ放送及びデジタル放送の信号に起因してChAの周波数帯域に発生する相互変調歪をそれぞれ示すグラフである。図9及び図10の横軸は周波数を示し、縦軸は信号又は歪の大きさを示している。
図9(a)は、図2に示されているアナログ放送のChB’による相互変調歪81を、図9(b)はChC’による相互変調歪82をそれぞれ示している。相互変調歪81は、ChB’の搬送波91b〜93bの2波又は3波の合成に相当するものである。相互変調歪82は、ChC’の搬送波91c〜93cの2波又は3波の合成に相当するものである。
一方で、図10(a)は、図2に示されているデジタル放送のChBによる相互変調歪83を、図10(b)はChCによる相互変調歪84をそれぞれ示している。デジタル放送においてはアナログ放送と同じ周波数帯域内に数千本の搬送波が含まれており、これらの搬送波は各周波数帯域内に等間隔に連続している。ChAの周波数帯域には、ChBやChCに含まれるこのような多数の連続した信号から抽出される種々の組み合わせの合成に相当する相互変調歪が表れる。したがって、相互変調歪83及び84は、図10に示されているように、非常に多数の周波数において連続して表れている。
以上のように、チューナ2において選択的に受信されたチャンネルの隣の周波数帯域にアナログ放送の信号が含まれているかデジタル放送の信号が含まれているかによって相互変調歪の分布が異なっている。また、チューナ2において選択的に受信されたチャンネルの両隣のいずれに存在する信号に起因しているかによっても相互変調歪の分布が異なっている。このように、相互変調歪に起因して発生する妨害波ノイズの分布態様は、相互変調歪の原因である妨害波の分布態様に応じて変化する。
<ノイズと供給電力との関係>
上記の通り、アナログ回路において妨害波ノイズ及び雑音ノイズが発生する。アナログ回路からの出力信号には、このようなアナログ回路自身において発生するノイズ以外にも、そのアナログ回路への入力信号にもともと含まれるノイズに起因するものが含まれる。例えばIFアンプ部25への入力信号には、RFアンプ部21、ミキサ部22及びフィルタ部24において発生したノイズやチューナ2に入力された信号のノイズも含まれる。
したがって、あるアナログ回路からの出力信号には、(1)そのアナログ回路において発生した妨害波ノイズ、(2)そのアナログ回路において発生した雑音ノイズ、(3)他のアナログ回路において発生したノイズ、及び、(4)チューナに入力される前に発生していたノイズが含まれることになる。なお、(3)の他のアナログ回路で発生したノイズは、そのアナログ回路で発生した妨害波ノイズと雑音ノイズからなる。各アナログ回路において入力信号が増幅される場合には入力信号に含まれるノイズも増幅されるため、(3)及び(4)のノイズは増幅されて出力される。
一方、下記の通り、アナログ回路からの出力信号に含まれるノイズの大きさがアナログ回路への供給電力の大きさによって異なる場合がある。
図11(a)は、RFアンプ部21、ミキサ部22、フィルタ部24及びIFアンプ部25のうちのいずれかのアナログ回路からの出力信号に含まれているノイズの大きさと、そのアナログ回路への供給電力との関係の一例を示す概略的なグラフである。図11(a)のグラフにおいて、横軸は供給電力の大きさを示し、縦軸はノイズの大きさを示している。図11(b)はアナログ回路への供給電力の大きさとそのアナログ回路のIIP3との関係を示す概略的なグラフである。図11(a)及び図11(b)のグラフにおいて、いずれの縦軸においても対数スケールが用いられているものとする。
図11(a)において、曲線Cfは妨害波ノイズが存在しない場合の曲線の一例であり、曲線Cmは妨害波ノイズのみが存在する場合の曲線の一例である。数式10及び数式11に示されているように、妨害波ノイズはIIP3の2乗に反比例する。さらに、供給電力が大きくなると、図11(b)に示されているようにIIP3も指数関数的に大きくなる。したがって、曲線Cmに示されているように、妨害波ノイズの大きさは電力が小さくなると急激に大きくなる。
一方で、電力の変化に対して妨害波ノイズ以外のノイズの変化は妨害波ノイズの変化より極めて小さい。このため、本明細書において、妨害波ノイズ以外のノイズの大きさは電力の大きさに対して曲線Cfに示されているようにほぼ一定であると取り扱われる。曲線Cfに示されているような妨害波ノイズ以外のノイズには、上記の(1)〜(4)のノイズのうち、(2)そのアナログ回路において発生した雑音ノイズ、(3)他のアナログ回路において発生したノイズ、及び(4)チューナに入力される前に発生していたノイズが含まれている。
曲線C0は妨害波ノイズ及び雑音ノイズの合計の大きさと電力の大きさとの関係を示す曲線である。曲線Cm及び曲線Cfが上記のような特性を有することから、曲線C0において電力が大きいときにはノイズの大きさはほぼ一定である。これに対して、曲線C0において電力がある大きさよりも小さくなるとき、ノイズは急激に上昇する。チューナ2を構成する回路部品は曲線C0に表されているような回路特性を有している。このため、供給電力が小さくなりすぎてノイズの大きさがある基準値Nf(ノイズ基準値)を超えると、復調器3において十分に復調処理がなされないなど、信号の受信に支障をきたすおそれがある。したがって、ノイズの大きさが基準値Nfを超えないように供給電力を十分に確保する必要性が生じる。
なお、本実施形態において、基準値Nfは、誤り訂正部36による誤り訂正が可能なノイズの大きさの上限値を示している。誤り訂正部36による誤り訂正が可能とは、誤り訂正部36が誤り訂正処理を施した後の信号に含まれる誤りのビットレートなどが所定の値を下回る場合に相当する。例えば、RS復号後のビット誤り率が1×10−11以下となる場合が、誤り訂正部36による誤り訂正が可能な場合に相当する。
一方、図2及び図4に示されているように、チューナ2によって選択的に受信されるチャンネル(以下、「受信チャンネル」と呼称)に隣接する周波数帯域に含まれる信号の分布態様は、アナログ放送かデジタル放送かによって異なる。したがって、図9及び図10に示されているように、受信チャンネルに対応する周波数帯域内に表れる相互変調歪の分布態様も異なる。また、相互変調歪の分布態様は、これらの放送が受信チャンネルの両隣のいずれに隣接しているかによっても異なる。そして、携帯通話装置1000において受信される放送は、1つの周波数帯域に含まれる13セグメントのうちの1セグメントである。したがって、かかる1セグメントに対応する周波数に相互変調歪が表れるか否かは相互変調歪の分布態様によって異なるので、供給電力とノイズとの関係も異なったものとなる。
図12は、アナログ回路への供給電力とノイズとの関連の一例を示している。図12(a)は、ミキサ回路への供給電力と、ミキサ回路からの信号に含まれることとなるノイズとの関連を示している。図12(b)は、IFフィルタ回路への供給電力と、IFフィルタ回路からの信号に含まれることとなるノイズとの関連を示している。なお、図12は、Low−IF方式を採用したISDB−Tのいわゆる1セグチューナに係る図である。図12(a)及び図12(b)において曲線C1〜C8は、供給電力とノイズとの関連を示す曲線であり、曲線C1及びC5は、受信チャンネルの両隣の周波数帯域のうち受信チャンネルより周波数が大きい方の周波数帯域(以下、「上位隣接チャンネル」と呼称)にデジタル放送波が含まれている場合を示している。曲線C2及びC6は、受信チャンネルの両隣の周波数帯域のうち受信チャンネルより周波数が小さい方の周波数帯域(以下、「下位隣接チャンネル」と呼称)にデジタル放送波がある場合を示している。曲線C3及びC7は上位隣接チャンネルにアナログ放送波がある場合を示している。曲線C4及びC8は下位隣接チャンネルにアナログ放送波がある場合を示している。
図12(a)及び図12(b)に示されているように、供給電力とノイズとの関連は、受信チャンネルの両隣のいずれの周波数帯域に、デジタル放送波及びアナログ放送波のいずれが存在しているかに応じて異なっている。以下は、ミキサ回路及びIFフィルタ回路において図12に示されているようなノイズ対供給電力の特性が表れる仕組みについての概略的な説明である。
第1に、図12(a)及び図12(b)の両方に表れているように、妨害波の電力が同程度である場合には、妨害波がデジタル放送波である場合の方が、妨害波がアナログ放送波である場合より、受信チャンネル内に表れるノイズが全体的に大きくなっている。これは、妨害波がアナログ放送の場合には、図9に示されているように、かかる妨害波による歪が受信チャンネルに部分的に表れる。これに対して、妨害波がデジタル放送である場合には、図10に示されているように、アナログ放送波の場合よりも広い帯域に歪が表れると共に、相互変調歪などの歪の全体の電力もデジタル放送波の場合の方が大きくなるためである。
第2に、曲線C1及びC2に示されているように、ミキサ回路への供給電力が減少して歪特性が悪化している状況では、妨害波がデジタル放送波である場合に、上位隣接チャンネル及び下位隣接チャンネルのいずれに妨害波が存在している場合でも、妨害波によって生じる歪の電力は互いに同じ程度となる。一方で、曲線C3及びC4に示されているように、妨害波がアナログ放送波である場合には、下位隣接チャンネルにアナログ放送波がある場合の方が、上位隣接チャンネルにアナログ放送波がある場合よりも、ミキサ回路への供給電力が小さい範囲においてノイズが大きくなっている。これは、下位隣接チャンネルにアナログ放送波がある場合とは異なり、上位隣接チャンネルにアナログ放送波がある場合には、3つの信号の組み合わせにより発生する相互変調歪の3次の成分が受信チャンネルのうちの所望のセグメント内の信号に直接表れないからである。このように、所望のセグメントに表れる歪の成分が異なるのは、図9に示されているように、アナログ放送波の映像周波数、音声周波数、色副搬送波の周波数に関する位置関係による。
第3に、曲線C5及びC6に示されているように、妨害波たるデジタル放送波が上位隣接チャンネルにあるか下位隣接チャンネルにあるかに応じて、供給電力が小さい範囲でのノイズの大きさが異なっている。これは、以下のような理由による。Low−IF形式のチューナでは、所望のセグメントの中心周波数がF、IF周波数がFIF、ローカル周波数がFLO=F−FIFと表わされるときに、所望のセグメントの中心周波数がFからFIFになるように周波数変換が信号に施される。
図13(a)は、このような周波数変換が施される前後の信号を示している。図13の各グラフにおいて、横軸は周波数を示す。図13(a)において、左が変換前の図に、右が変換後の図に相当する。図13(a)に示されているように、所望のセグメントSgの中心周波数が変換後にFIFとなるように周波数変換が施されている。一方で、周波数変換が施されると、変換前にFLO以下の周波数fに含まれていた信号の成分は、変換後にFLO−fの成分に重なる。したがって、図13(a)に示されているように、イメージ周波数FIM=FLO―FIF近辺の帯域の信号が所望のセグメントの帯域内に含まれる信号に重なるという問題が発生する。このような問題を避けるため、Low−IF方式のチューナには、イメージを除去するためのイメージ除去回路が一般的に設けられている。例えば、本実施形態においては、かかるイメージ除去回路は図5(a)のフィルタ部24に含まれている。つまり、ミキサ部22で周波数変換が施された後、周波数変換された信号は後段のイメージ除去回路に入力され、信号からイメージが除去される。
図13(b)及び図13(c)は、イメージ除去回路によるイメージ除去前の信号のスペクトルと、周波数変換及びイメージ除去の両方が施された後の信号のスペクトルとを示すグラフである。図13(b)及び図13(c)のそれぞれにおいて、上が周波数変換前の図に、下が周波数変換後の図に相当する。図13(b)は、受信チャンネルChAの上位隣接チャンネルChCに妨害波たるデジタル放送波がある場合を示している。また、図13(c)は、受信チャンネルChAの下位隣接チャンネルChBに妨害波たるデジタル放送波がある場合を示している。受信チャンネルChAには所望のセグメントSgが含まれている。
図13(b)及び図13(c)において、Sg’は、所望のセグメントSgに含まれる信号に周波数変換及びイメージ除去が施された後の信号を示している。また、ChA’及びChA’は、受信チャンネルChAに含まれる信号に周波数変換及びイメージ除去が施された後の信号を示している。このうち、ChA’は変換前のChAにおいてFLO以上の周波数の成分に変換が施されたものを示し、ChA’は変換前のChAにおいてFLO以下の周波数の成分に変換が施されたものを示している。イメージ除去回路は、所望のセグメントの信号Sgに対して周波数FLOについて対称な位置にある信号を除去する回路である。そして、周波数FLO以下の範囲において所望のセグメントの信号Sgに対して対称な位置から離隔している信号の電力をも低下させる回路特性を有している。このため、ChA’において、所望のセグメントSg’の位置にある周波数成分が大きく除去されていると共に、セグメントSg’から離隔したところの周波数成分も一部除去されている。
これに対して、FLO以上の周波数成分はイメージ除去によって除去されないので、図13(b)に示されているように、FLOが所望のセグメントSgの周波数より小さい場合には、上位隣接チャンネルChCに含まれる妨害波のレベルは、イメージ除去の前後で変化しないことがある。一方で、図13(c)に示されているように、下位隣接チャンネルChBに含まれている妨害波は、FLO以下の範囲に含まれているので、イメージ除去回路の特性により、電力が低下する傾向にある。
このように、イメージ除去回路によってイメージ除去が施されると、下位隣接チャンネルに含まれている妨害波のレベルが低下する。一方で、上位隣接チャンネルに含まれている妨害波のレベルは低下しにくい。したがって、イメージ除去回路より後段であるIFフィルタ回路の電力を制御した場合には、図12(b)に示すように、下位隣接チャンネルに妨害波がある場合の方が、上位隣接チャンネルに妨害波がある場合よりも、妨害波によって生じる歪みのレベルが小さくなることがある。このような特徴は、妨害波がデジタル放送波である場合、アナログ放送波である場合の両方に共通する。また、イメージ除去回路より前段に位置するミキサ回路の電力を制御する場合においても、ミキサ回路の電力が十分に大きく、ミキサ回路の歪特性が良い状態では、図12(b)に示されているように、イメージ除去回路の影響を受けることによって、下位隣接チャンネルに妨害波がある場合の方が、上位隣接チャンネルに妨害波がある場合よりも、歪みのレベルが小さくなることもある。
このように受信チャンネルの両隣のいずれにアナログ放送及びデジタル放送のいずれが存在するかは、携帯通話装置1000と各放送に係る送信局との位置関係、携帯通話装置1000の周囲の状況などに依存する。したがって、受信チャンネルに隣接する周波数帯域に含まれるアナログ放送などの妨害波の分布態様がどのようなものでも復調器3が信号Siを復調できるように、アナログ回路への供給電力は十分に余裕のある大きさに設定されていなければならない。
例えば、図9及び図10に示される妨害波ノイズのいずれが表れても十分に復調処理が可能なような大きさに供給電力が調整されている。また、回路部品のそれぞれには製造上のばらつきが存在する。チューナ2の動作状況によって回路部品への供給電力に不測の変動が生じたり、気温等の動作環境に応じて各回路部品の回路特性に変動が生じたりする場合もある。このような製造上のばらつき、供給電力の変動、動作環境の変動等も考慮した上で、十分に大きいものに供給電力が調整されている。
具体的には、通常電力記憶部102に記憶されている通常電力の大きさが、携帯通話装置1000の初期状態において図12(a)に示されているように、ある値PtよりマージンMgだけ大きいPsに設定されている。ここで、Ptは、曲線C1においてノイズが基準値Nf以下となるような範囲の下限値である。つまり、通常電力記憶部102には、RFアンプ部21等の各アナログ回路について、妨害波の分布態様が変化したり動作環境が変化したりする場合にも復調器3が正確に信号Siを復調できるように十分な大きさのマージンMgが取られた大きさが記憶されている。これによって、例えば妨害波の分布態様が変化した場合にも、復調処理が可能な範囲の十分な電力がRFアンプ部21等の回路部品に供給され得る。
<制御部>
一方で、供給電力が常にPsに保持されたままであると、消費電力が過剰になり好ましくない。例えば、曲線C4のようなノイズの変化の場合に、ノイズが基準値Nf以下となる範囲の電力の下限値はPt’である。PsとPt’との差はPsとPtとの差と比べて大きいため、曲線C4のようなノイズの変化の場合には、供給電力はPsより小さい値に設定されてもよい。また、曲線C3のようなノイズの変化の場合には、供給電力が大幅に削減されても問題が生じない。
以下は、供給電力の調整を行う制御部4についての説明である。なお、以下の説明は、主に、イメージ除去回路の前段にあるミキサ回路などの回路部品の供給電力を制御する場合についてのものである。したがって、供給電力が制御される回路部品が図12(a)の曲線C1〜C4に示されているような回路特性を有しているものとして説明がなされる。一方で、イメージ除去回路の後段にあるIFフィルタ回路などの回路部品の供給電力を制御する場合には、図12(b)の曲線C5〜C8に示されているような回路特性を有しているものとして、以下の説明における制御部と同様の構成が適用されてよい。図14は制御部4の構成を示すブロック図である。図14(a)に示されているように、制御部4は、回路特性記憶部111、ノイズ態様記憶部112、隣接放送推定部113、ノイズ変化取得部114、電力更新部115及び平均値算出部116を有している。
回路特性記憶部111は、チューナ2が有するRFアンプ部21などの回路部品の回路特性に係る情報を記憶している。このような回路特性に係る情報には、数式2に表されているような回路部品の線形性・非線形性に係るα1及びα3を示す情報が含まれている。なお、回路特性記憶部111がIIP3に係る情報を記憶しており、このようなIIP3に係る情報からα1及びα3が推測されてもよい。
ノイズ態様記憶部112は、受信チャンネルに隣接する周波数帯域にアナログ放送やデジタル放送に係る信号が含まれている場合に受信チャンネルの周波数帯域内で測定されることとなるCN比の分布態様に係る情報を記憶している。また、図12の曲線C1〜C4のそれぞれに示されているような供給電力とノイズとの関係を示す情報を、アナログ放送及びデジタル放送のいずれに対応するかを示す情報と受信チャンネルの両隣のいずれに隣接しているものかを示す情報とに関連付けて記憶している(関連記憶手段)。
平均値算出部116は、復調器3から送信されるCN比に係る情報に基づいて、所定の期間におけるCN比の平均値を算出する。平均値算出部116は、後述の電力試験部122による更新値の試験が行われる期間以外の期間に、各回路部品に通常電力が供給される場合のCN比の平均値(以下、「通常時のCN比」と呼称)を算出する。平均値の算出に係る期間は、あらかじめ設定されるものであってもよいし、更新値の試験が行われてから次の更新値の試験が行われるまでの期間であってもよい。あるいは、算出の開始が指示されてから何らかのタイミングで算出の停止が指示されるまでの期間であってもよい。
隣接放送推定部113(分布推定手段)は、受信チャンネルに隣接する周波数帯域に含まれている信号の分布態様を推定する。具体的には、隣接放送推定部113は、復調器3から送信される搬送波ごとのCN比に係る情報に基づいて、受信チャンネルに隣接する周波数帯域内のCN比の分布態様がどのようなものかを推定する。なお、上記の通り、本実施形態において復調器3で実測されるのはMERであり、制御部4に対してはCN比に係る情報としてMERが送信される。隣接放送推定部113がCN比として扱うのは、実際にはこのようなMERの大きさである。
ところで、アナログ放送やデジタル放送に係る信号に起因して図9や図10に示されているような相互変調歪が表れる。したがって、受信チャンネルの周波数帯域内で測定されるCN比は、相互変調歪が表れる位置において、相互変調歪の大きさに応じて低下する。これによって、受信チャンネルの周波数帯域内で測定されるCN比は、図15に示されているように分布する。図15(a)〜図15(d)は、それぞれ、図9(a)、図9(b)、図10(a)及び図10(b)に示されているような信号が受信チャンネルに隣接する周波数帯域に含まれる場合に対応する。
ノイズ態様記憶部112は、図15(a)〜(d)に示されているようなCN比の分布態様を示す情報を、デジタル放送及びアナログ放送のいずれであるかを示す情報と受信チャンネルの両隣のいずれに隣接しているものかを示す情報との両方に関連付けて記憶している。隣接放送推定部113は、復調器3からの情報に基づいて、受信チャンネルの周波数帯域内で実測されたCN比の分布態様とノイズ態様記憶部112が記憶しているCN比の分布態様とを比較する。そして、実測されたCN比の原因となる妨害波がアナログ放送及びデジタル放送のいずれであるかを推定すると共に、その妨害波が受信チャンネルの両隣のいずれに隣接しているかを推定する(妨害波判定手段)。
例えば、隣接放送推定部113は、実測されたCN比が図15(a)の分布態様に近いものである場合には、受信チャンネルの周波数が小さい方に隣接する周波数帯域に含まれるアナログ放送が妨害波であると推定する。また、実測されたCN比が図15(d)の分布態様に近いものである場合には、受信チャンネルの周波数が大きい方に隣接する周波数帯域に含まれるデジタル放送が妨害波であると推定する。
ノイズ変化取得部114は、隣接放送推定部113が推定した妨害波の種類と受信チャンネルの両隣のいずれに隣接するものかとに基づいて、ノイズ態様記憶部112が記憶している供給電力とノイズとの関係を示す情報を取得する(ノイズ変化取得手段)。具体的には、ノイズ変化取得部114は、受信チャンネルに隣接する周波数帯域に含まれる妨害波(デジタル放送やアナログ放送に係る信号)の分布態様に応じた供給電力に対するノイズの変化を表す、図12に示されている曲線C1〜C4のいずれかに係る情報を取得する。
また、ノイズ変化取得部114は、曲線C1〜C4に基づいて、互いに異なる周波数におけるCN比の実測値同士の差から、チューナ2が受信した信号に含まれる妨害波のレベルを取得する。例えば、図15(a)及び図15(b)において、CN比が低下している部分の周波数は妨害波ノイズが表れている周波数に相当し、それ以外の部分の周波数は妨害波ノイズが表れていない周波数に相当する。したがって、妨害波ノイズが表れている周波数のCN比の実測値と妨害波ノイズが表れていない周波数のCN比の実測値との差から、妨害波ノイズの絶対的な大きさを評価することが可能である。また、図15(c)及び図15(d)においても同様である。例えば、図15(c)において、グラフの右端の周波数は妨害波ノイズの影響が表れていない周波数に相当する。したがって、グラフの右端の周波数におけるCN比の実測値と妨害波ノイズの影響が表れていない他の周波数におけるCN比の実測値との差から、妨害波ノイズの絶対的な大きさを評価することが可能である。
電力更新部115は、ノイズ変化取得部114が取得した供給電力とノイズとの関係に基づいて、通常電力記憶部102が記憶している通常電力の大きさを更新する。供給電力の更新に当たっては、前もって試験的な更新が行われた後に実際の更新が行われる。電力更新部115は、試験条件決定部121、電力試験部122及び更新電力決定部123を有している。
試験条件決定部121は、ノイズ変化取得部114が取得した供給電力とノイズとの関係及び妨害波のレベルに基づいて、供給電力の試験的な更新値及び試験を行う期間を決定する。試験条件決定部121は、ノイズ変化取得部114が取得した曲線C1〜C4に係る情報及び妨害波のレベルに基づいて、ノイズの大きさが基準値Nf以下となる電力の範囲の下限値を導出する(電力導出手段)。そして、導出した下限値と現行の通常電力との間の大きさに試験的な更新値の大きさを決定する。
例えば、ノイズ変化取得部114が曲線C1に係る情報を取得した場合には、ノイズの大きさが基準値Nf以下となる電力の下限値はPtである。したがって、試験条件決定部121は、Ptと通常電力との間の大きさに試験的な更新値の大きさを決定する。ノイズ変化取得部114が曲線C4に係る情報を取得した場合には、Pt’と通常電力との間の大きさに試験的な更新値の大きさを決定する。曲線C3の場合には、電力が小さい場合にもノイズの増加がほとんどないため、回路部品への供給電力の下限値と通常電力との間の大きさに決定する。回路部品への供給電力の下限値とは、例えば、回路部品が安定に動作するために必要な最小限の電力の大きさである。
次に、試験条件決定部121は、試験的な更新値を用いて電力を供給する期間を決定する(期間決定手段)。本実施形態において、試験条件決定部121は、このような供給期間の開始時刻及び終了時刻を1シンボル内に収まるものに決定する。これによって、試験的な更新値を用いた電力の供給によってチューナ2からの信号に発生することとなる誤りが誤り訂正部36によって訂正されやすくなる。なお、復調器3から送信されるCN比に係る情報から、試験を行う期間に適したタイミングか否かを判断した上で、試験的な電力の供給期間が決定されてもよい。例えば、CN比の変化が激しく、受信状況が不安定であると判断された場合には、CN比があまり変化せず、受信状況が安定であると判断されるまで待機した上で供給期間が設定されてもよい。また、2シンボル以上に跨って供給期間が設定されてもよい。
電力試験部122は、試験条件決定部121が決定した試験的な更新値を、試験電力記憶部103に試験電力として記憶させる。そして、試験条件決定部121が決定した供給期間の開始時刻に応じたタイミングで、試験電力記憶部103が記憶している試験電力の大きさの電力を回路部品へと供給するよう電力供給部100に指示する。さらに、試験条件決定部121が決定した供給期間の終了時刻に応じたタイミングで、試験電力の供給を終了して通常電力の供給を再開するよう電力供給部100に指示する。
図16は、このような試験電力の供給が行われる場合の回路部品へ供給される電力の変化及びチューナ2からの信号に含まれることとなるノイズの変化の一例を示すタイムチャートである。期間Aは通常電力の供給期間を示し、期間Bは試験電力の供給期間を示している。試験電力が供給される期間Bにおいて、チューナ2からの信号に含まれるノイズはΔNだけ増加している。
更新電力決定部123は、試験電力の供給によってチューナ2からの信号に含まれることとなったノイズの大きさに基づいて、試験条件決定部121が決定した試験的な更新値を通常電力の更新値に決定する。具体的には、更新電力決定部123は、試験電力の供給期間(図16の期間B)に対応する復調器3からのCN比に係る情報を取得する。そして、取得したCN比(以下、「試験時のCN比」と呼称)に基づいて、試験電力の供給によってチューナ2からの信号に含まれることとなったノイズの大きさが基準値Nfを下回っているか否かを判定する。また、基準値Nfを下回っていないと判定した場合でも、通常電力の供給期間(図16の期間A)に対応する通常時のCN比として平均値算出部116が算出した上記の平均値と試験時のCN比とを比較する。
更新電力決定部123は、基準値Nfを下回っているか否かの判定と通常時のCN比及び試験時のCN比の比較とに基づいて、試験条件決定部121が決定した試験的な更新値を用いて供給電力を更新するか否かを決定する。供給電力を更新すると決定した場合には、更新電力決定部123は、試験条件決定部121が決定した試験的な更新値を通常電力記憶部102に記憶させる。
<供給電力更新の流れ>
以下は、携帯通話装置1000においてチューナ2を構成する各回路部品への供給電力の大きさが更新される一連のステップについての説明である。図17は、かかる一連のステップについてのフローチャートである。
まず、平均値算出部116は、通常電力が供給されている際のチューナ2からの信号におけるCN比の平均値を算出する(S101)。なお、通常時におけるCN比の平均値の算出は、供給電力の更新が行われる前にあらかじめ算出されている。
次に、復調器3においてCN比(MER)の測定が行われる(S102)。隣接放送推定部113は、その測定結果から、受信チャンネルの両隣のうちいずれの周波数帯域にどのような放送が妨害波として存在するかを推定する(S103)。そして、ノイズ変化取得部114は、隣接放送推定部113の推定に基づいて、ノイズ態様記憶部112の記憶内容から供給電力に対するノイズの変化を取得する(S104)。
そして、試験条件決定部121は、供給電力を更新するための試験条件を決定する(S105)。具体的には、ノイズ変化取得部114が導出した供給電力に対するノイズの変化に基づいて、通常電力記憶部102が記憶している通常電力の更新値を決定すると共に、その更新値を試験的に回路部品に供給する期間を決定する。
電力試験部122は、試験条件決定部121が決定した試験条件に基づいて、通常電力の更新値を試験電力として回路部品へと電力供給部100に供給させる(S106)。そして、復調器3において試験時のCN比(MER)の測定が行われ(S107)、更新電力決定部123は、復調器3からの情報に基づいて、試験時のCN比とCN比に係る基準値とを比較する(S108)。なお、CN比に係る基準値とは、ノイズの基準値Nfに対応するものである。つまり、試験時のCN比に係る情報がCN比に係る基準値より大きいか否かは、試験電力の供給に伴ってチューナ2からの信号に含まれることとなったノイズが基準値Nfより小さいか否かに対応する。
試験時のCN比の実測値がCN比の基準値以下であると判定した場合には(S108、No)、更新電力決定部123は供給電力の更新を行わない。そして、一連のステップが終了する。なお、S102からのステップが再度繰り返されてもよい。
試験時のCN比の実測値がCN比の基準値より大きいと判定した場合には(S108、Yes)、更新電力決定部123は供給電力の更新を行う(S109)。具体的には、試験条件決定部121が決定した更新値を通常電力記憶部102に記憶させる。そして、一連のステップが終了する。なお、S102からのステップが再度繰り返されてもよい。特に、試験時のCN比と通常時のCN比との間に大きな差が生じている場合には、妨害波推定時と試験時との間で妨害条件が変化した可能性があり、妨害波推定を再度行う必要があるため、S101のステップとS102からのステップを再度繰り返すように構成することも可能である。また、通常時のCN比が小さく、妨害波の状態に対して供給電力が過小であると判断され、供給電力を増加させなければならないような場合には、S105〜S108の更新値の試験のステップを省略し、ただちに供給電力を更新するように構成する事も可能である。
以上のような構成を有する本実施形態によると、受信チャンネルに隣接する上位隣接チャンネル及び下位隣接チャンネルのいずれに、デジタル放送及びアナログ放送のいずれによる妨害波が含まれているかが把握された上で、供給電力の更新値が決定される。一方で、上位隣接チャンネル及び下位隣接チャンネルのいずれに、デジタル放送及びアナログ放送のいずれが妨害波として存在しているかによって、回路部品への供給電力と受信チャンネルに発生する相互変調歪などの歪の大きさとの関連が把握され得る。したがって、ノイズが基準値Nf以下となる範囲内で回路部品の消費電力を適切に抑制することが可能となる。
また、供給電力の更新値を決定した後に、かかる更新値の電力を試験電力として供給したときに信号に含まれることとなったCN比が、基準値Nfに対応する所定の基準値を超えた場合に、かかる更新値に供給電力の大きさを更新する。したがって、供給電力を更新するまでに電力の更新値が適切なものか否かがあらかじめ判断されてから供給電力が更新されるので、ノイズが確実に基準値Nf以下となるように供給電力の制御が行われる。
<変形例>
以上は、本発明の好適な実施形態についての説明であるが、本発明は上述の実施形態に限られるものではなく、課題を解決するための手段に記載された内容の限りにおいて様々な変更が可能なものである。
上述の実施形態においては、受信チャンネルに隣接する他の放送チャンネルが妨害波となる場合が主に想定されている。しかし、受信チャンネルと同じ周波数帯域に含まれるアナログ放送が妨害波となる場合に本発明が適用されてもよい。
この場合には、携帯電話装置1000が、例えば以下のような構成をさらに有していてもよい。ノイズ態様記憶部112は、隣接する周波数帯域に他の放送チャンネルが含まれる場合のみならず、受信チャンネルの周波数帯域にアナログ放送が含まれている場合のCN比の分布態様に係る情報を記憶している。そして、受信チャンネルの周波数帯域にアナログ放送が含まれている場合における供給電力の大きさに対するノイズの大きさの変化に係る情報を記憶している。隣接放送推定部113は、復調器3からのCN比に係る情報及びノイズ態様記憶部112が記憶している情報に基づいて、受信チャンネルの周波数帯域にアナログ放送が含まれているか否かを判定する(アナログ波判定手段)。受信チャンネルの周波数帯域にアナログ放送が含まれていると隣接放送推定部113が判定した場合には、ノイズ変化取得部114は、復調器3からのCN比に係る情報及びノイズ態様記憶部112が記憶している情報から、供給電力の大きさに対するノイズの大きさの変化を取得する。さらに、ノイズ変化取得部114が取得した供給電力の大きさに対するノイズの大きさの変化に基づいて、電力更新部115が供給電力を更新する。
また、上述の実施形態においては、1つの回路部品に着目してその回路部品への供給電力を更新しつつ、チューナ2から最終的に出力される信号に含まれるノイズの大きさを抑制するように供給電力を調整する場合が想定されている。このような方法を用いて複数の回路部品の供給電力を調整する場合には、例えば、チューナ2からの信号に含まれるノイズの大きさが基準値Nfを超えない範囲内で複数の回路部品について順に供給電力を削減し、ノイズがNfを超える直前で供給電力の削減を終了する、といった制御を行うことが考えられる。しかし、複数の回路部品同士の関係を考慮しつつ全体として消費電力が削減されるような供給電力の調整が行われてもよい。
例えば、上述の実施形態において、回路部品への供給電力が小さくなるほどチューナ2からの信号に含まれるノイズが大きくなる場合が想定されている。しかし、アナログ回路の種類や他段のアナログ回路との関係によって、チューナ2から出力される信号のノイズを改善するためには、ある回路部品への供給電力を小さくしつつ他の回路部品への供給電力を大きくした方がよい場合がある。このような回路部品を含む場合には、複数の回路部品同士の関係を考慮しつつ、全体の消費電力が実際に小さくなり、且つ、チューナ2からの信号に含まれるノイズの大きさが基準値Nfを超えないような供給電力の調整が行われるのが好ましい。
また、上述の実施形態においては、受信状況が良好であり、チューナ2からの信号に含まれるノイズが基準値Nfを下回っている場合が想定されている。しかし、受信状況の悪化に伴って、チューナ2からの信号に含まれるノイズが基準値Nfを上回ることも考えられる。したがって、回路部品への供給電力を増加させるなど、ノイズを改善させるような制御が適宜行われるような構成と本実施形態とが組み合わされて用いられることが好ましい。
また、上述の実施形態においては、チューナ2からの信号に含まれるノイズを測定する具体的な手段として、MERを測定する手段(波形等化部37)が想定されている。しかし、ノイズの大きさを評価できるような値を測定する手段であれば、どのようなものでも適宜使用され得る。例えば、平均値算出部116が、復調器3において測定されるBER(Bit Error Rate)を用いて通常時のCN比の平均値を算出してもよい。
また、上述の実施形態においては、ノイズの基準値Nfは、誤り訂正部36による誤り訂正が可能か否かを基準として設定されている。しかし、復調処理が十分になされる範囲を規定するようなその他の基準を用いて設定されてもよい。また、上述の実施形態において基準値Nfはどのような受信状況においても一定値である。しかし、受信状況によって変化するようなものであってもよい。例えば、図12の曲線C1、C2及びC4のそれぞれにおいて、各曲線の傾きの絶対値が所定の大きさを超える位置に相当するノイズの大きさを各曲線におけるノイズの基準値としてもよい。
また、上述の実施形態においては、ノイズ態様記憶部112が、アナログ放送及びデジタル放送のいずれかを示す情報と受信チャンネルの両隣のいずれかを示す情報との両方に関連付けて、供給電力に対するノイズの大きさの変化を記憶している。そして、隣接放送推定部113による推定の結果に基づいて、ノイズ態様記憶部112の記憶内容から供給電力に対するノイズの大きさの変化を取得する、という構成によってノイズ変化導出手段が実現されている。しかし、アナログ放送やデジタル放送以外の他の妨害波における分布態様の類型に関連付けて供給電力に対するノイズの大きさの変化を記憶する手段を有しており、その記憶内容に基づいてノイズの大きさの変化を取得するという構成によってノイズ変化導出手段が実現されていてもよい。
また、上述の実施形態では、図9に示されているような相互変調歪81及び82は、アナログ放送に含まれる3つの搬送波によって発生するものである。しかし、これらの3つの搬送波のうちの1つ(色副搬送波)は他の2つ(映像搬送波及び音声搬送波)よりも一般にレベルが小さい。このため、2つの搬送波(映像搬送波・音声搬送波)から生じる妨害波ノイズのみが考慮されてもよい。
本発明の一実施形態であるデジタル復調装置の全体の概略構成を示すブロック図及びそのデジタル復調装置を有する携帯通話装置の概略図である。 図1の携帯電話装置が受信する信号の模式図である。 図1の携帯通話装置が受信する信号に施されるインターリーブ及びデインターリーブを示す図である。 図1の携帯通話装置が受信する信号に含まれるアナログ放送に係る信号を示すグラフである。 図1に示されるチューナの構成を示すブロック図である。 図1に示される復調器の構成を示すブロック図である。 図1に示されるチューナの回路部品において発生する相互変調歪及び混変調歪について説明する図である。 図1に示されるチューナの回路部品の3次の非線形性を表す指標として使用されるIIP3について説明する図である。 図1に示されるチューナによる受信チャンネルに隣接するアナログ放送によって発生する相互変調歪を示すグラフである。 図1に示されるチューナによる受信チャンネルに隣接するデジタル放送によって発生する相互変調歪を示すグラフである。 図11(a)は、図1に示されるチューナの回路部品からの出力信号に含まれることとなるノイズの大きさと回路部品への供給電力との関係を示すグラフである。 図11(b)は、回路部品のIIP3と回路部品への供給電力との関係を示すグラフである。 図11(a)に示されるノイズの大きさと回路部品への供給電力との関係を受信チャンネルの両隣に隣接する放送の違いに応じて示すグラフである。 ノイズの大きさと回路部品への供給電力との関係が図12のグラフのようになる根拠を説明するための図である。 図1に示される制御部の構成を示すブロック図である。 復調器において測定されるCN比を図9及び図10に示される相互変調歪に応じて示すグラフである。 図1に示されるチューナの回路部品への供給電力とチューナから出力される信号に含まれるノイズとの関係を示すタイミングチャートである。 図1の携帯電話装置においてチューナの回路部品への供給電力が更新される際の一連のステップを示すフローチャートである。
符号の説明
1 デジタル復調装置
2 チューナ
3 復調器
4 制御部
36 誤り訂正部
37 波形等化部
100 電力供給部
111 回路特性記憶部
112 ノイズ態様記憶部
113 隣接放送推定部
114 ノイズ変化取得部
115 電力更新部
116 平均値算出部
121 試験条件決定部
122 電力試験部
123 更新電力決定部
1000 携帯通話装置
Nf 基準値
S、Si、Sr 信号
Sb シンボル

Claims (12)

  1. 複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、
    前記チューナからの信号に復調処理を施す復調器と、
    前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定手段と、
    前記第1の測定手段が前記搬送波ごとに測定したノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定手段と、
    前記分布推定手段が推定した前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出手段と、
    前記ノイズ変化導出手段が導出した前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新手段とを備えていることを特徴とするデジタル復調装置。
  2. 前記分布推定手段が、
    前記チューナからの信号に含まれるノイズが前記妨害波に起因する相互変調歪によるノイズであることに基づいて、前記妨害波の分布態様を推定することを特徴とする請求項1に記載のデジタル復調装置。
  3. 前記電力更新手段が、前記チューナからの信号に含まれたノイズの大きさが前記ノイズ基準値を下回っている場合に、前記チューナからの信号に含まれることとなるノイズの大きさが前記ノイズ基準値を下回る範囲内で前記回路部品への供給電力をより小さいものに更新することを特徴とする請求項1又は2に記載のデジタル復調装置。
  4. 前記ノイズ変化導出手段が、
    前記回路部品からの出力信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化と前記周波数帯域内の妨害波の分布態様との関連情報を記憶する関連記憶手段と、
    前記分布推定手段が推定した前記妨害波の分布態様と前記関連記憶手段が記憶している関連情報とに基づいて、前記チューナからの信号に含まれることとなるノイズの大きさの前記回路部品への供給電力に対する変化を取得するノイズ変化取得手段とを有しており、
    前記電力更新手段が、
    前記ノイズ変化取得手段が導出した前記ノイズの大きさの前記回路部品への供給電力に対する変化に基づいて前記回路部品への供給電力の大きさを更新することを特徴とする請求項1〜3のいずれか1項に記載のデジタル復調装置。
  5. 前記チューナが受信する信号に含まれる妨害波が、前記周波数帯域内に分布するアナログテレビジョン波及びデジタルテレビジョン波の少なくとも一方であり、
    前記分布推定手段が、
    前記チューナが選択的に受信した信号に係る前記周波数帯域に隣接する前記周波数帯域内に妨害波が含まれている場合に、当該妨害波がアナログテレビジョン波であるかデジタルテレビジョン波であるかを判定する妨害波判定手段を有していることを特徴とする請求項1〜4のいずれか1項に記載のデジタル復調装置。
  6. 前記分布推定手段が、
    前記チューナが選択的に受信した信号に係る前記周波数帯域内にアナログテレビジョン波が含まれているか否かを判定するアナログ波判定手段を有していることを特徴とする請求項1〜5のいずれか1項に記載のデジタル復調装置。
  7. 前記電力更新手段が、
    前記分布推定手段が推定した前記妨害波の分布態様に基づいて、前記回路部品に供給した場合に前記チューナからの信号に含まれることとなるノイズの大きさが前記ノイズ基準値を下回るような供給電力の大きさを導出する電力導出手段と、
    前記電力導出手段が導出した大きさの供給電力を供給する期間を決定する期間決定手段と、
    前記電力導出手段が導出した大きさの供給電力を前記期間決定手段が決定した期間に亘って前記回路部品に供給する一時電力供給手段と、
    前記電力導出手段が導出した大きさの供給電力を前記一時電力供給手段が前記回路部品に供給したことによって前記チューナからの信号に含まれることとなったノイズの大きさを測定する第2の測定手段とを有しており、
    前記第2の測定手段が測定したノイズの大きさが前記ノイズ基準値を下回っている場合に、前記電力導出手段が導出した大きさ以上であって更新前より小さい大きさに前記回路部品への供給電力を更新することを特徴とする請求項2〜6のいずれか1項に記載のデジタル復調装置。
  8. 前記チューナからの信号に誤り訂正処理を施す誤り訂正手段をさらに備えており、
    前記ノイズ基準値が、前記誤り訂正手段が施す誤り訂正処理によって訂正が可能なノイズの大きさの上限値であることを特徴とする請求項1〜7のいずれか1項に記載のデジタル復調装置。
  9. 請求項1〜8のいずれか1項に記載のデジタル復調装置を備えており、
    前記デジタル復調装置からの受信信号に基づいて、文字、画像、音声及びデータの少なくとも1つの再現処理を行う再現処理手段をさらに備えていることを特徴とするデジタル受信装置。
  10. 複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、前記チューナからの信号に復調処理を施す復調器とを有するデジタル復調装置の制御方法であって、
    前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定ステップと、
    前記第1の測定ステップで前記搬送波ごとに測定されたノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定ステップと、
    前記分布推定ステップで推定された前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出ステップと、
    前記ノイズ変化導出ステップで導出された前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新ステップとを備えていることを特徴とするデジタル復調装置の制御方法。
  11. 複数の周波数帯域のそれぞれの範囲内に分布した複数の搬送波からなる信号を前記周波数帯域ごとに選択的に受信するチューナを構成する複数の回路部品と、前記チューナからの信号に復調処理を施す復調器とを有するデジタル復調装置のためのプログラムであって、
    前記チューナが受信した信号に含まれている妨害波に起因して前記チューナからの信号に含まれることとなったノイズの大きさを、前記周波数帯域内に分布した前記搬送波ごとに測定する第1の測定ステップと、
    前記第1の測定ステップで前記搬送波ごとに測定されたノイズの前記周波数帯域内における分布態様に基づいて、当該周波数帯域内における妨害波の分布態様及び当該周波数帯域に隣接する前記周波数帯域内における妨害波の分布態様の少なくとも一方を推定する分布推定ステップと、
    前記分布推定ステップで推定された前記妨害波の分布態様及び前記第1の測定手段が測定したノイズの大きさに基づいて、前記チューナからの信号に含まれるノイズの大きさの前記回路部品への供給電力に対する変化を導出するノイズ変化導出ステップと、
    前記ノイズ変化導出ステップで導出された前記供給電力に対する前記ノイズの大きさの変化に基づいて、前記チューナからの信号に含まれることとなるノイズの大きさがノイズ基準値を下回る範囲内で前記回路部品への供給電力の大きさを更新する電力更新ステップとをデジタル復調装置に実行させることを特徴とするデジタル復調装置用プログラム。
  12. 請求項11のデジタル復調装置用プログラムが記録されていることを特徴とするコンピュータ読み取り可能な記録媒体。
JP2006259593A 2006-09-25 2006-09-25 デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体 Expired - Fee Related JP4213741B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006259593A JP4213741B2 (ja) 2006-09-25 2006-09-25 デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体
US11/822,530 US7796962B2 (en) 2006-09-25 2007-07-06 Digital demodulating apparatus, digital receiver, controlling method of the apparatus, computer program product, and recording medium recording thereon the product
CN200710136458XA CN101155169B (zh) 2006-09-25 2007-07-11 数字解调装置、数字接收机、该装置的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259593A JP4213741B2 (ja) 2006-09-25 2006-09-25 デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体

Publications (2)

Publication Number Publication Date
JP2008085382A JP2008085382A (ja) 2008-04-10
JP4213741B2 true JP4213741B2 (ja) 2009-01-21

Family

ID=39224520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259593A Expired - Fee Related JP4213741B2 (ja) 2006-09-25 2006-09-25 デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体

Country Status (3)

Country Link
US (1) US7796962B2 (ja)
JP (1) JP4213741B2 (ja)
CN (1) CN101155169B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4588061B2 (ja) * 2007-09-28 2010-11-24 シャープ株式会社 デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置
US20100323635A1 (en) * 2009-06-23 2010-12-23 Terry Steeper Apparatus and methods for minimizing phase interaction between multiple tuner solutions
JP2011205294A (ja) * 2010-03-25 2011-10-13 Toshiba Corp 受信装置
CN102891974B (zh) * 2011-07-21 2015-05-13 中国科学院微电子研究所 同步和信道估计方法、装置及电视信号接收方法、装置
CN105024878B (zh) * 2015-06-30 2018-07-20 芯海科技(深圳)股份有限公司 一种ofdm集群系统的时延测量方法
FR3044506B1 (fr) * 2015-11-27 2019-07-19 Sagemcom Broadband Sas Procede de programmation d'un enregistrement d'une emission par un decodeur de television numerique
WO2021001915A1 (ja) * 2019-07-02 2021-01-07 株式会社東陽テクニカ 関連妨害波提示装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915114B2 (en) * 2002-05-07 2005-07-05 Broadcom, Corp. Direct tuning of embedded integrated circuit components
US6782239B2 (en) * 2002-06-21 2004-08-24 Neuros Audio L.L.C. Wireless output input device player
US6999735B2 (en) * 2002-07-23 2006-02-14 Broadcom Corp. Digital high frequency power detection circuit
US7580482B2 (en) * 2003-02-19 2009-08-25 Endres Thomas J Joint, adaptive control of equalization, synchronization, and gain in a digital communications receiver
US7447493B2 (en) * 2003-02-28 2008-11-04 Silicon Laboratories, Inc. Tuner suitable for integration and method for tuning a radio frequency signal
JP3822881B2 (ja) 2004-04-20 2006-09-20 アンリツ株式会社 デジタル変調信号評価装置
US20060222098A1 (en) * 2005-03-18 2006-10-05 Hossein Sedarat Impulse noise gating in DSL systems

Also Published As

Publication number Publication date
US20080074556A1 (en) 2008-03-27
CN101155169B (zh) 2012-02-08
JP2008085382A (ja) 2008-04-10
US7796962B2 (en) 2010-09-14
CN101155169A (zh) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4245602B2 (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
JP4213741B2 (ja) デジタル復調装置、デジタル受信装置、その制御方法、デジタル復調装置用プログラム及びそのプログラムを記録した記録媒体
KR102337651B1 (ko) 송신 장치, 수신 장치 및 그 제어 방법
JP4198727B2 (ja) チューナ、デジタル復調装置、その制御方法、デジタル復調装置用プログラム、デジタル復調装置用プログラムを記録した記録媒体及びデジタル受信装置
JP3930525B2 (ja) デジタル復調装置、その制御方法、その制御用プログラム、その制御用プログラムを記録した記録媒体及びデジタル受信装置
KR101514099B1 (ko) 신호 발견을 위한 방법 및 장치
JP4588061B2 (ja) デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置
JP4476915B2 (ja) デジタル復調装置、その制御方法、デジタル復調装置用プログラム、デジタル復調装置用プログラムを記録した記録媒体及びデジタル受信装置
JP2008042574A (ja) 受信装置および遅延プロファイル検出方法
JP4291848B2 (ja) デジタル復調装置及びその制御方法
JP3917633B1 (ja) デジタル復調装置、その制御方法、デジタル復調装置用プログラム、デジタル復調装置用プログラムを記録した記録媒体及びデジタル受信装置
JP4559351B2 (ja) デジタル受信装置、その制御方法、デジタル受信装置用プログラム、そのプログラムを記録した記録媒体及びデジタル処理装置
JP4541291B2 (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
JP4459878B2 (ja) ガードインターバルを含む信号を復調するチューナ、デジタル復調装置、チューナ制御方法、デジタル復調装置制御方法、チューナ制御用プログラム、デジタル復調装置制御用プログラム及びこれらのプログラムを記録した記録媒体
JP4814926B2 (ja) デジタル受信装置、その制御方法、プログラム、及び、そのプログラムを記録した記録媒体
JP2010034854A (ja) 復調装置、復調方法、復調プログラム、及びコンピュータ読み取り可能な記録媒体
JP4579319B2 (ja) デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置
JP4541311B2 (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
JP4593529B2 (ja) デジタル復調装置、その制御方法、デジタル復調装置用プログラム、そのプログラムを記録した記録媒体及びデジタル受信装置
JP4724609B2 (ja) デジタル復調装置、その制御方法、デジタル復調装置用プログラム、そのプログラムを記録した記録媒体及びデジタル受信装置
JP2007150423A (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
JP2009081721A (ja) デジタル復調装置及びその制御方法
JP2008153913A (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記憶した記憶媒体

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees