JP4148572B2 - ガス検出装置 - Google Patents

ガス検出装置 Download PDF

Info

Publication number
JP4148572B2
JP4148572B2 JP27939098A JP27939098A JP4148572B2 JP 4148572 B2 JP4148572 B2 JP 4148572B2 JP 27939098 A JP27939098 A JP 27939098A JP 27939098 A JP27939098 A JP 27939098A JP 4148572 B2 JP4148572 B2 JP 4148572B2
Authority
JP
Japan
Prior art keywords
gas
electrode
chamber
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27939098A
Other languages
English (en)
Other versions
JP2000088800A (ja
Inventor
圭吾 水谷
富夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP27939098A priority Critical patent/JP4148572B2/ja
Publication of JP2000088800A publication Critical patent/JP2000088800A/ja
Application granted granted Critical
Publication of JP4148572B2 publication Critical patent/JP4148572B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定ガス中の特定ガス成分濃度を測定するためのガス検出装置、特に内燃機関の排気ガス中の窒素酸化物濃度を検出するのに適したガス検出装置に関するものである。
【0002】
【従来の技術】
車両等の内燃機関から排出される排気エミッションを低減するために、従来より、三元触媒を用いた排ガス浄化システムが採用されている。このシステムは、空燃比を理論空燃比近傍にフィードバック制御するとともに、排気系に設置した三元触媒により排気エミッション成分(NOx、HC、CO)を除去するものである。また、近年、排気エミッションの規制が強化されてきており、米国では、排気エミッション成分関連部品の故障、例えば、三元触媒の劣化を検知して運転者に知らせることを義務付ける自己診断規制(OBD−II)が導入されている。
【0003】
三元触媒の劣化を検知する方法としては、いわゆる2O2 センサシステムが知られている。これは、三元触媒の上流および下流に配置した2つの酸素センサを用いるもので、その出力信号を比較することにより劣化を間接的に検知することができる。しかしながら、近年、有害成分の排出規制がさらに強化される傾向にあり、検出を間接的に行う2O2 センサシステムでは、検出精度が不十分である。このため、排気ガス中の窒素酸化物(NOx)等、排気エミッション成分を直接検出可能なガス検出装置の開発が必要となっている。
【0004】
排気ガス中の窒素酸化物(NOx)等を直接検出するガス検出装置には、例えば、特開平8−271476号公報に記載されるような、酸素イオン導電性の固体電解質を用いた固体電解質式のガス検出装置がある。かかる装置の構成を図16に示すと、ガス検出装置200は、固体電解質201と固体電解質202の間に配したスペーサ内に形成した、第一の内部空所203と第二の内部空所204を有し、被測定ガスは第一の拡散律速通路205を通じて第一の内部空所203に導入される。第一の内部空所203内の酸素濃度は、酸素センサセル200Aにより検出され、これにより検出される酸素濃度が所定値となるように、第一のポンプセル200Bの駆動電圧がフィードバック制御される。酸素センサセル200Aは、固体電解質202の表面に設けた電極202a、202bを大気通路207および第一の内部空所203にそれぞれ露出してなる。第一のポンプセル200Bは、固体電解質201とその両面の電極201a、201bよりなり、電極201aは被測定ガスに、電極201bは第一の内部空所203に露出している。
【0005】
第二の拡散律速通路206を通じて第一の内部空所203に連通する第二の内部空所204には、第二の内部空所204内の酸素を排出する第二のポンプセル200Cが設けられる。第二のポンプセル200Cは、固体電解質202と電極202a、202cとで構成され、第二の内部空所204に露出する電極202cは、NOxに対して還元活性を有している。第二の内部空所204では、被測定ガス中のNOxが還元分解して新たな酸素が生成し、第二のポンプセル200Cを流れるポンプ電流が増減する。第一の内部空所203より第二の内部空所204に拡散する被測定ガス中の酸素濃度は一定であるから、このポンプ電流の増減はNOxの還元に基づくものであり、これを測定することでNOx濃度を検出することができる。
【0006】
【発明が解決しようとする課題】
このように、上記構成のガス検出装置では、NOxを電極202cで分解して酸素を生成し、これに伴う酸素濃度の変化からNOx濃度を検出している。しかしながら、NOxを酸素に分解して検出するため、被測定ガス中の酸素に対する選択性がなく、第二の内部空所204に拡散する被測定ガス中の酸素濃度を一定にする必要がある。上記構成では、第一の内部空所203と第二の内部空所204を分離する第二の拡散律速通路206を設けて、被測定ガス中の酸素濃度が一定になるようにしているが、他方で、検出感度が小さく、応答性も十分ではないという問題が生じた。なお、検出感度、応答性を重視して第二の拡散律速通路206を省略すると、流出入する酸素により第二の酸素ポンプセル200Cの電極近傍における酸素濃度が変動し、検出誤差が生じることになる。このため、検出感度および応答性と検出精度の両立が大きな課題となっている。
【0007】
本発明は、上記課題を解決しようとするもので、その目的は、高いガス検出感度および応答性が得られ、しかも検出精度の良好なガス検出装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1のガス検出装置は、被測定ガス中の特定ガス成分を検出するガス検出装置であって、
被測定ガスが拡散抵抗手段を介して導入される第1室と、
酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第1室に露出させるとともに上記特定ガス成分に対し不活性な電極で構成し、上記一対の電極に所定の電流を流して、被測定ガス中の水蒸気を分解することにより上記第1室内に水素ガスを所定量発生させる第1ポンプ部と、
酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第1室に、他方の電極を基準酸素濃度ガスが存在する基準酸素濃度ガス室に露出させるとともに、上記一方の電極を上記特定ガス成分に対して活性な電極で構成して、上記特定ガス成分と上記水素ガスの反応に基づく、上記一対の電極間に発生する起電力の変化から上記特定ガス成分濃度を測定するガス検知部とを有している。
【0009】
リーン状態の排気ガスを被測定ガスとし、特定ガス成分としてNOxを検出する場合、上記第1ポンプ部の一対の電極間に上記第1室から酸素を排出するように所定の電流を流して、上記第1室内のH2 Oを分解し、NOxと反応可能な一定量のH2 を発生させる上記ガス検知部の一対の電極間に発生する起電力は、上記第1室内の 2 対応し、NOxが存在すると上記一方の電極でNOxと 2 反応して平衡酸素濃度が増加するために、起電力が減少する。よって、起電力の変化量からNOx濃度を測定することができる。このように、酸素濃度によらず、精度よいNOxの検出が可能である。また、起電力を測定する方式であるので、検出感度が高く、応答性も良好である。
【0010】
請求項2の構成では、さらに、被測定ガスが拡散抵抗手段を介して導入される、上記第1室と独立な第2室と、酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第2室に露出させるとともに上記特定ガス成分に対し不活性な電極で構成した第2ポンプ部を設ける。そして、上記第2ポンプ部の一対の電極間に所定の電圧を印加したときに両電極間を流れる限界電流値を求め、その限界電流値より所定の値だけ大きい電流を、上記第1ポンプ部の一対の電極へ通電する
【0011】
例えば、上記第2ポンプ部の一対の電極間に、H2 Oの分解域以下の所定の電圧を印加し、上記第2室内の酸素を排出するように電流を流すと、酸素濃度に比例した限界電流が流れる。よって、この電流値に一定の電流を加えた電流を、上記第1ポンプ部に流せば、一定量のH2 を発生させることができる。このように、第2ポンプ部を流れる電流を基に上記第1ポンプ部の一対の電極への通電量を設定することで、上記第1室内のH2 発生量の制御が容易になり、高い検出精度が得られる。
【0012】
請求項3の構成では、酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第2室に、他方の電極を基準酸素濃度ガスが存在する基準酸素濃度ガス室に露出させ、上記一対の電極間に発生する起電力から上記第2室内の酸素濃度を検知する酸素検知部を設ける。そして、上記起電力が所定の値となるように、上記第2ポンプ部の一対の電極に印加する電圧を制御することで、排気ガスがリッチ状態でも上記第2室内を一定酸素濃度に保持することができる。この時、上記第2ポンプ部を流れる電流より所定の値だけ小さい電流を上記第1ポンプ部に流せば、上記第1室に一定量の未燃ガスが残ることになる。よって、広い空燃比範囲での検出が可能である。
【0013】
請求項4の構成では、上記第1室内に発生する上記ガス成分の量を測定するためのガス成分検知手段を設ける。上記ガス成分検知手段の検知結果が一定となるように、第1ポンプ部への印加電圧を調整することで、上記第1室内に一定量の上記ガス成分を発生させることができる。このように、直接、H2 等のガス成分の発生量を検出する構成としてもよく、同様の効果が得られる。
【0014】
請求項5の構成では、上記第1ポンプ部の上記一方の電極の分極を測定するための基準極を設ける。上記一方の電極の分極の大きさに応じて、上記第1室内に発生する上記ガス成分の量が増加し、また、上記基準極と上記一方の電極の間の電圧を測定することで、分極の大きさを知ることができる。よって、上記基準極と上記一方の電極の間の電圧が所定の値となるように、第1ポンプ部への印加電圧を調整すれば、上記第1室内に一定量の上記ガス成分を発生させることができる。このように、分極の大きさから上記第1室内のH2 等の発生量を知る構成としてもよく、同様の効果が得られる。
【0015】
【発明の実施の形態】
以下、本発明を窒素酸化物(NOx)の検出に適用した第1の実施の形態について、図1〜図5により説明する。図3は窒素酸化物(NOx)検出装置の全体構成を示す断面図で、筒状ハウジングH内に絶縁材に外周を保持せしめて本発明のガス検出装置1が収納されている。該ガス検出装置1は細長い平板状で、その先端部(図の下端部)は、上記ハウジングHより突出して図の下方に延び、ハウジングHの下端に固定される容器状の排気カバーH1内に位置している。上記排気カバーH1は、ステンレス製の内部カバーH11と外部カバーH12の二重構造となっており、これらカバーH11、H12の側壁と底壁には、被測定ガスである排気ガスを排気カバーH1内に取り込むための排気口H13、H14がそれぞれ形成してある。
【0016】
上記ハウジングHの上端には、筒状のメインカバーH21とその後端部を被うサブカバーH22からなる大気カバーH2が固定されている。これらメインカバーH21とサブカバーH22は、その側壁の対向位置に大気口H23、H24をそれぞれ有して、これら大気口H23、H24より基準酸素濃度ガスである大気を大気カバーH2内に取り込むようになしてある。また、上記大気口H23、H24の形成位置において、上記メインカバーH21とサブカバーH22の間に、防水のために撥水性のフィルタH25を設置してある。上記大気カバーH2は、上端が開口しており、上記ガス検出装置1の後端部に接続されるリード線H3が、この上端開口より外部に延びている。
【0017】
図1、2は本発明のガス検出装置1の先端部の模式的な断面図および展開図である。図において、上記ガス検出装置1は、上から順に、固体電解質Aと一対の電極21、22からなり第1ポンプ部となるH2 O分解セル2、第1室51を形成するスペーサ5、固体電解質Bと一対の電極31、32からなるガス検知部としてのNOx検知セル3、基準酸素濃度ガス室となる大気室61を形成するスペーサ6、各セルを加熱するためのヒータ8、第2室71を形成するスペーサ7、固体電解質Cと一対の電極41、42からなり第2ポンプ部となる酸素ポンプセル4を積層して構成される。
【0018】
最上層の上記H2 O分解セル2は、その下方の第1室51内のH2 Oを分解して所定量のH2 を発生させるもので、シート状に成形した酸素イオン導電性の固体電解質Aと、その両面の対向位置にスクリーン印刷等により形成した一対の電極21、22からなる。酸素イオン導電性の固体電解質Aとしては、例えばイットリア添加ジルコニア等が用いられる。上記一対の電極21、22のうち、上方の電極21は、通常の電極材料、例えば、多孔質Pt電極等よりなり、排気ガスが存在する排気カバーH1内空間(図3)に露出している。
【0019】
上記一対の電極21、22のうち、下方の電極22は、アルミナ製のスペーサ5に設けた抜き穴5a(図2)にて形成される上記第1室51(図1)に露出するように形成される。この電極22は、NOxに対しては不活性であるが、O2 に対しては活性であるように、電極活性を調整してあり、具体的には、PtにAuを1〜5重量%程度添加した多孔質電極が好適に用いられる。これにより、NOx濃度に影響を与えることなく、一定量のH2 を発生させることができる。PtにAuを添加する方法としては、Pt粉末とAu粉末を混合したり、PtとAuを合金化する等の方法が採られる。あるいは、Ptの粒径を大きくして表面積を小さくし活性を低下させた電極を用いることもできる。
【0020】
上記H2 O分解セル2の上記固体電解質Aおよび一対の電極21、22を貫通して、所定の大きさの拡散抵抗手段であるピンホール23が形成してある。このピンホール23の大きさは、これを通過して上記第1室51に導入される排気ガスの拡散速度が所定の速度となるように、適宜設定される。また、排気ガス側の上記電極21およびピンホール23を被覆して、多孔質アルミナ等よりなる多孔質保護層24が形成してあり、電極21の被毒やピンホール23が排気ガスに含まれるスス等で目詰まりするのを防止している。
【0021】
上記固体電解質Aの上下表面には、一対の電極21、22間に所定の電流を流すためのリード21a、22aが形成されている。なお、上記固体電解質Aの電極形成部以外、特にリード形成部においては、固体電解質Aとリード21a、22aの間にアルミナ等の絶縁層を介在させるのがよい。
【0022】
最下層の上記酸素ポンプセル4は、排気ガス中の酸素濃度を測定するためのもので、シート状に成形した酸素イオン導電性の固体電解質Cと、その両面の対向位置に、スクリーン印刷等により形成した一対の電極41、42からなる。酸素イオン導電性の固体電解質Cとしては、例えばイットリア添加ジルコニア等が用いられる。上記一対の電極41、42のうち、下方の電極41は、被測定ガス存在空間、すなわち図3における排気カバーH1内空間に露出しており、通常の電極材料、例えば、多孔質Pt電極等で構成される。
【0023】
上記一対の電極41、42のうち、上方の電極42は、アルミナ製のスペーサ7に設けた抜き穴7a(図2)にて形成される第2室71(図1)に露出するように形成してある。上記電極42としては、上記H2 O分解セル2の電極22と同様の電極活性を有するものを用いる。具体的には、NOxに対して不活性であり、O2 に対しては活性であるような電極、例えばPtにAuを1〜5重量%程度添加した多孔質電極が好適に用いられる。これによりNOx濃度の影響を受けることなく、排気ガス中の酸素濃度を測定することができる。
【0024】
上記酸素ポンプセル4の上記固体電解質Cと一対の電極41、42を貫通して、所定の大きさの拡散抵抗手段であるピンホール43が形成されている。このピンホール43の大きさは、通常、上記H2 O分解セル2のピンホール23と同じ大きさに形成され、上記第2室71に、上記第1室51と同じ拡散抵抗で排気ガスが導入されるようにすることが望ましい。また、排気ガス側の上記電極41およびピンホール43を被覆して、多孔質アルミナ等よりなる多孔質保護層44が形成してあり、電極41の被毒やピンホール43が排気ガスに含まれるスス等で目詰まりするのを防止している。
【0025】
上記固体電解質Cの上下表面には、図2のように、上記一対の電極41、42に接続するリード41a、42aが形成されている。この場合も、上記固体電解質Cの電極形成部以外、特にリード形成部において、固体電解質Cとリード41a、42aの間にアルミナ等の絶縁層を介在させるのがよい。
【0026】
上記H2 O分解セル2の下方には、NOx検知セル3が配設される。NOx検知セル3は、NOxとH2 の反応による起電力の変化からNOx濃度を検出するもので、シート状の固体電解質3と、その両面の対向位置にスクリーン印刷等により形成した一対の電極31、32からなる。この一対の電極31、32のうち、上方の電極31は、上記第1室51に露出するように形成され、また、NOxに対し活性な電極で構成されている。具体的には、例えば、多孔質Pt電極を用いてNOxに対して活性を有するように調整したものが用いられる。
【0027】
上記一対の電極31、32のうち、下方の電極32は、その下方の大気室61(図1)に露出するように形成され、例えば、多孔質Pt電極等、通常の電極材よりなる。大気室61は、アルミナ等よりなるスペーサ6に設けた抜き孔6a、6b(図2)にて形成され、抜き孔6bはスペーサ6の右端に開口して大気カバーH2内空間(図3)に通じている。これにより大気室61には基準酸素濃度ガスとなる大気が導入される。
【0028】
上記固体電解質Bの上下表面には、一対の電極31、32に接続するリード31a、32aが形成されている。この場合も、上記固体電解質Bの電極形成部以外、特にリード形成部において、固体電解質Bとリード31a、32aの間にアルミナ等の絶縁層を介在させるのがよい。
【0029】
上記スペーサ6、7間に位置する上記ヒータ8は、アルミナ製のヒータシート82の上面にヒータ電極81を形成してなる。ヒータ電極81としては、通常、Pt電極が用いられ、その上面にはアルミナ等からなる絶縁層83が形成される。上記ヒータ電極81にはリード81aが接続され、該リード81aはヒータシート82、スペーサ7、固体電解質Cに設けたスルーホールを通じて、センサ基部の端子まで接続される。上記酸素ポンプセル4、H2 O分解セル2、NOx検知セル3の各電極のリード部も、同様にして、センサ基部の端子に接続される。
【0030】
上記構成のガス検出装置1の作動について図4を使って説明する。ここでは、被測定ガスである排気ガスはリーン状態のみを想定しており、上記酸素ポンプセル4は、排気ガスに含まれる酸素濃度を測定するための限界電流式の酸素濃度センサとして作動する。排気ガスは、ピンホール43を通り第2室71に導入される。ここで、上記一対の電極41、42に、排気ガス側の上記電極41が+極となるようにして所定の電圧を加えると、上記第2室71側の上記電極42上で酸素が還元されて酸素イオンとなり、ポンピング作用により上記電極41側に排出される。
【0031】
この時の酸素ポンプセル4に加える電圧と流れる電流の関係を図4に示す。酸素ポンプセル4に加える電圧は、一対の電極41、42間を流れる電流がピンホール43で酸素の拡散が律速されるような値、いわゆる限界電流となるように設定する。これを図4にV1 で示す。この電圧は一定でもよいが、広い酸素濃度領域で作動させるのであれば、酸素濃度に応じて電圧を変化させることも可能である。ここで、上記第2室71側の上記電極42は、NOxに対して不活性としてあるので、上記第2室71内でNOxの還元による酸素は生成しない。従って、酸素ポンプセル4には、NOx濃度によらない、酸素濃度に比例した電流I1 が流れる。なお、上記電極42上でH2 等の未燃ガスが燃焼する際に酸素が使用されるので、正確には、電流I1 は未燃ガスの燃焼後に残る酸素の濃度に応じた電流となる。
【0032】
次に、上記H2 O分解セル2に、上記酸素ポンプセル4に流れる酸素電流I1 より、所定の値だけ大きい電流I1 +I2 を流す。上記ピンホール43とピンホール23は、同一の拡散抵抗に設定してあるので、上記H2 O分解セル2に流す電流をI1 +I2 とすれば、上記H2 O分解セル2の設定電圧は図4のようにH2 O分解域となり、上記電極22で排気ガス中に多量に含まれるH2 Oが分解されて、H2 を発生する。上記電極22は、上記電極42と同様にNOxに対して不活性に調整してあるので、以上のような電流設定により電極22上では、酸素濃度、NOx濃度、H2 O濃度に依存せず、一定量のH2 Oを分解する。言い換えると一定量のH2 を内部空間51内に発生することとなる。
【0033】
上記NOx検知セル3の一対の電極31、32の間には、両電極上の酸素濃度の違いに基づいた起電力が発生する。電極31上では、H2 とO2 が下記式
【化1】
Figure 0004148572
で示される平衡状態にあるため、NOx検知セル3の起電力は上記第1室51内のH2 量に対応する。ここで、排気ガス中にNOxが含まれると、電極31はNOxに対して活性であるので、電極31上でH2 とNOxが反応する。NOxと反応してH2 が減少すると、H2 とO2 の平衡がずれてO2 量が増加し、NOx検知セル3の起電力が減少する。この起電力の変化量から排気ガス中に含まれるNOx濃度を検知することができる。
【0034】
なお、上記H2 O分解セル2で発生するH2 の量を、過剰に大きな値に設定すると、上記NOx検知セル3の起電力が約1Vで飽和してしまい、排気ガス中に含まれるNOx濃度が変化してもNOx検知セル3の起電力が変化しなくなるため、好ましくない。従って、NOx検知セル3の起電力の変化を十分検出可能なように、上記H2 O分解セル2の設定電圧を、適宜、調整するのがよい。
【0035】
また、ピンホール23とピンホール43の拡散抵抗の大きさに差があると、上記酸素ポンプセル4と上記H2 O分解セル2で酸素の限界電流の値に差が生じ、、上記H2 O分解セル2で発生するH2 の量が酸素濃度に比例して変動してしまう。すると、NOx検知セル3の起電力も変動してしまい、誤差要因となるので、この場合は、ピンホール23とピンホール43の拡散抵抗の大きさの差を予め求めておき、酸素ポンプセル4で計測する酸素濃度からセンサ出力を補正することにより、より精度が向上する。
【0036】
以上の原理により、本発明によれば、排気ガス中の酸素濃度変化等の影響をうけることなく、NOx濃度を精度よく測定することができる。また、本発明のガス検出装置によるNOxの感度は図5に示すように、mVオーダーの比較的大きいものとなる。よって、高いガス検出感度と高い応答性が得られ、しかも検出精度の良好なガス検出装置を実現することができる。
【0037】
本発明の第2の実施の形態を図6、7で説明する。上記第1の実施の形態では、各セルに対応する3枚の固体電解質を使用したが、本実施の形態では固体電解質を2枚としており、また、上記第1の実施の形態の構成に加えて、上記第2室71内の酸素濃度を検知するための酸素検知部たる酸素検知セル9を設けている。図6、7において、上記酸素ポンプセル4は、上記H2 O分解セル2と共通の固体電解質Aと、その両面の対向位置に形成した一対の電極41、42とで構成され、上方の電極41は排気カバーH1内空間(図3)に、下方の電極42は、スペーサ5に設けた第2室71に露出している。第2室71は、スペーサ5内に、上記第1室51を構成する抜き孔5aと独立に設けた抜き孔5bによって形成される(図7)。また、上記電極41の表面は、上記電極21と共通の多孔質保護層24で被覆されている。
【0038】
上記酸素検知セル9は、上記酸素ポンプセル4の下方に位置し、NOx検知セル3と共通な固体電解質Bと、その両面の対向位置に形成した一対の電極91、92からなる。上方の電極91は上記第2室71に、下方の電極92は大気室61に露出している。上記第2室71に露出する上記電極91は、NOxに対して不活性に調整された電極、例えば、多孔質Pt−Au電極からなり、上記電極92は、例えば、多孔質Pt電極等で構成され、この時、一対の電極91、92間には、上記第2室71と大気室61の酸素濃度差に基づいた起電力が発生する。上記H2 O分解セル2とNOx検知セル3、およびヒータ部8の構成は、上記第1の実施の形態と同様である。
【0039】
上記第2の実施の形態の作動について、上記第1の実施の形態との相違点を中心に説明する。上記第1の実施の形態では、酸素ポンプセル4に加える電圧V1 を予め設定しておいたが、本実施の形態では、酸素検知セル9の一対の電極91、92間に生じる起電力が所定の値となるように、酸素ポンプセル4に加える電圧V1 をフィードバック制御して決める。つまり、上記酸素ポンプセル4および酸素検知セル9は、いわゆる2セルA/Fセンサと呼ばれる酸素センサと同じ動作をし、上記酸素ポンプセル4は、リーン状態では上記第2室71内の酸素を排出しリッチ状態では酸素を汲み入れて、第2室71内の酸素濃度を一定に保持する。
【0040】
このように、酸素検知セル9を設けた構成では、排気ガスがリッチ状態でも第2室71内を一定酸素濃度に維持できる。この場合、上記H2 O分解セル2に、酸素ポンプセル4に流れる電流より所定の値だけ小さい電流を、上記第1室51内に酸素を汲み入れるように流すと、第1室51に一定量の未燃ガスが残ることになる。この未燃ガスはH2 に限らず、CO、HC等でもよく、またその混合ガスであってもよい。このように、リッチ状態ではH2 Oの分解によりH2 を発生させる代わりに、第1室51に、NOxと反応可能な一定量の未燃ガスを残留させる。そして、この一定量の未燃ガスとNOxが反応することにより、NOx検知セル3の起電力が変化する。この時のNOx検知セル3の特性は上記第1の実施の形態と同様であり、高い感度で精度よくNOx濃度を検知することができる。
【0041】
よって、本実施の形態では、排気ガスがリッチ状態でもNOx濃度を検知することができ、広い空燃比範囲で検出が可能になる。また、固体電解質を一部共通としたので、構成が簡単で、コンパクトになる。
【0042】
本発明の第3の実施の形態を図8、9で説明する。本実施の形態では、上記第1の実施の形態における酸素ポンプセル4を省略した構成になっている。H2 O分解セル2、NOx検知セル3、その他の構成は、上記第1の実施の形態と同様である。
【0043】
本実施の形態では、上記H2 O分解セル2に印加する電圧を、予め設定した所定の電圧V2 (図4)とすることで、上記第1室51内に一定量のH2 を発生させる。設定電圧V2 は、一定としても、H2 O分解セル2の電流値に応じて適宜変化させてもよい。また、別に設けた酸素センサの出力信号から、その値を決定してもよい。このようにしても、NOx検知セル3は、上記第1の実施の形態と同様の特性を示す。よって、より簡易な構成で、NOx濃度の検出が可能であり、製造が容易でコストの低減が可能である。
【0044】
図10、11に、本発明の第4の実施の形態を示す。本実施の形態では、上記第3の実施の形態に、ガス検知手段としてのH2 検知セル10を追加した構成となっている。H2 検知セル10は、NOx検知セル3と共通の固体電解質Bを用いて、その両面の対向位置に一対の電極101、102を形成してなり、上方の電極101は第1室51に、下方の電極102は大気室61に露出している。上記電極101は、NOxに対して不活性に調整された電極、例えば、多孔質Pt−Au電極からなり、上記電極102は、例えば、多孔質Pt電極等で構成される。なお、本実施の形態において、NOx検知セル3の一対の電極31、32は、H2 検知セル10を配置するために、上記各実施の形態より小さく形成され、上記電極101、102は、これら電極31、32にそれぞれ隣接して形成される。その他の構成は、上記第3の実施の形態と同様である。
【0045】
本実施の形態において、上記H2 検知セル10は、上記第1室51内の酸素と未燃ガスの比率により、一対の電極101、102間に起電力を発生する。上記H2 O分解セル2により上記第1室51内の酸素を排気していくと、H2 Oの分解とともにH2 の比率が増加する。H2 の比率が増加すると、一対の電極101、102間の起電力は500mV〜950mVとなり、その起電力の値からH2 量を検出できる。また、電極101はNOxに対し不活性に調整されているので、NOx濃度によらない検出が可能である。そこで、本実施の形態では、上記第1室51内に一定量のH2 を満たすために、上記H2 検知セル10の起電力が500mV〜950mVの範囲で一定となるように、上記H2 O分解セル2の印加電圧を調整する。これにより、上記第1室51内に一定量のH2 を発生させ、同様にしてNOx濃度を検知することができる。この時、NOx検知セル3は上記第1の実施の形態と同様の特性を示し、高感度かつ精度よい検出が可能である。
【0046】
図12、13に、本発明の第5の実施の形態を示す。本実施の形態は、上記第3の実施の形態における上記H2 O分解セル2の電極22の分極を測定するために、上記H2 O分解セル2に隣接して基準極11を設けた構成となっている。上記基準極11は、例えば、多孔質Pt電極からなり、上記スペーサ5内に形成される空間12に露出している。この空間12は、固体電解質Bを貫通する連通孔13を通じて大気室61に連通している。その他の構成は、上記第3の実施の形態と同様である。
【0047】
上記第3の実施の形態では、上記H2 O分解セル2に加えるV2 を所定の値に設定することで、第1室51内に一定量のH2 を発生したが、本実施の形態では、上記電極22の分極の大きさを所定の値に設定して一定量のH2 を発生させる。上記電極22の分極の大きさは、共通の固体電解質Bに形成した基準極11との間の電圧を測定することで分かる。すなわち、上記基準極11は、大気室61から連通孔13を通じて上記空間12に導入される、一定酸素濃度の大気に露出しており一定の電位を示す。上記H2 O分解セル2で上記第1室51内の酸素を排気していくと、酸素濃度が減少するのに応じて、上記電極22の分極は大きくなる。H2 O分解域では、さらに大きな値を示すため、この値からH2 Oの分解量、つまりH2 発生量を決めることができる。
【0048】
このように、上記基準極11を用いて上記電極22の分極の大きさを所定の値に設定し、一定量のH2 を発生させる構成としてもよく、NOx検知セル3の特性は、上記第1の実施の形態と同様となる。また、上記構成によれば、排気ガスがリッチ状態でも作動させることができ、簡単な構造で、広い空燃比での測定が可能となる。
【0049】
図14、15に、本発明の第6の実施の形態を示す。本実施の形態では、上記第1の実施の形態における上記H2 O分解セル2と酸素ポンプセル4の固体電解質を共通にした構成とする。すなわち、上記酸素ポンプセル4を、上記H2 O分解セル2と共通の固体電解質Aの両面に一対の電極41、42を設けて構成し、上方の電極41を排気ガスに、下方の電極42を、上記スペーサ5に形成した第2室71に露出する。第2室71は、上記スペーサ5に設けた抜き孔5bで構成され、上記固体電解質Aと一対の電極41、42を貫通するピンホール43より被測定ガスが導入されるようになしてある。また、第2室71は、上記スペーサ5に形成した抜き孔5cよりなる連通孔52によって、上記H2 O分解セル2の第1室51と連通している。上記酸素ポンプセル4の電極41、上記H2 O分解セル2の電極21の表面は共通の多孔質保護層24で被覆されている。
【0050】
本実施の形態の作動について説明する。上記H2 O分解セル2には、電極21が+極となるようにして所定の電圧を加え、上記第1室51内のH2 Oを分解する。印加電圧は、H2 O分解域となるように、通常500mV〜950mVの範囲で設定することが望ましい。そして、上記H2 O分解セル2に流れる電流が一定値となるように、すなわち、H2 Oの分解量が一定となるように酸素ポンプセル4に加える電圧をフィードバック制御する。上記H2 O分解セル2に流れる電流は、酸素ポンプセル4において上記ピンホール43で酸素が拡散律速された限界電流が流れるように設定する。この結果、上記電極22では、一定量のH2 Oが分解して、一定量のH2 が発生する。このようにしても、NOx検知セル3の特性は上記第1の実施の形態と同様となり、簡単な構成で、高感度かつ精度よいNOx濃度の検出が可能である。
【0051】
上記各実施の形態において、第1室51、第2室71へ被測定ガスを導入するための拡散抵抗手段は、拡散性(酸素濃度差に速度が依存)であればよく、ピンホールに代えて多孔質層を用いてもよい。また、上記各実施の形態では、本発明をNOx濃度を測定するガス検出装置に適用した例について説明したが、本発明の用途は必ずしもこれに限るものではない。
【図面の簡単な説明】
【図1】図1は本発明の第1の実施の形態を示すガス検出装置の要部断面図である。
【図2】図2は第1の実施の形態のガス検出装置の展開図である。
【図3】図3は第1の実施の形態のガス検出装置を含むNOx検出装置の全体断面図である。
【図4】図4は第1の実施の形態におけるガス検出装置の作動原理を説明するための図である。
【図5】図5は第1の実施の形態のガス検出装置のNOx濃度とセンサ出力の関係を示す図である。
【図6】図6は本発明の第2の実施の形態を示すガス検出装置の要部断面図である。
【図7】図7は第2の実施の形態のガス検出装置の展開図である。
【図8】図8は本発明の第3の実施の形態を示すガス検出装置の要部断面図である。
【図9】図9は第3の実施の形態のガス検出装置の展開図である。
【図10】図10は本発明の第4の実施の形態を示すガス検出装置の要部断面図である。
【図11】図11は第4の実施の形態のガス検出装置の展開図である。
【図12】図12は本発明の第5の実施の形態を示すガス検出装置の要部断面図である。
【図13】図13は第5の実施の形態のガス検出装置の展開図である。
【図14】図14は本発明の第6の実施の形態を示すガス検出装置の要部断面図である。
【図15】図15は第6の実施の形態のガス検出装置の展開図である。
【図16】図16は従来のガス検出装置の要部断面図である。
【符号の説明】
A、B、C 固体電解質
1 ガス検出装置
2 H2 O分解セル(第1ポンプ部)
21、22 一対の電極
23 ピンホール(拡散抵抗手段)
24 多孔質保護層
3 NOx検知セル(ガス検知部)
31、32 一対の電極
4 酸素ポンプセル(第2ポンプ部)
41、42 一対の電極
43 ピンホール(拡散抵抗手段)
44 多孔質保護層
5 スペーサ
51 第1室
6 スペーサ
61 大気室(基準酸素濃度ガス室)
7 スペーサ
71 第2室
8 ヒータ
9 酸素検知セル(酸素検知部)
91、92 一対の電極
10 H2 検知セル(ガス成分検知手段)
11 基準極

Claims (5)

  1. 被測定ガス中の特定ガス成分を検出するガス検出装置であって、
    被測定ガスが拡散抵抗手段を介して導入される第1室と、
    酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第1室に露出させるとともに上記特定ガス成分に対し不活性な電極で構成し、上記一対の電極に所定の電流を流して、被測定ガス中の水蒸気を分解することにより上記第1室内に水素ガスを所定量発生させる第1ポンプ部と、
    酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第1室に、他方の電極を基準酸素濃度ガスが存在する基準酸素濃度ガス室に露出させるとともに、上記一方の電極を上記特定ガス成分に対して活性な電極で構成し、上記特定ガス成分と上記水素ガスの反応による、上記一対の電極間の起電力の変化から上記特定ガス成分濃度を測定するガス検知部とを有することを特徴とするガス検出装置。
  2. 被測定ガスが拡散抵抗手段を介して導入される第2室と、
    酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第2室に露出させるとともに上記特定ガス成分に対し不活性な電極で構成した第2ポンプ部を設け、上記第2ポンプ部の一対の電極間に所定の電圧を印加したときに両電極間を流れる限界電流値を求め、その限界電流値より所定の値だけ大きい電流を、上記第1ポンプ部の一対の電極へ通電する請求項1記載のガス検出装置。
  3. 酸素イオン導電性の固体電解質の相対向する両面に一対の電極を設けて、その一方の電極を上記第2室に、他方の電極を上記基準酸素濃度ガス室に露出させ、上記一対の電極間に発生する起電力から上記第2室内の酸素濃度を検知する酸素検知部を設けて、上記起電力が所定の値となるように、上記第2ポンプ部の一対の電極に印加する電圧を制御する請求項2記載のガス検出装置。
  4. 上記第1室内に発生する上記ガス成分の量を測定するためのガス成分検知手段を設けた請求項1記載のガス検出装置。
  5. 上記第1ポンプ部の上記一方の電極の分極を測定するための基準極を設けた請求項1記載のガス検出装置。
JP27939098A 1998-09-14 1998-09-14 ガス検出装置 Expired - Fee Related JP4148572B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27939098A JP4148572B2 (ja) 1998-09-14 1998-09-14 ガス検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27939098A JP4148572B2 (ja) 1998-09-14 1998-09-14 ガス検出装置

Publications (2)

Publication Number Publication Date
JP2000088800A JP2000088800A (ja) 2000-03-31
JP4148572B2 true JP4148572B2 (ja) 2008-09-10

Family

ID=17610469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27939098A Expired - Fee Related JP4148572B2 (ja) 1998-09-14 1998-09-14 ガス検出装置

Country Status (1)

Country Link
JP (1) JP4148572B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106171A1 (de) 2001-02-10 2002-11-21 Bosch Gmbh Robert Gassensor
DE10151328B4 (de) * 2001-10-17 2005-05-04 Robert Bosch Gmbh Gasmessfühler
JP4674697B2 (ja) * 2008-12-04 2011-04-20 日本特殊陶業株式会社 ガスセンサ素子の制御装置および制御方法

Also Published As

Publication number Publication date
JP2000088800A (ja) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3871497B2 (ja) ガスセンサ
KR100319010B1 (ko) 가스센서
EP0903575B1 (en) Nitrogen oxide detector
JP3863974B2 (ja) ガス検出装置
EP0517366B1 (en) Method and apparatus for sensing oxides of Nitrogen
JP2002310987A (ja) ガスセンサ素子
JP2000146905A (ja) 流動する排気ガス成分用センサ及び排気ガス中の還元可能な成分及び酸化可能な成分の割合を測定する方法
JP3993122B2 (ja) ガスセンサ素子及び含水素ガスの測定方法
JP2001141696A (ja) ガス検出装置
JP4148572B2 (ja) ガス検出装置
JPH11237366A (ja) ガスセンサ
JP3973851B2 (ja) ガスセンサ素子
JP4625261B2 (ja) ガスセンサのセンサ素子
JPH11166911A (ja) 空燃比センサ
JPH10325824A (ja) 炭化水素センサ
JP3762082B2 (ja) ガスセンサ
JP4010596B2 (ja) ガスセンサ
JP3469407B2 (ja) ガス成分濃度検知器
JP3836227B2 (ja) ガス検出方法およびガス検出装置
JP3672681B2 (ja) ガスセンサ
JPH10253585A (ja) ガスセンサ
JPH11352096A (ja) ガスセンサ素子
JP3675997B2 (ja) ガス検出装置
GB2288874A (en) Reducing gas analysis apparatus
JP3825129B2 (ja) 炭化水素センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees