JP4103851B2 - 画素回路及、アクティブマトリクス装置及び表示装置 - Google Patents

画素回路及、アクティブマトリクス装置及び表示装置 Download PDF

Info

Publication number
JP4103851B2
JP4103851B2 JP2004164682A JP2004164682A JP4103851B2 JP 4103851 B2 JP4103851 B2 JP 4103851B2 JP 2004164682 A JP2004164682 A JP 2004164682A JP 2004164682 A JP2004164682 A JP 2004164682A JP 4103851 B2 JP4103851 B2 JP 4103851B2
Authority
JP
Japan
Prior art keywords
transistor
potential
drive transistor
gate
storage capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004164682A
Other languages
English (en)
Other versions
JP2005345723A (ja
Inventor
勝秀 内野
淳一 山下
哲郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004164682A priority Critical patent/JP4103851B2/ja
Priority to US11/140,199 priority patent/US7173590B2/en
Priority to KR1020050046906A priority patent/KR101200066B1/ko
Priority to TW094118071A priority patent/TWI295459B/zh
Publication of JP2005345723A publication Critical patent/JP2005345723A/ja
Priority to US11/643,711 priority patent/US8441417B2/en
Priority to US11/702,069 priority patent/US9454928B2/en
Priority to US11/702,165 priority patent/US8823607B2/en
Application granted granted Critical
Publication of JP4103851B2 publication Critical patent/JP4103851B2/ja
Priority to US13/912,822 priority patent/US20130271435A1/en
Priority to US14/994,509 priority patent/US9454929B2/en
Priority to US15/260,878 priority patent/US10002567B2/en
Priority to US15/869,738 priority patent/US10276102B2/en
Priority to US15/879,235 priority patent/US10270532B2/en
Priority to US16/296,757 priority patent/US11183119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B20/36

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

本発明は、画素毎に配した負荷素子を電流駆動する画素回路に関する。又この画素回路がマトリクス状に配列されたマトリクス装置であって、特に各画素回路内に設けた絶縁ゲート型電界効果トランジスタによって負荷素子に流れる電流量が制御される、いわゆるアクティブマトリクス装置に関する。更には、負荷素子として有機ELなど電流値によって輝度が制御される電気光学素子を有するアクティブマトリクス型の表示装置に関する。
画像表示装置、例えば液晶ディスプレイなどでは、多数の液晶画素をマトリクス状に並べ、表示すべき画像情報に応じて画素毎に入射光の透過強度又は反射強度を制御することによって画像を表示する。これは、有機EL素子を画素に用いた有機ELディスプレイなどにおいても同様であるが、液晶画素と異なり有機EL素子は自発光素子である。その為、有機ELディスプレイは液晶ディスプレイに比べて画像の視認性が高く、バックライトが不要であり、応答速度が速いなどの利点を有する。又、各発光素子の輝度レベル(階調)はそれに流れる電流値によって制御可能であり、いわゆる電流制御型であるという点で液晶ディスプレイなどとは大きく異なる。
有機ELディスプレイにおいては、液晶ディスプレイと同様、その駆動方式として単純マトリクス方式とアクティブマトリクス方式とがある。前者は構造が単純であるものの、大型且つ高精細のディスプレイの実現が難しいなどの問題がある為、現在はアクティブマトリクス方式の開発が盛んに行なわれている。この方式は、各画素回路内部の発光素子に流れる電流を、画素回路内部に設けた能動素子(一般には薄膜トランジスタ,TFT)によって制御するものである。
特開2003−255856 特開2003−271095
図8は、一般的な有機EL表示装置の構成を示すブロック図である。この表示装置100は、画素回路(PXLC)101がm×nのマトリクス状に配列された画素アレイ部102、水平セレクタ(HSEL)103、ライトスキャナ(WSCN)104、ドライブスキャナ(DSCN)105、水平セレクタ103により選択され輝度情報に応じた信号が供給される信号線DTL101〜DTL10n、ライトスキャナ104により選択駆動される走査線WSL101〜WSL10m、及びドライブスキャナ105により選択駆動される走査線DSL101〜DSL10mを有する。
図9は、図8に示した画素回路の一構成例を示す回路図である。図示する様に、この画素回路101は、基本的にpチャネル型の薄膜電界効果トランジスタ(以下、TFTと言う)で構成されている。すなわち画素回路101は、ドライブTFT111、スイッチングTFT112、サンプリングTFT115、有機EL素子117、保持容量C111を有する。係る構成を有する画素回路101は、信号線DTL101と走査線WSL101,DSL101との交差部に配されている。信号線DTL101はサンプリングTFT115のドレインに接続し、走査線WSL101はサンプリングTFT115のゲートに接続し、他の走査線DSL101はスイッチングTFT112のゲートに接続している。
ドライブTFT111、スイッチングTFT112及び有機EL素子117は、電源電位Vccと接地電位GNDの間で直列に接続されている。すなわちドライブトランジスタ111のソースが電源電位Vccに接続される一方、有機EL素子(発光素子)117のカソードが接地電位GNDに接続されている。一般に、有機EL素子117は整流性がある為ダイオードの記号で表わしている。一方、サンプリングTFT115及び保持容量C111は、ドライブTFT111のゲートに接続している。ドライブTFT111のゲート・ソース間電圧をVgsで表わしている。
画素回路101の動作であるが、まず走査線WSL101を選択状態(ここでは低レベル)とし、信号線DTL101に信号を印加すると、サンプリングTFT115が導通して信号が保持容量C111に書き込まれる。保持容量C111に書き込まれた信号電位がドライブトランジスタ111のゲート電位となる。続いて、走査線WSL101を非選択状態(ここでは高レベル)とすると、信号線DTL101とドライブTFT111とは電気的に切り離されるが、ドライブTFT111のゲート電位Vgsは保持容量C111によって安定に保持される。続いて他の走査線DSL101を選択状態(ここでは低レベル)にすると、スイッチングTFT112が導通し、電源電位Vccから接地電位GNDに向かって駆動電流がTFT111,TFT112及び発光素子117を流れる。DSL101が非選択状態になるとスイッチングトランジスタ112がオフし、駆動電流は流れなくなる。スイッチングTFT112は発光素子117の発光時間を制御する為に挿入されたものである。
TFT111及び発光素子117に流れる電流は、TFT111のゲート・ソース間電圧Vgsに応じた値となり、発光素子117はその電流値に応じた輝度で発光し続ける。上記の様に、走査線WSL101を選択して信号線DTL101に与えられた信号を画素回路101の内部に伝える動作を、以下「書き込み」と呼ぶ。上述の様に、一度信号の書き込みを行なえば、次に書き換えられるまでの間、発光素子117は一定の輝度で発光を続ける。
上述した様に画素回路101では、ドライブトランジスタであるTFT111のゲート印加電圧を入力信号に応じて変化させることで、EL発光素子117に流れる電流値を制御している。この時、pチャネル型のドライブトランジスタ111のソースは電源電位Vccに接続されており、このTFT111は常に飽和領域で動作している。よって、ドライブトランジスタ111は下記の式(1)に示した値を持つ定電流源となっている。
Ids=(1/2)・μ・(W/L)・Cox・(Vgs−Vth)・・・(1)
ここでIdsは飽和領域で動作するトランジスタのドレイン・ソース間に流れる電流を表わしている。又μは移動度、Wはチャネル幅、Lはチャネル長、Coxはゲート容量、Vthはトランジスタの閾電圧を表わしている。式(1)から明らかな様に、飽和領域ではトランジスタのドレイン電流Idsはゲート・ソース間電圧Vgsによって制御される。図9に示したドライブトランジスタ111は、Vgsが一定に保持される為、ドライブトランジスタ111は定電流源として動作し、発光素子117を一定の輝度で発光させることができる。
図10は、有機EL素子の電流−電圧(I−V)特性の経時変化を示すグラフである。グラフにおいて、実線で示す曲線が初期状態時の特性を示し、破線で示す曲線が経時変化後の特性を示している。一般的に、有機EL素子のI−V特性は、グラフに示す様に時間が経過すると劣化してしまう。これに対して、図9に示した画素回路は、ドライブトランジスタが定電流駆動である為、有機EL素子には定電流Idsが流れ続け、有機EL素子のI−V特性が劣化してもその発光輝度が経時劣化することはない。
図9に示した画素回路は、pチャネル型のTFTにより構成されているが、nチャネル型のTFTにより構成することができれば、TFT作成において従来のアモルファスシリコン(a−Si)プロセスを用いることが可能になる。これにより、TFT基板の低コスト化が可能となり、開発が期待されている。
図11は、図9に示した画素回路のpチャネルTFTをnチャネルTFTに置き換えた構成を示す回路図である。図示する様に、この画素回路101は、nチャネル型のTFT111,112,115、保持容量C111、発光素子である有機EL素子117で構成されている。TFT111はドライブトランジスタ、TFT112はスイッチングトランジスタ、TFT115はサンプリングトランジスタである。又図において、DTL101は信号線を表わし、DSL101及びWSL101は走査線をそれぞれ示している。この画素回路101では、ドライブトランジスタであるTFT111のドレイン側が電源電位Vccに接続され、ソースはEL素子117のアノードに接続されており、ソースフォロワ回路を形成している。
図12は、図11に示した画素回路の動作説明に供するタイミングチャートである。走査線WSL101に選択パルスが印加されると、サンプリングトランジスタ115が導通し、信号線DTL101から信号をサンプリングして保持容量C111に書き込む。これにより、ドライブトランジスタ111のゲート電位がサンプリングされた信号電位に保持される。このサンプリング動作は線順次で行なわれる。すなわち1行目の走査線WSL101に選択パルスが印加された後、続いて2行目の走査線WSL102に選択パルスが印加され、以下1水平期間(1H)毎に1行分の画素が選択されていく。WSL101の選択と同時にDSL101も選択される為、スイッチングトランジスタ112がオンする。これにより、ドライブトランジスタ111及びスイッチングトランジスタ112を介して発光素子に駆動電流が流れる為、発光が行なわれる。1フィールド期間(1f)の途中でDSL101は非選択状態となり、スイッチングトランジスタ112はオフになる。これにより発光は停止する。走査線DSL101は1フィールド期間に占める発光時間(デューティ)を制御するものである。
ここで図13の(A)は、初期状態におけるドライブトランジスタ111とEL素子117の動作点を示すグラフである。図において、横軸はドライブトランジスタ111のドレイン・ソース間電圧Vdsを示し、縦軸はドレイン・ソース間電流Idsを示している。図示する様に、ソース電位はドライブトランジスタ111とEL素子117との動作点で決まり、その電圧値はゲート電圧によって異なる値を持つ。ドライブトランジスタ111は飽和領域で駆動されるので、動作点のソース電圧に対応したVgsに関し、前述の式(1)に規定された電流値の駆動電流Idsを流す。
しかしながら、EL素子のI−V特性は前述した様に経時劣化する。(B)に示す様に、この経時劣化により動作点が変化してしまい、同じゲート電圧を印加してもトランジスタのソース電圧は変化してしまう。これによりドライブトランジスタ111のゲート・ソース間電圧Vgsは変化してしまい、流れる電流値が変動する。同時にEL素子117に流れる電流値も変化する。この様にEL素子117のI−V特性が変化すると、図11に示したソースフォロワ構成の画素回路では、有機EL素子の発光輝度が経時的に変化してしまうという課題がある。
尚、上記課題を回避する為、ドライブトランジスタ111とEL素子117の配置を逆にすることも考えられる。すなわち、ドライブトランジスタ111のソースを接地電位GNDに接続し、ドレインをEL素子117のカソードに接続し、EL素子117のアノードを電源電位Vccに接続する回路構成も考えられるところである。この方式では、図9に示したpチャネルTFT構成の画素回路と同様に、ソースの電位が固定されており、ドライブトランジスタ111は定電流源として駆動し、EL素子のI−V特性の劣化による輝度変化も防止できる。しかしながら、この方式ではドライブトランジスタをEL素子のカソード側に接続する必要があり、このカソード接続は新規にアノード電極及びカソード電極の開発が必要であり、現状の技術では非常に困難であるとされている。以上により、従来の方式では輝度変化のない、nチャネルトランジスタ使用の有機ELディスプレイの実用化は成されていなかった。
アクティブマトリクス型の有機ELディスプレイは、EL素子の特性変動に加え、画素回路を構成するnチャネル型TFTの閾電圧も経時的に変化する。前述の式(1)から明らかな様に、ドライブトランジスタの閾電圧Vthが変動すると、ドレイン電流Idsが変化してしまう。これにより、同じゲート電圧Vgsを与えても、Vthの変動により発光輝度が変化するという課題がある。
上述した従来の技術の課題に鑑み、本発明は発光素子など電流駆動型の負荷素子(例えば有機EL素子等の電気光学素子)のI−V特性が経時変化しても、発光輝度を一定に保持することが可能な画素回路を提供することを一般的な目的とする。又、画素回路を構成するトランジスタの閾電圧が経時変化しても、安定して負荷素子を駆動可能な画素回路を提供することを一般的な目的とする。加えて、負荷素子の特性変動に対する補償機能及びトランジスタの閾電圧変動に対する補償機能を付加した画素回路において、特にこれら補償機能の付加に必要な回路要素の個数を極力少なくした画素回路構成を提供することを特定の目的とするものである。
係る目的を達成する為に以下の手段を講じた。即ち本発明は、第1ないし第4走査線と信号線とが交差する部分に配された画素回路であって、電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、該電気光学素子は、該出力ノードと所定のカソード電位との間に接続し、該保持容量は、該出力ノードと該入力ノードとの間に接続し、該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該電気光学素子を電流駆動し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該電気光学素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする。
好ましくは、前記第1の接地電位は、前記第2の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも低く設定されており、前記カソード電位に該電気光学素子の閾電圧を加えたレベルは、前記第の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも高く設定されている。また、前記第2の接地電位のレベルは、該信号線から供給される入力信号の最低レベルに応じて設定されている。
又本発明は、行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなるアクティブマトリクス装置であって、各画素は、負荷素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、該負荷素子は、該出力ノードと所定のカソード電位との間に接続し、該保持容量は、該出力ノードと該入力ノードとの間に接続し、該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該負荷素子を電流駆動し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該負荷素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする。
更に本発明は、行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなる表示装置であって、各画素は、有機エレクトロルミネッセンス素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、該有機エレクトロルミネッセンス素子は、該出力ノードと所定のカソード電位との間に接続し、該保持容量は、該出力ノードと該入力ノードとの間に接続し、該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該有機エレクトロルミネッセンス素子を電流駆動し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該有機エレクトロルミネッセンス素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持する。
本発明によれば画素回路は、電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとで構成されている。この画素回路は、保持容量のブートストラップ機能を備えており、発光素子など電流駆動型の電気光学素子のI−V特性が経時変化しても、発光輝度を一定に保持することができる。また、第1及び第2検知トランジスタでドライブトランジスタの閾電圧を検出し、その経時変化を回路的に補償することで、安定して電気光学素子を駆動できる。特に本画素回路は、1個の保持容量と5個のトランジスタとで構成されており、回路素子数を可能な限り抑えた合理的構成となっている。構成素子の個数が少ない分、歩留りが向上し低コスト化が図れる。加えて本発明ではスイッチングトランジスタが入力ノードとドライブトランジスタのゲートとの間に接続されている。これによりドライブトランジスタはスイッチングトランジスタを介することなく電源電位に直接接続できるので、余分な電力消費を避けることができる。又、スイッチングトランジスタはドライブトランジスタのゲートに接続されている為、大きな電流供給能力は必要なく、小型化が可能である。
以下図面を参照して本発明の実施の形態を詳細に説明する。説明の都合上、まず負荷素子である発光素子の特性変動補償機能(ブートストラップ機能)を備えた画素回路を説明し、続いてドライブトランジスタの閾電圧変動補償機能を追加した画素回路を説明し、最後にこれらの補償機能を備えつつ回路要素の構成数を抑えた画素回路を説明する。図1は電気光学素子である発光素子の特性変動に対する補償機能であるブートストラップ機能を備えた画素回路を含む表示装置の構成を示すブロック図である。尚、この画素回路構成は、同一出願人の先願である特願2003−146758(2003年5月23日出願)に記載されているものと同一である。
図1に示すように、表示装置100は、画素回路(PXLC)101がマトリクス状に配列された画素アレイ部102、水平セレクタ(HSEL)103、ライトスキャナ(WSCN)104、ドライブスキャナ(DSCN)105、水平セレクタ103により選択され輝度情報に応じた映像信号が供給される信号線DTL101〜DT110n、ライトスキャナ104により選択駆動される走査線WSL101〜WSL10m、およびドライブスキャナ105により選択駆動される走査線DSL101〜DSL10mを有する。なお図1においては、図面の簡単化のために一つの画素回路の具体的な構成を示している。
本画素回路101は、図1に示すように、nチャネルTFT111〜TFT115、キャパシタC111、有機EL素子(OLED:電気光学素子)からなる発光素子117、およびノードND111,ND112を有する。また、図1において、DTL101は信号線を、WSL101は走査線を、DSL101は別の走査線をそれぞれ示している。これらの構成要素のうち、TFT111が駆動用電界効果トランジスタを構成し、サンプリング用TFT115が第1のスイッチを構成し、TFT114が第2のスイッチを構成し、キャパシタC111が保持容量素子を構成している。
画素回路101において、TFT111のソースと接地電位GNDとの間に発光素子(OLED)117が接続されている。具体的には、発光素子117のアノードがTFT111のソースに接続され、カソード側が接地電位GNDに接続されている。発光素子117のアノードとTFT111のソースとの接続点によりノードND111が構成されている。TFT111のソースがTFT114のドレインおよびキャパシタC111の第1電極に接続され、TFT111のゲートがノードND112に接続されている。TFTll4のソースが固定電位(本実施形態では接地電位GND)に接続され、TFT114のゲートが走査線DSL101に接続されている。また、キャパシタC111の第2電極がノードND112に接続されている。信号線DTL101とノードND112とにサンプリング用TFT115のソース・ドレインがそれぞれ接続されている。そして、TFT115のゲートが走査線WSL101に接続されている。
このように、本実施形態に係る画素回路101は、ドライブトランジスタとしてのTFT111のゲート・ソース間にキャパシタC111が接続され、TFT111のソース電位をスイッチトランジスタとしてのTFT114を介して固定電位に接続するよう構成されている。
次に、上記構成の動作を、画素回路の動作を中心に、図2(A)〜(F)および図3(A)〜(F)に関連付けて説明する。なお、図3(A)は画素配列の第1行目の走査線WSL101に印加される走査信号ws〔1〕を、図3(B)は画素配列の第2行目の走査線WSL102に印加される走査信号ws〔2〕を、図3(C)は画素配列の第1行目の走査線DSL101に印加される駆動信号ds〔1〕を、図3(D)は画素配列の第2行目の走査線DSL102に印加される駆動信号ds〔2〕を、図3(E)はTFT111のゲート電位Vg(ノードND112)を、図3(F)はTFT111のソース電位Vs(ノードND111)をそれぞれ示している。
まず、通常のEL発光素子117の発光状態時は、図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にローレベルに設定され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(A)に示すように、TFT115とTFT114がオフした状態に保持される。
次に、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・がローレベルに保持され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にハイレベルに設定される。その結果、画素回路101においては、図2(B)に示すように、TFT115はオフ状態に保持されたままで、TFT114がオンする。このとき、TFT114を介して電流が流れ、図3(F)に示すように、TFT111のソース電位Vsは接地電位GNDまで下降する。そのため、EL発光素子117に印加される電圧も0Vとなり、EL発光素子117は非発光となる。
次に、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・がハイレベルに保持されたまま、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にハイレベルに設定される。その結果、画素回路101においては、図2(C)に示すように、TFT114がオン状態に保持されたままで、TFT115がオンする。これにより、水平セレクタ103により信号線DTL101に伝搬された入力信号(Vin)が保持容量としてのキャパシタC111に書き込まれる。このとき、図3(F)に示すように、ドライブトランジスタとしてのTFT111のソース電位Vsは接地電位レベル(GNDレベル)にあるため、図3(E),(F)に示すように、TFT111のゲート・ソース間の電位差は入力信号の電圧Vinと等しくなる。
その後、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・がハイレベルに保持されたまま、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(D)に示すように、TFT115がオフ状態となり、保持容量としてのキャパシタC111への入力信号の書き込みが終了する。
その後に図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・はローレベルに保持され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(E)に示すように、TFT114がオフ状態となる。TFT114がオフすることで、図3(F)に示すように、ドライブトランジスタとしてのTFT111のソース電位Vsは上昇し、EL発光素子117にも電流が流れる。
TFT111のソース電位Vsは変動するにもかかわらず、TFT111のゲート・ソース間には容量があるために、図3(E),(F)に示すように、ゲート・ソース電位は常にVinにて保たれている。このとき、ドライブトランジスタとしてのTFT111は飽和領域で駆動しているので、このTFT111に流れる電流値IdsはTFT111のゲート・ソース電圧であるVinにて決められる。この電流IdsはEL発光素子117にも同様に流れ、EL発光素子117は発光する。EL発光素子117の等価回路は図2(F)に示すようになっているため、このときノードND111の電位はEL発光素子117に電流Idsが流れるゲート電位まで上昇する。この電位上昇に伴い、キャパシタ111(保持容量)を介してノードND112の電位も同様に上昇する。これにより、前述した通りTFT111のゲート・ソース電位はVinに保たれる。
ここで一般に、EL発光素子は発光時間が長くなるに従い、そのI−V特性は劣化する。そのため、ドライブトランジスタが同じ電流値を流したとしても、EL発光素子に印加される電位は変化し、ノードND111の電位は下降する。しかしながら、本回路ではドライブトランジスタのゲート・ソース間電位が一定に保たれたままノードND111の電位は下降するので、ドライブトランジスタ(TFT111)に流れる電流は変化しない。よって、EL発光素子に流れる電流も変化せず、EL発光素子のI−V特性が劣化しても、入力電圧Vinに相当した電流が常に流れつづける。
以上説明したように、本参考形態によれば、ドライブトランジスタとしてのTFT111のソースが発光素子117のアノードに接続され、ドレインが電源電位Vccに接続され、TFT111のゲート・ソース間にキャパシタC111が接続され、TFT111のソース電位をスイッチトランジスタとしてのTFT114を介して固定電位に接続するよう構成されていることから、次の効果を得ることができる。即ちEL発光素子のI−V特性が経時変化しても、輝度劣化の無いソースフォロワー出力が行える。nチャネルトランジスタのソースフォロワー回路が可能となり、現状のアノード・カソード電極を用いたままで、nチャネルトランジスタをEL発光素子の駆動素子として用いることができる。また、nチャネルのみで画素回路のトランジスタを構成することができ、TFT作成においてa−Siプロセスを用いることができるようになる。これにより、TFT基板の低コスト化が可能となる。
図4は、図1に示したブートストラップ機能を備えた画素回路に更に閾電圧キャンセル機能を追加した画素回路構成を表わしている。尚、この画素回路は同一出願人の先願である特願2003−159646(2003年6月4日出願)に記載されているものと同一である。理解を容易にする為、図1に示した画素回路と対応する部分には対応する参照番号を付してある。図4の画素回路は基本的に、図1の画素回路に閾電圧キャンセル回路を追加したものである。但し、ブートストラップ回路に含まれるスイッチングトランジスタ114のゲートには、走査線DSL101に代えて走査線WSL101を接続し、回路の簡略化を図っている。基本的に、ブートストラップ回路に含まれるスイッチングトランジスタ114は、映像信号のサンプリングに合わせて開閉制御すれば良いので、この様な簡略化は可能である。勿論、スイッチングトランジスタ114のゲートには、図1の例と同様に別途専用の走査線DSL101を接続しても良い。
閾電圧キャンセル回路は、基本的にドライブトランジスタ111、スイッチングトランジスタ112、追加のスイッチングトランジスタ113及び保持容量C111とで構成されている。これらに加え本画素回路は結合容量C112及びスイッチングトランジスタ116を含んでいる。追加されたスイッチングトランジスタ113のソース/ドレインは、ドライブトランジスタ111のゲートとドレインとの間に接続されている。又スイッチングトランジスタ116のドレインはサンプリングトランジスタ115のドレインに接続され、ソースはオフセット電圧Vofsが供給されている。結合容量C112はサンプリングトランジスタ115側のノードND114とドライブトランジスタ側のノードND112との間に介在している。スイッチングトランジスタ113及び116のゲートには閾電圧(Vth)キャンセル用の走査線AZL101が接続されている。
図5は、図4に示した画素回路の動作説明に供するタイミングチャートである。この画素回路は1フィールド(1f)の間で、Vth補正、信号書込、ブートストラップ動作を順に行なう。Vth補正と信号書込は1fの内非発光期間に行なわれ、ブートストラップ動作は発光期間の先頭で行なわれる。まずVth補正期間では、走査線DSL101がハイレベルにある間に走査線AZL101がハイレベルに立ち上がる。これにより、スイッチングトランジスタ112及び113が同時にオンする為、電流が流れドライブトランジスタ111のゲートに連なるノードND112の電位が上昇する。その後DSL101がローレベルに立ち下がり非発光状態となる。これによりノードND112に蓄積された電荷がスイッチングトランジスタ113を介して放電され、ND112の電位は徐々に低下する。そして、ノードND112とノードND111の電位差がVthとなったところで、ドライブトランジスタ111に電流は流れなくなる。図から明らかな様に、ND112とND111の電位差はVgsに相当し、式(1)からVgs=Vthとなったところで、Idsは0になる。この結果、ND112とND111の電位差Vthが保持容量C111に保持されることになる。
続いて走査線WSL101が1Hの期間ハイレベルとなってサンプリングトランジスタ115が導通し、信号書込が行なわれる。すなわちDTL101に供給された映像信号Vsigはサンプリングトランジスタ115によってサンプリングされ、結合容量C112を介して保持容量C111に書き込まれる。この結果、保持容量C111の保持電位Vinは、先に書き込まれたVthとVsigの合計になる。但し、Vsigの入力ゲインは100%ではなく、ある程度の損失がある。
この後DSL101がハイレベルに立ち上がり発光を開始するとともにブートストラップ動作が行なわれる。これにより、ドライブトランジスタ111のゲートに印加される信号電位Vinは発光素子117のI−D特性に応じてΔVだけ上昇する。この様にして、図4の画素回路は、ドライブトランジスタ111のゲートに印加する正味の信号成分に加え、Vth及びΔVを上乗せしている。Vth及びΔVが変化しても常にその影響をキャンセルできるので、発光素子117を安定に駆動可能である。
図6は本発明に係る画素回路の実施形態を示す回路図である。図示する様に、本画素回路101は走査線と信号線とが交差する部分に配されている。本画素回路はアクティブマトリクス形の表示装置に適用できる。信号線はDTL101の1本であるのに対し、走査線はWSL101、DSL101、AZL101a、AZL101bの計4本が平行に配されている。画素回路101は、基本的に電気光学素子117、1個の保持容量C111、サンプリングトランジスタ115、ドライブトランジスタ111、スイッチングトランジスタ112、第1検知トランジスタ114、第2検知トランジスタ113からなる5個のNチャネル薄膜トランジスタとを備えている。先に説明した参考例に係る画素回路に比べ、容量素子が1個少なく、トランジスタ素子も1個少ない。1個の容量素子と5個のトランジスタで構成される画素回路を実現しており、従来に比べ歩留りが向上するとともに低コスト化が図れる。
ドライブトランジスタ111は、そのゲートが入力ノードND112につながり、そのソースが出力ノードND111につながり、そのドレインが所定の電源電位Vccに接続している。電気光学素子117はダイオード型の有機EL素子からなり、アノードとカソードを備えている。有機EL素子117は、そのアノードが出力ノードND111に接続し、カソードが所定のカソード電位Vcathに接続している。有機EL素子117は抵抗成分と並行に容量成分を含んでおり、これをCpで表わしてある。保持容量C111は出力ノードND111と入力ノードND112との間に接続している。出力ノードND111と入力ノードND112の電位差が、ちょうどドライブトランジスタ111のゲート電位Vgsとなっている。サンプリングトランジスタ115は、そのソースが信号線DTL101に接続し、ドレインが入力ノードND112に接続し、ゲートが走査線WSL101に接続している。
第1検知トランジスタ114は、そのソースが第1接地電位Vss1に接続し、ドレインが出力ノードND111に接続し、ゲートが走査線AZL101aに接続している。第2検知トランジスタ113は、ソースが第2接地電位Vss2に接続し、ドレインが入力ノードND112に接続し、ゲートが走査線AZL101bに接続している。スイッチングトランジスタ112は、ソース/ドレインが入力ノードND112とドライブトランジスタ111のゲートとの間に接続されている。スイッチングトランジスタ112のゲートは走査線DSL101に接続されている。図4に示した参考例ではスイッチングトランジスタが電源電位Vccとドライブトランジスタとの間に接続されていたのに対し、本実施形態ではスイッチングトランジスタ112が入力ノードとドライブトランジスタのゲートとの間に接続されている。本実施形態はドライブトランジスタ111を電源電位Vccに直接接続できるので、余分な電力消費を避けることができる。又、スイッチングトランジスタ112はドライブトランジスタ111のゲートに接続されている為、大きな電流供給能力は必要なく、小型化が可能である。
サンプリングトランジスタ115は走査線WSL101によって選択された時動作し、信号線DTL101から入力信号Vsigをサンプリングして保持容量C111に保持する。スイッチングトランジスタ112は走査線DSL101によって選択された時導通して保持容量C111をドライブトランジスタ111のゲートに接続する。ドライブトランジスタ111は保持容量C111に保持された信号電位Vinに応じて電気光学素子117を電流駆動する。第1検知トランジスタ114及び第2検知トランジスタ113はそれぞれ別の走査線AZL101a,AZL101bによって異なるタイミングで選択された時動作し、電気光学素子117の電流駆動に先立ってドライブトランジスタ111の閾電圧Vthを検知し、あらかじめその影響をキャンセルする為に検知した電位を保持容量C111に保持する。これにより、ドライブトランジスタ111は閾電圧Vthの変動があっても常にキャンセルされる為、その変動の影響を受けることなく一定のドレイン電流Idsを有機EL素子117に供給することができる。
本画素回路101を正常に動作させる為、電位関係を正しく設定する必要がある。この為、第1接地電位Vss1は、第2接地電位Vss2からドライブトランジスタの閾電圧Vthを差し引いたレベルよりも小さく設定されている。式で表わすと、Vss1<Vss2−Vthである。又、カソード電位Vcathに有機EL素子117の閾電圧VthELを加えたレベルは、第接地電位Vssからドライブトランジスタの閾電圧Vthを差し引いたレベルよりも高く設定されている。式で表わすと、Vcath+VthEL>Vss−Vthである。これは、有機EL素子117が逆バイアス状態になる条件を表わしている。好ましくは、第2接地電位Vss2のレベルは信号線DTL101から供給される入力信号Vsigの最低レベルの近傍に設定されている。ここで、保持容量C111に保持される信号電位Vinはその容量をCsとすると、以下の式で表わされる。
Vin=(Vsig−Vss2)×(Cp/(Cs+Cp))
ここで有機EL素子117の容量成分Cpは保持容量の値Csよりもはるかに大きく、VinはほぼVsig−Vss2に等しい。ここで第2接地電位Vss2のレベルは入力信号Vsigの最低レベルの近傍に設定されているので、保持容量C111に保持される信号電位VinはほぼVsigの正味の値に等しくなる。
図7を参照して、図6に示した画素回路の動作を詳細に説明する。このタイミングチャートは4本の走査線WSL101,DSL101,AZL101a,AZL101bのレベル変化を1フィールド(1F)に亘って表わしている。又、ドライブトランジスタ111の入力ノードND112及び出力ノードND111の電位変化を1フィールドに亘って表わしている。1フィールド(1F)はタイミングT1で始まりタイミングT6で終わる。
当該フィールドに入る前のタイミングT0では、TSL101がハイレベルにある一方、残りの走査線WSL101,AZL101a,AZL101bがローレベルである。従って、スイッチングトランジスタ112がオン状態であり、残りのサンプリングトランジスタ115、第1検知トランジスタ114及び第2検知トランジスタ113はオフとなっている。この状態でドライブトランジスタ111は、導通状態にあるスイッチングトランジスタ112を介して保持容量C111に保持されている信号電位Vinがドライブトランジスタ111のゲートに印加される。従ってドライブトランジスタ111は信号電位Vinに応じたドレイン電流Idsを有機EL素子117に供給する。この結果、有機EL素子117は入力信号Vsigに応じた輝度で発光する。
続いてタイミングT1になると、走査線AZL101a及びAZL101bが同時にローレベルからハイレベルに切り替わる。これにより第1検知トランジスタ114及び第2検知トランジスタ113が同時にオンする。第2検知トランジスタ113がオンすると入力ノードND112は急激に第2接地電位Vss2に落ちる。又第1検知トランジスタ114がオンすると出力ノードND111は急激に第1接地電位Vss1まで落ちる。この結果、ドライブトランジスタ111のゲート電位VgsはVss2−Vss1となるが、この値はドライブトランジスタ111の閾電圧Vthよりも大きいので、ドライブトランジスタ111は引続きオン状態を保ち、ドレイン電流Idsを流し続ける。一方、出力ノードND111がVss1まで下がった結果、有機EL素子117は逆バイアス状態となり電流が流れなくなるので、非発光状態になる。ドライブトランジスタ111のドレイン電流Idsはオン状態にある検知トランジスタ114を通って接地電位Vss1に流れ込むことになる。
タイミングT2になると走査線AZL101aがハイレベルからローレベルに戻り、第1検知トランジスタ114はオフになる。この結果、ドライブトランジスタ111の電流路が遮断されるので、出力ノードND111は徐々に上昇し始める。そして入力ノードND112と出力ノードND111との間の電位差がちょうどドライブトランジスタ111の閾電圧Vthに至った時、電流が0になり、VthがノードND112とND111との間に接続された保持容量C111に保持される。この様にして、一対の検知トランジスタ113,114によりドライブトランジスタ111の閾電圧Vthが検知され、これが保持容量C111に保持される。この動作を行なうタイミングT2からT3までの間をVth補正期間で表わしてある。尚、タイミングT3は電流が0になった後、走査線DSL101及びAZL101bをハイレベルからローレベルに切り替えるタイミングを表わしている。この結果、スイッチングトランジスタDSL101が一旦オフになるとともに、第2検知トランジスタ113もオフになる。従って入力ノードND112はドライブトランジスタ111のゲートから切り離されるとともに第2接地電位Vss2からも切り離され、サンプリング可能な状態となる。
タイミングT4で走査線WSL101がハイレベルに立ち上がり、サンプリングトランジスタWSL101がオンする。これにより、信号線DTL101から供給された入力信号Vsigがサンプリングされ、ほぼその正味に等しい入力電位Vinが保持容量C111に書き込まれる。この入力電位Vinは先に保持された閾電圧Vthに足し込まれる形となる。
この様にして入力信号Vsigのサンプリングが終わるとタイミングT5で走査線DSL101が再びハイレベルに立ち上がり、スイッチングトランジスタ112がオンとなり発光を開始する。すなわち、保持容量C111に保持された入力電位Vinがスイッチングトランジスタ112を介してドライブトランジスタ111のゲートに印加される。ドライブトランジスタ111はVinに応じてドレイン電流Idsを有機EL素子117に流し、発光が始まる。有機EL素子117に電流が流れ始めると電圧降下が生じ、出力ノードND111はそのレベルが上昇し始める。この時同時に入力ノードND112も上昇するので、保持容量C111に保持された電位Vin+Vthは一定に保たれたままである。この様なブートストラップ動作により、有機EL素子117の動作点の変動により出力ノードND111のレベルが変動しても、ドライブトランジスタ111は常に一定のドレイン電流Idsを供給することができる。最後にタイミングT6に至ると再び走査線AZL101a及びAZL101bが立ち上がり、次のフィールドにおけるVth検知動作が始まる。
画素回路の参考例を示すブロック図である。 図1に示した画素回路の動作説明に供する模式図である。 図1に示した画素回路の動作説明に供するタイミングチャートである。 画素回路の他の参考例を示す回路図である。 図4に示した画素回路の動作説明に供するタイミングチャートである。 本発明にかかる画素回路の構成を示す回路図である。 図6に示した画素回路の動作説明に供するタイミングチャートである。 従来の画素回路の一例を示すブロック図である。 従来の画素回路の一例を示す回路図である。 EL素子の特性の経時変化を示すグラフである。 従来の画素回路の他の例を示す回路図である。 図11に示した画素回路の動作説明に供するタイミングチャートである。 ドライブトランジスタとEL素子の動作点を示すグラフである。
符号の説明
101・・・画素回路、111・・・ドライブトランジスタ、112・・・スイッチングトランジスタ、113・・・第2検知トランジスタ、114・・・第1検知スイッチングトランジスタ、115・・・サンプリングトランジスタ、117・・・電気光学素子、C111・・・保持容量

Claims (5)

  1. 第1ないし第4走査線と信号線とが交差する部分に配された画素回路であって、
    電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
    該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、
    該電気光学素子は、該出力ノードと所定のカソード電位との間に接続し、
    該保持容量は、該出力ノードと該入力ノードとの間に接続し、
    該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、
    該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、
    該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、
    該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、
    前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
    前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、
    前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該電気光学素子を電流駆動し、
    前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該電気光学素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする画素回路。
  2. 前記第1の接地電位は、前記第2の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも低く設定されており、
    前記カソード電位に該電気光学素子の閾電圧を加えたレベルは、前記第の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも高く設定されていることを特徴とする請求項1記載の画素回路。
  3. 前記第2の接地電位のレベルは、該信号線から供給される入力信号の最低レベルに応じて設定されていることを特徴とする請求項2記載の画素回路。
  4. 行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなるアクティブマトリクス装置であって、
    各画素は、負荷素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
    該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、
    該負荷素子は、該出力ノードと所定のカソード電位との間に接続し、
    該保持容量は、該出力ノードと該入力ノードとの間に接続し、
    該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、
    該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、
    該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、
    該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、
    前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
    前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、
    前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該負荷素子を電流駆動し、
    前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該負荷素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とするアクティブマトリクス装置。
  5. 行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなる表示装置であって、
    各画素は、有機エレクトロルミネッセンス素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
    該ドライブトランジスタは、そのゲートが入力ノードにつながり、そのソースが出力ノードにつながり、そのドレインが所定の電源電位に接続し、
    該有機エレクトロルミネッセンス素子は、該出力ノードと所定のカソード電位との間に接続し、
    該保持容量は、該出力ノードと該入力ノードとの間に接続し、
    該サンプリングトランジスタは、該入力ノードと該信号線との間に接続し、
    該第1検知トランジスタは、該出力ノードと第1の接地電位との間に接続し、
    該第2検知ランジスタは、該入力ノードと第2の接地電位との間に接続し、
    該スイッチングトランジスタは、該入力ノードと該ドライブトランジスタのゲートとの間に介在しており、
    前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
    前記スイッチングトランジスタは第2走査線によって選択された時導通して該保持容量を該ドライブトランジスタのゲートに接続し、
    前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該有機エレクトロルミネッセンス素子を電流駆動し、
    前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該有機エレクトロルミネッセンス素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする表示装置。
JP2004164682A 2004-06-02 2004-06-02 画素回路及、アクティブマトリクス装置及び表示装置 Expired - Fee Related JP4103851B2 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2004164682A JP4103851B2 (ja) 2004-06-02 2004-06-02 画素回路及、アクティブマトリクス装置及び表示装置
US11/140,199 US7173590B2 (en) 2004-06-02 2005-05-31 Pixel circuit, active matrix apparatus and display apparatus
KR1020050046906A KR101200066B1 (ko) 2004-06-02 2005-06-01 화소회로, 액티브 매트릭스 장치 및 표시장치
TW094118071A TWI295459B (en) 2004-06-02 2005-06-01 Pixel circuit, active matrix apparatus and display apparatus
US11/643,711 US8441417B2 (en) 2004-06-02 2006-12-22 Pixel circuit, active matrix apparatus and display apparatus
US11/702,165 US8823607B2 (en) 2004-06-02 2007-02-05 Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source and gate of drive transistor
US11/702,069 US9454928B2 (en) 2004-06-02 2007-02-05 Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source, and gate of drive transistor
US13/912,822 US20130271435A1 (en) 2004-06-02 2013-06-07 Pixel circuit, active matrix apparatus and display apparatus
US14/994,509 US9454929B2 (en) 2004-06-02 2016-01-13 Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source, and gate of drive transistor
US15/260,878 US10002567B2 (en) 2004-06-02 2016-09-09 Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to gate and other terminal of drive transistor
US15/869,738 US10276102B2 (en) 2004-06-02 2018-01-12 Pixel circuit, active matrix apparatus and display apparatus
US15/879,235 US10270532B2 (en) 2004-06-02 2018-01-24 Optical transmission module
US16/296,757 US11183119B2 (en) 2004-06-02 2019-03-08 Display apparatus including pixel circuit with transistors connected to different control lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164682A JP4103851B2 (ja) 2004-06-02 2004-06-02 画素回路及、アクティブマトリクス装置及び表示装置

Publications (2)

Publication Number Publication Date
JP2005345723A JP2005345723A (ja) 2005-12-15
JP4103851B2 true JP4103851B2 (ja) 2008-06-18

Family

ID=35498172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164682A Expired - Fee Related JP4103851B2 (ja) 2004-06-02 2004-06-02 画素回路及、アクティブマトリクス装置及び表示装置

Country Status (1)

Country Link
JP (1) JP4103851B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516652B2 (en) 2009-03-31 2013-08-27 Dyson Technology Limited Cleaning appliance
US8646148B2 (en) 2009-03-31 2014-02-11 Dyson Technology Limited Cleaning appliance
US8695155B2 (en) 2009-03-31 2014-04-15 Dyson Technology Limited Cleaning appliance
US8707507B2 (en) 2009-03-31 2014-04-29 Dyson Technology Limited Cleaning appliance
US8707508B2 (en) 2009-03-31 2014-04-29 Dyson Technology Limited Cleaning appliance
JP7174507B2 (ja) 2017-06-14 2022-11-17 東芝ライフスタイル株式会社 電気掃除機
US11922872B2 (en) 2019-05-08 2024-03-05 Samsung Display Co., Ltd. Pixels, display device comprising pixels, and driving method therefor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176299B (zh) 2005-12-02 2013-07-17 株式会社半导体能源研究所 发光器件的驱动方法
EP1793366A3 (en) 2005-12-02 2009-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
JP5508664B2 (ja) * 2006-04-05 2014-06-04 株式会社半導体エネルギー研究所 半導体装置、表示装置及び電子機器
TWI603307B (zh) * 2006-04-05 2017-10-21 半導體能源研究所股份有限公司 半導體裝置,顯示裝置,和電子裝置
JP4240059B2 (ja) * 2006-05-22 2009-03-18 ソニー株式会社 表示装置及びその駆動方法
JP4203770B2 (ja) 2006-05-29 2009-01-07 ソニー株式会社 画像表示装置
JP4240068B2 (ja) * 2006-06-30 2009-03-18 ソニー株式会社 表示装置及びその駆動方法
JP5092304B2 (ja) 2006-07-31 2012-12-05 ソニー株式会社 表示装置および画素回路のレイアウト方法
JP5055879B2 (ja) 2006-08-02 2012-10-24 ソニー株式会社 表示装置および表示装置の駆動方法
KR100805597B1 (ko) * 2006-08-30 2008-02-20 삼성에스디아이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치 및 그의구동방법
JP2008191296A (ja) 2007-02-02 2008-08-21 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP4245057B2 (ja) * 2007-02-21 2009-03-25 ソニー株式会社 表示装置及びその駆動方法と電子機器
JP2008226491A (ja) * 2007-03-08 2008-09-25 Sony Corp 有機エレクトロルミネッセンス表示装置
JP4544355B2 (ja) * 2008-08-04 2010-09-15 ソニー株式会社 画素回路及びその駆動方法と表示装置及びその駆動方法
JP5027755B2 (ja) * 2008-08-04 2012-09-19 ソニー株式会社 表示装置及びその駆動方法
JP5374976B2 (ja) * 2008-09-04 2013-12-25 セイコーエプソン株式会社 画素回路の駆動方法、発光装置および電子機器
JP2010145578A (ja) * 2008-12-17 2010-07-01 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP5617962B2 (ja) * 2013-06-13 2014-11-05 ソニー株式会社 表示装置及び電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516652B2 (en) 2009-03-31 2013-08-27 Dyson Technology Limited Cleaning appliance
US8646148B2 (en) 2009-03-31 2014-02-11 Dyson Technology Limited Cleaning appliance
US8695155B2 (en) 2009-03-31 2014-04-15 Dyson Technology Limited Cleaning appliance
US8707507B2 (en) 2009-03-31 2014-04-29 Dyson Technology Limited Cleaning appliance
US8707508B2 (en) 2009-03-31 2014-04-29 Dyson Technology Limited Cleaning appliance
JP7174507B2 (ja) 2017-06-14 2022-11-17 東芝ライフスタイル株式会社 電気掃除機
US11922872B2 (en) 2019-05-08 2024-03-05 Samsung Display Co., Ltd. Pixels, display device comprising pixels, and driving method therefor

Also Published As

Publication number Publication date
JP2005345723A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4103850B2 (ja) 画素回路及、アクティブマトリクス装置及び表示装置
US11183119B2 (en) Display apparatus including pixel circuit with transistors connected to different control lines
JP4103851B2 (ja) 画素回路及、アクティブマトリクス装置及び表示装置
JP4062179B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP5151172B2 (ja) 画素回路および表示装置
JP2006215275A (ja) 表示装置
JP2006227237A (ja) 表示装置、表示方法
JP4645881B2 (ja) 画素回路及、アクティブマトリクス装置及び表示装置
JP2006227238A (ja) 表示装置、表示方法
JP2006243526A (ja) 表示装置、画素駆動方法
JP4826870B2 (ja) 画素回路及びその駆動方法とアクティブマトリクス装置並びに表示装置
JP2008175945A (ja) 画素回路および表示装置
JP2006227239A (ja) 表示装置、表示方法
JP2006243525A (ja) 表示装置
JP5011863B2 (ja) 表示装置
JP4547900B2 (ja) 画素回路及びその駆動方法とアクティブマトリクス装置並びに表示装置
JP2008250348A (ja) 画素回路及びその駆動方法
JP2008146090A (ja) 画素回路及びその駆動方法
JP2008146091A (ja) 画素回路及びその駆動方法
JP2008026514A (ja) 表示装置
JP2008065199A (ja) 表示装置及びその製造方法
JP4639730B2 (ja) 画素回路、表示装置、および画素回路の駆動方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R151 Written notification of patent or utility model registration

Ref document number: 4103851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees