JP4098208B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4098208B2
JP4098208B2 JP2003343212A JP2003343212A JP4098208B2 JP 4098208 B2 JP4098208 B2 JP 4098208B2 JP 2003343212 A JP2003343212 A JP 2003343212A JP 2003343212 A JP2003343212 A JP 2003343212A JP 4098208 B2 JP4098208 B2 JP 4098208B2
Authority
JP
Japan
Prior art keywords
oxide film
mis transistor
gate
film
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003343212A
Other languages
English (en)
Other versions
JP2004104141A (ja
Inventor
誠一 森
雅伸 斎藤
範久 新井
洋一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003343212A priority Critical patent/JP4098208B2/ja
Publication of JP2004104141A publication Critical patent/JP2004104141A/ja
Application granted granted Critical
Publication of JP4098208B2 publication Critical patent/JP4098208B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

この発明は、ゲート絶縁膜厚の異なる二種のMISトランジスタ回路を含む半導体装置の製造方法に係り、特に浮遊ゲートとこれに積層された制御ゲートを持つ不揮発性半導体メモリセルアレイと共にゲート絶縁膜厚の異なる二種のMISトランジスタ回路を集積形成する半導体装置に適用して有用な製造方法に関する。
従来より、不揮発性半導体メモリセルアレイと共に、ロジック回路を混載した半導体装置が知られている。この種の半導体装置では、メモリセルアレイの周辺回路として、メモリセル駆動に必要とされる高電圧を扱う駆動回路等を構成するMISトランジスタ回路(以下、高耐圧回路という)と、低電圧で動作するロジック回路等を構成するMISトランジスタ回路(以下、低耐圧回路という)の二種のMISトランジスタ回路が用いられる。これら二種のMISトランジスタ回路はゲート絶縁膜厚が異なり、またこれらは不揮発性メモリセルのゲート構造とも異なるから、半導体装置の製造工程は複雑になる。
従来のこの種の半導体装置の製造工程を簡単に説明すると、次の通りである。まず、半導体基板の高耐圧回路部と低耐圧回路部にそれぞれ、ウェル形成とチャネル制御のイオン注入を行う。次に、不揮発性メモリセルのためのトンネル酸化膜を形成し、その上に浮遊ゲート電極材料膜を堆積してメモリセルアレイにおけるロウ方向の分離を行うためのスリット加工を行い、更にその上にゲート電極上絶縁膜を堆積する。これらの積層膜をメモリセルアレイ領域に残してエッチング除去した後、高耐圧回路用の第1のゲート酸化膜を形成する。このとき第1のゲート酸化膜は、高耐圧回路に必要とされる膜厚より僅かに薄く形成される。そして低耐圧回路部についてこの第1のゲート酸化膜をエッチング除去し、改めて低耐圧回路用の薄い第2のゲート酸化膜を形成する。第2のゲート酸化膜の熱酸化工程で第1のゲート酸化膜の積み増しが生じて、第1のゲート酸化膜は必要な厚みになる。
その後、ゲート電極材料膜を堆積して、不揮発性メモリセルアレイ領域での制御ゲート、高耐圧回路部及び低耐圧回路部でのゲート電極をそれぞれパターン形成し、その後ソース、ドレイン拡散層を形成する。
この様な従来の製造工程には、次のような問題があった。即ち、低耐圧回路部に着目すると、ウェル形成及びチャネルイオン注入を行った後に、高耐圧回路部のゲート酸化膜形成と低耐圧回路部のゲート酸化膜形成という、2回の熱酸化工程と酸化膜除去工程を経る。これらの工程は、MOSトランジスタのバルク領域の不純物プロファイルの変化をもたらす。その影響は特に、低電圧で動作して高速性能が要求される低耐圧回路部で大きく、チャネル領域の精密な不純物プロファイル制御ができず、所望の素子特性が得られなかったり、或いは短チャネル効果等が生じたりする。
更にメモリセルアレイ領域を考慮に入れると、メモリセルアレイ領域ではトンネル酸化膜や浮遊ゲートと制御ゲート間のインター絶縁膜形成のための高温熱酸化工程が行われるから、メモリセルアレイの高温熱工程前にウェル形成及びチャネルイオン注入がなされた高耐圧回路部及び低耐圧回路部が受ける高温熱工程の影響は更に大きくなる。
また、メモリセルアレイ領域で浮遊ゲートとなる導電層とその上のインター絶縁膜となる絶縁膜形成を先に行い、その後高耐圧回路及び低耐圧回路のチャネルイオン注入を行うようにすると、メモリセルのインター絶縁膜上でのリソグラフィ工程が多くなり、メモリセルの信頼性や歩留まりの低下をもたらす。
この発明は、上記事情を考慮してなされたもので、工程数を削減しながら、ゲート絶縁膜厚の異なる二種のMISトランジスタ回路でそれぞれ所望の特性を発揮させることを可能とした半導体装置の製造方法を提供することを目的としている。
この発明はまた、工程数を削減しながら、不揮発性半導体メモリセルアレイと共にゲート絶縁膜厚の異なる二種のMISトランジスタ回路でそれぞれ所望の特性を発揮させることを可能とした半導体装置の製造方法を提供することを目的としている。
この発明は、浮遊ゲートとこれに絶縁膜を介して積層された制御ゲートを持つ不揮発性半導体メモリセルを配列したメモリセルアレイと、第1のMISトランジスタ回路、及びこの第1のMISトランジスタ回路よりゲート絶縁膜厚が薄い第2のMISトランジスタ回路とを集積形成する半導体装置の製造方法において、半導体基板に犠牲酸化膜を形成し、第1のMISトランジスタ回路の形成領域に選択的にウェル形成とチャネル制御のための不純物イオン注入を行う第1のイオン注入工程と、少なくともメモリセルアレイの形成領域で前記犠牲酸化膜を除去した後、前記半導体基板にトンネル酸化膜を形成し、このトンネル酸化膜上に浮遊ゲート電極材料膜とゲート電極上絶縁膜を積層形成する工程と、前記ゲート電極上絶縁膜と浮遊ゲート電極材料膜及びトンネル酸化膜をメモリセルアレイの形成領域に選択的に残して前記第1、第2のMISトランジスタ回路の形成領域では前記半導体基板の表面を露出させた後、前記半導体基板に第1のゲート酸化膜を形成する工程と、前記第1のゲート酸化膜を通して前記半導体基板の第2のMISトランジスタ回路の形成領域に選択的にウェル形成とチャネル制御のための不純物イオン注入を行う第2のイオン注入工程と、前記第1のゲート酸化膜のうち第2のMISトランジスタ回路の形成領域にある部分を選択的に除去した後、前記半導体基板の第2のMISトランジスタ回路の形成領域に第1のゲート酸化膜より薄い第2のゲート酸化膜を形成する工程と、ゲート電極材料膜を堆積してパターニングし、メモリセルアレイの形成領域と第1、第2のMISトランジスタ回路の形成領域にそれぞれ不揮発性半導体メモリセル及びMISトランジスタを形成する工程とを有することを特徴とする。
この発明において好ましくは、第2のイオン注入工程は、高加速イオン注入装置を用いて加速電圧を順次変化させることにより、熱拡散を行うことなくウェル形成とチャネル制御のイオン注入を一連の工程として行うものとする。
発明によると、不揮発性半導体メモリセルアレイと共に高耐圧回路及び低耐圧回路を集積形成する場合に、低耐圧回路のイオン注入工程を、メモリセルアレイ側で浮遊ゲートとなる導電層を形成した後に行っている。従って、低耐圧回路側の不純物プロファイルは、不揮発性メモリセルの形成工程での高温熱工程の影響も受けない。この結果、メモリセルアレイ側の浮遊ゲート構造を形成する前に高耐圧回路及び低耐圧回路のイオン注入を行う従来方式に比べて、低耐圧回路側の不純物プロファイル変動が少なく、高性能のロジック回路等の低耐圧回路を作ることができる。
また発明において、低耐圧回路のイオン注入工程において、高加速イオン注入装置を用いて1回のレジストパターン形成で同時にチャネル制御とウェル形成のためのイオン注入を行うことにより、リソグラフィ工程数を削減しながら、更に従来のようなウェル形成のための熱拡散工程を省くことができ、既に形成されている素子の不純物再拡散や特性劣化を防止することができる。特に発明においては、既に形成されている不揮発性メモリセルアレイ部の特性劣化、とりわけ絶縁膜の信頼性低下が抑えられて、高性能のロジック混載不揮発性メモリを得ることが可能となる。
更に発明では、高耐圧回路側のイオン注入は犠牲絶縁膜(酸化膜)を通して行っており、この犠牲絶縁膜を除去した後に第1のゲート絶縁膜(酸化膜)を形成している。この第1のゲート絶縁膜は、後の低耐圧回路側のゲート絶縁膜形成工程で膜厚が増して所望の膜厚になるが、無欠陥のまま維持される。また低耐圧回路側のイオン注入は、高耐圧回路用の第1のゲート絶縁膜と同時に形成された絶縁膜を犠牲絶縁膜として、これを通して行い、その犠牲絶縁膜(第1のゲート絶縁膜)を除去した後に第2のゲート絶縁膜(酸化膜)を形成している。従って、工程数の削減を図りつつ、高耐圧回路,低耐圧回路側共に、最終的なゲート絶縁膜はイオンに曝されることはなく、損傷のないゲート絶縁膜となり、素子の信頼性を優れたものとすることができる。
この発明によれば、高耐圧回路側のイオン注入とゲート絶縁膜形成を行った後に、低耐圧回路側のイオン注入とゲート絶縁膜形成を行うことにより、低耐圧回路側ではイオン注入後の酸化及び酸化膜除去の工程が少なくなり、不純物プロファイル変動による特性劣化が防止される。
またこの発明によると、不揮発性半導体メモリセルアレイと共に高耐圧回路及び低耐圧回路を集積形成する場合に、低耐圧回路のイオン注入工程を、メモリセルアレイ側にメモリセル要部を形成した後に行うことにより、低耐圧回路側のチャネルやウェルの不純物プロファイルが不揮発性メモリセルの形成工程の高温熱工程の影響も受けることがなく、メモリセル要部形成前に高耐圧回路及び低耐圧回路のイオン注入を行う方式に比べて、低耐圧回路側の不純物プロファイル変動が少なく、高性能のロジック混載不揮発性半導体メモリを得ることができる。
以下、図面を参照して、この発明の実施例を説明する。図1〜図11は、この発明をロジック混載不揮発性半導体メモリに適用した実施例の製造工程を示す。各図の(a)、(b)及び(c)はそれぞれ同じ工程におけるメモリセルアレイ部、高耐圧回路部(即ち、厚いゲート酸化膜を用いたMOSトランジスタにより構成されるメモリセル駆動回路としての第1のMISトランジスタ回路部)、及び低耐圧回路部(即ち、薄いゲート酸化膜を用いたMOSトランジスタにより構成されるロジック回路としての第2のMISトランジスタ回路部)の断面図である。この実施例の場合、高耐圧回路、低耐圧回路共に、CMOS回路である。
図1に示すように、p型シリコン基板1にバッファ用の犠牲酸化膜2aを100nm程度形成した状態で、高耐圧回路部のPMOSトランジスタ形成領域及びNMOSトランジスタ形成領域にそれぞれ、n型ウェル3及びp型ウェル4を順次形成する。具体的には例えば、まずn型ウェル形成領域に開口を持つレジストパターンを形成し、リンを加速電圧150keV前後で1E13/cm2 のオーダーでイオン注入した後、1200℃前後の温度で6時間程度の熱拡散を行ってn型ウェル3を形成する。次いでp型ウェル形成領域に開口を持つレジストパターンを形成し、ボロンを加速電圧100keV前後で1E13/cm2のオーダーでイオン注入した後、1200℃前後の温度で3時間程度の熱拡散を行い、p型ウェル4を形成する。これにより、n型ウェル3は5μm前後の深さとなり、p型ウェル4は2.5μm前後の深さとなる。
なお、メモリセルの動作や回路設計によっては、図示のようにp型ウェル4をn型ウェル2の中に配置するとは限らない。例えば、p型ウェル4をn型ウェル2の外に形成したり、或いはp型ウェル4を形成せず、NMOSトランジスタをp型基板1に形成する場合もある。
この後、図2に示すように、各素子領域を区画する素子分離絶縁膜5を形成する。図では、LOCOS工程による素子分離絶縁膜5を示しているが、STI(Shallow Trench Isolation)等の埋め込み絶縁膜を用いても良い。通常この素子分離工程中に犠牲酸化膜2aは除去されるが、素子分離絶縁膜形成工程で基板表面には比較的厚い酸化膜(図示せず)が形成される。そこでこの酸化膜をウェットエッチングにより除去した後、改めて犠牲酸化膜2bを20nm程度形成する。
次に、図3に示すように、高耐圧回路部にチャネル制御のイオン注入を行う。このイオン注入工程を具体的に説明すれば、まず高耐圧回路部のNMOSトランジスタ形成領域に開口を持つレジストパターンを形成して、60keV程度の加速電圧でボロンを適正量イオン注入する。次いで、PMOSトランジスタ形成領域に開口を持つレジストパターンを形成して、短チャネル効果抑制用のリンイオン注入を300keV程度の加速電圧で行い、更にしきい値制御のためのボロンイオン注入を20keV程度の加速電圧で行う。
次に、メモリセルアレイ領域に開口を持つレジストパターンを形成して、メモリセルアレイ領域の犠牲酸化膜2bをウェットエッチングにより除去した後、図4に示すようにメモリセルアレイ領域に1000℃程度の熱酸化によりトンネル酸化膜6を形成する。更に全面に浮遊ゲート電極材料膜となるポリシリコン膜7を堆積し、更にその上に浮遊ゲート上絶縁膜(インター絶縁膜)としてシリコン酸化膜/シリコン窒化膜/シリコン酸化膜の積層構造膜(ONO膜)8を形成する。なおトンネル酸化膜6に対してその特性を改善するために、1100℃程度の高温での窒化処理を行う場合もある。またトンネル酸化膜6に対してこうした窒化処理を行わない場合等は、上述のメモリセルアレイ領域に開口を持つレジストパターンを形成することなく、基板全面から犠牲酸化膜2bを除去し、その後全面にトンネル酸化膜6、ポリシリコン膜7及びONO膜8を順次形成してもよい。一方、ポリシリコン膜7には通常濃いn型不純物のドーピングが行われる。またポリシリコン膜7には実際には、ONO膜8の形成前に、紙面に直交するメモリセルアレイのロウ方向についてメモリセル毎に分離する分離工程が入る。ONO膜8は、例えば、1000℃の希釈酸化によるシリコン酸化膜(6nm)を形成し、その上にシリコン窒化膜を10nm程度形成し、そのシリコン窒化膜を燃焼酸化法により膜厚4nm分を6nm程度のシリコン酸化膜に変換することにより、シリコン酸化膜6nm/シリコン窒化膜6nm/シリコン酸化膜6nmの積層構造となる。
その後、メモリセルアレイ領域を覆うレジストパターンを形成して、図5に示すように、高耐圧回路部及び低耐圧回路部のONO膜8及びポリシリコン膜7を順次エッチング除去し、更に犠牲酸化膜2bもウェットエッチングにより除去して、高耐圧回路部及び低耐圧回路部の基板表面を露出させる。
次に、図6に示すように、高耐圧回路部及び低耐圧回路部に同時に、高耐圧回路用のゲート酸化膜の一部となる約13nmの第1のゲート酸化膜9を熱酸化により形成する。この酸化工程は、メモリセルアレイ領域のONO膜8にも加わるが、窒化膜の酸化レートは遅いため、ONO膜の膜厚変化は無視できる程度に抑えられる。第1のゲート酸化膜9は、この段階では規定の膜厚に僅かに足りない状態とされ、後述の低耐圧回路側のゲート酸化工程で積み増しされることになる。
次に、図7に示すように、低耐圧回路部に対して選択的に、高加速イオン注入装置を用いてウェル形成及びチャネル制御のイオン注入を同時に行って、p型ウェル10及びn型ウェル11を形成する。このイオン注入工程を具体的に説明すると次のようになる。まず、低耐圧回路のNMOSトランジスタ形成領域に開口を持つレジストパターンを形成し、加速電圧を300keV、150keV、80keV、20keVというように順次切り替えて、ボロンを1E12〜1E13/cm2 のドーズ量でイオン注入し、p型ウェル10の形成と同時にしきい値制御を行う。続いて、低耐圧回路のPMOSトランジスタ形成領域に開口を持つレジストパターンを形成し、加速電圧を800keV、500keV、300k0eV、150keVというように順次切り替えて、リンを1E12〜1E13/cm2のドーズ量でイオン注入し、更に連続して20keVの低加速電圧で1E12/cm2 オーダーでボロンをイオン注入することにより、n型ウェル11の形成としきい値制御を行う。
以上のようにこの実施例では、加速エネルギーを段階的に切り替えた高加速イオン注入により、チャネル領域からウェルに必要な深さにわたって不純物をドープしており、通常ウェル形成に用いられる高温長時間の熱拡散工程は行わない。注入不純物は、その後のゲート酸化等の短時間の熱工程で活性化される。
この様な高加速イオン注入装置を用いたウェル形成とチャネル制御の一連のイオン注入により、図7に示したようにp型ウェル10及びn型ウェル11は、素子分離絶縁膜5の下にも浅く形成されて、段差を持つ不純物プロファイルとなる。これらの不純物プロファイルは、MOSトランジスタの接合耐圧、接合容量、短チャネル効果抑制等のいくつかの観点を考慮して最適制御すればよく、こうしたイオン注入による場合、イオン注入後の熱工程が短いため制御性が優れたものとなる。
なお上述の高加速イオン注入を行った場合、基板の損傷(結晶欠陥)が生じることがある。この損傷に起因して注入不純物が異常拡散(増速拡散)するのを防止するためには、イオン注入後、900〜1050℃の温度で10〜30秒のランプアニール処理、即ちRTA(Rapid Thermal Annealing )処理を行うことは好ましい。また、後に形成されるゲート酸化膜の膜質を良好なものとするためには、700〜800℃で30〜60分の炉アニールを行うことも好ましい。
またこの高加速イオン注入工程で他の回路領域を覆うレジストパターンは、現像後加熱処理をしないものであることが望ましい。通常レジストパターンは、露光現像後に、ポストベークと呼ばれる125℃前後での焼き締め工程が入る。このポストベーク工程を入れると、レジストパターンの端部は変形して薄くなる。この様子を図12に示す。図12(a)は現像した直後のレジスト20を示し、同図(b)はポストベークによりレジスト20の開口端部形状が変化した状態を示している。通常の低加速電圧でのイオン注入やエッチング工程ではこのレジストパターンの変形は余り問題にならないが、高加速イオン注入では、変形して薄くなった部分をイオンが突き抜けるおそれがある。このため、ポストベークを省いて、レジストパターンの端部が薄くなることなく、図12(a)に示すように、レジスタ端が垂直形状を保つ状態で高加速イオン注入を行うことが好ましい。
この後、低耐圧回路部に開口を持つレジストパターンを形成して、図8に示すように低耐圧回路部の第1のゲート酸化膜9をウェットエッチングにより除去する。そして改めて高温熱酸化を行って、図9に示すように低耐圧回路部に8nm厚の第2のゲート酸化膜12を形成する。この高温熱酸化工程で、高耐圧回路側に既に形成されている第1のゲート酸化膜9は膜厚が増し、例えば17nm程度の膜厚になる。これは、メモリセル駆動回路に必要とされる10V程度の耐圧を確保するに必要なゲート酸化膜厚である。
この後、図10に示すように、ゲート電極材料膜であるポリシリコン膜13を堆積する。なおゲート電極材料膜としては、ポリシリコンと高融点金属又は高融点金属シリサイドとの積層構造であってもよい。以下、通常の工程に従って、図11に示すように、メモリセルアレイ領域ではポリシリコン膜13をパターニングした制御ゲート13a、更にこれと自己整合的にポリシリコン膜7をパターニングした浮遊ゲート7aの積層ゲート構造を形成し、高耐圧回路部及び低耐圧回路部でもポリシリコン膜13をパターニングしてそれぞれ所望のゲート長のゲート電極13b,13cを形成し、更にソース、ドレインとなるn型拡散層14、p型拡散層15を順次形成する。以下、図には示さないが、層間絶縁膜を堆積し、金属配線を必要なら多層に配設して、ロジック混載不揮発性メモリが完成する。
この実施例によると、高温工程を経てメモリセルアレイの浮遊ゲートとその上のONO膜までを形成した後に、精密な不純物プロファイルが要求される低耐圧回路部のウェル形成及びチャネル制御のイオン注入を行っているため、低耐圧回部の不純物プロファイルが精密制御されることになり、高性能の低耐圧回路が得られる。しかも、高耐圧回路、低耐圧回路共に、ゲート酸化膜はイオン注入に曝されていない無欠陥酸化膜として形成され、絶縁性の良好なゲート酸化膜が得られるから、優れた素子特性と信頼性が得られる。
またメモリセルアレイ領域のONO膜までを形成後その上で多くのリソグラフィ工程を行うと、ONO膜の絶縁性劣化を生じることがあるが、この実施例の場合、ONO膜上でのリソグラフィ工程は、ONO膜8及びポリシリコン膜7をパターニングする工程(図5)、高加速イオン注入装置を用いて低耐圧回路部のNMOSトランジスタ側とPMOSトランジスタ側にそれぞれイオン注入する工程(図7)、及び低耐圧回路側の酸化膜をエッチングする工程(図8)、の計4回に止まる。従ってメモリセルアレイの信頼性劣化を最小限に抑えることができる。
更に、高加速イオン注入を利用することにより、低耐圧回路部のウェル形成のための熱拡散工程も省くことができる。これにより、メモリセル形成後の高温長時間の熱工程を避けることができ、既に形成されているメモリセルの特性劣化も生じない。トータルのリソグラフィ工程数も削減することができる。
この発明の別の実施例を図13〜図15を参照して説明する。図13は、先の実施例の図6の工程に対応する。即ちこの実施例でも図1〜図5までは先の実施例と同様の工程をとる。先の実施例では、図6の工程で、後に積み増しされる高耐圧回路側の第1のゲート酸化膜9を形成して、この第1のゲート酸化膜9をそのまま低耐圧回路側でのイオン注入の犠牲酸化膜として用いている。
これに対してこの実施例では、図13に示すように、まず、8nmの犠牲酸化膜21を形成し、高耐圧回路側ではこれをウェットエッチングにより除去する。次いで図14に示すように、高耐圧回路部に第1のゲート酸化膜9を10nmの厚みをもって形成する。このとき低耐圧回路部の犠牲酸化膜21は積み増されて、約17nm程度となる。その後、先の実施例の図7の工程と同様に、図15に示すように、低耐圧回路部へのウェル形成とチャネル制御の高加速イオン注入を行う。それ以降は、先の実施例と同様である。
この実施例の場合、先の実施例と比べて工程数が増大するものの、低耐圧回路部に対し高加速イオン注入を行う際の犠牲酸化膜21の膜厚が厚いので、イオン注入時の金属汚染をより有効に抑えることができる。
この発明は上記実施例に限られない。例えば実施例では、低耐圧回路部についてのみ、高加速イオン注入によりウェル形成とチャネル制御を同時に行っているが、高耐圧回路部について同様に高加速イオン注入を利用したウェル形成とチャネル制御を行ってもよい。
また実施例では、ロジック混載不揮発性メモリを説明したが、ロジック混載ではない不揮発性半導体メモリであって、メモリセル駆動回路にゲート酸化膜厚の異なる低耐圧MOSトランジスタと高耐圧MOSトランジスタを用いる場合にも同様にこの発明を適用することができる。
この発明の一実施例による高耐圧回路部のウェル形成工程を示す各部断面図である。 同実施例による犠牲酸化膜形成工程を示す各部断面図である。 同実施例による高耐圧回路部のチャネルイオン注入工程を示す各部断面図である。 同実施例によるメモリセルアレイの浮遊ゲート膜形成工程を示す各部断面図である。 同実施例による浮遊ゲート膜の不要部分をエッチング除去する工程を示す各部断面図である。 同実施例による第1のゲート酸化膜形成工程を示す各部断面図である。 同実施例による低耐圧回路部のチャネルイオン注入工程を示す各部断面図である。 同実施例による低耐圧回路部の酸化膜エッチング工程を示す各部断面図である。 同実施例による第2のゲート酸化膜形成工程を示す各部断面図である。 同実施例によるゲート電極材料膜堆積工程を示す各部断面図である。 同実施例によるゲート電極パターニングと拡散層形成工程を示す各部断面図である。 同実施例による高加速イオン注入時のレジストパターンを示す図である。 この発明の他の実施例による図6対応の工程を示す断面図である。 同実施例の図6対応の工程を示す断面図である。 同実施例の図7対応の工程を示す断面図である。
符号の説明
1…シリコン基板、2a,2b,21…犠牲酸化膜、3…n型ウェル、4…p型ウェル、5…素子分離絶縁膜、7…ポリシリコン膜、8…ONO膜、9…第1のゲート酸化膜、10…p型ウェル、11…n型ウェル、12…第2のゲート酸化膜、13…ポリシリコン膜、13a…制御ゲート、13b,13c…ゲート電極、14…n型拡散層、15…p型拡散層。

Claims (2)

  1. 浮遊ゲートとこれに絶縁膜を介して積層された制御ゲートを持つ不揮発性半導体メモリセルを配列したメモリセルアレイと、第1のMISトランジスタ回路、及びこの第1のMISトランジスタ回路よりゲート絶縁膜厚が薄い第2のMISトランジスタ回路とを集積形成する半導体装置の製造方法において、
    半導体基板に第1の犠牲酸化膜を形成し、第1のMISトランジスタ回路の形成領域に選択的にウェル形成とチャネル制御のための不純物イオン注入を行う第1のイオン注入工程と、
    少なくともメモリセルアレイの形成領域で前記第1の犠牲酸化膜を除去した後、前記半導体基板にトンネル酸化膜を形成し、このトンネル酸化膜上に浮遊ゲート電極材料膜とゲート電極上絶縁膜を積層形成する工程と、
    前記ゲート電極上絶縁膜と浮遊ゲート電極材料膜及びトンネル酸化膜をメモリセルアレイの形成領域に選択的に残して前記第1、第2のMISトランジスタ回路の形成領域では前記半導体基板の表面を露出させた後、前記半導体基板に第2の犠牲酸化膜を形成する工程と、
    前記第1のMISトランジスタ回路の形成領域の第2の犠牲酸化膜を除去した後、前記第1のMISトランジスタ形成領域および前記第2のMISトランジスタ形成領域に第1のゲート酸化膜を形成する工程と、
    前記半導体基板の第2のMISトランジスタ回路の形成領域に前記第1のゲート酸化膜および前記第2の犠牲酸化膜を通して選択的にウェル形成とチャネル制御のための不純物イオン注入を行う第2のイオン注入工程と、
    前記第2のMISトランジスタ回路の形成領域の前記前記第1のゲート酸化膜および前記第2の犠牲酸化膜を除去した後、前記半導体基板の第2のMISトランジスタ回路の形成領域に第1のゲート酸化膜より薄い第2のゲート酸化膜を形成する工程と、
    ゲート電極材料膜を堆積してパターニングし、メモリセルアレイの形成領域と第1、第2のMISトランジスタ回路の形成領域にそれぞれ不揮発性半導体メモリセル及びMISトランジスタを形成する工程とを有することを特徴とする半導体装置の製造方法。
  2. 前記第2のイオン注入工程は、高加速イオン注入装置を用いて加速電圧を順次変化させることにより、熱拡散工程を行うことなくウエル形成とチャネル制御のための不純物イオン注入を一連の工程として行うことを特徴とする請求項1記載の半導体装置の製造方法。
JP2003343212A 2003-10-01 2003-10-01 半導体装置の製造方法 Expired - Fee Related JP4098208B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343212A JP4098208B2 (ja) 2003-10-01 2003-10-01 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343212A JP4098208B2 (ja) 2003-10-01 2003-10-01 半導体装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08106998A Division JP3488627B2 (ja) 1998-03-27 1998-03-27 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004104141A JP2004104141A (ja) 2004-04-02
JP4098208B2 true JP4098208B2 (ja) 2008-06-11

Family

ID=32290802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343212A Expired - Fee Related JP4098208B2 (ja) 2003-10-01 2003-10-01 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4098208B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804734B2 (ja) * 2004-09-29 2011-11-02 オンセミコンダクター・トレーディング・リミテッド 半導体装置の製造方法
JP4753413B2 (ja) * 2005-03-02 2011-08-24 三洋電機株式会社 不揮発性半導体記憶装置及びその製造方法
JP5063865B2 (ja) 2005-03-30 2012-10-31 オンセミコンダクター・トレーディング・リミテッド 半導体装置
JP5307966B2 (ja) 2005-03-30 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置の製造方法
JP5302493B2 (ja) 2005-03-30 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置
KR101883010B1 (ko) * 2012-08-06 2018-07-30 매그나칩 반도체 유한회사 반도체 소자 및 그 소자의 제조 방법

Also Published As

Publication number Publication date
JP2004104141A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4850174B2 (ja) 半導体装置及びその製造方法
KR100679962B1 (ko) 반도체 장치 및 그 제조 방법
JP4545256B2 (ja) サイドウオールスプリットゲートフラッシュトランジスタの集積方法
JP4952874B2 (ja) Cmosを有する半導体素子及びその製造方法
JP2008244009A (ja) 半導体装置およびその製造方法
JP5627165B2 (ja) 半導体装置及び半導体装置の製造方法
US6368907B1 (en) Method of fabricating semiconductor device
JP4098208B2 (ja) 半導体装置の製造方法
JP2004363443A (ja) 不揮発性半導体記憶装置及びその製造方法
CN104282681A (zh) 半导体器件
JPH0697190A (ja) Mosトランジスタの製造方法
US7135367B2 (en) Manufacturing method of semiconductor device
EP0784339A2 (en) Method of fabricating a semiconductor device
JP4656854B2 (ja) 半導体装置の製造方法
JP3488627B2 (ja) 半導体装置の製造方法
JP2002057330A (ja) 絶縁ゲート型半導体装置及びその製造方法
JP2906460B2 (ja) 相補型mos半導体装置の製造方法
US6756263B2 (en) Method of manufacturing semiconductor device
JP2003124338A (ja) 半導体装置及びその製造方法
JP5205779B2 (ja) 半導体装置の製造方法および半導体装置
JP4146121B2 (ja) 半導体装置の製造方法
JP2002231819A (ja) 半導体装置とその製造方法
JP4989076B2 (ja) 半導体装置の製造方法
JP3975578B2 (ja) 半導体装置の製造方法
KR19990085480A (ko) 이중 전압 모오스 트랜지스터들의�제조방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees