JP4051076B2 - 高分子電解質型燃料電池 - Google Patents

高分子電解質型燃料電池 Download PDF

Info

Publication number
JP4051076B2
JP4051076B2 JP2005517559A JP2005517559A JP4051076B2 JP 4051076 B2 JP4051076 B2 JP 4051076B2 JP 2005517559 A JP2005517559 A JP 2005517559A JP 2005517559 A JP2005517559 A JP 2005517559A JP 4051076 B2 JP4051076 B2 JP 4051076B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
separator plate
main surface
fuel cell
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005517559A
Other languages
English (en)
Other versions
JPWO2005074062A1 (ja
Inventor
弘樹 日下部
一仁 羽藤
敏宏 松本
徳彦 川畑
善輝 長尾
伸介 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2005074062A1 publication Critical patent/JPWO2005074062A1/ja
Application granted granted Critical
Publication of JP4051076B2 publication Critical patent/JP4051076B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネレーションシステム等に使用される高分子電解質型燃料電池に関する。
高分子電解質型燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。図11は、従来の高分子電解質型燃料電池の基本構成を示す概略断面図である。
従来の高分子電解質型燃料電池300における基本構成である単電池101は、主として、陽イオン(水素イオン)を選択的に輸送する高分子電解質膜111、およびその両面に配置された一対の電極(アノードおよびカソード)112、113からなる。アノード112およびカソード113は、電極触媒(例えば白金金属)を担持したカーボン粉末に水素イオン伝導性を有する高分子電解質を混合した触媒層、この触媒層の外面に形成された、通気性と電子伝導性を併せ持つ、例えば撥水処理を施したカーボンペーパーからなるガス拡散層から構成される。
そして、燃料ガスや酸化剤ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互いに混合したりしないように、アノード112およびカソード113の周囲には高分子電解質膜111を挟んでガスケットなどのガスシール材114が配置される。このシール材114は、アノード112、カソード113および高分子電解質膜111と一体化され、膜電極接合体(MEA)を構成する。MEAの外側には、MEAを機械的に固定するとともに、隣接するMEAを互いに電気的に直列に接続するための導電性を有するアノード側セパレータ板116およびカソード側セパレータ板117が配置されている。
アノード側セパレータ板116およびカソード側セパレータ板117のMEAと接触する部分には、それぞれアノード112およびカソード113に反応ガス(燃料ガスおよび酸化剤ガス)を供給し、生成ガスや余剰ガスを運び去るためのガス流路118、120が形成されるように構成されている。ガス流路118、120は、アノード側セパレータ板116およびカソード側セパレータ板117と別に設けることもできるが、図11に示すようにアノード側セパレータ板116およびカソード側セパレータ板117の表面に溝を設けてガス流路118、120を構成する方式が一般的である。
これらのMEAとアノード側セパレータ板116およびカソード側セパレータ板117とが単電池101を構成する。単電池101が単独で使用されることもあるが、十分な電池出力を得るため、冷却部(図示せず)を介し、MEAとアノード側セパレータ板116およびカソード側セパレータ板117とを交互に積層して(即ち、単電池101を10〜200個積層して)、積層体が構成される。そして、積層体を集電板および絶縁板を介してエンドプレートで挟み、これらを締結用のボルトおよびナットで両端から固定して高分子電解質型燃料電池300とするのが一般的である。
このような従来の高分子電解質型燃料電池300では、アノード側セパレータ板116およびカソード側セパレータ板117はカーボン製の平板で構成され、アノード112およびカソード113に接する面には、それぞれアノード112およびカソード113に燃料ガスまたは酸化剤ガスを供給するガス流路118、120が形成され、反対側の面には冷却水を流通する冷却水用流路119、121が形成されている。そして、アノード側セパレータ板116およびカソード側セパレータ板117の中央部において、前記ガス流路118、120が形成される主面と、前記中央部の周りにおいて高分子電解質膜111を挟むガスケット114の片面に接する周縁部とは、段差を持たず、同じ平面を形成しているのが一般的であった。
ここで、上記のような高分子電解質型燃料電池300では、MEAをアノード側セパレータ板116およびカソード側セパレータ板117で挟み、高分子電解質膜111、アノード112およびカソード113の三者間の圧力が適度に保たれる。なぜなら、アノード112のガス拡散層とアノード側セパレータ板116とを接触させ、カソード113のガス拡散層とカソード側セパレータ板117とを接触させることが望まれるからである。
また、高分子電解質膜111の周縁部を挟む一対のガスケット114を、アノード側セパレータ板116およびカソード側セパレータ板117で圧縮し、MEAの周縁部がシールすることが求められるからである。このとき、ガスケット114の圧縮度合い{即ち、圧縮により減少するガスケットの厚さ(ガスケットの圧縮前と圧縮後の厚さの差)}により、アノード112のガス拡散層とアノード側セパレータ板116との接触力、およびカソード113のガス拡散層とカソード側セパレータ板117との接触力が規定される。
しかしながら、アノード側セパレータ板116およびカソード側セパレータ板117が、上記のように、アノード112およびカソード113に接触する部分(主面)とガスケット114に接触する部分(周縁部)とが同じ平面上にある場合、主面が製造公差によって周縁部より薄くなったとき、ガス拡散層とアノード側セパレータ板116またはカソード側セパレータ板117との十分な接触を確保できず、両者間の電気抵抗が増大してしまうという問題がある。これは、ガス拡散層をカーボンペーパーなどの柔らかい材料で構成した場合に、顕著である。したがって、このような電気抵抗の増大を抑制するためには、さらにガスケット114の圧縮度合いを大きくし、主面とガス拡散層との接触力を強くする必要があった。
一方、アノード側セパレータ板116およびカソード側セパレータ板117の主面の平均厚さが、周縁部の平均厚さより極端に厚い場合、適切なシール性能が得られるまでガスケット114を圧縮すると、アノード側セパレータ板116およびカソード側セパレータ板117の主面がガス拡散層を圧縮し過ぎてしまう。この場合、ガス拡散性が阻害され、単電池101の圧力損失が増大してしまったり、ガス拡散層が座屈してMEAを破損してしまったりするという問題がある。さらに、主面に形成されたガス流路118、120内にガス拡散層が入り込んで当該ガス流路を塞ぐために、ガス流路118、120の圧力損失が高くなり、ガス流路118、120への反応ガスの分配が不均一となってしまう可能性があった。
また、高分子電解質型燃料電池300においてMEAとアノード側セパレータ板116およびカソード側セパレータ板117とは締結されているため、アノード側セパレータ板116およびカソード側セパレータ板117の周縁部は締結力によって撓んでMEAと接触している。上記のようにアノード側セパレータ板116およびカソード側セパレータ板117が平面状の場合、この撓みによってガス拡散層の周縁部に局部的に荷重が加わり、ガス拡散層が高分子電解質膜111を傷つけ、高分子電解質膜111にピンホールが発生してしまうという問題もあった。
本発明は以上の問題を鑑みてなされたものであり、ガスケットを十分に圧縮してガスリークのないシール効果を発揮させるとともに、アノードおよびカソードのガス拡散層とアノード側セパレータ板およびカソード側セパレータ板との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路を塞いで圧力損失を増大させることや高分子電解質膜を傷付けることのない高分子電解質型燃料電池を提供することを目的とする。また、本発明は、上記のような高分子電解質型燃料電池を容易かつ確実に実現するためのセパレータ板を提供することを目的とする。
上記課題を解決すべく、本発明は、
水素イオン伝導性を有する高分子電解質膜ならびに高分子電解質膜を挟むアノードおよびカソードを有する膜電極接合体と、膜電極接合体を挟持して配置されたアノード側セパレータ板およびカソード側セパレータ板とを含み、アノードおよびカソードがそれぞれガス拡散層と高分子電解質膜に接する触媒層とを含む高分子電解質型燃料電池であって、
アノード側セパレータ板およびカソード側セパレータ板のうちの少なくとも一方が、ガス拡散層と接する主面と、主面の周りを囲む周縁部とを含み、かつ略平面状に構成されており、
主面が、ガス拡散層側に凸状に突出する形状を有し、かつアノードまたは前記カソードに反応ガスを供給するためのガス流路を有し、
主面の部分の平均厚さが周縁部の部分の平均厚さよりも厚く、かつ主面の部分の最も厚い部分の厚さと、周縁部の部分の平均厚さとの差Δtが、5〜30μmであること、を特徴とする高分子電解質型燃料電池を提供する。
ここで、本発明におけるセパレータ板の「主面」とは、セパレータ板のうちアノードまたはカソードに接する部分をいう。より具体的には、セパレータ板の「主面」とは、セパレータ板の面の法線方向から、膜電極接合体を投影してみた場合(等倍に投影してみた場合)に、アノードまたはカソードを示す図形(投影された結果、「アノードまたはカソード側隙間」を示すものとしてみえる図形)と同一の大きさ及び形状となる領域に少なくとも対応する部分を含む、当該セパレータ板の中央における一部をいう。したがって、上記「主面」は、上述の領域と同一の面積を有するか、または、上述の領域よりも大きな面積を有する。
上記セパレータ板の「主面」の周りを囲む「周縁部」は、主面の周縁の領域であって凸状に突出した形状を有している領域以外の領域であり、上記「主面」と一体的に成形されている。上記「主面」はガス拡散層側に凸状に突出する形状を有するが、「主面」と「周縁部」とで構成された本発明のセパレータ板は、全体として略平面状に構成されている。したがって、上記「周縁部」は平面状であってもよいが、曲面状であってもよい。
また、主面の「平均厚さ」とは、主面のうちの凸状に突出した形状を有している領域において、5箇所以上の異なる測定点で測定した厚さの相加平均値である。ただし、5箇所以上の異なる測定点のうちの1点は、凸状に突出した形状を有している領域の幾何学的中心(重心)となる点とする。なお、この幾何学的中心(重心)となる点は、主面の最も厚い部分となる点に一致していてもよい。
さらに、周縁部の「平均厚さ」とは、上記に定義される周縁部において、8箇所以上の異なる測定点で測定した厚さの相加平均値である。
本発明の高分子電解質型燃料電池においては、アノード側セパレータ板およびカソード側セパレータ板のうちの少なくとも一方(好ましくは両方)が上記のような構成をとることにより、ガスケットを十分に圧縮してガスリークのないシール効果を発揮させても、アノードおよびカソードのガス拡散層とアノード側セパレータ板およびカソード側セパレータ板との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路を塞いで圧力損失を増大させることや高分子電解質膜を傷付けることのない高分子電解質型燃料電池を容易かつ確実に実現することができる。
さらに、本発明は、
水素イオン伝導性を有する高分子電解質膜ならびに高分子電解質膜を挟むアノードおよびカソードを有する2以上の膜電極接合体と、膜電極接合体と交互に積層された2以上のセパレータ板とを含み、アノードおよびカソードが、それぞれガス拡散層および高分子電解質膜に接する触媒層を含む高分子電解質型燃料電池であって、
セパレータ板のうちの少なくとも1つが、アノード側セパレータ板とカソード側セパレータ板との組合せからなる複合セパレータ板であり、
アノード側セパレータ板およびカソード側セパレータ板が、それぞれアノードおよびカソードと接する主面と、主面の周りを囲む周縁部とを含み、かつ略平面状に構成されており、
主面が、それぞれアノード側およびカソード側に凸状に突出する形状を有し、かつアノードおよびカソードにそれぞれ燃料ガスおよび酸化剤ガスを供給するためのガス流路を有し、
主面の部分の平均厚さが周縁部の部分の平均厚さよりも厚く、かつ主面の部分の最も厚い部分の厚さと、周縁部の部分の平均厚さとの差Δtが、5〜30μmであること、を特徴とする高分子電解質型燃料電池を提供する。
ここで、上記の本発明の高分子電解質型燃料電池における「複合セパレータ板」とは、アノード側セパレータ板とカソード側セパレータ板との組合せからなる複合セパレータ板であって、アノード側セパレータ板とカソード側セパレータ板とが一体的に成形されて構成されているセパレータ板のことをいう。
上記の本発明の高分子電解質型燃料電池においては、積層されたセパレータ板の少なくとも1つが上記のような構成をとることにより、ガスケットを十分に圧縮してガスリークのないシール効果を発揮させつつ、アノードおよびカソードのガス拡散層とアノード側セレータ板およびカソード側セパレータ板との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路を塞いで圧力損失を増大させることや高分子電解質膜を傷付けることのない高分子電解質型燃料電池を容易かつ確実に実現できる。
本発明によれば、ガスケットを十分に圧縮してガスリークのないシール効果を発揮させても、アノードおよびカソードのガス拡散層とアノード側セレータ板およびカソード側セパレータ板との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路を塞いで圧力損失を増大させることや高分子電解質膜を傷付けることのない高分子電解質型燃料電池を得ることができる。
以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略することもある。
[第一実施形態]
図1は、本発明の高分子電解質型燃料電池の第一実施形態の基本構成を示す概略断面図である。図1に示すように、本実施形態の高分子電解質型燃料電池100における基本構成である単電池1は、主として、陽イオン(水素イオン)を選択的に輸送する高分子電解質膜21、およびその両面に配置された一対の電極(カソードおよびアノード)22、23からなる。カソード22およびアノード23は、電極触媒(例えば白金金属)を担持したカーボン粉末に水素イオン伝導性を有する高分子電解質を混合した触媒層、この触媒層の外面に形成された、通気性と電子伝導性を併せ持つ、例えば撥水処理を施したカーボンペーパーからなるガス拡散層から構成される。
そして、燃料ガスや酸化剤ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互いに混合したりしないように、カソード22およびアノード23の周囲には高分子電解質膜21を挟んでガスケット25aおよび25cなどのガスシール材が配置される。これらのガスケット25a、25cは、カソード22、アノード23および高分子電解質膜21と一体化され、膜電極接合体(MEA)を構成する。MEAの外側には、MEAを機械的に固定するとともに、隣接するMEAを互いに電気的に直列に接続するための導電性を有するカソード側セパレータ板30およびアノード側セパレータ板40が配置されている。
これらのMEAとカソード側セパレータ板30およびアノード側セパレータ板40とが単電池1を構成し、この単電池1が、カソード側セパレータ板30が有する冷却水用流路35とアノード側セパレータ板40が有する冷却水用流路45で構成される冷却部を介して、カソード側セパレータ板30およびアノード側セパレータ板40とともに積層されて、積層体からなる本実施形態の高分子電解質型燃料電池100を構成している。ここでは図示しないが、上記積層体は集電板および絶縁板を介してエンドプレートで挟まれ、これらを締結用のボルトおよびナットで両端から固定、締結して高分子電解質型燃料電池100が構成されている。
ここで、上述のように、従来の高分子電解質型燃料電池では、カソード側セパレータ板およびアノード側セパレータ板が平板状であったことから、種々の問題を有していたところ、本実施形態の高分子電解質型燃料電池100においては、かかる問題を解消すべく、特徴ある構造を有するカソード側セパレータ板およびアノード側セパレータ板を採用している。以下においては、これらセパレータ板について詳細に説明する。
図2は、図1に示される本実施形態の高分子電解質型燃料電池100におけるカソード側セパレータ板30の要部を拡大した正面図(ガス流路38側から見た正面図)であり、図3は、図2に示されるカソード側セパレータ板30の概略断面図(主面36に垂直な方向における断面)である(したがって、ガス流路38および冷却水用流路35は省略されている。)。また、図4は、図2に示されるカソード側セパレータ板30の要部を拡大した背面図(冷却水用流路35側から見た正面図)である。
さらに、図5は、図1に示される本実施形態の高分子電解質型燃料電池100におけるアノード側セパレータ板40の要部を拡大した正面図(冷却水用流路45側から見た正面図)であり、図6は、図5に示されるアノード側セパレータ板40の要部を拡大した背面図(ガス流路48側から見た正面図)である。
カソード側セパレータ板30は、図2に示すように、カソード22に接する主面(破線で囲まれた領域に相当する部分)36と、主面36を囲んで当該主面36と一体的に成形された周縁部37と、で構成されている。周縁部37には、酸化剤ガス用マニホールド孔32、燃料ガス用マニホールド孔33および冷却水用マニホールド孔34が設けられている。主面36は、カソード22に酸化剤ガスを供給するためのガス流路38を有し、ガス流路38は酸化剤ガス用マニホールド孔32に連絡するように構成されている。
主面36は、図3に示すように、外側(即ちカソード22側)に凸状に膨らんでおり、したがって、主面36の部分の平均厚さは周縁部37の部分の平均厚さより厚くなっている。また、カソード側セパレータ板30の主面36と周縁部37との接続部には段差が設けられているが、背面は、冷却水用流路35を有するとともに、段差のない単一平面になるように構成されている。
一方、アノード側セパレータ板40は、図6に示すように、アノード23に接する主面(破線で囲まれた領域に相当する部分)46と、主面46を囲んで当該主面46と一体的に成形された周縁部47と、で構成されている。周縁部47には、酸化剤ガス用マニホールド孔42、燃料ガス用マニホールド孔43および冷却水用マニホールド孔44が設けられている。主面46は、アノード23に燃料ガスを供給するためのガス流路48を有し、ガス流路48は燃料ガス用マニホールド孔43に連絡するように構成されている。
また、図示しないが、主面46も、図3に示すカソード側セパレータ板30の主面36と同様に、外側(即ちアノード23側)に凸状に膨らんでおり、アノード側セパレータ板40の主面46と周縁部47との接続部には段差が設けられているが、背面は、冷却水用流路45を有するとともに、段差のない単一平面になるように構成されている。
ここで、主面36、46の部分の平均厚さが周縁部37、47の部分の平均厚さよりも厚く、かつ主面36、46の最も厚い部分の厚さと、周縁部37、47の部分の平均厚さとの差Δt(図3参照)が、5〜30μmであることが好ましい。5μm未満であると、主面36、46の部分とガス拡散層との接触抵抗が増大するためであり、30μm超であると、ガス拡散層が潰れ過ぎて圧損が増大するからである。なかでも、本発明の効果をより確実に得るという観点から、差Δtは5〜10μmであるのが好ましい。
また、上記のようなΔtを満たす本実施形態のカソード側セパレータ板30およびアノード側セパレータ板40を用いる場合、ガス拡散層の厚さが150〜200μmであるのが好ましい。150μm以上であると圧損を低く抑えることができ好ましく、200μm以下であると、副流{ガス流路を流れずガス拡散層中のみを流れる反応ガスの流れ(副流が多くなると触媒層において利用されない部分が現れ、電極の利用率が減る)}を抑制し、カソード22およびアノード23全体に反応ガスを供給することが可能であり、好ましい。
上記のようなΔtおよびガス拡散層の厚さの条件を満たすと、MEAとカソード側セパレータ板30およびアノード側セパレータ板40とを締結した際に、ガス流路38、48の断面積が、主面36、46全体において略均一とすることができ好ましい。
ここで、「ガス流路の断面積が、主面全体において略均一となる状態」について、図1および図7を用いて説明する。図7は、本実施形態の高分子電解質型燃料電池100の締結時における図1のP部分を拡大した図である。図7に示すように、締結時にはアノード23のガス拡散層の部分がガス流路48への食い込むが、本実施形態においては、この食い込み度合いをあらかじめ予測(把握)してアノード側セパレータ板40が設計されている。そのため、締結時に、図面に垂直な面で、主面の中心側においてガス流路48を構成する溝の断面積と、周縁部側においてガス流路48を構成する溝の断面積とが、略均一になる。したがって、実際に反応ガスが流れる溝の断面積が、アノード側セパレータ板40の全体において略均一になっている状態をいう。カソード側においても同様である。
特に、締結圧を5〜30kgf/cm2とした場合には、確実に上記の効果を得ることができる。
また、図3に示すように、主面36、46に垂直な方向における断面が主面36、46の中心部から周縁部37、47に向かって滑らかな曲線で構成され、かつ上記曲線が変極点Xを有すること、が好ましい。これにより、ガス拡散層全体で締結圧を均一にすることが可能となるというメリットがある。
本実施形態におけるカソード側セパレータ板30およびアノード側セパレータ板40は、導電性カーボン粉末とバインダーとを含む成形体で構成されているのが好ましい。好ましくは、例えば膨張黒鉛粉末などの導電性カーボン粉末70〜80質量部と、例えばフェノール樹脂などのバインダー20〜30質量部を含む混練物から、押し出し成形によってグリーンシートを作製し、このグリーンシートを圧縮成形することによって得られるセパレータ板を用いるのが好ましい。バインダーとしてフェノール樹脂を用いた場合、適当な圧縮成形温度は160℃、成形面圧は350〜500kgf/cm2である。
上記のグリーンシートを圧縮成形する場合、成形前の体積の60〜75%に圧縮するのが好ましい。上述のような形状のセパレータ板を成形する際、セパレータ板における主面と周縁部との平均厚さの差Δtが5〜30μmのとき、上記のような圧縮率を用いることにより、得られるセパレータ板の密度が全面においてほぼ等しくなり、成形性も良好となるからである。成形後のセパレータ板の密度は1.5〜2.0g/cm3とするのが好ましい。
本実施形態におけるカソード側セパレータ30およびアノード側セパレータ板40の最も厚い部分(即ち、主面36、4の最も厚い部分)の厚さは、3mm程度が適当である。なお、ガスケット25c、25aの厚さは0.3〜1.0mmが適当である。
なお、カソード側セパレータ板30に設けられた一対の酸化剤ガス用マニホールド孔32は、アノード側セパレータ板40に設けられた一対の酸化剤のマニホールド孔42と連通しており、カソード側セパレータ板30に設けられた一対の燃料ガス用マニホールド孔33は、アノード側セパレータ板40に設けられた一対の燃料ガスのマニホールド孔43と連通している。また、カソード側セパレータ板30に設けられた一対の冷却水用マニホールド孔34は、アノード側セパレータ板40に設けられた一対の冷却水用マニホールド孔44と連通している。
したがって、一対の酸化剤ガス用マニホールド孔32の一方が入口であり、他方が出口である。また、一対の酸化剤ガス用マニホールド孔42、一対の燃料ガス用マニホールド孔33、一対の燃料ガス用マニホールド孔43、一対の冷却水用マニホールド孔34、および一対の冷却水用マニホールド孔44の場合も、同様に、一方が入口で他方が出口である。
本実施の形態においては、カソード側セパレータ板30の背面(冷却水用流路35側の面)に、さらに酸化剤ガス用マニホールド孔32および燃料ガス用マニホールド孔33をそれぞれ囲む溝31cおよび溝31a、ならびに冷却水用マニホールド孔34および冷却水用流路35全体を囲む溝31wが形成されている。また、アノード側セパレータ板40の背面(冷却水用流路45側の面)に、さらに酸化剤ガス用マニホールド孔42および燃料ガス用マニホールド孔43をそれぞれ囲む溝41cおよび溝41a、ならびに冷却水用マニホールド孔44および冷却水用流路45全体を囲む溝41wが形成されている。
また、本実施形態の高分子電解質型燃料電池100においては、図1に示すように、カソード側セパレータ板30の背面(冷却水用流路35側の面)とアノード側セパレータ板40の背面(冷却水用流路45側の面)とが向き合わせて接合されて、MEAとMEAとの間に挿入されている。これによって、溝31cと溝41cとの間、溝31aと溝41aとの間、および溝31wと溝41wとの間に、Oリングが挿入され(図示せず)、カソード側セパレータ板30とアノード側セパレータ板40との間から反応ガスや冷却水が外部へ漏れるのを防止する構成となっている。
以上のように、本実施形態の高分子電解質型燃料電池100においては、カソード側セパレータ板30およびアノード側セパレータ板40が、それぞれカソード22およびアノード23側に凸状に突出した形状を有する主面を有することにより、ガスケットを十分に圧縮してガスリークのないシール効果を発揮するとともに、カソード22およびアノード23のガス拡散層とカソード側セパレータ板30およびアノード側セパレータ板40との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路を塞いで圧力損失を増大させることや高分子電解質膜を傷付けることのない高分子電解質型燃料電池を容易かつ確実に実現することができる。
なお、本実施形態においては、カソード側セパレータ板30とアノード側セパレータ板40の双方に、凸状に突出した形状を有する主面を設ける場合を説明したが、カソード側セパレータ板30とアノード側セパレータ板40のいずれか一方に凸状に突出した形状を有する主面を設けてもよい。また、本実施形態においては、カソード側セパレータ板30とアノード側セパレータ板40の双方に、冷却部を形成するための冷却水用流路35、45を設けたが、カソード側セパレータ板30とアノード側セパレータ板40のいずれか一方に冷却水用流路を設けてもよい。
また、本実施形態においては、カソード側セパレータ板30と隣接するアノード側セパレータ板40との間に、冷却水用流路を形成したが、各単電池1間に冷却水用流路を設けず、例えば単電池2個毎に冷却水用流路を設けてもよい。そのような場合、一方の面に燃料ガスの流路を有し、他方の面に酸化剤ガスの流路を有するアノード側セパレータ板と、カソード側セパレータ板とを兼ねる単一のセパレータ板(例えば、後述する第二実施形態の複合セパレータ板)を併用することも可能である。
[第二実施形態]
つぎに、本発明の高分子電解質型燃料電池の第二実施形態について説明する。この第二実施形態の高分子電解質型燃料電池200は、図1に示した第一実施形態の高分子電解質型燃料電池100におけるアノード側セパレータ板40およびカソード側セパレータ板30の組合せを、図8に示すように、単一の複合セパレータ板50に代えたものであり、当該複合セパレータ板50以外の構成は第一実施形態の高分子電解質型燃料電池100と同様である。図8は、本発明の高分子電解質型燃料電池の第二実施形態の基本構成を示す概略断面図である。
以下、第二実施形態の高分子電解質型燃料電池200に備えられる複合セパレータ板50(本発明のセパレータ板の第二実施形態)について説明する。図9は、図8に示される本実施形態の高分子電解質型燃料電池200における複合セパレータ板50の要部を拡大した正面図(ガス流路38側から見た正面図)であり、図11は、図9に示される複合セパレータ板50の要部を拡大した背面図(ガス流路48側から見た正面図)である。また、図10は、図9および図11に示される複合セパレータ板50の概略断面図(主面36c、36aに垂直な方向における断面)である(ガス流路38、48は省略されている。)。
本実施形態の複合セパレータ板50は、カソード側セパレータ板とアノード側セパレータ板との組合せからなる単一のセパレータ板である。したがって、この複合セパレータ板50は、上記第一実施形態におけるカソード側セパレータ30の機能およびアノード側セパレータ板40の機能を、単一の部材で発揮し得るものである。この複合セパレータ板50は、成形法により作製することが好ましいが、上記第一実施形態におけるカソード側セパレータとアノード側セパレータ板を一体化(接続)して作製することも可能である。
複合セパレータ板50は、一方の面にカソード22に接する主面36cを有し、他方の面にアノード23に接する主面36aを有する。主面36cにはカソード22に酸化剤ガスを供給するガス流路38が形成されており、主面36aにはアノードに燃料ガスを供給するガス流路48が形成されている。
そして、それぞれの主面36cおよび36aは、それらの周りを囲む周縁部37cおよび37aとは連続して一体化されており、複合セパレータ板50は全体として概ね平面状に構成されているが、それぞれの主面36cおよび36aは、外側(即ちカソード22およびアノード23側)に凸状に膨らんでいる。したがって、主面36cおよび36aの部分の平均厚さは周縁部37cおよび37aの部分の平均厚さより厚くなっている。
複合セパレータ板50に接するMEAにおいては、高分子電解質膜21を挟むカソード22およびアノード23の部分が、複合セパレータ板50の主面6cと、隣接する他の複合セパレータ板50の主面6aにより圧縮される。また、高分子電解質膜21の周縁部を挟むガスケット25cおよび25aの部分が、一方の複合セパレータ板50の周縁部37cと他方の複合セパレータ板50の周縁部37aにより圧縮される。したがって、複合セパレータ板50における主面36cおよび36aの部分の平均厚さと周縁部37cおよび37aの部分の平均厚さの差を適当に選択することにより、カソード22およびアノード23のガス拡散層と、複合セパレータ板50の主面36c、36aとの接触度合い、ならびにガスケット25c、25aの圧縮度合いを適切なものとすることができる。
なお、図10におけるΔt1およびΔt2の値は、同一でも異なっていてもよいが、好ましくは同一であるのがよく、また、上記第一実施形態におけるΔtと同じ範囲であればよい。また、複合セパレータ50の厚さは、上記第一実施形態におけるカソード側セパレータ30の厚さとアノード側セパレータ板40の厚さとの合計と同じであればよい。
以上のように、本実施形態の高分子電解質型燃料電池200においては、複合セパレータ50を構成するカソード側セパレータ板部分およびアノード側セパレータ板部分が、それぞれカソード22およびアノード23側に凸状に突出した形状を有する主面36c、36aを有することにより、ガスケット25c、25aを十分に圧縮してガスリークのないシール効果を発揮するとともに、カソード22およびアノード23のガス拡散層と複合セパレータ板50との間の電気抵抗(接触抵抗)の増大を抑制することができ、かつガス拡散層がガス流路38、48を塞いで圧力損失を増大させることや高分子電解質膜21を傷付けることのない高分子電解質型燃料電池200を容易かつ確実に実現することができる。
なお、本実施形態においては、複合セパレータ板50の内部に冷却部を設けていないが、MEA2〜3個毎に、複合セパレータ板50内部に冷却水用流路を設けるのが好ましい。例えば、複数の複合セパレータ板50のうちいくつかの複合セパレータ板50の代わりに、上記第一実施形態のカソード側セパレータ30およびアノード側セパレータ板40の組合せを用いることも可能である。
以上、本発明の実施形態について詳細に説明したが、本発明は上述した各実施形態に限定されるものではない。
例えば、本発明の高分子電解質型燃料電池においては、上記第一実施形態におけるカソード側セパレータ30およびアノード側セパレータ板40と、上記第二実施形態における複合セパレータ50とを併用することができる。
上記実施形態においては、酸化剤ガス用のガス流路38は、5本の並行する溝で構成し、燃料ガス用のガス流路48は3本の並行する溝で構成したが、それぞれのガス流路を構成する溝の数は、上記の例に限定されるものではない。上記のガス流路を形成する溝は、直線部とターン部を組み合わせたサーペンタイン型であり、不可避な部分を除いて、溝の中心線は表裏で一致するようにした。したがって、このようなセパレータ板の一対でMEAを挟むと、不可避な部分を除いて、図1および8に示すように、高分子電解質膜21の両面にあるガス流路38および48は、高分子電解質膜21を介して対向する位置にある。
また、本発明におけるセパレータ板において、上記主面のうち最も厚い部分の厚さは、3.0mm程度であるのが好ましく、高分子電解質型燃料電池の締結時において、ガス流路を形成する溝の幅および深さ、ならびに溝と溝との間のリブとなる部分の幅は、いずれも1.0mm程度が適当である。
以下に、実施例を用いて本発明をより詳細に説明するが、本発明は、これらのみに限定されるものではない。
《実施例1》
本実施例においては、上記第一実施形態におけるカソード側セパレータ30およびアノード側セパレータ板40を用いて、単電池1からなる本発明の高分子電解質型燃料電池を作製した。
まず30nmの平均一次粒子径を持つ導電性カーボン粒子(オランダ国、AKZO Chemie社:ケッチェンブラックEC(商品名))に、平均粒径約3nmの白金粒子を担持させ、カソード用の触媒担持カーボン粉末(Pt:50質量%)を得た。また、前記と同じ導電性カーボン粒子に、平均粒径約30Åの白金粒子とルテニウム粒子とを担持させ、アノード用の触媒担持カーボン粉末(Pt:25質量%、Ru:25質量%)を得た。
上記カソード用の触媒担持カーボン粉末を、イソプロパノールに分散させ、さらにパーフルオロカーボンスルホン酸粉末のエチルアルコール分散液を混合し、カソード用の触媒層形成用ペーストを調製した。また、同様にして、上記アノード用の触媒担持カーボン粉末を、イソプロパノールに分散させ、さらにパーフルオロカーボンスルホン酸粉末のエチルアルコール分散液を混合し、アノード用の触媒層形成用ペーストを調製した。
つぎに、スクリーン印刷法を用いて、厚さ250μmのカーボン不織布からなるガス拡散層の一方の面に上記カソード用の触媒層形成用ペーストを塗工し、カソードを作製した。このとき、カソード中に含まれる電極触媒(Pt)量が0.5mg/cm2、パーフルオロカーボンスルホン酸の量が1.2mg/cm2となるように調整した。また、同様にして、スクリーン印刷法を用いて、厚さ250μmのカーボン不織布からなるガス拡散層の一方の面に上記アノード用の触媒層形成用ペーストを塗工し、アノードを作製した。このとき、アノード中に含まれる電極触媒(Pt)量が0.5mg/cm2、パーフルオロカーボンスルホン酸の量が1.2mg/cm2となるように調整した。
ここで、カソードおよびアノードの面積よりも一回り大きい面積を有する高分子電解質膜(米国デュポン社製のNafion112(商品名)、厚さ30μm)を用意し、当該高分子電解質膜の中心部を、アノード側の触媒層およびカソード側の触媒層が高分子電解質膜に接するように、上記アノードおよびカソードで挟み、上記高分子電解質膜、上記カソードおよび上記アノードをホットプレスによって接合した。さらに、カソードおよびアノードの外周には、高分子電解質膜を挟むように、後述するセパレータ板の周縁部とほぼ同じ形状に打ち抜かれたガスケット(デュポン ダウ エラストマ ジャパン社製のVITON GBL、フッ素ゴム製、自由厚さ:0.8mm)をホットプレスによって接合し、MEAを作製した。
上記のMEAを、第一実施形態で説明した構造のカソード側セパレータ板30およびアノード側セパレータ板40で挟み、上記ガスケットの厚さが0.5mmになるように締結し、図1に示される構造を有する単電池1(本発明の高分子電解質型燃料電池)を作製した。このとき、カソード側セパレータ30およびアノード側セパレータ板40において、それぞれ主面36および46の最も厚い部分の厚さと、周縁部37および47の平均厚さとの差Δtを10μmに設定した。
[特性評価]
以上のようにして作製した本発明の高分子電解質型燃料電池を用い、セパレータ板とガス拡散層との接触抵抗(mΩ・cm2)、および一定流量の反応ガス(燃料ガスおよび酸化剤ガス)を流した場合に生じる圧力損失(kPa)を測定した。
高分子電解質型燃料電池において、接触抵抗が20mΩ・cm2超であると、IR損の影響による電圧降下が顕著となり、実用性に乏しくなる。したがって、20mΩ・cm2以下の場合を「1」とし、20mΩ・cm2超であると「2」とした。また、圧力損失が10kPa超であると、エネルギー変換効率が低下してしまい、反応ガスの供給のための動力が増大して実用性に乏しくなる。したがって、10kPa以下の場合を「1」とし、10kPa超の場合を「2」とした。そして、総合評価として、接触抵抗および圧力損失の結果がいずれも「1」の場合を「1」(合格)とし、いずれか一方でも「2」の場合を「2」(不合格)とした。結果を表1に示した。
《実施例2》
Δtの値を20μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
《実施例3》
Δtの値を30μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
《実施例4》
Δtの値を5μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
《比較例1》
カソード側セパレータ30およびアノード側セパレータ板40において、主面36、46をそれぞれ内側(即ち、冷却水用流路35、45側)に凸状に形成し、周縁部37、47よりも薄くし、Δtの値を−5μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
《比較例2》
Δtの値を50μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
《比較例3》
Δtの値を100μmにしたこと以外は、実施例1と同様にして本発明の高分子電解質型燃料電池(単電池)を作製し、同様に特性評価を行った。結果を表1に示した。
表1の結果から、セパレータ板の主面の最も厚い部分の厚さと周縁部の厚さとの差△tが5μm〜30μmの場合に、接触抵抗が小さく、かつ圧力損失の少ない、優れた高分子電解質型燃料電池が得られることがわかる。
以上のように、本発明による高分子電解質型燃料電池においては、電極(カソードおよびアノード)とセパレータ板との間の接触抵抗が低減され、圧力損失が安定化する。したがって、本発明の高分子電解質型燃料電池は、ポータブル電源、電気自動車用電源、家庭内コージェネレーションシステムなどに好適に使用することができる。
本発明の高分子電解質型燃料電池の第一実施形態の基本構成を示す概略断面図である。 図1に示される本実施形態の高分子電解質型燃料電池100におけるカソード側セパレータ板30の要部を拡大した正面図(ガス流路38側から見た正面図)である。 図2に示されるカソード側セパレータ板30の概略断面図(主面36に垂直な方向における断面)である。 図2に示されるカソード側セパレータ板30の要部を拡大した背面図(冷却水用流路35側から見た正面図)である。 図1に示される本実施形態の高分子電解質型燃料電池100におけるアノード側セパレータ板40の要部を拡大した正面図(冷却水用流路45側から見た正面図)である。 図5に示されるアノード側セパレータ板40の要部を拡大した背面図(ガス流路48側から見た正面図)である。 図1におけるP部分を拡大した図である。 本発明の高分子電解質型燃料電池の第二実施形態の基本構成を示す概略断面図である。 図8に示される本実施形態の高分子電解質型燃料電池200における複合セパレータ板50の要部を拡大した正面図(ガス流路38側から見た正面図)である。 図9および図11に示される複合セパレータ板50の概略断面図(主面36c、36aに垂直な方向における断面)である。 図9に示される複合セパレータ板50の要部を拡大した背面図(ガス流路48側から見た正面図)である。 従来の高分子電解質型燃料電池の第一実施形態の基本構成を示す概略断面図である。

Claims (20)

  1. 水素イオン伝導性を有する高分子電解質膜ならびに前記高分子電解質膜を挟むアノードおよびカソードを有する膜電極接合体と、前記膜電極接合体を挟持して配置されたアノード側セパレータ板およびカソード側セパレータ板とを含み、前記アノードおよび前記カソードがそれぞれガス拡散層と前記高分子電解質膜に接する触媒層とを含む高分子電解質型燃料電池であって、
    前記アノード側セパレータ板および前記カソード側セパレータ板のうちの少なくとも一方が、前記ガス拡散層と接する主面と、前記主面の周りを囲む周縁部とを含み、かつ略平面状に構成されており、
    前記主面が、前記ガス拡散層側に凸状に突出する形状を有し、かつ前記アノードまたは前記カソードに反応ガスを供給するためのガス流路を有し、
    前記主面の部分の平均厚さが前記周縁部の部分の平均厚さよりも厚く、かつ前記主面の部分の最も厚い部分の厚さと前記周縁部の部分の平均厚さとの差Δtが、5〜30μmであること、を特徴とする高分子電解質型燃料電池。
  2. 前記差Δtが、5〜10μmであること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  3. 前記ガス拡散層の厚さが150〜200μmであること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  4. 前記膜電極接合体と、前記アノード側セパレータ板および前記カソード側セパレータ板との締結時に、前記ガス流路の断面積が、前記主面全体において略均一であること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  5. 前記主面に垂直な方向における断面が、前記主面の中心部から前記周縁部に向かって滑らかな曲線で構成され、かつ前記曲線が変極点を有すること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  6. 前記周縁部が、反応ガス用マニホールド孔および冷却水用マニホールド孔を有すること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  7. 前記アノード側セパレータ板および前記カソード側セパレータ板の少なくとも一方が、前記高分子電解質膜側の面と反対の面に、冷却水用流路を有すること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  8. 前記主面と前記周縁部との間に段差を有すること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  9. 前記周縁部の部分が前記主面の部分より薄くなるように構成されていること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  10. 前記主面における前記ガス流路が、前記主面の中心部に向かうにしたがって深くなるように構成されていること、を特徴とする請求項1に記載の高分子電解質型燃料電池。
  11. 水素イオン伝導性を有する高分子電解質膜ならびに前記高分子電解質膜を挟むアノードおよびカソードを有する2以上の膜電極接合体と、前記膜電極接合体と交互に積層された2以上のセパレータ板とを含み、前記アノードおよび前記カソードが、それぞれガス拡散層および前記高分子電解質膜に接する触媒層を含む高分子電解質型燃料電池であって、
    前記セパレータ板のうちの少なくとも1つが、アノード側セパレータ板とカソード側セパレータ板との組合せからなる複合セパレータ板であり、
    前記アノード側セパレータ板および前記カソード側セパレータ板が、それぞれ前記アノードおよび前記カソードと接する主面と、前記主面の周りを囲む周縁部とを含み、かつ略平面状に構成されており、
    前記主面が、それぞれ前記アノード側および前記カソード側に凸状に突出する形状を有し、かつ前記アノードおよび前記カソードにそれぞれ燃料ガスおよび酸化剤ガスを供給するためのガス流路を有し、
    前記主面の部分の平均厚さが前記周縁部の部分の平均厚さよりも厚く、かつ前記主面の部分の最も厚い部分の厚さと、前記周縁部の部分の平均厚さとの差Δtが、5〜30μmであること、を特徴とする高分子電解質型燃料電池。
  12. 前記差Δtが、5〜10μmであること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  13. 前記ガス拡散層の厚さが150〜200μmであること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  14. 前記2以上の膜電極接合体と、前記2以上のセパレータ板との締結時に、前記複合セパレータ板における前記ガス流路の断面積が、前記主面全体において略均一であること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  15. 前記主面に垂直な方向における断面が、前記主面の中心部から前記周縁部に向かって滑らかな曲線で構成され、かつ前記曲線が変極点を有すること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  16. 前記周縁部が、反応ガス用マニホールド孔および冷却水用マニホールド孔を有すること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  17. 前記アノード側セパレータ板と前記カソード側セパレータ板との間に、冷却水用流路を有すること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  18. 前記主面と前記周縁部との間に段差を有すること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  19. 前記周縁部の部分が前記主面の部分より薄くなるように構成されていること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
  20. 前記主面における前記ガス流路が、前記主面の中心部に向かうにしたがって深くなるように構成されていること、を特徴とする請求項11に記載の高分子電解質型燃料電池。
JP2005517559A 2004-02-02 2005-02-01 高分子電解質型燃料電池 Active JP4051076B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004026097 2004-02-02
JP2004026097 2004-02-02
PCT/JP2005/001417 WO2005074062A1 (ja) 2004-02-02 2005-02-01 高分子電解質型燃料電池

Publications (2)

Publication Number Publication Date
JPWO2005074062A1 JPWO2005074062A1 (ja) 2007-09-13
JP4051076B2 true JP4051076B2 (ja) 2008-02-20

Family

ID=34824011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517559A Active JP4051076B2 (ja) 2004-02-02 2005-02-01 高分子電解質型燃料電池

Country Status (7)

Country Link
US (1) US7407723B2 (ja)
EP (1) EP1724865B1 (ja)
JP (1) JP4051076B2 (ja)
CN (1) CN100442583C (ja)
AT (1) ATE492917T1 (ja)
DE (1) DE602005025455D1 (ja)
WO (1) WO2005074062A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199736B1 (ko) * 2005-09-06 2012-11-08 엔오케이 가부시키가이샤 연료전지용 구성 부품
JP5205721B2 (ja) * 2006-07-28 2013-06-05 トヨタ自動車株式会社 水素分離膜燃料電池の製造方法
JP5098305B2 (ja) * 2006-11-21 2012-12-12 パナソニック株式会社 燃料電池用セパレータおよび燃料電池セル
JP5098324B2 (ja) * 2006-12-19 2012-12-12 パナソニック株式会社 燃料電池用セパレータおよび燃料電池セル
TW200950198A (en) * 2008-05-29 2009-12-01 Coretronic Corp Planar fuel cell and components thereof
JP5422992B2 (ja) * 2008-12-24 2014-02-19 トヨタ自動車株式会社 燃料電池
KR101147199B1 (ko) * 2010-07-22 2012-05-25 삼성에스디아이 주식회사 막-전극 어셈블리, 연료전지 스택, 및 막-전극 어셈블리의 제조 방법
KR101924679B1 (ko) 2012-07-20 2018-12-03 아우디 아게 연료 전지 냉매 유동장 구성
JP6509538B2 (ja) * 2013-12-06 2019-05-08 三菱日立パワーシステムズ株式会社 燃料電池及びその製造方法並びにその製造に用いられる塗布装置
KR101816342B1 (ko) * 2014-12-12 2018-01-08 현대자동차주식회사 연료전지 스택
JP2018513912A (ja) * 2015-03-16 2018-05-31 カレラ コーポレイション イオン交換膜、電気化学システムおよび方法
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
JP6612814B2 (ja) * 2017-06-20 2019-11-27 本田技研工業株式会社 燃料電池スタックの製造方法及び製造装置
CN109524685B (zh) * 2018-12-05 2024-03-12 国家电投集团氢能科技发展有限公司 单体燃料电池和燃料电池电堆
JP7415839B2 (ja) * 2020-08-05 2024-01-17 トヨタ自動車株式会社 燃料電池用セパレータ及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166523A (ja) * 1991-12-12 1993-07-02 Tokyo Gas Co Ltd 平板状固体電解質型燃料電池
JPH0845517A (ja) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk 高分子電解質型燃料電池用シール構造及びその製造方法
EP1244166A4 (en) * 1999-10-14 2006-10-04 Matsushita Electric Ind Co Ltd POLYMERIC ELECTROLYTIC FUEL CELL
JP4487396B2 (ja) * 2000-08-14 2010-06-23 ソニー株式会社 燃料電池のスタック構造
JP2002216835A (ja) * 2001-01-19 2002-08-02 Sony Corp 燃料電池モジュール
JP4813707B2 (ja) * 2001-09-28 2011-11-09 本田技研工業株式会社 燃料電池スタック
JP4014855B2 (ja) * 2001-11-14 2007-11-28 本田技研工業株式会社 燃料電池スタック
JP3807370B2 (ja) * 2003-01-06 2006-08-09 株式会社日立製作所 燃料電池
JP2004288539A (ja) * 2003-03-24 2004-10-14 Equos Research Co Ltd 燃料電池スタック
JP2004355893A (ja) * 2003-05-28 2004-12-16 Nisshinbo Ind Inc 燃料電池セパレータの研磨方法

Also Published As

Publication number Publication date
DE602005025455D1 (de) 2011-02-03
EP1724865B1 (en) 2010-12-22
EP1724865A4 (en) 2009-06-24
WO2005074062A1 (ja) 2005-08-11
ATE492917T1 (de) 2011-01-15
US20060115710A1 (en) 2006-06-01
JPWO2005074062A1 (ja) 2007-09-13
CN100442583C (zh) 2008-12-10
EP1724865A1 (en) 2006-11-22
US7407723B2 (en) 2008-08-05
CN1910773A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
JP4051076B2 (ja) 高分子電解質型燃料電池
US6933070B2 (en) Polymer electrolyte fuel cell and conductive separator plate thereof
JP3596761B2 (ja) 高分子電解質型燃料電池
JP3841347B2 (ja) 高分子電解質型燃料電池
JP4252623B2 (ja) 高分子電解質型燃料電池
JP4226332B2 (ja) 高分子電解質型燃料電池
JP4077509B2 (ja) 固体高分子型燃料電池
WO2002015312A1 (fr) Pile a combustible a electrolyte polymere
JP4680338B2 (ja) 高分子電解質型燃料電池およびその締結方法
JP2002352817A (ja) 高分子電解質型燃料電池
JP3989771B2 (ja) 高分子電解質型燃料電池
WO2011059087A1 (ja) 燃料電池及び燃料電池を備えた車両
JP2003163015A (ja) 高分子電解質型燃料電池およびその導電性セパレータ板
JP2003123801A (ja) 高分子電解質型積層燃料電池
JP4439646B2 (ja) 導電性セパレータ、高分子電解質型燃料電池および高分子電解質型燃料電池の製造方法
JP4848824B2 (ja) 固体高分子型燃料電池
JP3685039B2 (ja) 固体高分子型燃料電池システム
KR100758773B1 (ko) 고분자 전해질형 연료전지
JP5136051B2 (ja) 燃料電池
JP4995063B2 (ja) 高分子電解質型燃料電池
JP4314696B2 (ja) 高分子電解質型燃料電池スタック
JP4659376B2 (ja) 高分子電解質型燃料電池
JP2004349013A (ja) 燃料電池スタック
JP2009277465A (ja) 高分子電解質形燃料電池スタック
JP2005108777A (ja) 燃料電池用セパレータおよびこれを用いた燃料電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071009

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

R150 Certificate of patent or registration of utility model

Ref document number: 4051076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6