JP4032930B2 - Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法 - Google Patents

Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法 Download PDF

Info

Publication number
JP4032930B2
JP4032930B2 JP2002321367A JP2002321367A JP4032930B2 JP 4032930 B2 JP4032930 B2 JP 4032930B2 JP 2002321367 A JP2002321367 A JP 2002321367A JP 2002321367 A JP2002321367 A JP 2002321367A JP 4032930 B2 JP4032930 B2 JP 4032930B2
Authority
JP
Japan
Prior art keywords
oxygen
containing gas
gas
degassing
top blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002321367A
Other languages
English (en)
Other versions
JP2004156083A (ja
Inventor
公治 山口
悟郎 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002321367A priority Critical patent/JP4032930B2/ja
Publication of JP2004156083A publication Critical patent/JP2004156083A/ja
Application granted granted Critical
Publication of JP4032930B2 publication Critical patent/JP4032930B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、RH脱ガス設備での酸素含有ガス上吹き装置およびそれを用いた精錬方法に関し、特に低炭素高マンガン鋼の溶製に際し、酸素含有ガス上吹きによる脱炭あるいは昇温処理中の鋼中マンガンの酸化ロスを低減して、安価に高品質の低炭素高マンガン鋼を溶製する技術に関する。
【0002】
【従来の技術】
従来から鋼材の強度を向上する目的でマンガンの添加が行なわれている。その際、用いられるマンガン含有合金鉄には、高炭素フェロマンガン,シリコンマンガン,中低炭素フェロマンガン,金属マンガン等があり、転炉等の製鋼炉で脱炭された後の溶鋼に添加されるが、これらは炭素含有量に差があり、一般的に炭素含有量の小さい合金鉄種ほどマンガン量あたりの単価が高くなる。
【0003】
したがって、できるだけ安価な高炭素フェロマンガンを使用することがコスト的には有利であるが、これは当然ながら要求される鋼材成分の制約を受ける。たとえば溶接性等の観点から炭素濃度を0.03質量%以下とする高張力厚鋼板や自動車用等で加工性を要求される炭素濃度 0.004質量%以下の極低炭素高張力薄鋼板等では、大量の金属マンガンを使用せざるを得ない。
【0004】
概して、鋼中マンガン濃度(質量%,以下[%Mn]と称する) 0.5%以上、鋼中炭素濃度(質量%,以下[%C]と称する)0.07%以下、[%Mn]/[%C]≧10の低炭素高マンガン鋼(極低炭素鋼も含む)の溶製においては、高炭素フェロマンガンの使用比率は低位であり、コストアップの要因となっていた。
そこで、転炉で脱炭した溶鋼に高炭素フェロマンガンを添加してマンガン濃度を上昇した後、RH真空脱ガス設備を用いて送酸脱炭を行なって炭素濃度を低減する方法も種々検討されている。
【0005】
RH真空脱ガス設備での酸素吹精では、特開平2-54714 号公報に開示されているように、脱ガス槽上部から水冷上吹きランスを挿入し、先端のラバールノズルを介して脱ガス槽内溶鋼面に酸素ガスを吹き付ける方法が広く普及しているが、マンガンは酸素と反応して酸化マンガンとなり易く、高[%Mn],低[%C]の場合ほどこの対策が重要となる。
【0006】
たとえば特開平6-271923号公報には、[%C]が0.05〜0.03%まで送酸脱炭を行なった時点で酸素ガスの供給を停止し、 その後は溶鋼中の溶存酸素と炭素による脱炭反応で炭素濃度を低下させることにより、マンガンの酸化ロスを防止する方法が開示されている。しかし、この方法では酸素供給停止後の脱炭速度が低下し、特に[%Mn]が1%以上の高マンガン鋼では鋼中酸素濃度が低位であるため脱炭速度の低下が著しく、大幅な処理時間の延長を招くことから、連続鋳造工程とのマッチングに問題があり実操業に適用することが困難であった。
【0007】
また特開平9-170013号公報には、極低炭素高マンガン鋼の溶製に際して、脱炭処理前の[%C]を0.06%以下とし、溶存酸素濃度を適宜測定しつつ、脱酸剤の添加または酸素ガスの吹き付けにより溶存酸素濃度を 200〜400ppmの範囲に制御することにより、マンガンの酸化ロスを防止する方法が開示されている。しかし、この方法では脱炭処理前の[%C]を低位に制限していることから、高炭素フェロマンガンの使用量を大幅に増加することができず、また送酸脱炭中には依然としてマンガンの酸化ロスが生じるという問題があった。
【0008】
このような送酸精錬中のマンガンの酸化ロスは、脱炭時のみならず、AlやSiを添加して酸素ガスを供給する昇温処理時にも、条件によっては問題となる。マンガンの酸化ロスは、マンガン歩留りを低下させて合金コストの増大を招くという問題ばかりでなく、取鍋スラグ中の酸化マンガン濃度の上昇をもたらし、これがRH処理後にも溶鋼中Alの酸化源となるため、生成したアルミナによる取鍋やタンディッシュのノズル詰まりを引き起こすという操業上の問題による損失も多大であった。
【0009】
マンガンの酸化ロスの少ないRH脱ガス設備での送酸方法については、上述のように送酸速度を制御する方法や溶鋼成分に応じて送酸タイミングを制御する方法の他、特開2001-158910 号公報に、ランス高さを制御する方法も示されている。これには、ランス高さHと脱ガス槽内溶鋼の浴深さH0 の比H/H0 が30を超える場合にマンガンの酸化ロスが増大することが示されているが、これは250ton規模のRH脱ガス設備としては一般的な約3mのランス高さに対して槽内浴深さを 0.1m以下と極端に浅くした場合、あるいは一般的な槽内浴深さ 0.2〜0.3 mに対してランス高さを6〜9m以上と極端に高くした場合といった、一般的な操業方法からは著しく乖離した極端な操業を行なった場合に酸化ロスが増大することを示しているに過ぎず、何ら通常の操業条件下でのマンガンの酸化ロス低減の指針となるものではなかった。
【0010】
RH脱ガス設備における上吹きランスは、通常、 脱ガス槽の上蓋中央に設置したシール孔を介して脱ガス槽内に挿入されて鉛直に昇降し、脱ガス槽底面の中心部に向けて鉛直下向きにガスを吹き付ける構造が一般的であり、稀に他装置との位置的な干渉の問題から脱ガス槽側面から斜め下向きに挿入して脱ガス槽底面の中心部に向けてガスを吹き付ける構造を取る場合もあるが、ランス孔のメンテナンスの観点からは上蓋にある前者の方が有利である。
【0011】
通常、 上吹きランスの挿入位置は、合金添加装置や排気ダクト,槽内監視装置等との位置関係から制約を受けるため極めて固定的であり、特開平9-143546号公報に開示されているような複数のランス孔を設けることは、大幅な設備コストの増大を招く上、ランス孔のメンテナンス作業の負荷も大きく、現実的な方法ではなかった。
【0012】
酸素ガスの吹き付けノズルは、1個のラバールノズルを中心軸が鉛直でかつ脱ガス槽の中心軸と一致するように、水冷ランス先端に設置することが一般的である。RH脱ガス設備の場合、脱ガス槽内でのスプラッシュ到達高さが高いためランス高さを高くせざるを得ず、そのような条件でも浴面への酸素ジェットの運動エネルギーを確保するためにラバールノズルが用いられている。
【0013】
また、酸素ジェットの噴出方向を脱ガス槽中心軸から変位させると、ランス高さが大きいために脱ガス槽底面近くでは酸素ジェットによる燃焼帯が脱ガス槽内壁面に大きく近づいて脱ガス槽内壁耐火物寿命を低減することから、上記のように噴出方向を脱ガス槽中心軸と一致させるようなノズル配置が採られている。
RH脱ガス設備では上昇側の環流管の方が耐火物損耗速度が大きいため、2本の環流管を交互に上昇管として使用して耐火物寿命の延長を図ることが一般的であり、脱ガス槽内での溶鋼の環流方向も一定ではない。したがって対称性の観点からも酸素ジェットの噴出方向を脱ガス槽中心軸に一致させることが妥当と考えらていた。
【0014】
【特許文献1】
特開平2-54714 号公報
【特許文献2】
特開平6-271923号公報
【特許文献3】
特開平9-170013号公報
【特許文献4】
特開2001-158910 号公報
【特許文献5】
特開平9-143546号公報
【0015】
【発明が解決しようとする課題】
本発明は、[%Mn]≧ 0.5%,[%C]≦0.07%,[%Mn]/[%C]≧10の低炭素高マンガン鋼(極低炭素鋼も含む)の溶製において、RH脱ガス設備での酸素吹精による脱炭処理時あるいは昇温処理時のマンガンロスを低減するとともに、スラグ中酸化マンガン濃度の上昇を抑制し、高炭素フェロマンガンの大量使用による合金コスト低減を可能とするRH脱ガス設備での酸素含有ガス上吹き装置およびそれによる精錬方法を提供するものである。
【0016】
【課題を解決するための手段】
本発明は、RH脱ガス設備で脱ガス槽内に挿入した水冷上吹きランスを介して酸素含有ガスを脱ガス槽内の溶鋼に吹き付ける酸素含有ガス上吹き装置において、前記水冷ランスの先端に脱ガス槽内溶鋼に向けて酸素含有ガスを吹き付けるように設置されたノズルの内側面に、該酸素含有ガス噴出方向に交差する方向にガスを吹き出す、ガス吹き出し口を1個または複数個設けたことを特徴とするRH脱ガス設備での酸素含有ガス上吹き装置である。
【0017】
また、前記酸素含有ガス上吹きノズルが末広のラバール型の形状であり、ガスジェットの噴出方向を変更するための上記ガス吹き出し口が該ラバール型ノズルのスロート部近傍の内側面に設置されていることを特徴とする上記のRH脱ガス設備での酸素含有ガス上吹き装置である。
また、転炉で粗脱炭された溶鋼を、RH脱ガス設備において、脱ガス槽に固定された一箇所のランス挿入位置より脱ガス槽内に挿入された水冷上吹きランスを介して酸素含有ガスを上吹きして脱炭および/または昇温する、溶鋼中Mn濃度が 0.5質量%以上の低炭素高マンガン鋼の精錬方法において、該酸素含有ガスの吹き付け中心位置を、脱ガス槽内底面での両還流管の中心位置よりも上昇側還流管に近い領域に位置させるように酸素含有ガスを上吹きすることを特徴とする低炭素高マンガン鋼の精錬方法である。
【0018】
また、上記のRH脱ガス設備での酸素含有ガス上吹き装置を用いて、上記酸素含有ガス上吹きノズルの内側面に設けられた該酸素含有ガスジェットの噴出方向を変更するための上記ガス吹き出し口からのガス流量あるいは圧力を調整することにより、該酸素含有ガスの吹き付け中心位置を、脱ガス槽内底面での両環流管の中心位置よりも上昇側環流管に近い領域に位置させるように酸素含有ガスを上吹きすることを特徴とする低炭素高マンガン鋼の精錬方法である。
【0019】
【発明の実施の形態】
発明者らはRH脱ガス設備における低炭素高マンガン鋼の送酸精錬時のマンガンロスを低減するための送酸方法について鋭意検討を重ねた結果、酸素ジェットの吹き付け位置を脱ガス槽内溶鋼中心部から上昇管側に変位させることにより、大幅にマンガンの酸化を抑制できることを見出した。
【0020】
以下、 図1に示したヒートサイズ300tonのRH脱ガス設備を用いて行なった検討例により、本発明について具体的に説明する。転炉で粗脱炭した溶鋼を取鍋に出鋼する際、合金を添加し、さらに出鋼後に取鍋スラグ上からAl滓を添加してスラグを還元して表1に示す溶鋼およびスラグ成分に調節した後、 図1に示したRH脱ガス装置により脱炭処理を行なった。なお、図1では脱ガス槽1の上部は図示を省略している。
【0021】
【表1】
Figure 0004032930
【0022】
初期状態で内径D= 2.4mの鉛直な円筒状の形状であり、水平な底面を有する脱ガス槽1下部には、底面の中心点Oを挟んで対称な位置に内径d= 0.7mの円筒状の環流管2,2’が鉛直下向きに設置されており、さらにその下側には同じく内径dの交換可能な浸漬管3,3’が接続されている。ここで2本の環流管2,2’の中心軸は脱ガス槽1の底面において、中心点Oを挟んで互いに距離L= 1.7mだけ離れた対称な位置となっている。
【0023】
上昇側の浸漬管3には環流用のガスを溶鋼5中に吹き込むための羽口4が設置されており、所定流量のArガスを流しつつ浸漬管3,3’を取鍋17内の溶鋼5に浸漬した後、 排気装置の運転を開始して溶鋼5を脱ガス槽1内に吸い上げるとともに、浸漬管3,3’の浸漬深さを所定の深さに調節した。このとき脱ガス槽1内の溶鋼浴面は、取鍋17内の溶鋼5浴面から大気圧と脱ガス槽内圧力の差圧に相当する溶鋼静圧分の位置まで上昇している。本検討にあたっての操業ではこの脱ガス槽内の計算浴面から推定される脱ガス槽内浴深さhが定常状態において 0.3mとなるように浸漬管3,3’の浸漬深さを調節した。
【0024】
脱ガス槽1の中心軸上に設置された昇降可能な水冷上吹きランス7の先端には、中心軸が鉛直と角度θ(以下、偏向角度と称する)をなすように上昇管(すなわち上昇側の浸漬管3および環流管2からなる溶鋼5の流路)側に向けてラバールノズルを有する酸素含有ガス上吹きノズル8が設置されており、偏向角度θを−10°〜+10°(+が上昇管方向,−が下降管方向)の範囲で変更して、低炭素高マンガン鋼の脱炭処理における各成分変化、および長期間使用時の耐火物損耗への影響を調査した。
【0025】
水冷上吹きランス7を脱ガス槽底面18から所定高さH= 3.5mまで下降しつつ送酸を開始し、所定高さHに達して以後は一定の所定送酸速度で送酸を行ない、溶鋼中炭素濃度が 0.025〜0.03質量%の範囲で水冷上吹きランス7を上昇して送酸を終了した。送酸終了後さらに約3分間脱炭処理を継続した後、Alを投入して脱炭処理を終了し、さらに脱酸処理および成分調整を約10分間で行なってRH吹錬を終了した。
【0026】
図2にノズルの偏向角度θとRH処理前後での溶鋼中マンガン濃度の低下量の関係を示す。ノズルの偏向角度θが大きくなり酸素含有ガスの吹き付け中心位置が脱ガス槽1の中心点Oから上昇管方向に移動するにしたがい、マンガンロスが低減することが分かる。偏向角度θが 2.5°程度の微小な偏向角度においても効果が見られ、これは脱ガス槽内の溶鋼浴面において酸素含有ガスの吹き付け中心位置すなわちノズル中心軸の延長線が、脱ガス槽1の内径Dの約0.06倍だけあるいは環流管距離Lの約0.08倍だけ上昇管方向に移動することで、マンガンロス低減の効果が得られていることを示している。
【0027】
酸素含有ガスジェットが脱ガス槽内の溶鋼浴面に吹き付けられている領域は火点と言われる活発な反応領域を形成し、溶鋼成分の酸化や溶鋼中への酸素の溶解が進行することが知られている。低炭素高マンガン鋼のRH送酸脱炭では、火点において脱炭反応とともにマンガンの酸化反応も起こり、 特に溶鋼中炭素濃度が低下するほど火点において脱炭に消費される酸素の比率が低下して、マンガンの酸化速度が増大するものと考えられる。
【0028】
また一旦生成した酸化マンガンは、脱ガス槽内では減圧下のため溶鋼中の炭素により還元される反応が起こり得るが、溶鋼の環流とともに取鍋内に流入してしまうと、炭素による還元反応は進行せず、解離して溶鋼中へ溶解する速度も遅いため、取鍋スラグ6の中に浮上してスラグ中酸化マンガン濃度を上昇する結果となると考えられる。
【0029】
酸素含有ガスの吹き付け中心位置を脱ガス槽1の中心点Oから上昇管方向に移動した場合には、火点は図1(a) において9として示すように上昇管側の環流ガス気泡による強攪拌領域10に近づくことから、火点において反応に寄与する溶鋼の供給速度が大きくなると考えられ、 火点で脱炭および溶鋼中酸素濃度上昇に消費される酸素の比率が増大し、その結果、火点における酸化マンガンの生成速度が低減したものと考えられる。
【0030】
さらに、火点において生成した酸化マンガンの脱ガス槽内における滞留時間も増大することから、脱ガス槽内での溶鋼中炭素による酸化マンガンの還元反応(すなわち酸化マンガンによる溶鋼の脱炭反応)もより進むものと考えられ、全体として同一脱炭量に対して大幅にマンガンロスが低減する結果となったと推定される。
【0031】
耐火物損耗への影響は、酸素含有ガス上吹きノズル8の偏向角度θを一定として約200 チャージの操業を行なった後、 脱ガス槽1の耐火物残厚を測定して評価した。送酸精錬の実施比率は、何れの偏向角度θの場合も50%程度であったが、脱ガス処理時間あたりの最大耐火物損耗厚さを耐火物損耗指数として比較して図3に示した。最大損耗部位は何れも上昇管側の脱ガス槽1の下部内壁であるが、酸素含有ガス上吹きノズル8の偏向角度θを大きくするにしたがい耐火物損耗指数が増大する傾向であり、酸素含有ガスジェットを常時偏向させて上吹きすることは耐火物修繕コストの増大を招く問題があることが分かる。
【0032】
しかし、水冷上吹きランス7やその先端を頻繁に交換することは、設備の稼動率を低下させるため困難であり、酸素含有ガスジェットの偏向角度θを簡便に変更する方法が望まれた。
発明者らは種々の方法を検討した結果、図4に示すように酸素含有ガス上吹きノズル8の内側面に、酸素含有ガス噴出方向に交差するようにガスを吹き出す、ガス吹き出し口13を設けたガス上吹き装置を考案した。そして、このガス吹き出し口13から吹き出すガス(以下、作動ガスと称する)の流量を変更することにより、酸素含有ガスジェットの噴出方向を変更可能とするノズル構造を考案するに至った。
【0033】
RH脱ガス設備における水冷上吹きランスとしては、設備の特性として溶鋼のスプラッシュを避けるために浴面からの距離が大きい条件で送酸を行なうことから、十分な運動エネルギーを持って酸素含有ガスジェットを浴面に到達させるように、ノズルの背圧と雰囲気圧力から開口比を適切に設計したラバールノズル11を用いることが有効とされている。特に、このラバールノズル11の場合には、図4に示すようにラバールノズル11の内壁のスロート部12の付近にこの作動ガスの出口13を設けることが酸素含有ガスジェットの偏向角度θを調節するのに効果的である。
【0034】
図4の例では、内径ds のスロート部12の内壁中央に内径da の円形断面の作動ガス出口13を設けて、ラバールノズル11の中心軸14に向けて、これと直交するように作動ガス15を噴出する構造としている。ラバールノズル11の設計条件で主ガス16を供給しつつ、作動ガス15を流すと、酸素含有ガスジェットの流速ピーク方向17がノズル中心軸14から次第に作動ガス出口13の方向に偏向する。
【0035】
a =ds /4で主ガス16流量を一定とした場合の、作動ガス15の主ガス16に対する流量比率(標準状態換算での流量比率:すなわち(Nm3 /min )/(Nm3 /min ))と、酸素含有ガスジェットの偏向角度θ(すなわち酸素含有ガスジェットの流速ピーク方向とノズル中心軸方向の作る角度)との関係を図5に示す。主ガス16の流量に対して少量の作動ガス15の流量でも、ある程度の偏向角度θが得られ、これをRH脱ガス設備における低炭素高マンガン鋼の送酸精錬に適用することによりマンガンロスの低減が期待されることが分かる。
【0036】
上記の例では、スロート部12の内壁中央に円形断面の作動ガス出口13を設けて、ラバールノズル11の中心軸14に向けて、これと直交するように作動ガス15を噴出する場合について示したが、作動ガス出口13は図6(a) に示すように複数個を並べても良く、また図6(b) に示すように円形断面でなく長円断面や楕円断面,矩形断面等でも良い。
【0037】
さらに作動ガス出口13の位置も、図6(c) に示すように必ずしもスロート部12に限定されず、スロート部12の前後の断面径がds の 1.1倍程度以内の範囲に設けていても同様の効果が得られる。また作動ガス15の噴出方向も必ずしもラバールノズル11の中心軸14に向けて、これと直交する方向でなくても良く、図6(c) に示した例のように中心軸14に対して斜めに吹き込んだり、 図6(d) に示すように捻じれの方向に吹き込んだりしても良い。
【0038】
上記のノズル構造をRH脱ガス設備の水冷上吹きランス7に適用する場合には、酸素含有ガスジェットの噴出方向を脱ガス槽1の中心軸方向から両方の環流管2,2’側に偏向できるように、図7(a) に示すように鉛直下向きのラバールノズル11のスロート部12の両環流管側の側面に作動ガス出口13を設けて、2系統の作動ガス15流量を調節するようにしても良いし、また予め片方の環流管側に酸素含有ガス上吹きノズル8の中心軸を偏向して設置し、他方の環流管側にも酸素含有ガスジェットの噴出方向を変更可能とするように作動ガス出口13を設けても良い。
【0039】
さらに酸素含有ガス上吹きノズル8の断面形状も必ずしも円形である必要はなく、図7(b) に示したような楕円あるいは長円等の断面形状のノズルを、断面の長軸が概ね2本の環流管を結ぶ方向となるように設置することも、酸素含有ガスジェットの噴出方向の可動範囲を大きくするのに効果がある。ただし、この場合もノズル断面積はラバールノズル11の場合と同様に、ガスの適正な膨張を考慮した末広がりの形状であることが、酸素含有ガスジェットの運動エネルギーを適正に保つために望ましい。
【0040】
作動ガス15としては酸素含有ガスを用いても良いが、アルゴンガスや窒素ガスを用いても同様に酸素含有ガスジェットの噴出方向を変化させることができる。
以上では低炭素高マンガン鋼のRH脱炭精錬時におけるマンガンロス低減の効果について詳述したが、同様にアルミニウムを酸化して溶鋼を昇温する送酸精錬時にもマンガンロスが低減しており、同様の機構で火点9でのマンガンの酸化が抑制されているものと考えられる。
【0041】
【実施例】
以下、 図1に示すヒートサイズ300tonのRH脱ガス設備の例に基づいて、本発明について具体的に説明する。なお図1中の水冷上吹きランス7の詳細を図8に示す。
転炉で脱炭した溶鋼を取鍋に出鋼する際、高炭素フェロマンガンを添加し、さらに出鋼後に取鍋スラグ上からAl滓を添加して、スラグを還元して表1に示す溶鋼およびスラグ成分に調節した後、図1と同様のRH脱ガス設備(ただし水冷上吹きランス7のガス上吹き装置は図8に示すものを使用した)により脱炭処理を行なった。
【0042】
初期状態で内径 2.4mの鉛直な円筒状の形状であり、水平な底面を有する脱ガス槽1下部には、底面の中心点Oを挟んで対称な位置に内径 0.7mの円筒状の環流管2,2’が鉛直下向きに設置されており、さらにその下側には同一内径の交換可能な浸漬管3,3’が接続されている。ここで2本の環流管2,2’の中心軸は脱ガス槽1の底面の中心点Oを挟んで互いに 1.7mだけ離れた対称な位置となっている。
【0043】
上昇側の浸漬管3には環流用のガスを溶鋼中に吹き込むための羽口4が設置されており、Arガスを2Nm3 /min で流しつつ浸漬管3,3’を取鍋内の溶鋼5に浸漬した後、排気装置の運転を開始して溶鋼5を脱ガス層1の内部に吸い上げるとともに、浸漬管3,3’の浸漬深さを所定の深さに調節した。このとき脱ガス槽内の溶鋼浴面は、取鍋内の溶鋼浴面から大気圧と脱ガス槽内圧力の差圧に相当する溶鋼静圧分の位置まで上昇するとして推定される脱ガス槽内浴深さhが定常状態において 0.3mとなるように浸漬管3,3’の浸漬深さを調節した。
【0044】
脱ガス槽1の中心軸上に設置された昇降可能な水冷上吹きランス7の先端に設けた酸素含有ガス上吹きノズル8には、図8に示すように、直径ds のスロート部12に内径da の作動ガス出口13が上昇管側に、作動ガス出口13’が下降管側に設置されており、どちらか一方から流量あるいは圧力を制御しつつ作動ガス15を吹き込み可能としている。上昇管と下降管を交換する場合は、反対側の作動ガス出口13’を用いて、常に上昇管側から作動ガス15を吹き込むようにした。酸素含有ガス上吹きノズル8の開口比(すなわち出口断面積/スロート断面積)は約8とし、da /ds は1/4とした。
【0045】
作動ガス出口13,13’の切り換えは、遮断弁21,22の一方を開、他方を閉とすることにより行ない、作動ガスの流量の調整は流量調節弁19または20の開度を調整することによって行なった。
水冷上吹きランス7を脱ガス槽1底面から高さ4mまで下降しつつ主ガス16として酸素含有ガスの供給を開始し、ランス高さ4mに達した後、作動ガス15として総酸素供給速度35Nm3 /min の約3%の供給速度で酸素含有ガスの供給を開始した。中間サンプルの鋼中炭素濃度分析値や排ガス発生量等の情報に基づいて処理中の溶鋼中炭素濃度を推定し、 0.025〜0.03質量%の範囲で水冷上吹きランス7を上昇して送酸を終了した。
【0046】
送酸終了後、さらに約3分間脱炭処理を継続した後、Alを投入して脱炭処理を終了し、その時点の溶鋼成分分析値を基にさらに表1に示した目標成分に調整を行ない、RH精錬を終了した。マンガンの成分調整には、炭素およびマンガン濃度に応じて金属マンガンおよび低炭素フェロマンガン,高炭素フェロマンガンを使用した。さらにRH処理終了後、取鍋17内にCaSiワイヤを添加して鋼中カルシウム濃度を6〜12質量ppm の範囲に調節した後、 連続鋳造を行なった。
【0047】
低炭素高マンガン鋼以外の送酸精錬時には、実質的に作動ガス15の供給は行なわず、50N-liter/min 程度の少量のパージ用窒素ガスを各作動ガス流路に流した。以上を発明例とする。
一方、 比較例として、作動ガス流路がない他は発明例と同一形状の鉛直下向のラバールノズル8を設置した水冷上吹きランス7を使用して、同様の処理を行なった。
【0048】
各場合のマンガン調節用合金鉄の平均使用量等を表2に示した。
【0049】
【表2】
Figure 0004032930
【0050】
本発明法では高価な金属マンガンや低炭素フェロマンガンの使用量が大幅に低減するとともに、送酸脱炭時間も短縮され、低炭素高マンガン鋼の脱炭精錬を効率良く行なえるようになった。また、このような低炭素高マンガン鋼の構成比率は5%程度であり、本発明法を長期間にわたって実施しても耐火物寿命への悪影響は認められなかった。さらに比較例では、連続鋳造中に溶鋼中Ca,Alの酸化が進行し、取鍋ノズル詰りにより鋳造歩留りが低下する問題が頻発したが、本発明法では安定鋳造が可能であった。
【0051】
【発明の効果】
本発明では、高価な金属マンガン,低炭素フェロマンガンの使用量を低減し、 安価な高炭素フェロマンガンを使用して、マンガンの酸化ロスを抑制しつつ高速で脱炭処理を行なうことにより、低炭素高マンガン鋼を低コストで効率良く製造することが可能となった。
【図面の簡単な説明】
【図1】本発明を適用する装置を示す模式図である。
【図2】偏向角度とマンガンロスとの関係を示すグラフである。
【図3】偏向角度と耐火物損耗指数との関係を示すグラフである。
【図4】本発明の水冷上吹きランスの構造を模式的に示す断面図である。
【図5】本発明の水冷上吹きランスにおける作動ガス流量と偏向角度との関係を示すグラフである。
【図6】本発明の水冷上吹きランスの構造を示す模式図である。
【図7】本発明の水冷上吹きランスの構造を示す模式図である。
【図8】本発明の水冷上吹きランスの構造を示す模式図である。
【符号の説明】
1 脱ガス槽
2 環流管
2’環流管
3 浸漬管
3’浸漬管
4 羽口
5 溶鋼
6 取鍋スラグ
7 水冷上吹きランス
8 酸素含有ガス上吹きノズル
9 火点
10 強攪拌領域
11 ラバールノズル
12 スロート部
13 作動ガス出口
14 中心軸
15 作動ガス
16 主ガス
17 取鍋
18 脱ガス槽底面
19 流量調節弁
20 流量調節弁
21 遮断弁
22 遮断弁

Claims (4)

  1. RH脱ガス設備で脱ガス槽内に挿入した水冷上吹きランスを介して酸素含有ガスを脱ガス槽内の溶鋼に吹き付ける酸素含有ガス上吹き装置において、前記水冷ランスの先端に脱ガス槽内溶鋼に向けて酸素含有ガスを吹き付けるように設置されたノズルの内側面に、該酸素含有ガス噴出方向に交差する方向にガスを吹き出す、ガス吹き出し口を1個または複数個設けたことを特徴とするRH脱ガス設備での酸素含有ガス上吹き装置。
  2. 前記酸素含有ガス上吹きノズルが末広のラバール型の形状であり、ガスジェットの噴出方向を変更するための上記ガス吹き出し口が該ラバール型ノズルのスロート部近傍の内側面に設置されていることを特徴とする請求項1記載のRH脱ガス設備での酸素含有ガス上吹き装置。
  3. 転炉で粗脱炭された溶鋼を、RH脱ガス設備において、脱ガス槽に固定された一箇所のランス挿入位置より脱ガス槽内に挿入された水冷上吹きランスを介して酸素含有ガスを上吹きして脱炭および/または昇温する、溶鋼中Mn濃度が 0.5質量%以上の低炭素高マンガン鋼の精錬方法において、該酸素含有ガスの吹き付け中心位置を、脱ガス槽内底面での両還流管の中心位置よりも上昇側還流管に近い領域に位置させるように酸素含有ガスを上吹きすることを特徴とする低炭素高マンガン鋼の精錬方法。
  4. 請求項1あるいは請求項2に記載のRH脱ガス設備での酸素含有ガス上吹き装置を用いて、上記酸素含有ガス上吹きノズルの内側面に設けられた該酸素含有ガスジェットの噴出方向を変更するための上記ガス吹き出し口からのガス流量あるいは圧力を調整することにより、該酸素含有ガスの吹き付け中心位置を、脱ガス槽内底面での両環流管の中心位置よりも上昇側環流管に近い領域に位置させるように酸素含有ガスを上吹きすることを特徴とする請求項3記載の低炭素高マンガン鋼の精錬方法。
JP2002321367A 2002-11-05 2002-11-05 Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法 Expired - Lifetime JP4032930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321367A JP4032930B2 (ja) 2002-11-05 2002-11-05 Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321367A JP4032930B2 (ja) 2002-11-05 2002-11-05 Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法

Publications (2)

Publication Number Publication Date
JP2004156083A JP2004156083A (ja) 2004-06-03
JP4032930B2 true JP4032930B2 (ja) 2008-01-16

Family

ID=32801942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321367A Expired - Lifetime JP4032930B2 (ja) 2002-11-05 2002-11-05 Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法

Country Status (1)

Country Link
JP (1) JP4032930B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083783A1 (ja) 2006-01-20 2007-07-26 Acutelogic Corporation 光学的ローパスフィルタおよびこれを用いた撮像装置
JP5061535B2 (ja) * 2006-08-31 2012-10-31 Jfeスチール株式会社 Rh真空脱ガス装置における溶鋼の精錬方法
JP5987813B2 (ja) * 2013-11-12 2016-09-07 Jfeスチール株式会社 真空脱ガス設備における溶鋼の脱炭精錬方法
JP6435983B2 (ja) * 2015-04-30 2018-12-12 新日鐵住金株式会社 溶鋼の精錬処理方法
JP6911656B2 (ja) * 2017-09-12 2021-07-28 日本製鉄株式会社 Rh装置の上吹きランス及び二次精錬方法
KR102344147B1 (ko) 2017-12-22 2021-12-27 제이에프이 스틸 가부시키가이샤 용철의 송산 정련 방법 및 상취 랜스
JP7024600B2 (ja) * 2018-05-23 2022-02-24 日本製鉄株式会社 精錬用ランス、精錬用ランス装置、及びrh型精錬装置並びに極低硫溶鋼の製造方法
JP7200649B2 (ja) * 2018-12-14 2023-01-10 日本製鉄株式会社 精錬用ランス装置、電気炉および製鋼方法
JP6935853B2 (ja) * 2019-04-09 2021-09-15 Jfeスチール株式会社 ランスノズル
JP7067585B2 (ja) * 2019-05-20 2022-05-16 Jfeスチール株式会社 上吹きランスおよびそれを用いた溶鉄の精錬方法
KR102652520B1 (ko) * 2020-07-09 2024-03-28 제이에프이 스틸 가부시키가이샤 용강의 정련 방법

Also Published As

Publication number Publication date
JP2004156083A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4032930B2 (ja) Rh脱ガス設備での酸素含有ガス上吹き装置および低炭素高マンガン鋼の精錬方法
EP3730632A1 (en) Method for oxygen transmission smelting of molten iron, and top-blow lance
JPH10176212A (ja) 溶鋼の排出時におけるスラグ流出防止方法
JP5544807B2 (ja) 精錬用上吹きランス及び転炉精錬方法
JP7003947B2 (ja) 上吹きランスおよび溶鉄の精錬方法
CN111032248B (zh) 钢的连续铸造方法及薄钢板的制造方法
JP3580177B2 (ja) 含Cr溶鋼の脱炭精錬方法
JP2007031820A (ja) 溶鋼の真空脱ガス処理方法
JP2582316B2 (ja) 真空精錬炉を用いた低炭素鋼の溶製法
JP4206736B2 (ja) 上吹きランスとそれを用いた転炉操業方法
JP5061535B2 (ja) Rh真空脱ガス装置における溶鋼の精錬方法
JP2012082492A (ja) 転炉精錬方法
JP4036167B2 (ja) 溶鋼昇熱方法及び溶鋼昇熱装置
JP6358039B2 (ja) 溶鋼の脱硫方法
JP2985720B2 (ja) 極低炭素鋼の真空精錬方法
JP2773883B2 (ja) 真空脱ガス処理による極低炭素鋼の溶製方法
JP4470673B2 (ja) 溶鋼の真空脱炭精錬方法
JP2012082491A (ja) 転炉精錬方法
JPH0665625A (ja) 溶鋼の脱硫方法
JP2018003132A (ja) 溶銑の精錬方法
KR19980052518A (ko) 극저탄소강을 제조하기 위한 용강의 정련방법
JP4466287B2 (ja) 減圧下における溶鋼の精錬方法及び精錬用上吹きランス
JP2940358B2 (ja) 清浄鋼の溶製方法
JPH07238312A (ja) 極低炭素鋼の製造方法及び真空脱ガス装置
JP5573721B2 (ja) 真空脱ガス装置の耐火物の溶損抑制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4032930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term