JP4004842B2 - 放射線固体検出器 - Google Patents

放射線固体検出器 Download PDF

Info

Publication number
JP4004842B2
JP4004842B2 JP2002121625A JP2002121625A JP4004842B2 JP 4004842 B2 JP4004842 B2 JP 4004842B2 JP 2002121625 A JP2002121625 A JP 2002121625A JP 2002121625 A JP2002121625 A JP 2002121625A JP 4004842 B2 JP4004842 B2 JP 4004842B2
Authority
JP
Japan
Prior art keywords
charge
electrode
recording
reading
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121625A
Other languages
English (en)
Other versions
JP2003134395A (ja
Inventor
正春 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002121625A priority Critical patent/JP4004842B2/ja
Priority to US10/216,820 priority patent/US6724006B2/en
Priority to EP02018117A priority patent/EP1286182B1/en
Priority to DE60216201T priority patent/DE60216201T2/de
Publication of JP2003134395A publication Critical patent/JP2003134395A/ja
Application granted granted Critical
Publication of JP4004842B2 publication Critical patent/JP4004842B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/246Measuring radiation intensity with semiconductor detectors utilizing latent read-out, e.g. charge stored and read-out later

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照射された放射線の線量或いは該放射線の励起により発せられる光の光量に応じた量の電荷を潜像電荷として蓄積する蓄電部を有する放射線固体検出器に関するものである。
【0002】
【従来の技術】
今日、医療診断等を目的とする放射線撮影において、放射線を検出して得た電荷を潜像電荷として蓄電部に一旦蓄積し、該蓄積した潜像電荷を放射線画像情報を表す電気信号に変換して出力する静電記録体を備えた放射線固体検出器(以下単に検出器ともいう)を使用する放射線画像情報記録読取装置が各種提案されている。この装置において使用される放射線固体検出器としては、種々のタイプのものが提案されているが、蓄積された電荷を外部に読み出す電荷読出プロセスの面から、検出器に読取光(読取用の電磁波)を照射して読み出す光読出方式のものがある。
【0003】
本出願人は、読出しの高速応答性と効率的な信号電荷の取り出しの両立を図ることができる光読出方式の放射線固体検出器として、特開2000−105297号公報、特開2000−284056号公報、特開2000−284057号公報において、記録用の放射線或いは該放射線の励起により発せられる光(以下記録光という)に対して透過性を有する第1電極、記録光を受けることにより導電性を呈する記録用光導電層、第1電極に帯電される電荷と同極性の電荷に対しては略絶縁体として作用し、かつ、該同極性の電荷と逆極性の電荷に対しては略導電体として作用する電荷輸送層、読取光(読取用の電磁波)の照射を受けることにより導電性を呈する読取用光導電層、読取光に対して透過性を有する第2電極を、この順に積層して成り、記録用光導電層と電荷輸送層との界面に形成される蓄電部に、画像情報を担持する信号電荷(潜像電荷)を蓄積する静電記録体を提案している。
【0004】
そして、上記特開2000−284056号公報および特開2000−284057号公報においては、特に、読取光に対して透過性を有する第2電極を多数の読取光に対して透過性を有する光電荷対発生線状電極からなるストライプ電極とすると共に、蓄電部に蓄積された潜像電荷の量に応じたレベルの電気信号を出力させるための多数の光電荷対非発生線状電極を、前記光電荷対発生線状電極と交互にかつ互いに平行となるように設けた静電記録体を提案している。
【0005】
このように、多数の光電荷対非発生線状電極からなるサブストライプ電極を第2電極に設けることにより、蓄電部とサブストライプ電極との間に新たなコンデンサが形成され、記録光によって蓄電部に蓄積された潜像電荷と逆極性の輸送電荷を、読取りの際の電荷再配列によってこのサブストライプ電極にも帯電させることが可能となる。これにより、読取用光導電層を介してストライプ電極と蓄電部との間で形成されるコンデンサに配分される前記輸送電荷の量を、このサブストライプ電極を設けない場合よりも相対的に少なくすることができ、結果として検出器から外部に取り出し得る信号電荷の量を多くして読取効率を向上させると共に、読出しの高速応答性と効率的な信号電荷の取り出しの両立をも図ることができるようになっている。
【0006】
【発明が解決しようとする課題】
ところで、上記のようなサブストライプ電極を設けた静電記録体において、検出信号のS/Nを向上させるために種々の方法が提案されている。
【0007】
例えば、読取用光導電層を介してストライプ電極と蓄電部との間で形成されるコンデンサに配分される前記輸送電荷の量よりも、読取用光導電層を介してサブストライプ電極と蓄電部との間で形成されるコンデンサに配分される前記輸送電荷の量が多いほど、外部に取り出し得る信号電荷の量が多くなり読取効率が向上するため、光電荷対発生線状電極と光電荷対非発生線状電極とのペアを1周期とするときこの周期を最適化したり、光電荷対発生線状電極の幅に対する光電荷対非発生線状電極の幅の比を最適化して読取効率の向上させてS/Nを向上させる方法等が提案されているが、更なるS/Nの向上が望まれている。
【0008】
本発明は、上記事情に鑑みてなされたものであり、サブストライプ電極を設けた静電記録体を備えた放射線固体検出器において、さらにS/Nを向上させることができる放射線固体検出器を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明による放射線固体検出器は、記録光に対して透過性を有する第1の電極と、記録光の照射を受けることにより光導電性を呈する記録用光導電層と、記録光の光量に応じた量の電荷を潜像電荷として蓄積する蓄電部と、読取光の照射を受けることにより光導電性を呈する読取用光導電層と、読取光に対して透過性を有する多数の光電荷対発生線状電極と、多数の光電荷対非発生線状電極とを備え、光電荷対発生線状電極と光電荷対非発生線状電極とが交互に配置された第2の電極とを、この順に積層してなる静電記録体を備えた放射線固体検出器において、光電荷対発生線状電極に接続された光電荷対発生線状電極用電流検出手段と、光電荷対非発生線状電極に接続された光電荷対非発生線状電極用電流検出手段と、光電荷対発生線状電極用電流検出手段により検出された信号および光電荷対非発生線状電極用電流検出手段により検出された信号を、いずれか一方を反転させて合成する信号合成手段とを備えてなることを特徴とするものである。
【0010】
ここで、「静電記録体」は、第1の電極、記録用光導電層、読取用光導電層および第2の電極をこの順に有すると共に、記録用光導電層と読取用光導電層との間に蓄電部が形成されて成るものであって、さらに他の層や微小導電部材(マイクロプレート)等を積層して成るものであってもかまわない。また、この放射線固体検出器は、放射線画像情報を担持する光(放射線もしくは放射線の励起により発生した光)を照射することによって、画像情報を静電潜像として記録させることができるものであればどのようなものでもよい。
【0011】
なお、上記蓄電部を形成する方法としては、電荷輸送層を設けてこの電荷輸送層と記録用光導電層との界面に蓄電部を形成する方法(本出願人による特開2000−105297号公報、特開2000−284056号公報参照)、トラップ層を設けこのトラップ層内若しくはトラップ層と記録用光導電層との界面に蓄電部を形成する方法(例えば、米国特許第4535468号明細書参照)、或いは潜像電荷を集中させて蓄電する微小導電部材等を設ける方法(本出願人による特開2000−284057号公報参照)等を用いるとよい。
【0012】
また、「読取光に対して透過性を有する光電荷対発生線状電極」とは、読取光を透過させ読取用光導電層に電荷対を発生せしめる電極である。また、「光電荷対非発生線状電極」とは、蓄電部に蓄積された潜像電荷の量に応じたレベルの電気信号を出力させるための電極であり、読取光に対して遮光性を有することが望ましいが、光電荷対非発生線状電極と読取光照射手段との間に遮光性を有する遮光膜等を設ける場合は、光電荷対非発生線状電極は必ずしも遮光性を有する必要はない。ここで、「遮光性」とは、読取光を完全に遮断して全く電荷対を発生させないものに限らず、その読取光に対する多少の透過性は有していてもそれにより発生する電荷対が実質的に問題とならない程度のものも含むものとする。従って、読取用光導電層に発生する電荷対は全て光電荷対発生線状電極を透過した読取光のみによるものとは限らず、光電荷対非発生線状電極を僅かに透過した読取光によっても読取用光導電層において電荷対が発生しうるものとする。
【0013】
さらに、「読取光」は、静電記録体における電荷の移動を可能として、電気的に静電潜像を読み取ることを可能とするものであればよく、具体的には光や放射線等である。
【0014】
【発明の効果】
本発明による放射線固体検出器によれば、光電荷対発生線状電極に接続された光電荷対発生線状電極用電流検出手段により検出した信号と、光電荷対非発生線状電極に接続された光電荷対非発生線状電極用電流検出手段により検出した信号とを、信号合成手段によりいずれか一方を反転させて合成するが、このとき、光電荷対発生線状電極用電流検出手段により検出される潜像電荷に応じた信号と、光電荷対非発生線状電極用電流検出手段により検出される潜像電荷に応じた信号とは、互いに反対の極性でほぼ同じ波形をしたものであり、検出回路自体もしくは外部の回路や電源等から電磁誘導的に混入し両検出手段に共通に検出されるコモンモードノイズは同じ極性でかつほぼ同じ波形をしたものであるため、いずれか一方を反転して合成することにより、潜像電荷に応じた信号はほぼ2倍になり、コモンモードノイズは相殺されてなくなる。また、アンプ自体で発生し両検出手段に検出されるホワイトノイズN、Nは帯域内では周波数的にフラットであり、同程度のホワイトノイズN、N(N≒N≒Nとする)を合成した場合は(1)式に示すように約√2倍程度となる。
【0015】
そのため、光電荷対発生線状電極用電流検出手段により検出された信号および光電荷対非発生線状電極用電流検出手段により検出された信号を、いずれか一方を反転させて合成することにより、S/Nを√2倍以上向上させることができる。
【0016】
【数1】
Figure 0004004842
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の第1の実施の形態による放射線固体検出器に備えられた静電記録体の概略構成を示す図であり、図1(A)は静電記録体20aの斜視図、図1(B)は静電記録体20aのQ矢指部のXZ断面図、図1(C)は静電記録体20aのP矢指部のXY断面図である。図2は放射線固体検出器を用いた記録読取システムの概略図である。なお、図2中においては、支持体18、絶縁層30および遮光膜31は省略している。
【0018】
本発明の第1の実施の形態の放射線固体検出器は、静電記録体20aと、信号検出手段70とからなる。
【0019】
静電記録体20aは、被写体を透過したX線等の放射線の画像情報を担持する記録光(放射線もしくは放射線の励起により発生した光)に対して透過性を有する第1電極21、この第1電極21を透過した記録光の照射を受けることにより電荷対を発生し導電性を呈する記録用光導電層22、前記電荷対の内の潜像極性電荷(例えば負電荷)に対しては略絶縁体として作用し、かつ該潜像極性電荷と逆極性の輸送極性電荷(上述の例においては正電荷)に対しては略導電体として作用する電荷輸送層23、読取光の照射を受けることにより電荷対を発生して導電性を呈する読取用光導電層24、ストライプ電極26およびサブストライプ電極27を備えた第2電極25、読取光に対して透過性を有する絶縁層30、読取光に対して透過性を有する支持体18をこの順に配してなるものである。記録用光導電層22と電荷輸送層23との界面に、記録用光導電層22内で発生した画像情報を担持する潜像極性電荷を蓄積する2次元状に分布した蓄電部29が形成される。
【0020】
支持体18としては、読取光に対して透明なガラス基板等を用いることができる。また、読取光に対して透明であることに加えて、その熱膨張率が読取用光導電層24の物質の熱膨張率と比較的近い物質を使用するとより望ましい。例えば、読取用光導電層24としてa−Se(アモルファスセレン)を使用する場合であれば、Seの熱膨張率が3.68×10−5/K@40℃ であることを考慮して、熱膨張率が1.0〜10.0×10−5/K@40℃、より好ましくは、4.0〜8.0×10−5/K@40℃である物質を使用する。熱膨張率がこの範囲の物質としては、ポリカーボネートやポリメチルメタクリレート(PMMA)等の有機ポリマー材料を使用することができる。これによって、基板としての支持体18と読取用光導電層24(Se膜)との熱膨張のマッチングがとれ、特別な環境下、例えば寒冷気候条件下での船舶輸送中等において、大きな温度サイクルを受けても、支持体18と読取用光導電層24との界面で熱ストレスが生じ、両者が物理的に剥離する、読取用光導電層24が破れる、あるいは支持体18が割れる等、熱膨張差による破壊の問題が生じることがない。さらに、ガラス基板に比べて有機ポリマー材料は衝撃に強いというメリットがある。
【0021】
記録用光導電層22の物質としては、a−Se(アモルファスセレン)、PbO、PbI 等の酸化鉛(II)やヨウ化鉛(II)、Bi12(Ge,Si)O20、Bi/有機ポリマーナノコンポジット等のうち少なくとも1つを主成分とする光導電性物質が適当である。
【0022】
電荷輸送層23の物質としては、例えば第1電極21に帯電される負電荷の移動度と、その逆極性となる正電荷の移動度の差が大きい程良く(例えば10以上、望ましくは10以上)ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PUK)分散物、Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。特に、有機系化合物(PVK,TPD、ディスコティック液晶等)は光不感性を有するため好ましく、また、誘電率が一般に小さいため電荷輸送層23と読取用光導電層24の容量が小さくなり読取時の信号取り出し効率を大きくすることができる。なお、「光不感性を有する」とは、記録光や読取光の照射を受けても殆ど導電性を呈するものでないことを意味する。
【0023】
読取用光導電層24の物質としては、a−Se,Se−Te,Se−As−Te,無金属フタロシアニン,金属フタロシアニン,MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine),CuPc(Cupper phtalocyanine)等のうち少なくとも1つを主成分とする光導電性物質が好適である。
【0024】
記録用光導電層22の厚さは、記録光を十分に吸収できるようにするには、50μm以上1000μm以下であるのが好ましい。
【0025】
また電荷輸送層23と読取用光導電層24との厚さの合計は記録用光導電層22の厚さの1/2以下であることが望ましく、また薄ければ薄いほど読取時の応答性が向上するので、例えば1/10以下、さらには1/100以下等にするのが好ましい。
【0026】
なお、上記各層の材料は、第1電極21に負電荷を、第2電極25に正電荷を帯電させて、記録用光導電層22と電荷輸送層23との界面に形成される蓄電部29に潜像極性電荷としての負電荷を蓄積せしめるとともに、電荷輸送層23を、潜像極性電荷としての負電荷の移動度よりも、その逆極性となる輸送極性電荷としての正電荷の移動度の方が大きい、いわゆる正孔輸送層として機能させるものとして好適なものの一例であるが、これらは、それぞれが逆極性の電荷であっても良く、このように極性を逆転させる際には、正孔輸送層として機能する電荷輸送層を電子輸送層として機能する電荷輸送層に変更する等の若干の変更を行なうだけでよい。
【0027】
例えば、記録用光導電層22として上述のアモルファスセレンa−Se、酸化鉛(II)、ヨウ化鉛(II)等の光導電性物質が同様に使用でき、電荷輸送層23としてN−トリニトロフルオレニリデン・アニリン(TNFA)誘電体、トリニトロフルオレノン( TNF)/ポリエステル分散系、非対称ジフェノキノン誘導体が適当であり、読取用光導電層24として上述の無金属フタロシアニン、金属フタロシアニンが同様に使用できる。
【0028】
また、上記静電記録体20aでは、蓄電部29を記録用光導電層22と電荷輸送層23との界面に形成していたが、これに限らず、例えば米国特許第 4535468号に記載のように、潜像極性電荷をトラップとして蓄積するトラップ層により蓄電部を形成してもよい。
【0029】
第1電極21としては、記録光に対して透過性を有するものであればよく、例えば可視光に対して透過性を持たせる場合には、光透過性金属薄膜として周知のネサ皮膜(SnO2 )、ITO(Indium Tin Oxide)、あるいはエッチングのし易いアモルファス状光透過性酸化金属であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))等の酸化金属を50〜200nm厚程度、好ましくは100nm以上にして用いることができる。また、アルミニウムAl、金Au、モリブデンMo、クロムCr等の純金属を、例えば20nm以下(好ましくは10nm程度)の厚さにすることによって可視光に対して透過性を持たせることもできる。なお、記録光としてX線を使用し、第1電極21側から該X線を照射して画像を記録する場合には、第1電極21としては可視光に対する透過性が不要であるから、該第1電極21は、例えば100nm厚のAlやAu等の純金属を用いることもできる。
【0030】
第2電極25は、多数の読取光透過性の光電荷対発生線状電極26aをストライプ状に配列して成るストライプ電極26と多数の読取光遮光性の光電荷対非発生線状電極27aをストライプ状に配列してなるサブストライプ電極27とを備えている。各線状電極26a,27aは、線状電極26aと線状電極27aとが交互にかつ互いに平行に配置されるように配列されている。両線状電極の間は読取用光導電層24の一部が介在しており、ストライプ電極26とサブストライプ電極27とは電気的に絶縁されている。サブストライプ電極27は、記録用光導電層22と電荷輸送層23との略界面に形成される蓄電部29に蓄積された潜像電荷の量に応じたレベルの電気信号を出力させるための導電部材である。
【0031】
ここで、ストライプ電極26の各線状電極26aを形成する電極材の材質としては、ITO(Indium Tin Oxide)、IDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))、アルミニウムまたはモリブデン等を用いることができる。また、サブストライプ電極27の各線状電極27aを形成する電極材の材質としては、アルミニウム、モリブデンまたはクロム等を用いることができる。
【0032】
さらに支持体18上の各線状電極27aおよび線状電極26aと線状電極27aとの間に対応する部分に、読取光の線状電極27aへの照射強度が読取光の線状電極26aへの照射強度よりも小さくなるように光透過性の劣る部材からなる遮光膜31が設けられている。
【0033】
この遮光膜31の部材としては、必ずしも絶縁性を有しているものでなくてもよく、遮光膜31の比抵抗が2×10−6以上(さらに好ましくは1×1015Ω・cm以下)のものを使用することができる。例えば金属材料であればAl、Mo、Cr等を用いることができ、有機材料であればMOS、WSi、TiN等を用いることができる。なお、遮光膜31の比抵抗が1Ω・cm以上のものを使用するとより好ましい。
【0034】
また、少なくとも遮光膜31の部材として金属材料等導電性の部材を使用したときには、遮光膜31と線状電極27aとの直接接触を避けるため両者の間に絶縁物を配する。本実施形態の静電記録体20aは、この絶縁物として、第2電極25と支持体18との間にSiO等からなる絶縁層30を設けている。この絶縁層30の厚さは、0.01〜10μm程度、より好ましくは0.1μ〜1μm程度、最も好ましくは0.5μm程度がよい。
【0035】
信号検出手段70は、各光電荷対発生線状電極26a毎に接続された電流検出回路(光電荷対発生線状電極用電流検出手段)71と、各光電荷対非発生線状電極27a毎に接続された電流検出回路(光電荷対非発生線状電極用電流検出手段)72と、電流検出回路71および電流検出回路72が接続された信号合成手段73とからなる。
【0036】
信号検出回路71、72は、それぞれ接続された線状電極に流れる電流を検出する電気回路である。
【0037】
信号合成手段73は、電流検出回路71により検出された信号と、電流検出回路72により検出された信号を反転した信号とを合成するものである。勿論、信号合成手段73は、電流検出回路71により検出された信号を反転した信号と、電流検出回路72により検出された信号とを合成するものとしてもよい。
【0038】
次に、上述の静電記録体20aに画像情報を静電潜像として記録し、さらに記録された静電潜像を読み出す基本的な方法について簡単に説明する。図2は静電記録体20aを用いた記録読取システムの概略図である。
【0039】
この記録読取システムは、静電記録体20aと、記録光照射手段(図示省略)と、画像信号取得手段としての信号検出手段70、読取光走査手段(図示省略)とからなる。
【0040】
次に、上記構成の記録読取システムにおいて、静電記録体20aに画像情報を静電潜像として記録し、さらに記録された静電潜像を読み出す方法について説明する。最初に静電潜像記録過程について、図2(A)に示す電荷モデルを参照しつつ説明する。なお、記録光L1によって記録用光導電層22内に生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表すものとする。
【0041】
静電記録体20aに静電潜像を記録する際には、第1電極21とストライプ電極26およびサブストライプ電極27との間に直流電圧を印加して両者を帯電させる。このとき、ストライプ電極26およびサブストライプ電極27とを同電位になるように制御電圧を印加すれば、第1電極21と第2電極25との間で形成される電界分布を均一にできる。本実施の形態では、ストライプ電極26およびサブストライプ電極27は記録時および読取時ともに接地電位となっている。
【0042】
次に放射線を被写体9に爆射し、被写体9の透過部9aを通過した被写体9の放射線画像情報を担持する記録光L1を静電記録体20aに照射する。すると、静電記録体20aの記録用光導電層22内で正負の電荷対が発生し、その内の負電荷が静電記録体20a内の電界分布に沿って蓄電部29に移動する。
【0043】
一方、記録用光導電層22内で発生した正電荷は第1電極21に向かって高速に移動し、第1電極21と記録用光導電層22との界面で電源74から注入された負電荷と電荷再結合し消滅する。また、記録光L1は被写体9の遮光部9bを透過しないから、静電記録体20aの遮光部9bの下部にあたる部分は何ら変化を生じない。
【0044】
このようにして、被写体9に記録光L1を爆射することにより、被写体像に応じた電荷を光導電層22と電荷転送層23との界面である蓄電部29に蓄積することができるようになる。この蓄積される潜像電荷(負電荷)の量は被写体9を透過し静電記録体20aに入射した放射線の線量に略比例するので、この潜像電荷が静電潜像を担持することとなり、該静電潜像が静電記録体20aに記録される。
【0045】
次に、静電記録体20aから静電潜像を読み取る際には、第1電極21は接地電位とされ、線状電極26aの長手方向に読取光照射手段を移動させる、すなわち副走査することにより、ライン状の読取光L2で静電記録体20aの全面を走査露光する。この読取光L2の走査露光により副走査位置に対応する読取光L2が入射した読取用光導電層24内に正負の電荷対が発生する。
【0046】
そして、線状電極27aに対応する部分、すなわち線状電極27aの上空部分の潜像電荷が、線状電極27aを介して順次読み出される。すなわち、図2(B)に図示するように、線状電極26aから、その隣の線状電極27aに対応する(上空にある)潜像電荷に向けて放電が生じ、それによって読出しが進行する。
【0047】
このとき、線状電極26aおよび線状電極27aに流れる電流を、それぞれ電流検出回路71および電流検出回路72により検出し、信号合成手段73により、電流検出回路71により検出された信号と、電流検出回路72により検出された信号を反転した信号とを合成することによって、上述のように、潜像電荷に応じた信号はほぼ2倍になるのに対して、電磁誘導等で発生するコモンモードノイズは相殺されてなくなり、また、アンプ等で発生するホワイトノイズは約√2倍程度となるため、従来のものと比べてS/Nを√2倍以上向上させることができる。なお、信号合成手段はアナログ的に行うことがS/Nの点で好ましいが、一度デジタル値に変換してハード的またはソフト的に行っても、S/Nの向上が可能である。
【0048】
本発明においては、信号合成手段73に対して電流検出回路71から入力される信号の振幅の大きさと、電流検出回路72から入力される信号の振幅の大きさとが等しいときに、最も高い効果を得ることができる。
【0049】
この様にするためには、各線状電極および各線状電極から信号合成手段73までの配線に僅かに電気抵抗が存在することを考慮して、線状電極26aの信号取出部から信号合成手段73までの電気抵抗の大きさと、線状電極27aの信号取出部から信号合成手段73までの電気抵抗の大きさとが略等しくなるようにすることが好ましい。
【0050】
この電気抵抗の大きさは配線の材質、長さおよび太さ等によって変わってくるが、上記の配線を全て同じ材質および太さとした場合には、図3(1)に示すように、線状電極26aの信号取出部から信号合成手段73までの配線の長さと、線状電極27aの信号取出部から信号合成手段73までの配線の長さとが異なる態様とすると上記電気抵抗の大きさが異なってしまうため、図3(2)に示すように、線状電極26aの信号取出部から信号合成手段73までの配線の長さと、線状電極27aの信号取出部から信号合成手段73までの配線の長さとが略等しい態様とすることが好ましい。
【0051】
さらに厳密に言うと、光電荷対非発生線状電極27aからの信号は第1電極21から回り込んでくる電流があるため、図3(2)に示すように各線状電極の信号取出部から信号合成手段73までの配線の長さを略等しくした場合であっても、若干線状電極27aからの信号の方が振幅が小さくなる。
【0052】
そのため、図3(3)に示すように、電流検出回路71および電流検出回路72と信号合成手段73との間に演算手段74を設け、この演算手段74により電流検出回路71から入力される信号の振幅の大きさと、電流検出回路72から入力される信号の振幅の大きさとを合わせて信号合成手段73に入力することによって、より高い効果を得ることができる。なお、2つの信号の振幅の大きさを合わせる演算は、振幅の高い方の信号に合わせて振幅の低い方の信号を増幅してもよいし、振幅の低い方の信号に合わせて振幅の高い方の信号を減衰させてもよい。
【0053】
以上、本発明による放射線固体検出器の好ましい実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、発明の要旨を変更しない限りにおいて、種々変更することが可能である。
【0054】
例えば、上記実施の形態による検出器は、何れも、記録用光導電層が、記録用の放射線の照射によって導電性を呈するものであるが、本発明による検出器の記録用光導電層は必ずしもこれに限定されるものではなく、記録用光導電層は、記録用の放射線の励起により発せられる光の照射によって導電性を呈するものとしてもよい(特開2000−105297号公報参照)。この場合、第1電極の表面に記録用の放射線を、例えば青色光等、他の波長領域の光に波長変換するいわゆるX線シンチレータといわれる波長変換層を積層したものとするとよい。この波長変換層としては、例えばヨウ化セシウム(CsI)等を用いるのが好適である。また、第1電極は、記録用の放射線の励起により波長変換層で発せられた光に対して透過性を有するものとする。
【0055】
また、上記実施の形態による静電記録体は、記録用光導電層と読取用光導電層との間に電荷輸送層を設け、記録用光導電層と電荷輸送層との界面に蓄電部を形成するようにしたものであるが、電荷輸送層をトラップ層に置き換えたものとしてもよい。トラップ層とした場合には、潜像電荷は、該トラップ層に捕捉され、該トラップ層内またはトラップ層と記録用光導電層の界面に潜像電荷が蓄積される。また、このトラップ層と記録用光導電層の界面に、画素毎に、格別に、マイクロプレートを設けるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による放射線固体検出器に備えられた静電記録体の斜視図(A)、Q矢指部のXZ断面図(B)、P矢指部のXY断面図(C)
【図2】本発明の第1の実施の形態による放射線固体検出器を使用する場合における、静電潜像記録過程を示す電荷モデル(A)、静電潜像読取過程を示す電荷モデル(B)
【図3】本発明の第1の実施の形態による放射線固体検出器の第2電極および信号検出手段の模式図
【符号の説明】
20a 放射線固体検出器
21 第1電極
22 記録用光導電層
23 電荷輸送層
24 読取用光導電層
25 第2電極
26 ストライプ電極
26a 光電荷対発生線状電極
27 サブストライプ電極
27a 光電荷対非発生線状電極
29 蓄電部
70 信号検出手段
71 電流検出回路(光電荷対発生線状電極用電流検出手段)
72 電流検出回路(光電荷対非発生線状電極用電流検出手段)
73 信号合成手段
74 演算手段

Claims (1)

  1. 記録光に対して透過性を有する第1の電極と、
    前記記録光の照射を受けることにより光導電性を呈する記録用光導電層と、
    前記記録光の光量に応じた量の電荷を潜像電荷として蓄積する蓄電部と、
    読取光の照射を受けることにより光導電性を呈する読取用光導電層と、
    前記読取光に対して透過性を有する多数の光電荷対発生線状電極と、多数の光電荷対非発生線状電極とを備え、前記光電荷対発生線状電極と前記光電荷対非発生線状電極とが交互に配置された第2の電極とを、この順に積層してなる静電記録体を備えた放射線固体検出器において、
    前記光電荷対発生線状電極に接続された光電荷対発生線状電極用電流検出手段と、
    前記光電荷対非発生線状電極に接続された光電荷対非発生線状電極用電流検出手段と、
    前記光電荷対発生線状電極用電流検出手段により検出された信号および前記光電荷対非発生線状電極用電流検出手段により検出された信号を、いずれか一方を反転させて合成する信号合成手段とを備えてなることを特徴とする放射線固体検出器。
JP2002121625A 2001-08-14 2002-04-24 放射線固体検出器 Expired - Fee Related JP4004842B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002121625A JP4004842B2 (ja) 2001-08-14 2002-04-24 放射線固体検出器
US10/216,820 US6724006B2 (en) 2001-08-14 2002-08-13 Solid state radiation detector
EP02018117A EP1286182B1 (en) 2001-08-14 2002-08-13 Solid state radiation detector
DE60216201T DE60216201T2 (de) 2001-08-14 2002-08-13 Festkörper-Strahlungsdetektor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001246107 2001-08-14
JP2001-246107 2001-08-14
JP2002121625A JP4004842B2 (ja) 2001-08-14 2002-04-24 放射線固体検出器

Publications (2)

Publication Number Publication Date
JP2003134395A JP2003134395A (ja) 2003-05-09
JP4004842B2 true JP4004842B2 (ja) 2007-11-07

Family

ID=26620529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121625A Expired - Fee Related JP4004842B2 (ja) 2001-08-14 2002-04-24 放射線固体検出器

Country Status (4)

Country Link
US (1) US6724006B2 (ja)
EP (1) EP1286182B1 (ja)
JP (1) JP4004842B2 (ja)
DE (1) DE60216201T2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101193A (ja) * 2003-09-24 2005-04-14 Shimadzu Corp 放射線検出器
EP1794218B1 (de) * 2004-10-01 2020-05-13 Merck Patent GmbH Elektronische vorrichtungen enthaltend organische halbleiter
JP2007080927A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 放射線画像検出器
JP2007095721A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 放射線画像検出器
JP2007101256A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp X線撮像装置及びx線ct装置
JP2008210906A (ja) * 2007-02-26 2008-09-11 Fujifilm Corp 放射線画像検出器
JP5107747B2 (ja) * 2007-03-09 2012-12-26 富士フイルム株式会社 放射線画像検出器
JP5586593B2 (ja) * 2008-06-20 2014-09-10 カール ツァイス マイクロスコーピー エルエルシー 試料検査方法、システム及び構成要素

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887963A (ja) 1981-11-18 1983-05-25 Fujitsu Ltd 固体撮像装置の信号合成回路
JPS59174074A (ja) * 1983-03-23 1984-10-02 Toshiba Corp 固体撮像装置の出力信号再生回路
US5332893A (en) * 1992-07-22 1994-07-26 Minnesota Mining And Manufacturing Company Imaging system and device having a simplified electrode design
JPH09275223A (ja) * 1995-04-12 1997-10-21 Seiko Instr Kk 半導体放射線検出装置
JP3445164B2 (ja) 1997-08-19 2003-09-08 富士写真フイルム株式会社 静電記録体、静電潜像記録装置および静電潜像読取装置
JP2000059370A (ja) 1998-08-04 2000-02-25 Fujitsu Ltd トラヒック制御装置およびその方法
JP4127444B2 (ja) 1999-03-30 2008-07-30 富士フイルム株式会社 放射線固体検出器
JP4040201B2 (ja) * 1999-03-30 2008-01-30 富士フイルム株式会社 放射線固体検出器、並びにそれを用いた放射線画像記録/読取方法および装置
US6590224B2 (en) * 2000-03-22 2003-07-08 Fuji Photo Film Co., Ltd. Image storage medium and method of manufacturing the same
JP2001264442A (ja) * 2000-03-22 2001-09-26 Fuji Photo Film Co Ltd 画像記録媒体
JP4356854B2 (ja) * 2000-03-31 2009-11-04 富士フイルム株式会社 画像信号読取システム及び画像検出器
EP1262797B1 (en) * 2001-05-11 2011-07-13 FUJIFILM Corporation Method and apparatus for image recording and image recording medium
JP2003031837A (ja) * 2001-07-11 2003-01-31 Fuji Photo Film Co Ltd 画像検出器およびその製造方法、画像記録方法および読取方法並びに画像記録装置および読取装置

Also Published As

Publication number Publication date
US6724006B2 (en) 2004-04-20
US20030034464A1 (en) 2003-02-20
DE60216201T2 (de) 2007-10-11
DE60216201D1 (de) 2007-01-04
EP1286182B1 (en) 2006-11-22
JP2003134395A (ja) 2003-05-09
EP1286182A1 (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP4356854B2 (ja) 画像信号読取システム及び画像検出器
JP4004842B2 (ja) 放射線固体検出器
US7294847B2 (en) Radiographic image detector
US6940084B2 (en) Solid state radiation detector
JP3785571B2 (ja) 固体検出器
JP2004186604A (ja) 画像記録媒体
JP3766031B2 (ja) 画像読取方法および装置
JP2003035800A (ja) 放射線固体検出器
JP3970668B2 (ja) 放射線固体検出器
JP2004363463A (ja) 放射線画像検出器
JP2006242827A (ja) 放射線固体検出器および放射線固体検出器の試験方法
JP2004179370A (ja) 放射線固体検出器
JP2003218335A (ja) 固体検出器
JP5137331B2 (ja) 放射線画像記録読取装置
JP2003031836A (ja) 放射線固体検出器
JP2006100548A (ja) 放射線固体検出器
JP2004186388A (ja) 放射線固体検出器
JP2007080927A (ja) 放射線画像検出器
JP2005294752A (ja) 放射線固体検出器
JP2003197884A (ja) 固体検出器
JP2003086781A (ja) 放射線固体検出器
JP2007157872A (ja) 放射線固体検出器
JP2003037258A (ja) 光検出装置
JP2005294751A (ja) 放射線固体検出器
JP3999470B2 (ja) 放射線固体検出器、並びにそれを用いた放射線画像記録/読取方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees