JP3995030B2 - 半導体パッケージの検査装置 - Google Patents

半導体パッケージの検査装置 Download PDF

Info

Publication number
JP3995030B2
JP3995030B2 JP15704997A JP15704997A JP3995030B2 JP 3995030 B2 JP3995030 B2 JP 3995030B2 JP 15704997 A JP15704997 A JP 15704997A JP 15704997 A JP15704997 A JP 15704997A JP 3995030 B2 JP3995030 B2 JP 3995030B2
Authority
JP
Japan
Prior art keywords
camera
lead
semiconductor package
image
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15704997A
Other languages
English (en)
Other versions
JPH10148517A (ja
Inventor
保良 鈴木
良彦 中川路
徹 猪本
和之 木村
正志 東
Original Assignee
コグネックス・テクノロジー・アンド・インベストメント・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コグネックス・テクノロジー・アンド・インベストメント・コーポレーション filed Critical コグネックス・テクノロジー・アンド・インベストメント・コーポレーション
Priority to JP15704997A priority Critical patent/JP3995030B2/ja
Priority to PCT/JP1997/003284 priority patent/WO1998012502A1/ja
Priority to US09/254,684 priority patent/US6307210B1/en
Publication of JPH10148517A publication Critical patent/JPH10148517A/ja
Application granted granted Critical
Publication of JP3995030B2 publication Critical patent/JP3995030B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は半導体パッケージ端子の検査装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
CCDカメラ等で捕らえた被検査対象の映像を画像処理して検査、形状認識などの処理を行わせる際、CCDカメラの焦点を被検査対象に合わせることが、精度のよい撮像を行う上で必須となる。
【0003】
しかし、被検査対象の異なる面を撮像する際や、複数の被検査対象のCCDカメラまでの光路長が異なる場合には、被検査対象の一部にカメラの焦点を合わせると、その他の部分はピントがぼけてしまう。
【0004】
すなわち、図33に示すように、CCDカメラまでの距離が異なる2つの平面A,Bを1つのCCDカメラで撮像しようとした場合、平面Aにカメラの焦点を合わせると、平面Bの図形はぼけてしまうという問題がある。
【0005】
また、上記CCDカメラなどの撮像装置を用いた検査として、半導体パッケージの検査がある。この半導体パッケージの検査項目としては、
(1)リードの平坦度(コプラナリティ)の検査
(2)リードのピッチばらつき、位置ズレの検査
(3)パッケージ上面に刻印されたマークの文字欠け、かすれ、位置ズレ等の検査
などがある。
【0006】
ここで、表面実装タイプのSOP(small outline package)等のICパッケージのリードの平坦度を検査する際には(図34に示すように、浮いたリードを有するICを発見する)、図35(b)に示すように、ICを側方から撮像したIC側面画像が必要になる。
【0007】
そこで、このようなリード平坦度検査を来なう際、従来は、図35(a)に示すように、カメラをICの側方に配設するようにしていた。このようにカメラをICの側方に配設する手法は、ICが平らなトレイ上に載置されている際には、IC画像を適格に捕らえることができる。
【0008】
しかし、ICが図36に示すようなエンボステープEに収納されている場合には、カメラをIC側方に配していたのでは、IC側面画像を得ることは不可能である。ここで、エンボステープEは、製造後のICを多数個ストックするために用いられ、黒色のプラスチック材料から成っている。また、併設された複数のIC収納部EAにはそれぞれICを1個ずつが収納できるような四角形の段差が形成されている。なお、ICをストックする際には、エンボステープEはリールに巻回される。
【0009】
すなわち、ICストッカとしてエンボステープが用いられる場合には、ICは製造後エンボステープに収容されるように工程手順が設定されているが、従来技術のように、リード平坦度検査を来なう際にカメラをICの側方に配置するようにしていたのでは、ICを平らなトレイ上に載置するという工程を追加しなくてはならず、製造効率の面で不利である。そこで、ICをエンボステープに収容したままの状態でリード平坦度検査をなし得るための検査手法が望まれていた。
【0010】
ところで、半導体のパッケージ検査には、前述したように、リードの平坦度検査の他にパッケージ上面に刻印されたマークの文字欠け、かすれ、位置ズレ等の検査があるが、この検査を行うためには半導体パッケージの上面の平面図像が必要となる。そこで、従来は、半導体の側方及び上方にそれぞれ各別のカメラを配置し、これらカメラの撮像データに基づいて上記の各検査を行うようにしていたので、多くのカメラが必要になり、コスト高になる、カメラ用に多くのスペースを必要にする、多くのカメラをバランス良く調整するのが難しい等の不都合がある。
【0011】
この発明はこのような実情に鑑みてなされたもので、撮像手段までの光路長の異なる複数の被検査対象を1台の撮像手段で撮像するに際し、全ての被検査対象に対して焦点を同時に合わせることができるようにして、撮像に要する時間を短縮すると共に、撮像エリアの全領域で高品質の撮像画像を得ることができるようにした被検査物の撮像装置を提供することを目的とする。
【0012】
またこの発明では、収容容器に収容された半導体パッケージでも端子部の平坦度検査をなし得るようにした半導体パッケージの検査装置を提供することを目的とする。
【0013】
またこの発明では、半導体パッケージのリードの平坦度検査を半導体パッケージのパッケージ面のほぼ真上または真下に配した1台のカメラによる撮像画像にのみに基づいて行えるようにした半導体パッケージの検査装置を提供することを目的とする。
【0014】
またこの発明は、半導体パッケージの上面検査と側面端子部との検査を1台の撮像手段を用いてなし得るようにした半導体パッケージの検査装置を提供することを目的とする。
【0019】
【課題を解決するための手段及び作用効果】
この発明では、半導体パッケージの端子の平坦度を検査する半導体パッケージの検査装置において、半導体パッケージの端子部を所定の角度をもって斜め上方から撮像する撮像手段と、この撮像手段の撮像データに基づいて半導体パッケージの端子の平坦度を検査する検査手段とを具えるようにしている。
【0020】
係る発明によれば、半導体パッケージの端子部を所定の角度をもって斜め上方から撮像し、この撮像データに基づいて半導体パッケージの端子の平坦度を検査するようにしたので、半導体パッケージがエンボステープなどの収容容器に収容されている状態で端子の平坦度検査を行うことができ、これにより検査の際にいちいち半導体パッケージを平坦なトレイ上に配置する必要がなくなり、検査作業を短縮化できる。
【0025】
【発明の実施の形態】
以下この発明の実施例を添付図面に従って詳細に説明する。
【0026】
〔第1実施例〕
図1にこの発明の第1実施例を示す。この第1実施例は、本発明の1つの発想を原理的に示すものである。
【0027】
図1において、CCDカメラ1は、カメラ1までの距離が異なる2つの平面A,Bを撮像する。これら平面A,B間の距離をdとする。
【0028】
ここで、カメラ1までの距離が長い平面Aとカメラ1との間の光路上には、屈折率Rが空気と異なる(この場合はR>1)、光透過率の高い、例えば石英硝子から成る光学部材4を介在させており、この光学部材4の介在によって、平面A,Bの撮像距離の差を吸収するようにしている。
【0029】
光学部材4の厚さをTとすると、この部材4の光学的な厚さは、空気換算(空気の屈折率は1とする)でT/Rとなる。したがって、図1において、CCDカメラ1の焦点があった撮像面Jが平面Aの位置にあったとした場合、CCDカメラ1と平面Bの間に光学部材4を介在させると、その場合の撮像面位置は平面Bの方にT(1−(1/R))だけ遠ざかることになる。
【0030】
このため、平面Bについての撮像面位置を平面Aから距離dだけ遠ざけようとすれば、
d=T(1−(1/R))
で定めることができる光学部材4をCCDカメラ1と平面Bの間に介在させることで実現することができる。
【0031】
上式をTについて解くと、下式(1)が成立する。
【0032】
T=dR/(R−1) …(1)
したがって、この第1実施例では、上式(1)が成立する厚さTの光学部材を被検査対象とカメラ1との間に挿入して、各被検査対象までの光路長差を吸収して、全ての被検査対象に同時に焦点を合わせられるようにしている。
【0033】
ここで、d=5mmとし、光学部材2を石英硝子とすると、その屈折率R=1.5168なので、
T=14.7…
なので、約15mmの石英硝子を配置すればよい。
【0034】
〔第2実施例〕
図2にこの発明の第2実施例を示す。
【0035】
図2(a)の実施例は上記第1の実施例をICパッケージ(SOP)の検査に適用したものであり、また図2(b)の実施例は第1の実施例をリード付きコネクタの検査に適用したものである。
【0036】
すなわち図2(a)では、ガルウィング状のリード6を有するSOP5の上方に配した1台のCCDカメラ1の撮像データに基づき、SOP上面に刻印されたマークの文字欠け等の検査と、リード6の平坦度の検査とを行うようにしており、このため、SOP5の上面画像Zと側面画像Wとが必要になる。
【0037】
ここで、SOP5の上面画像はそのままカメラ1で撮像する事ができるが、SOP5の側面画像はそのままではカメラ1で撮像することはできない。そこで、この第2の実施例では、SOP5の両側方に石英硝子などで構成される、反射面7aを有するプリズムミラー7を配設するようにしている。
【0038】
また、この構成の場合、SOP5の上面からカメラ1までの光路長と、SOP5の側面からプリズムミラー7を経由してカメラ1に至る光路長には、差があるために、プリズムミラー7の厚さを先の第1の実施例の第(1)式に基づいて計算した値に設定するようにして、上記光路長の差を吸収するようにしている。
【0039】
このようにこの実施例によれば、1台のカメラ1でICパッケージ5の上面画像及び側面画像を同一画面上に撮像し、かつその際これら両撮像画像に対し同時に焦点を合わせることができるので、検査精度及び検査速度を向上させることができる。
【0040】
次に、図2(b)においては、リード付きコネクタ8の上方に配した1台のCCDカメラ1の撮像データに基づき、コネクタ8の上面に形成されたギャップ(嵌合部)9の検査と、実装リード11の平坦度の検査とを行うようにしており、このため、図2(a)の実施例と同様、コネクタ7の上面画像Zと側面画像Wとが必要になる。
【0041】
そこで、この図2(b)の実施例においても、コネクタ8の側方にプリズムミラー7を配設すると共に、このプリズムミラー7の厚さを先の第1の実施例の第(1)式に基づいて計算した値に設定するようにして、光路長の差を吸収するようにしている。
【0042】
〔第3実施例〕
図3にこの発明の第3実施例を示す。この図3に示す第3実施例から図18に示す第15実施例までは、ICパッケージ(この場合SOP)5が前述したエンボステープEに収容されている場合を想定しており、この状況下ではSOP5のリード平坦度検査に必要なSOP5の側面画像は、カメラをSOP5の側面に正対させたのでは撮像することができない。また、このような状況下では、先の第2の実施例のように、SOP5の側方にプリズムミラー6を配設することもできない。
【0043】
そこで、この第3実施例では、所定の角度θをもって斜め上方向から撮像するCCDカメラ2,3によってSOP5のリード6を撮像し、この撮像データに基づいてリード6の平坦度検査を行うようにしている。
【0044】
なお、SOP5の上面画像は、通常通りSOP5の上方に正対させたカメラ1で撮像するようにしており、この撮像データに基づいてSOP5の上面の刻印マークの検査が行われる。
【0045】
すなわちこの第3実施例では、図4に示すように、浮いたリードと正常なリードとでは、x´方向のリード先端位置が異なるため、これを斜め方向からのカメラ2で撮像して検出することにより、リード6の平坦度検査を行なうことができる。
【0046】
なお、この場合、SOP5の上方に設けたカメラ1でもリード6を撮像するようにすれば、浮いたリードと正常なリードとのx方向の位置ズレを検出することができるので、これらカメラ1および2の撮像データに基づいてリード6のz方向の座標位置を算出するようにすれば、カメラ2のみに比べより正確な検査をなし得る。
【0047】
〔第4実施例〕
図5にこの発明の第4実施例を示す。
【0048】
この第4実施例では、先の第3の実施例で行っていたSOP5の上面の刻印マーク検査とリード平坦度検査を1台のCCDカメラ1で行うようにする。
【0049】
すなわちこの場合は、カメラ1の視野エリアの中央領域1−aではSOP5の上面画像が真上から撮像するようにするとともに、カメラ1の視野エリアの端部領域1−b,1−cではSOP5のリード部6を所定の角度θをもって撮像できるようにミラー12の配設位置および配設角度を調整している。したがって、この第4実施例においても、先の第3の実施例と実質的に同じSOP5のリード部像を得ることができる。
【0050】
このようにこの実施例では、CCDカメラ1の視野エリアの中央部1−aをSOP5のマーク検査用の上面画像として用い、同CCDカメラ1の視野エリアの側端部1−b,1ーcをSOP5のリード6の平坦度測定用の画像として用いるようにしており、このため、この実施例では先の第3の実施例に比べ、コスト、スペース、カメラの位置調整の容易さなどの面で有利となる。
【0051】
また、この実施例においては、CCDカメラ1の撮像画像に、SOP5のリード6を2つの異なる方向から撮像したデータが得られるので、この撮像データを用いて各リード6の先端の高さ方向の座標位置を三角測量を用いて計測することができるようになる。すなわち、この実施例では1台のカメラによる撮像データのみを用いてリード先端のコプラナリティの検査を三角測量法を用いて高精度に行うことができる。
【0052】
〔第5実施例〕
図6にこの発明の第5実施例を示す。
【0053】
この第5実施例においては、先の第4の実施例のミラー12の代わりにプリズム13を配置し、このプリズム13によってSOP5のリード部6を斜め上方から撮像した像をカメラ1に導くようにしている。また、この実施例では、2つのプリズム13の間に間隔を設け、この間隙を介してSOP5の上面像がカメラ1に入射されるようにしている。
【0054】
したがって、この実施例においては、プリズム13によって、SOP5の上面からカメラ1までの光路長と、SOP5のリード部からプリズム13を経由してカメラ1に至る光路長との差を吸収することにより、これら両撮像対象(SOPの上面およびリード部)に対して同時に焦点を合わせることができるようにしている。すなわち、この場合、プリズム13の厚さ及び屈折率は、先の第(1)式に基づいて設定するようにしている。
【0055】
〔第6実施例〕
図7にこの発明の第6実施例を示す。
【0056】
この第6実施例では、2つのプリズム13を間隙無く並べて配置し、カメラ1に対してSOP5のリード部分の像のみを入射するようにしている。すなわち、この場合は、SOP5の上面の平面図像はカメラ1には入射するようにはしていない。
【0057】
〔第7実施例〕
図8にこの発明の第7実施例を示す。
【0058】
この第7実施例においても、SOP5のリード部分の像のみをプリズム13を介してカメラ1に入射するようにしているが、この場合には、図面上、右側のリード部像はカメラ1の右側の視野エリアに入射され、また左側のリード部像はカメラ1の左側の視野エリアに入射されるようになっている。
【0059】
〔第8実施例〕
図9にこの発明の第8実施例を示す。
【0060】
この第8実施例においては、図8に示した第7実施例の2つのプリズム13間に間隙を設け、この間隙を介してSOP5の上面像がカメラ1に入射されるようにしている。
【0061】
またこの場合、プリズム13の厚さ及び屈折率は、先の第(1)式に基づいて設定するようにしており、SOPの上面像およびリード部像に対して同時に焦点を合わせることができる。
【0062】
〔第9実施例〕
図10にこの発明の第9実施例を示す。
【0063】
この第9実施例においては、2つのプリズム14のSOP5の上面上に位置する部分15を省略することにより、これらプリズム14がSOP5の上面の撮像の邪魔にならないようにしている。
【0064】
この実施例においても、プリズム14の厚さ及び屈折率は、先の第(1)式に基づいて設定するようにして、SOPの上面像およびリード部像に対して同時に焦点を合わせることができるようにしている。
【0065】
なお、前述した各実施例においては、照明については特に言及してはいないが、図2、図6〜図10などに示す実施例のようにプリズムを用いる場合は、波長分散が生じ、虚報の原因となるので、照明としては単色の光源を用いるようにしたほうが好ましい。
【0066】
〔第10実施例〕
この第10実施例は、SOP5がエンボステープE内のIC収納部EAからずれた場合の不具合を解消しようとするものである。
【0067】
すなわち、図11(c)に示すように、SOP5のリード6をカメラで真上から撮像しようとした場合、図11(a)に示すように、SOP5がエンボステープE内のIC収納部EAからずれると、図11(a)(b)に示すように、エンボステープEの側面壁EGにリード6の反射像が映ってしまい、カメラには図11(c)に示すように、リード像だけでなく側面壁でのリード反射像も入射されてしまう。この結果、このような場合には、リードの測定精度が悪くなったり、検査不能になったりする不都合が発生することになる。
【0068】
そこで、この第10実施例では、SOP5のリード部に対する照明をP偏光にすると共に、カメラの撮像方向をエンボステープEの側面壁に対してブリュースタ角ψBの付近(ブリュースタ角±20゜)に一致させるようにする。
【0069】
すなわち、エンボステープEの表面における入射角ψに対する振幅反射係数γを、P偏光波(γp)およびS偏光波(γs)についてそれぞれ求めると、図12に示すようになる。
【0070】
この図12に示される反射特性によれば、エンボステープに対する入射角ψがブリュースタ角(通常50゜〜60゜)の付近になると、P偏光の反射が零になる。
【0071】
したがって、図13に示すように、SOP5のリード部に対する撮像用照明をP偏光にすると共に、カメラの撮像方向をエンボステープEの側面壁に対して略ブリュースタ角ψBに一致させるようにすれば、エンボステープ側面壁EGでの反射光はカメラに映らないようになり、前述した不具合を解消することができるようになる。
【0072】
〔第11実施例〕
図14にこの発明の第11実施例を示す。
【0073】
この第11実施例は、先の図13に示す第10実施例を具現化したもので、左右両リード部をそれぞれ撮像すべく2台のカメラ2,3を配設するようにしている。すなわち、カメラ2で図面上右側リード部を撮像し、カメラ3で左側リード部を撮像する。ここで、各カメラ2,3の撮像方向は、エンボステープEの側面壁に対して略ブリュースタ角ψBに一致させるようにしている。
【0074】
また、リード部に対する照明として、照明20,21と、各照明光をP偏光にする偏光板22,23を設けている。なお、照明20,21の種類、配設位置などは、リード部を好適に照明できるものであれば任意である。
【0075】
〔第12実施例〕
図15にこの発明の第12実施例を示す。
【0076】
この第12実施例では、1台のカメラ1でSOP5の左右両リード部を撮像するために、4つのミラー24〜27を配設するようにしている。この場合においても、左右リード部に対するカメラ1の撮像方向は、エンボステープEの側面壁に対して略ブリュースタ角ψBになるようにミラー24〜27の配設位置および配設角度が設定されている。また、リード部に対する照明として、前記同様、照明20,21と、各照明光をP偏光にする偏光板22,23を設けている。
【0077】
〔第13実施例〕
図16にこの発明の第13実施例を示す。
【0078】
この第13実施例は、先の図6に示す第5実施例に対し、エンボステープでの反射光を防止する前述した構成を追加したものであり、このためカメラ1の視野エリアの側部領域1−b,1−cに関するカメラ1の撮像方向がエンボステープEの側面壁に対して略ブリュースタ角ψBに一致するように、プリズム13を設定するとともに、リード部に対する照明として、照明20,21と、各照明光をP偏光にする偏光板22,23を設けている。
【0079】
〔第14実施例〕
図17にこの発明の第14実施例を示す。
【0080】
この第14実施例は、先の図8に示す第7実施例に対し、エンボステープでの反射光を防止する前述した構成を追加したものであり、このためカメラ1の撮像方向がエンボステープEの側面壁に対して略ブリュースタ角ψBに一致するように、プリズム13を設定するとともに、リード部に対する照明として、照明20,21と、各照明光をP偏光にする偏光板22,23を設けている。
【0081】
〔第15実施例〕
図18にこの発明の第15実施例を示す。
【0082】
この第15実施例は、先の図10に示す第9実施例に対し、エンボステープでの反射光を防止する前述した構成を追加したものであり、このためカメラ1の撮像方向がエンボステープEの側面壁に対して略ブリュースタ角ψBに一致するように、プリズム13を設定するとともに、リード部に対する照明として、照明20,21と、各照明光をP偏光にする偏光板22,23を設けている。
【0083】
〔第16実施例〕
図19にこの発明の第16実施例を示す。
【0084】
この実施例では、SOP5の上方にプリズム13を配し、さらにその上方にカメラ1を配するようにしており、プリズム13を介在させることによりSOP5のリード先端像を1台のカメラ1で2つの異なる方向から撮像できるようにしている。すなわち、SOP5の左リード端子Lnは光路A,Cを経由してその像がカメラ1に入射され、右リード端子Rnは光路B,Dを経由してその像がカメラ1に入射される。
【0085】
図20(a)はSOP5を上方からみた平面図であり、SOP5は左リード端子L1〜Ln及び右リード端子R1〜Rnを有している。図20(b)は図20(a)に示すSOP5をカメラ1によって撮像した画像を示すもので、各リード端子L1〜LnおよびR1〜Rnは、カメラ1による1つの撮像画像内で2つの異なるx方向位置に撮像像L1A〜LnA,L1C〜LnCおよびR1A〜RnA,R1C〜RnCとしてそれぞれ写されている。例えば、左リード端子L1は、カメラ1による撮像画像中でL1AおよびL1Cの2箇所に写されている。
【0086】
なお、この場合は、カメラ1には、プリズム13を経由しない光路A,Cによるリード像と、プリズム13を経由した光路B,Dによるリード像が入射されるが、これら光路長差を吸収できるようにプリズム13の屈折率および厚さを設定するようにしている。
【0087】
制御部25では、カメラ1の撮像画像に基づいて三角測量の原理を用いてリード端子L1〜LnおよびR1〜Rnのz方向の高さ位置を演算する。すなわち、カメラ1には、各リード端子L1〜Ln,R1〜Rnを2つの異なる方向から撮像したリード端子像L1A〜LnA,L1C〜LnCおよびR1A〜RnA,R1C〜RnCが写し出されるので、それらのx座標を用いて各リード端子L1〜Ln,R1〜Rnのz座標を求めることができる。勿論、三角測量を用いてリード先端のx−y位置を求めることもできる。
【0088】
図21は、三角測量を用いてリード先端のz方向座標位置を求めるための基本原理を説明するための図である。
【0089】
図21において、点Pを正常な設置状態のリード先端位置とし、点P´を或るリードの実際の先端位置であるとし、これら点PおよびP´間には、z方向にdzの変位があるとする。
【0090】
このz方向の変位量dzは、2台の仮想カメラを用いた撮像を行った場合、各仮想カメラの撮像面30L,30Rにおいては、変位dL,dRとして現れるが、変位dzは幾何学的条件によって下式のようにdL,dRの関数として表される。
【0091】
Figure 0003995030
ここで、カメラ1の撮像面の手前にプリズム13L,13Rが設置されることにより、上記左右仮想カメラの撮像面での変位量dL,dRは、カメラ1の撮像面ではdL´,dR´として現れる。
【0092】
また、dL´,dR´とdL,dRとの関係は以下のようになる。
【0093】
Figure 0003995030
なお、図22に示すようなプリズムの場合は、プリズム固有の係数CLは以下のようになる。
【0094】
CL=(cosβcosγ1)/(cosδcosγ2)…(4)
したがって、カメラ1の撮像面上で正常な設置状態のリード先端位置Pに対応する像位置PXL,PXRを予め求めておき、これらの位置PXL,PXRと実際のリード端子の先端位置P´に対応する像位置P´XL,P´XRとの偏差dL´およびdR´を求め、これら偏差dL´およびdR´を先の第(2)式及び第(3)式に代入することで、正常状態に対する高さ変位dzを求めることができる。
【0095】
なお、図21の場合は、リード先端の正常状態に対する高さ変位dzを求めるようにしたが、三角測量の原理を用いてリード先端位置P´の3次元空間上のxyz座標位置を特定することもできる。
【0096】
このようにこの第16実施例によれば、カメラ1とSOP5の間にプリズム13を介在させて、カメラ1に2つの異なる方向から見たリード端子像を入射するようにしたので、SOPの上方に設けた1台のカメラ1による撮像データのみによってリード端子のxy位置のみならず高さ方向位置に関する情報が得られるようになり、これによりSOP5を斜めから直接撮像するカメラを省略することができ、システム構成をコンパクト且つ安価にすることができる。
【0097】
また、プリズムによれば、先の図5に示した第4実施例のようにミラーを用いる方法に比べ、コンパクトである、画像の反転がない、面倒な角度調整が要らない、偏向角度の自由度が高い等の利点を有している。
【0098】
〔第17実施例〕
図23にこの発明の第17実施例を示す。
【0099】
この実施例では、SOP5の上方に2つのドーブプリズム13を配し、さらにその上方にカメラ1を配するようにしており、2つのプリズム13を介在させることによりSOP5のリード先端像を1台のカメラ1で3つの異なる方向から撮像できるようにしている。すなわち、SOP5の左リード端子Lnは光路A,B,Cを経由してその像がカメラ1に入射され、右リード端子Rnは光路D,E,Fを経由してその像がカメラ1に入射される。
【0100】
また、この場合、2つのドーププリズム13にSOP5の上面部幅に対応する間隔を設け、SOP5の上面像はプリズム13を介さないで直接カメラ1に入射されるようにして、1台のカメラ1で刻印マークの検査とコプラナリティの検査を同時に行えるようにしている。
【0101】
図24(a)は、左リード端子L1〜Ln及び右リード端子R1〜Rnを有するSOP5を上方からみた平面図である。図24(b)は図24(a)に示すSOP5を図23のカメラ1によって撮像した画像を示すもので、カメラ1による1つの撮像画像内で左リード端子L1〜Lnは3つの異なる位置L1A〜LnA,L1B〜LnB,L1C〜LnCに撮像されることになり、また右リード端子R1〜Rnは3つの異なるxy位置R1D〜RnD,R1E〜RnE,R1E〜RnEに撮像されることになる。例えば、リード端子L1は、L1A,L1B,L1Cの3位置上に撮像される。また、カメラ1の視野の中央部には、SOPの上面像が写されている。
【0102】
したがってこの場合、制御部25では、カメラ1の撮像画像中に写っている3箇所のリード先端像のうち2箇所のリード先端のx座標の変位を求め、前述した三角測量の原理を用いてリード先端のz座標を求めることができる。
【0103】
なお、この実施例においても、カメラ1には、プリズム13を経由しない光路GによるSOP上面像と、プリズム13を経由した光路A〜Fによるリード像が入射されるが、これら光路長差を吸収できるようにプリズム13の屈折率および厚さを設定するようにしている。
【0104】
〔第18実施例〕
図25にこの発明の第18実施例を示す。
【0105】
この第18実施例においては、先の図19に示す第16実施例のSOP5の配置角度を90度回転させるようにしている。したがって、図26(a)に示すように、SOP5を上方からみた場合、左リードL1〜Lnは上側に現れ、右リード像R1〜Rnは下側に現れている。
【0106】
この実施例においても、プリズム13を介在させることによりSOP5のリード先端像を1台のカメラ1で2つの異なる方向から撮像できるようにした点は、先の図19に示す実施例と同様である。すなわち、SOP5の各リード端子L1〜Ln,R1〜Rnは2種類の光路A,Bを経由してその像がカメラ1に入射される。
【0107】
図26(b)は図26(a)に示すSOP5を図25のカメラ1によって撮像した画像を示すもので、カメラ1による1つの撮像画像内で左リード端子L1〜Lnは2つの異なる位置にあるリード像L1A〜LnA,L1B〜LnBとして撮像されることになり、また右リード端子R1〜Rnは2つの異なる位置にあるリード像R1C〜RnC,R1D〜RnDとして撮像されることになる。例えば、リード端子L1は、L1A,L1Bの2位置上に撮像される。
【0108】
したがってこの場合においても、1台のカメラ1の撮像データを用い前述した三角測量の原理に基づいてリード先端のz座標を求めることができる。
【0109】
〔第19実施例〕
図27にこの発明の第19実施例を示す。
【0110】
この第19実施例では、先の図5に示す第4の実施例、図6に示す第5実施例、図23に示す第17実施例などと同様、SOP上面の刻印マーク検査とリード平坦度検査を1台のCCDカメラ1で行うようにする。
【0111】
この場合は、2つのプリズム13の間隔を拡げ、図28(b)に示すように、カメラ1の視野エリアの中央領域1−aではSOP5の上面画像をリード端子像を含めて真上から撮像できるようにするとともに、カメラ1の視野エリアの端部領域1−b,1−cでSOP5のリード部6を所定の角度をもって撮像できるようにしている。この場合は、右リードR1〜Rnの撮像像がカメラ1の視野エリアの左端部領域1−bに入射され、左リードL1〜Lnの撮像像がカメラ1の視野エリアの右端部領域1−cに入射されるように、プリズム13によってカメラ1の撮像軸を偏向するようにしている。
【0112】
なお、この実施例においても、カメラ1には、プリズム13を経由しない光路B,C,DによるSOP上面像と、プリズム13を経由した光路A,Eによるリード像が入射されるが、これら光路長差を吸収できるようにプリズム13の屈折率および厚さを設定するようにしている。
【0113】
〔第20実施例〕
図29にこの発明の第20実施例を示す。
【0114】
この第20実施例においては、DIP(Dual Inline Pacage)8の各リード先端のコプラナリティの測定を行う。
【0115】
この場合は、DIP8の裏面側を撮像できるようにカメラ1が配置され、さらにカメラ1とDIP8の間にはプリズム13が配置されている。
【0116】
図30(a)はDIP8を上方からみた平面図であり、DIP8は左リード端子L1〜Ln及び右リード端子R1〜Rnを有している。図30(b)は図30(a)に示すDIP8を図29のカメラ1によって撮像した画像を示すもので、カメラ1による1つの撮像画像内で左リード端子L1〜Lnは2つの異なる位置L1B〜LnB,L1D〜LnDに撮像されることになり、また右リード端子R1〜Rnは2つの異なる位置R1A〜RnA,R1C〜RnCに撮像されることになる。
【0117】
この実施例においても、カメラ1とDIP8の間にプリズム13を介在させて、カメラ1に2つの異なる方向から見たリード端子像を入射するようにしたので、SOPの上方に設けた1台のカメラ1による撮像データのみによってリード端子のxy位置のみならず高さ方向位置に関する情報が得られるようになる。
【0118】
〔第21実施例〕
図31にこの発明の第21実施例を示す。
【0119】
この第21実施例においては、BGA9(Ball Grid Array)またはCSP(Chip Size Package)の各ボール状リード21のコプラナリティの測定を行う。
【0120】
この場合は、表裏反転されたBGA9の上方にカメラ1が配置され、さらにカメラ1とBGA9の間にはプリズム13が配置されている。
【0121】
図32(a)はBGA9を上方からみた平面図であり、BGA9は縦横に配列されたボール状リードB(1、1)〜B(n,m)を有している。図32(b)は図32(a)に示すBGA9を図31のカメラ1によって撮像した画像を示すもので、プリズム13が介在されることにより、カメラ1による1つの撮像面内でボール状リードB(1、1)〜B(n,m)は2つの異なる左右位置にある像B(1、1)A〜B(n,m)A、B(1、1)B〜B(n,m)Bとして撮像される。
【0122】
この実施例においても、カメラ1とBGA9の間にプリズム13を介在させて、カメラ1に2つの異なる方向から見たボール状リード端子像を入射するようにしたので、BGA9の上方に設けた1台のカメラ1による撮像データのみによってリード端子のxy位置のみならず高さ方向位置に関する情報が得られるようになる。
【0123】
ところで、上記実施例では、本発明をSOP、DIP、BGAに適用するようにしたが、本発明をPGA(Pin Grid Array)、QFP(Quad flat package)、QFJ(Quad flat j-leaded package)など他の任意の半導体パッケージの端子検査に適用するようにしてもよい。また、本発明を、コネクタなどの電極配列検査に適用するようにしてもよい。また、本発明をボンディングワイヤの高さ検査などに適用することもできる。
【0124】
さらに本発明をリードフレームが切り離される前の状態のぶら下がった状態でのコプラナリティ検査に適用するようにしてもよい。
【図面の簡単な説明】
【図1】この発明の第1実施例を示す図。
【図2】この発明の第2実施例を示す図。
【図3】この発明の第3実施例を示す図。
【図4】第3実施例による作用を示す図。
【図5】この発明の第4実施例を示す図。
【図6】この発明の第5実施例を示す図。
【図7】この発明の第6実施例を示す図。
【図8】この発明の第7実施例を示す図。
【図9】この発明の第8実施例を示す図。
【図10】この発明の第9実施例を示す図。
【図11】従来技術の不具合を説明する図。
【図12】エンボステープのP,S偏光波についての反射係数を示す図。
【図13】この発明の第10実施例を示す図。
【図14】この発明の第11実施例を示す図。
【図15】この発明の第12実施例を示す図。
【図16】この発明の第13実施例を示す図。
【図17】この発明の第14実施例を示す図。
【図18】この発明の第15実施例を示す図。
【図19】この発明の第16実施例を示す図。
【図20】第16実施例による撮像画像例などを示す図。
【図21】三角測量によるリード高さ測定原理を説明する図。
【図22】プリズム固有の係数を説明する図。
【図23】この発明の第17実施例を示す図。
【図24】第17実施例による撮像画像例などを示す図。
【図25】この発明の第18実施例を示す図。
【図26】第18実施例による撮像画像例などを示す図。
【図27】この発明の第19実施例を示す図。
【図28】第19実施例による撮像画像例などを示す図。
【図29】この発明の第20実施例を示す図。
【図30】第20実施例による撮像画像例などを示す図。
【図31】この発明の第21実施例を示す図。
【図32】第21実施例による撮像画像例などを示す図。
【図33】従来技術を示す図。
【図34】リード平坦度検査の対象を示す図。
【図35】従来技術を示す図。
【図36】エンボステープ内に収容されているICパッケージを示す図。
【符号の説明】
1…カメラ
2…カメラ
3…カメラ
4…光透過性光学部材
5…SOP
6…リード
7,13,14…プリズム
8…DIP
9…BGA
12…ミラー
20,21…照明
22,23…偏光板
25…制御部
E…エンボステープ

Claims (3)

  1. 半導体パッケージの端子の平坦度を検査する半導体パッケージの検査装置において、
    前記半導体パッケージの端子部を所定の角度をもって斜め上方から撮像する撮像手段と、
    この撮像手段の撮像データに基づいて前記半導体パッケージの端子の平坦度を検査する検査手段と、
    前記半導体パッケージを収容する容器と、
    前記半導体パッケージの端子部分をP偏光波で照明する照明手段と、
    を具え
    前記撮像手段の前記撮像方向を前記容器の側面壁に対してブリュースタ角に設定するようにした半導体パッケージの検査装置。
  2. 前記撮像手段は、
    前記半導体パッケージの上方に配置されてその撮像軸が前記半導体パッケージの上面に対して略直角に設定されている1台の視覚カメラ手段と、
    前記半導体パッケージと前記視覚カメラ手段の間に配設され、前記視覚カメラ手段によって前記半導体パッケージの端子部を所定の角度をもって斜め上方方向から撮像するよう前記視覚カメラ手段の視野内に半導体パッケージの端子部の像を導く導光手段と、
    を具える請求項1記載の半導体パッケージの検査装置。
  3. 前記導光手段は、ミラーまたはプリズムである請求項2記載の半導体パッケージの検査装置。
JP15704997A 1996-09-17 1997-06-13 半導体パッケージの検査装置 Expired - Lifetime JP3995030B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15704997A JP3995030B2 (ja) 1996-09-17 1997-06-13 半導体パッケージの検査装置
PCT/JP1997/003284 WO1998012502A1 (en) 1996-09-17 1997-09-17 Device for imaging object to be inspected and device for inspecting semiconductor package
US09/254,684 US6307210B1 (en) 1996-09-17 1997-09-17 Device for imaging object to be inspected and device for inspecting semiconductor package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-245173 1996-09-17
JP24517396 1996-09-17
JP15704997A JP3995030B2 (ja) 1996-09-17 1997-06-13 半導体パッケージの検査装置

Publications (2)

Publication Number Publication Date
JPH10148517A JPH10148517A (ja) 1998-06-02
JP3995030B2 true JP3995030B2 (ja) 2007-10-24

Family

ID=26484630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15704997A Expired - Lifetime JP3995030B2 (ja) 1996-09-17 1997-06-13 半導体パッケージの検査装置

Country Status (3)

Country Link
US (1) US6307210B1 (ja)
JP (1) JP3995030B2 (ja)
WO (1) WO1998012502A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072898A (en) * 1998-01-16 2000-06-06 Beaty; Elwin M. Method and apparatus for three dimensional inspection of electronic components
US6915006B2 (en) * 1998-01-16 2005-07-05 Elwin M. Beaty Method and apparatus for three dimensional inspection of electronic components
US6549647B1 (en) 2000-01-07 2003-04-15 Cyberoptics Corporation Inspection system with vibration resistant video capture
US6593705B1 (en) 2000-01-07 2003-07-15 Cyberoptics Corporation Rapid-firing flashlamp discharge circuit
GB2375392B (en) 2000-01-07 2004-12-15 Cyberoptics Corp Phase profilometry system with telecentric projector
US6748104B1 (en) 2000-03-24 2004-06-08 Cognex Corporation Methods and apparatus for machine vision inspection using single and multiple templates or patterns
KR100378988B1 (ko) * 2000-10-27 2003-04-08 한국과학기술연구원 반도체 패키지의 삼차원 시각 검사방법
US6567161B1 (en) * 2000-11-28 2003-05-20 Asti Holdings Limited Three dimensional lead inspection system
US6445518B1 (en) * 2000-11-28 2002-09-03 Semiconductor Technologies & Instruments, Inc. Three dimensional lead inspection system
EP1220596A1 (en) 2000-12-29 2002-07-03 Icos Vision Systems N.V. A method and an apparatus for measuring positions of contact elements of an electronic component
US6813016B2 (en) * 2002-03-15 2004-11-02 Ppt Vision, Inc. Co-planarity and top-down examination method and optical module for electronic leaded components
US6730883B2 (en) 2002-10-02 2004-05-04 Stratagene Flexible heating cover assembly for thermal cycling of samples of biological material
JP4234402B2 (ja) * 2002-11-21 2009-03-04 富士機械製造株式会社 電子回路部品像取得装置
DE602004021240D1 (de) * 2003-03-07 2009-07-09 Ismeca Semiconductor Holding Optische einrichtung und inspektionsmodul
US7442000B2 (en) * 2003-03-07 2008-10-28 Ismeca Semiconductor Holding Sa Method and device for extracting electronic components from tubes and electronic component feeding device
JP2005030891A (ja) * 2003-07-11 2005-02-03 Toshiba Corp 表面非破壊検査装置および表面非破壊検査方法
US7340085B2 (en) * 2003-09-03 2008-03-04 Microview Technologies Pte Ltd. Rotating prism component inspection system
JP4688192B2 (ja) * 2004-09-02 2011-05-25 株式会社メガトレード 表面検査装置
JP3918854B2 (ja) * 2004-09-06 2007-05-23 オムロン株式会社 基板検査方法および基板検査装置
JP2006133078A (ja) * 2004-11-05 2006-05-25 Olympus Corp 多方向観察装置
JP4774824B2 (ja) * 2005-06-17 2011-09-14 オムロン株式会社 3次元計測処理の計測対象範囲の確認方法および計測対象範囲の設定方法ならびに各方法を実施する装置
CN100417914C (zh) * 2005-06-17 2008-09-10 欧姆龙株式会社 图像处理装置以及图像处理方法
KR101155816B1 (ko) * 2005-06-17 2012-06-12 오므론 가부시키가이샤 3차원 계측을 행하는 화상 처리 장치 및 화상 처리 방법
JP4847128B2 (ja) * 2005-12-21 2011-12-28 日本エレクトロセンサリデバイス株式会社 表面欠陥検査装置
JP4651563B2 (ja) * 2006-03-20 2011-03-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2008086016A1 (en) * 2007-01-10 2008-07-17 Cyberoptics Corporation Inspection system
JP4810455B2 (ja) * 2007-02-14 2011-11-09 ホリストン ポリテック株式会社 コンデンサの外観検査方法
JP2009180505A (ja) * 2008-01-29 2009-08-13 Yutaka:Kk ワークの外周検査装置
US8059280B2 (en) 2008-01-31 2011-11-15 Cyberoptics Corporation Method for three-dimensional imaging using multi-phase structured light
JP5296749B2 (ja) * 2010-07-09 2013-09-25 ヤマハ発動機株式会社 部品認識装置および表面実装機
JP5625667B2 (ja) * 2010-09-16 2014-11-19 株式会社リコー 撮像装置、測色装置及び記録装置
JP5625666B2 (ja) * 2010-09-16 2014-11-19 株式会社リコー 記録装置
US8678540B2 (en) 2010-09-16 2014-03-25 Ricoh Company, Limited Image capturing device and recording apparatus
CN103415756B (zh) * 2011-03-09 2016-03-16 东洋玻璃株式会社 玻璃瓶检查装置以及远心透镜单元
FR2975940A1 (fr) * 2011-05-31 2012-12-07 Forest Line Capdenac Procede de controle du jeu entre bandes deposees par une tete de drapage et sous-ensemble de tete de drapage a dispositif de controle embarque.
JP6003097B2 (ja) * 2012-03-02 2016-10-05 株式会社リコー 撮像装置、測色装置、測色システム及び画像形成装置
JP2013195184A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 撮像装置、測色装置、測色システム及び画像形成装置
US10126252B2 (en) 2013-04-29 2018-11-13 Cyberoptics Corporation Enhanced illumination control for three-dimensional imaging
JP5794371B2 (ja) * 2014-10-02 2015-10-14 株式会社リコー 記録装置
JP5794370B2 (ja) * 2014-10-02 2015-10-14 株式会社リコー 記録装置
JP6786593B2 (ja) 2015-08-26 2020-11-18 アーベーベー・シュバイツ・アーゲーABB Schweiz AG 多視点による対象検査装置及び方法
JP5999859B1 (ja) * 2015-09-30 2016-09-28 上野精機株式会社 外観検査装置
JP6288192B2 (ja) * 2016-09-08 2018-03-07 株式会社リコー 撮像ユニット、測色装置、及び画像形成装置
WO2018203824A1 (en) * 2017-05-02 2018-11-08 Generic Power Pte Ltd System and method for lead foot angle inspection using multiview stereo vision
JP6450815B1 (ja) * 2017-08-24 2019-01-09 Ckd株式会社 外観検査装置及びブリスター包装機
JP6455612B2 (ja) * 2018-02-06 2019-01-23 株式会社リコー 撮像ユニット、測色装置、及び画像形成装置
US11846498B2 (en) 2018-06-05 2023-12-19 Nec Corporation Displacement amount measuring device, displacement amount measuring method, and recording medium
JP7199241B2 (ja) * 2019-02-07 2023-01-05 株式会社東芝 半導体検査システム及び半導体検査装置
WO2020194567A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 検品装置、検品方法、及び非一時的なコンピュータ可読媒体
JP7377092B2 (ja) * 2019-12-16 2023-11-09 Towa株式会社 統計データ生成方法、切断装置及びシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049886B2 (ja) * 1975-08-25 1985-11-05 キヤノン株式会社 顕微鏡
JP2677351B2 (ja) * 1986-10-31 1997-11-17 池上通信機 株式会社 立体状被検体外面検査装置
US5212390A (en) * 1992-05-04 1993-05-18 Motorola, Inc. Lead inspection method using a plane of light for producing reflected lead images
JPH0781849B2 (ja) * 1992-11-24 1995-09-06 株式会社ジャスト 電子部品のリード形状検査装置
JP3381341B2 (ja) 1993-01-26 2003-02-24 ソニー株式会社 半導体装置の外観検査装置とその検査方法
JP2999925B2 (ja) * 1994-07-18 2000-01-17 三洋電機株式会社 物品側面撮像装置
US5866941A (en) * 1995-02-23 1999-02-02 Silicon Systems, Inc. Ultra thin, leadless and molded surface mount integrated circuit package

Also Published As

Publication number Publication date
WO1998012502A1 (en) 1998-03-26
JPH10148517A (ja) 1998-06-02
US6307210B1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
JP3995030B2 (ja) 半導体パッケージの検査装置
US6879403B2 (en) Three dimensional scanning camera
US6094263A (en) Visual examination apparatus and visual examination method of semiconductor device
US6389688B1 (en) Method and apparatus for chip placement
US6055055A (en) Cross optical axis inspection system for integrated circuits
JP2002529711A (ja) ステレオ映像ライン走査センサを有する電子部品組立装置
CN101889197A (zh) 检查装置和检查方法
US20100315655A1 (en) Method And Device For Measuring A Height Difference
JPWO2002023123A1 (ja) 光学式センサ
KR100332247B1 (ko) 격자 어레이 검사 시스템 및 방법
US6242756B1 (en) Cross optical axis inspection system for integrated circuits
WO2002017357A2 (en) Three dimensional inspection of leaded ics
JPH05306915A (ja) 形状測定方法およびその装置
TW517268B (en) Three dimensional lead inspection system
JP2001155160A (ja) 電子部品の外観検査装置
JPH07151522A (ja) 電子部品検査装置
US6088108A (en) Leaded components inspection system
JP2012181114A (ja) 外観検査装置
JPH0961291A (ja) 光学部材検査装置
WO2002045136A9 (en) Three dimensional lead inspection system
EP1139090A2 (en) Leaded integrated circuit inspection system
JPH06160057A (ja) 電子部品のリード形状検査装置
JP3444228B2 (ja) 半導体装置のリード検査装置
JP2811318B2 (ja) 半導体検査装置
JP3398754B2 (ja) 集積回路チップ浮き上がり検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term