JP3951123B2 - 増幅回路 - Google Patents
増幅回路 Download PDFInfo
- Publication number
- JP3951123B2 JP3951123B2 JP2002352664A JP2002352664A JP3951123B2 JP 3951123 B2 JP3951123 B2 JP 3951123B2 JP 2002352664 A JP2002352664 A JP 2002352664A JP 2002352664 A JP2002352664 A JP 2002352664A JP 3951123 B2 JP3951123 B2 JP 3951123B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- control circuit
- amplifier circuit
- amplifying
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Control Of Amplification And Gain Control (AREA)
Description
【発明の属する技術分野】
本発明は、高周波信号を増幅する増幅回路、およびこの増幅回路を複数有する可変利得増幅回路に関する。
【0002】
【従来の技術】
従来から、無線通信システムにおいて、可変利得増幅回路は重要な回路技術とされてきた。しかし、現代の高度化した携帯電話や、マルチメディアに対応すべく高速なデータ転送をサポートした無線LANシステムにおいて、より低電力で動作し、かつ高精度に利得を制御できることが可変利得増幅回路に求められている。
【0003】
図11は、可変アッテネータと増幅器を組合せた利得可変増幅回路の従来例を示す図である。図11の可変利得増幅回路は可変アッテネータ91と増幅器92が直列に接続された構成である。図11の可変利得増幅回路は、可変アッテネータ91の減衰量を変化させることにより増幅回路トータルの増幅度を制御する。
【0004】
図12は、スイッチにより増幅器とアッテネータのいずれかを選択する可変利得増幅回路の従来例を示す図である。図12の可変利得増幅回路は、可変アッテネータ93と増幅器94のいずれかをスイッチ951,952によって選択する構成である。
【0005】
他の従来例として、複数の増幅器を有する可変利得増幅回路がある(特許文献1参照)。
【0006】
図13は、複数の増幅器を用いた可変利得増幅回路の従来例を示す図である。図13の可変利得増幅回路は、複数の増幅器961〜96Nが1つの復調器97に接続された構成である。増幅回路961〜96Nは、互いに異なる利得をそれぞれ有している。本可変利得増幅器では、所望の利得を得るのに適した増幅器だけがオンにされる。そして、その他の増幅器はオフにされ、出力が高インピーダンスになって、復調器97から電気的に切り離される。
【0007】
【特許文献1】
特開2001−345653号公報
【0008】
【発明が解決しようとする課題】
図11に示された可変利得増幅器では、初段に可変アッテネータ91が置かれるため、その損失がそのままノイズ指数の悪化となり、ノイズ指数を良くすることができない。
【0009】
また、必要な増幅度の大小に関わらず増幅器92は増幅動作を行うので常に電力が消費され続ける。例えば、入力が大きく、大きな増幅度が必要でない場合でも増幅器92は常に増幅動作を行うこととなる。そのため、携帯端末のようにバッテリーで動作する機器において使用時間を延長することができない。
【0010】
図12に示された可変利得増幅回路では、複数のスイッチ(図12では2つ)が使用されるため、スイッチによる損失分を、増幅器94や、本可変利得増幅回路の後段の増幅器(不図示)で補償する必要がある。そして、そのために装置全体として消費電力が増加する。特に、数GHzを越える周波数帯ではスイッチの損失は大きく、そのため、所望の利得を得るのに必要となる消費電力がさらに大きくなる。
【0011】
図13に示された可変利得増幅回路を適用できるのはIF帯のような数十MHz程度の周波数までである。増幅器961〜96Nの負荷抵抗は50オームから200オーム程度に設定される。しかし、GHzを超える周波数では、半導体デバイスの寄生容量によりオフ状態でのインピーダンスが下がるので、オフにされている増幅器の出力が十分に高インピーダンスにならない。
【0012】
利得の可変範囲を広くとるため、あるいは利得の可変ステップを細かくとるためには、増幅器を並列接続する数を増やせばよいが、そうすると、オフにされている増幅器のインピーダンスの影響により、次段へ信号が伝わらず全体の利得が低下する。
【0013】
本発明の目的は、入出力を良好に高インピーダンスにでき、かつ低消費電力で高利得の得られる増幅回路と、それを複数有し、ノイズ特性に優れ、かつ利得可変範囲の広い可変利得増幅回路を提供することである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の増幅回路は、増幅素子の入力端子と電位の間に、増幅素子がオフ状態時に増幅素子の入力インピーダンスを高くする制御回路とを有し、制御回路がインダクタンス素子とスイッチ素子を有し、インダクタンス素子は、増幅素子に寄生する入力容量と並列共振するインダクタンス値を有している。
【0015】
本発明の他の増幅回路は、入力端子からの信号を増幅して出力端子に出力する増幅素子と、増幅素子の出力端子と接地電位の間に、増幅素子がオフ状態時に増幅素子の出力インピーダンスを高くする制御回路とを有し、制御回路がインダクタンス素子とスイッチ素子を有し、インダクタンス素子は、増幅素子に寄生する出力容量と並列共振するインダクタンス値を有している。
【0016】
本発明のされに他の増幅回路は、入力端子からの信号を増幅して出力端子に出力する増幅素子と、増幅素子の入力端子と接地電位間に、増幅素子がオフのときに増幅素子の入力インピーダンスを高くする第1の制御回路と、出力端子と接地電位間に、増幅素子がオフのときに増幅素子の出力インピーダンスを高くする第2の制御回路とを有し、第1の制御回路がインダクタンス素子とスイッチ素子を有し、第1の制御回路のインダクタンス素子は、増幅素子に寄生する入力容量と並列共振するインダクタンス値を有し、第2の制御回路がインダクタンス素子とスイッチ素子を有し、第2の制御回路のインダクタンス素子は増幅素子に寄生する出力容量と並列共振するインダクタンス値を有している。
【0017】
したがって、本発明によれば、制御回路によって入力インピーダンスまたは出力インピーダンスが高インピーダンスとされるので、信号経路にスイッチを挿入することなく電気的な接続/切断を切り替えることができ、スイッチを挿入することによる損失を生じない。
また、増幅素子に寄生する容量による高周波数帯でのインピーダンスの低下を、所定の周波数で寄生容量と並列共振するインダクタンス素子により相殺できる。
【0019】
また、インダクタンス素子とスイッチ素子が直列接続され、入力端子または出力端子と接地電位の間に交流的に接続されていることとしてもよい。
【0020】
したがって、増幅素子に寄生する容量による高周波数帯でのインピーダンスの低下を、インダクタンス素子により相殺できる。
【0021】
また、スイッチ素子が電界効果トランジスタであってもよい。
【0024】
また、制御回路は、一端が入力端子または出力端子に接続された伝送線路と一端が接地された伝送線路を含み、長さの合計が適用波長の4分の1の奇数倍となる少なくとも2つの伝送線路と、入力端子または出力端子と接地電位の間を適用波長の4分の1の奇数倍分の伝送線路で接続するか、それより短い分の伝送線路で接続するかを切り替え可能なスイッチ素子とで構成されていてもよい。
【0025】
また、適用波長の4分の1の奇数倍より短い分の伝送線路は、増幅素子に寄生する容量と並列共振する値のインダクタとして働くこととしてもよい。
【0026】
本発明の利得可変な増幅回路は、互いに異なる利得を与えられて並列に接続された少なくとも2つの、上述された増幅回路を有し、いずれか1つの増幅回路を除く他の増幅回路の入力インピーダンスまたは出力インピーダンスのいずれかあるいは両方を高インピーダンスにすることにより利得を変更する。
【0027】
したがって、本発明によれば、各増幅回路は選択されていないとき入出力を高インピーダンス化でき、並列接続する増幅回路の数が多くても高利得を維持できる。
【0028】
【発明の実施の形態】
本発明の実施形態について図面を参照して詳細に説明する。
【0029】
図1は、本発明の一実施形態の可変利得増幅回路の構成を示す図である。図1を参照すると、本可変利得増幅回路は、複数の増幅回路1001〜100Nを有している。
【0030】
入力端子INには、全ての増幅回路1001〜100Nの入力端子が接続されている。出力端子OUTには、全ての増幅回路1001〜100Nの出力端子が接続されている。増幅回路1001〜100Nは全て同様の構成であるが、それぞれ利得が異なり、また制御電圧Vc1〜VcNによる制御で個々に高インピーダンスとすることが可能である。そして、制御電圧Vc1〜VcNにより各増幅回路1001〜100Nを入力端子INおよび出力端子OUTに電気的に接続するか否かを選択できる。したがって、いずれか1つの増幅回路を選択することにより、可変利得増幅回路の利得を所望の値にすることができる。
【0031】
図2は、図1に示された増幅回路の構成を示す図である。この増幅回路はシングルエンド型増幅回路である。図2を参照すると、増幅回路100は、インダクタ201,203,204,205,206、抵抗202、容量207および電界効果トランジスタ208,209,210を有している。
【0032】
入力端子INには、インダクタ201の一方の端子と抵抗202の一方の端子が接続されている。抵抗202の他方の端子はゲートバイアス電位Vgbiasとされている。インダクタ201の他方の端子には、電界効果トランジスタ208のゲートとインダクタ203の一方の端子が接続されている。インダクタ203の他方の端子には電界効果トランジスタ209のドレインが接続されている。
【0033】
電界効果トランジスタ208のドレインには、インダクタ204,205,206の各々の一方の端子が接続されている。インダクタ206の他方の端子には電源電圧Vddが供給されている。インダクタ204の他方の端子には、電界効果トランジスタ210のドレインが接続されている。電界効果トランジスタ209,210の各々のゲートには、制御電圧Vcが供給される。電界効果トランジスタ208,209,210のソースは接地されている。インダクタ205の他方の端子は、出力端子OUTと、容量207の一方の端子が接続されている。容量207の他方の端子は接地されている。
【0034】
そして、インダクタ201,205,206および容量207は入出力整合回路として働く。ただし、インダクタ206はチョークインダクタとしての機能も有する。抵抗202は入力信号にゲートバイアスを加える。電界効果トランジスタ208は、本可変利得増幅回路のメインの増幅素子である。制御電圧Vcは、本増幅回路100をオン/オフするための制御電圧である。
【0035】
本実施形態の増幅回路100は、スイッチ素子としての電界効果トランジスタ209,210と共振用のインダクタ203,204で構成された制御回路に対して制御が加えられることにより、オン状態とオフ状態が切り替わる。制御電圧Vcをハイレベル例えば電源電圧Vddに設定し、ゲートバイアス電位Vgbiasを0Vに設定すると、増幅回路100はオフ状態となる。
【0036】
制御電圧Vcをローレベル例えば0Vに設定し、ゲートバイアス電位Vgbiasを動作電位に設定すると、増幅回路100はオン状態となる。ここで動作電位とは、トランジスタ208が増幅器として動作するゲートバイアス値である。
【0037】
オン状態では、増幅回路100は、入力端子INおよび出力端子OUTと電気的に接続され、入力端子INの信号を増幅して出力端子OUTに供給する。オフ状態では、増幅回路100は入出力ともに高インピーダンスとなり、入力端子INおよび出力端子OUTと電気的に切り離される。
【0038】
増幅回路100が高インピーダンス状態となる原理について説明する。
【0039】
図3は、図2に示した増幅回路が高インピーダンス状態となる原理について説明するための図である。制御信号Vcをハイレベルとして電界効果トランジスタ209,210をオンにし、ゲートバイアス電位Vgbiasを0Vにしたときの増幅回路100の入力側(a)および出力側(b)の等価回路が示されている。
【0040】
図3(a)において、インダクタ301は図2のインダクタ201に相当する。インダクタ303は図2のインダクタ203に相当する。図3(b)において、インダクタ306は図2のインダクタ206に相当する。インダクタ305は図2のインダクタ205に相当する。容量307は図2の容量207に相当する。インダクタ304は図2のインダクタ204に相当する。
【0041】
ゲートバイアス電位Vgbiasが0Vなので、電界効果トランジスタ208はオフとなっており、ゲート側から見てもドレイン側から見ても、デバイスの真性半導体が持つゲート容量およびドレイン容量すなわち容量320,321に見える。
【0042】
そして、本実施形態では、インダクタ303と容量320が並列共振するように、インダクタ303の値が決められている。また、同様に、インダクタ304と容量321が並列共振するように、インダクタ304の値が決められている。これにより、入力インピーダンスおよび出力インピーダンスを高くすることができる。
【0043】
容量320,321の値は、プロセスの世代およびゲートのサイズによって変わるが、例えばゲート幅が300μmの電界効果トランジスタでは300fF程度である。300fF程度の容量について、周波数5GHzの増幅回路を想定すれば、インダクタ303,304は3nH程度とすればよい。この程度のインダクタであれば、配線によってIC上に容易に形成するができる。
【0044】
また、増幅回路100がオン状態で通常の増幅動作を行っているとき、電界効果トランジスタ209,210はオフである。電界効果トランジスタ209,210は、入出力間の信号の経路に無いので、オフ時の抵抗が高く設定されている。オフ時のシャント寄生容量が小さく抑えられ、インピーダンスは高くなっている。そのため、電界効果トランジスタ209,210がオフのとき、インダクタ303,304はフローティング状態である。
【0045】
以上説明したように、本実施形態によれば、信号経路にスイッチを挿入することなく、GHzオーダーを超える高周波数帯において、増幅回路100の入出力インピーダンスを高くすることができるので、この増幅回路1001〜100Nを並列接続した可変利得増幅回路において、利得の可変範囲を広く取っても、あるいは利得の可変ステップを細かくとっても、高利得、低ノイズ指数を維持できる。
【0046】
また、本実施形態によれば、可変利得増幅回路は、並列接続する増幅回路の数を増やしても高利得を維持できるので、消費電流を抑えることができる。そして、特に、GHzを越える高周波数帯で、その効果が顕著である。
【0047】
図4は、本実施形態の可変利得増幅回路に適用可能な他の増幅回路の構成を示す図である。図4を参照すると、本増幅回路は、インダクタ401,403,404,405,406、抵抗402、容量407および電界効果トランジスタ408,409,410,411を有している。図4の増幅回路は、増幅部にカスコード接続された2つの電界効果トランジスタ408,411を有する点で図2のものと異なる。
【0048】
入力端子INには、インダクタ401の一方の端子と抵抗402の一方の端子が接続されている。抵抗402の他方の端子はゲートバイアス電位Vgbiasとされている。インダクタ401の他方の端子には、電界効果トランジスタ408のゲートとインダクタ403の一方の端子が接続されている。インダクタ403の他方の端子には電界効果トランジスタ409のドレインが接続されている。
【0049】
電界効果トランジスタ408のドレインには、電界効果トランジスタ411のソースが接続されている。電界効果トランジスタ411のゲートには、制御電圧VcAが供給されている。電界効果トランジスタ411のドレインには、インダクタ404,405,406の各々の一方の端子が接続されている。インダクタ406の他方の端子には電源電圧Vddが供給されている。インダクタ404の他方の端子には、電界効果トランジスタ410のドレインが接続されている。電界効果トランジスタ409,410の各々のゲートには、制御電圧VcBが供給される。電界効果トランジスタ408,409,410のソースは接地されている。インダクタ405の他方の端子は、出力端子OUTと、容量407の一方の端子が接続されている。容量407の他方の端子は接地されている。
【0050】
そして、インダクタ401,405,406および容量407は入出力整合回路として働く。ただし、インダクタ406はチョークインダクタとしての機能も有する。抵抗402は入力信号にゲートバイアスを加える。電界効果トランジスタ408,411は、本可変利得増幅回路のメインの増幅素子である。制御電圧VcA,VcBは、本増幅回路をオン/オフするための制御電圧であり、相補関係にある。
【0051】
本増幅回路は、所望によって制御を加えられることによりオン状態とオフ状態が切り替わる。制御電圧VcAをローレベル、制御電圧VcBをハイレベルに設定し、ゲートバイアス電位Vgbiasを0Vに設定すると、本増幅回路はオフ状態となる。
【0052】
制御電圧VcAをハイレベル、制御電圧VcBをローレベルに設定し、ゲートバイアス電位Vgbiasを動作電位に設定すると、本増幅回路はオン状態となる。ここで動作電位とは、トランジスタ408が増幅器として動作するゲートバイアス値である。
【0053】
オン状態では、本増幅回路は、入力端子INおよび出力端子OUTと電気的に接続され、入力端子INの信号を増幅して出力端子OUTに供給する。オフ状態では、本増幅回路は入出力ともに高インピーダンスとなり、入力端子INおよび出力端子OUTと電気的に切り離される。
【0054】
本増幅回路が高インピーダンス状態となる原理は図2と同じである。
【0055】
なお、本実施形態の増幅回路によれば、2つの電界効果トランジスタがカスコード接続されることにより入力端子と出力端子の間の容量が小さくなっており、図2に示した回路よりさらに高い周波数帯で動作可能である。
【0056】
図5は、本実施形態の可変利得増幅回路に適用可能な他の増幅回路の構成を示す図である。図5を参照すると、本増幅回路は、インダクタ501,503,504,505,506、抵抗502、容量507および電界効果トランジスタ508,509,510,511,512を有している。図5の増幅回路は、増幅部にカスコード接続された2つの電界効果トランジスタ408,411を有する点は図4のものと同じである。しかし、本増幅回路では、整合用のインダクタ506と電源電圧Vddの間に、電流遮断用の電界効果トランジスタ512が設けられている点で図4のものと異なる。電界効果トランジスタ511は、本増幅回路がオフ状態では、電源から本電源回路への電流の供給を遮断する。
【0057】
入力端子INには、インダクタ501の一方の端子と抵抗502の一方の端子が接続されている。抵抗502の他方の端子はゲートバイアス電位Vgbiasとされている。インダクタ501の他方の端子には、電界効果トランジスタ508のゲートとインダクタ503の一方の端子が接続されている。インダクタ503の他方の端子には電界効果トランジスタ509のドレインが接続されている。
【0058】
電界効果トランジスタ508のドレインには、電界効果トランジスタ511のソースが接続されている。電界効果トランジスタ511のゲートには、制御電圧VcAが供給されている。電界効果トランジスタ511のドレインには、インダクタ504,505,506の各々の一方の端子が接続されている。インダクタ506の他方の端子には電界効果トランジスタ512のソースが接続されている。電界効果トランジスタ512のドレインには電源電圧Vddが供給されている。また、電界効果トランジスタ512のゲートには制御電圧VcBが供給されている。インダクタ504の他方の端子には、電界効果トランジスタ510のドレインが接続されている。電界効果トランジスタ509,510の各々のゲートには、制御電圧VcBが供給される。電界効果トランジスタ508,509,510のソースは接地されている。インダクタ505の他方の端子は、出力端子OUTと、容量507の一方の端子が接続されている。容量507の他方の端子は接地されている。
【0059】
そして、インダクタ501,505,506および容量507は入出力整合回路として働く。ただし、インダクタ506はチョークインダクタとしての機能も有する。抵抗502は入力信号にゲートバイアスを加える。電界効果トランジスタ508,511は、本可変利得増幅回路のメインの増幅素子である。制御電圧VcA,VcBは、本増幅回路をオン/オフするための制御電圧であり、相補関係にある。
【0060】
本増幅回路は、所望によって制御を加えられることによりオン状態とオフ状態が切り替わる。制御電圧VcAをローレベル、制御電圧VcBをハイレベルに設定し、ゲートバイアス電位Vgbiasを0Vに設定すると、本増幅回路はオフ状態となる。
【0061】
制御電圧VcAをハイレベル、制御電圧VcBをローレベルに設定し、ゲートバイアス電位Vgbiasを動作電位に設定すると、本増幅回路はオン状態となる。ここで動作電位とは、トランジスタ508が増幅器として動作するゲートバイアス値である。
【0062】
オン状態では、本増幅回路は、入力端子INおよび出力端子OUTと電気的に接続され、入力端子INの信号を増幅して出力端子OUTに供給する。オフ状態では、本増幅回路は入出力ともに高インピーダンスとなり、入力端子INおよび出力端子OUTと電気的に切り離される。
【0063】
本増幅回路が高インピーダンス状態となる原理は図2と同じである。
【0064】
図6は、本実施形態の可変利得増幅回路に適用可能なさらに他の増幅回路の構成を示す図である。図6を参照すると、本増幅回路は、インダクタ601a,601b,603a,604b,604a,604b,605a,605b,606a,606b、抵抗602a,602b、容量607a,607bおよび電界効果トランジスタ608a,608b,609a,609b,610a,610b,611a,611b,612,613を有している。図6の増幅回路は基本的な構成は図5のものと同じであるが、差動増幅回路になっている点と、増幅器用の電界効果トランジスタ608a,608bのソースと接地電位の間に定電流源用のトランジスタ613が設けられている点で図5のものと異なる。電界効果トランジスタ613のゲートバイアス電位Vsは動作電位とされる。
【0065】
電界効果トランジスタ608a,608bのゲートバイアス電位Vgbiasおよび定電流源用電界効果トランジスタ613のゲートバイアス電位Vsを動作電位に設定し、制御電圧Vcをハイレベルに設定すると、電界効果トランジスタ611a,611b,612はオン状態となり、電界効果トランジスタ609a,609b,610a,610bはオフ状態となる。それにより、インダクタ603a,603b,604a,604bはフローティング状態状態となり、本増幅回路は通常の増幅動作を行う。
【0066】
一方、制御電圧Vcがローレベルのとき、電界効果トランジスタ611a,611b,612がオフとなり、電界効果トランジスタ609a,609b,610a,610bがオンとなる。このとき、インダクタ603a,603b,604a,604bは接地され、電界効果トランジスタの容量と並列共振することにより増幅器の入出力インピーダンスが高くなる。
【0067】
図7は、伝送線路を用いた増幅回路の構成を示す図である。図7を参照すると、本増幅回路は、伝送線路721,722,723、電界効果トランジスタ720,724,725および出力整合回路726を有している。
【0068】
入力端子INには、伝送線路721の一端が接続されている。伝送線路721の他端には、伝送線路722の一端と、電界効果トランジスタ720のゲートが接続されている。伝送線路722の他端には、電界効果トランジスタ724,725の各々のドレインが接続されている。電界効果トランジスタ725のゲートには制御電圧VcAが供給されている。電界効果トランジスタ724のゲートには制御電圧VcBが供給されている。
【0069】
電界効果トランジスタ724のソースには伝送線路723の一端が接続されている。伝送線路723の他端と、電界効果トランジスタ725のソースは接地されている。
【0070】
電界効果トランジスタ720のドレインは出力整合回路726を介して出力端子OUTに接続されている。電界効果トランジスタ720のソースは接地されている。
【0071】
そして、伝送線路721は入力整合をとり、出力整合回路726は出力整合をとる。電界効果トランジスタ720は、本増幅回路のメインの増幅素子である。
【0072】
伝送線路722の長さは、本増幅回路が適用される信号の波長の4分の1より短い。そのため、伝送線路722はインダクタとして働く。また、伝送線路722の長さは、そのインダクタンスが電界効果トランジスタ720のゲート容量と並列共振するような値となっている
伝送線路723の長さと伝送線路722の長さを足すと、本増幅回路が適用される信号の波長の4分の1(あるいはその奇数倍)相当となるように、伝送線路723の長さは決められている。
【0073】
説明を簡単にするため、以下、入力側のみに着目して原理を説明する。
【0074】
電界効果トランジスタ724,725の各々はSPST(Single−Pole Single−Throw)スイッチを構成する。そして、電界効果トランジスタ724,725が、相補関係にある制御電圧VcA,VcBでそれぞれ制御される。
【0075】
制御電圧VcAがハイレベルに設定され、制御電圧VcBがローレベルに設定されると、電界効果トランジスタ724がオフで、電界効果トランジスタ725がオンとなる。これにより、伝送線路723は本増幅回路から切り離され、伝送線路722が直接は接地される。伝送線路722は、波長の4分の1より短いのでインダクタとして働き、かつ、そのインダクタンスが電界効果トランジスタ720のゲート容量と並列共振するような値となっているので、入力端子INから見て本増幅回路は高インピーダンスとなっている。
【0076】
一方、制御電圧VcAがローレベルに設定され、制御電圧VcBがハイレベルに設定されると、電界効果トランジスタ724がオンで、電界効果トランジスタ725がオフとなる。これにより、伝送線路723の一端が電気的に伝送線路722の接続された状態となる。
【0077】
伝送線路722と伝送線路723の長さの合計は4分の1波長であり、伝送線路723の他端は接地されているので、電界効果トランジスタ720のゲートから伝送線路722,723を見るとインピーダンスが無限大となっている。インピーダンスが無限大に見える伝送線路722および伝送線路723は、電界効果トランジスタ720のゲートに対して何の影響も与えないので、本増幅回路は増幅動作を行うだけである。
【0078】
なお、制御電圧VcAをハイレベルに、制御電圧VcBをローレベルに設定するとき、電界効果トランジスタ720が増幅動作を行わないように、ゲートバイアス電圧を設定する必要がある。
【0079】
次に、本発明の実施形態による増幅回路と従来の増幅回路の特性を比較する。
【0080】
図8は、特性を比較する2つの増幅回路の構成を示す図である。図8(a)には本発明の実施形態による可変利得増幅回路が示されており、図8(b)には従来の可変利得増幅回路が示されている。
【0081】
図8(a)に示された可変利得増幅回路は、増幅回路832の出力に増幅回路830とアッテネータ831が並列に接続された構成である。そして、増幅回路830は、増幅用の電界効果トランジスタのゲート容量とインダクタからなる並列共振回路を構成するか否かを、スイッチ用の電界効果トランジスタの切り替えにより選択可能な構成である。並列共振回路が構成されると、増幅回路830は入出力が高インピーダンスとなり、可変利得増幅回路から電気的に切断される。
【0082】
図8(b)に示された可変利得増幅回路は、図8(a)に示された可変利得増幅回路と同様に、増幅回路832の出力に増幅回路833とアッテネータ831が並列に接続された構成である。しかし、増幅回路833は、増幅回路830と異なり、信号の経路にスイッチ用の電界効果トランジスタを挿入し、その電界効果トランジスタのオン/オフにより可変利得増幅回路に電気的に接続されるか否かが選択される構成である。
【0083】
図8(a)に示された各可変利得増幅回路は共に5GHz帯の信号に適用されるものとして、インダクタンスの値が決められているものとする。
【0084】
図9は、図8(a)(b)に示された各可変利得増幅回路における、周波数に対する利得の関係を示すグラフである。図9には、増幅回路830,833を可変利得増幅回路に電気的に接続したとき(高利得動作)の利得特性と、電気的に切断したとき(低利得動作)の利得特性が示されている。図10は、図8(a)(b)に示された各可変利得増幅回路における、周波数に対するノイズ指数の関係を示すグラフである。
【0085】
図9および図10において、図8(a)の可変利得増幅回路の特性が実線で示され、図8(b)の可変利得増幅回路の特性が破線で示されている。
【0086】
図9を参照すると、高利得動作時の利得は、図8(a)の可変利得増幅回路の方が、図8(b)の可変利得増幅回路よりも5dB程度高くなっている。また、図10を参照すると、ノイズ指数は、図8(a)の可変利得増幅回路の方が、図8(b)の可変利得増幅回路よりも0.2dB程度低くなっている。これは、図8(b)では、信号の経路に挿入されているスイッチ用の電界効果トランジスタが信号で損失が起こるためである。この損失を増幅回路の利得を上げて補おうとすると、消費電流が50%程度増大することになる。すなわち、図8(a)の可変利得増幅回路は図8(b)の可変利得増幅回路に対して50%の消費電力低減効果を上げていると言える。
【0087】
一方、図9を参照すると、低利得動作時の利得は、図8(a)(b)の両者に利得の差は殆どない。これは、個々の増幅回路が可変利得増幅回路から電気的に良好に切断されているからである。つまり、増幅回路の入出力が良好に高インピーダンスとなっていると言える。
【0088】
【発明の効果】
本発明によれば、制御回路によって入力インピーダンスまたは出力インピーダンスが高インピーダンスとされるので、信号経路にスイッチを挿入することなく電気的な接続/切断を切り替えることができ、スイッチを挿入することによる損失を生じず、低消費電力で高利得を得ることができる。
【0089】
また、増幅素子に寄生する容量による高周波数帯でのインピーダンスの低下を、インダクタンス素子により相殺できるので、高周波数帯においても高インピーダンスとすることができる。また、所定の周波数で寄生容量と並列共振するインダクタンス素子により相殺できるので、所定の周波数で高インピーダンスとすることができる。
【0090】
また、本発明の可変利得増幅回路によれば、各増幅回路は選択されていないとき入出力を高インピーダンス化でき、並列接続する増幅回路の数が多くても高利得を維持できるので、広い利得可変範囲をとっても、あるいは細かい利得可変ステップをとっても、高利得、低ノイズ指数、および低消費電流を実現できる。
【図面の簡単な説明】
【図1】可変アッテネータと増幅器を組合せた利得可変増幅回路の従来例を示す図である。
【図2】図1に示された増幅回路の構成を示す図である。
【図3】図2に示した増幅回路が高インピーダンス状態となる原理について説明するための図である。
【図4】本実施形態の可変利得増幅回路に適用可能な他の増幅回路の構成を示す図である。
【図5】本実施形態の可変利得増幅回路に適用可能な他の増幅回路の構成を示す図である。
【図6】本実施形態の可変利得増幅回路に適用可能なさらに他の増幅回路の構成を示す図である。
【図7】伝送線路を用いた増幅回路の構成を示す図である。
【図8】特性を比較する2つの増幅回路の構成を示す図である。
【図9】図8(a)(b)に示された各可変利得増幅回路における、周波数に対する利得の関係を示すグラフである。
【図10】図8(a)(b)に示された各可変利得増幅回路における、周波数に対するノイズ指数の関係を示すグラフである。
【図11】可変アッテネータと増幅器を組合せた利得可変増幅回路の従来例を示す図である。
【図12】スイッチにより増幅器とアッテネータのいずれかを選択する可変利得増幅回路の従来例を示す図である。
【図13】複数の増幅器を用いた可変利得増幅回路の従来例を示す図である。
【符号の説明】
1001〜100N 増幅回路
201,203,204,205,206 インダクタ
202 抵抗
207 容量
208,209,210 電界効果トランジスタ
301,303〜306 インダクタ
307,320,321 容量
401,403,404,405,406 インダクタ
402 抵抗
407 容量
408〜411 電界効果トランジスタ
501,503,504,505,506 インダクタ
502 抵抗
507 容量
508〜512 電界効果トランジスタ
601a,601b,603a,604b,604a,604b,605a,605b,606a,606b インダクタ
602a,602b 抵抗
607a,607b 容量
608a,608b,609a,609b,610a,610b,611a,611b,612,613 電界効果トランジスタ
721,722,723 伝送線路
720,724,725 電界効果トランジスタ
726 出力整合回路
830,832,833 増幅回路
831 アッテネータ
IN 入力端子
OUT 出力端子
Claims (9)
- 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の入力端子と接地電位の間に、前記増幅素子がオフ状態時に前記増幅素子の入力インピーダンスを高くする制御回路とを有し、
前記制御回路がインダクタンス素子とスイッチ素子を有し、
前記インダクタンス素子は、前記増幅素子に寄生する入力容量と並列共振するインダクタンス値を有する、増幅回路。 - 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の出力端子と接地電位の間に、前記増幅素子がオフ状態時に前記増幅素子の出力インピーダンスを高くする制御回路とを有し、
前記制御回路がインダクタンス素子とスイッチ素子を有し、
前記インダクタンス素子は、前記増幅素子に寄生する出力容量と並列共振するインダクタンス値を有する、増幅回路。 - 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の入力端子と接地電位間に、前記増幅素子がオフのときに前記増幅素子の入力インピーダンスを高くする第1の制御回路と、出力端子と接地電位間に、前記増幅素子がオフのときに前記増幅素子の出力インピーダンスを高くする第2の制御回路とを有し、
前記第1の制御回路がインダクタンス素子とスイッチ素子を有し、前記第1の制御回路のインダクタンス素子は、前記増幅素子に寄生する入力容量と並列共振するインダクタンス値を有し、
前記第2の制御回路がインダクタンス素子とスイッチ素子を有し、前記第2の制御回路のインダクタンス素子は前記増幅素子に寄生する出力容量と並列共振するインダクタンス値を有する、増幅回路。 - 前記制御回路または前記第1および第2の制御回路の各々のインダクタンス素子とスイッチ素子が直列接続され、前記増幅素子の入力端子または出力端子と接地電位の間に交流的に接続された、請求項1から3のいずれか1項に記載の増幅回路。
- 前記スイッチ素子が電界効果トランジスタである、請求項4に記載の増幅回路。
- 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の入力端子と接地電位間に、前記増幅素子がオフ状態時に前記増幅素子の入力インピーダンスを高くする制御回路とを有し、
前記制御回路は、
一端が前記入力端子に接続された第1の伝送線路と一端が接地された第2の伝送線路を含み、前記第1の伝送線路と前記第2の伝送線路の長さの合計が適用波長の4分の1の奇数倍となる伝送線路と、
前記入力端子と接地電位の間を、前記適用波長の4分の1の奇数倍分の前記第1の伝送線路および前記第2の伝送線路で接続するか、それより短い前記第1の伝送線路で接続するかを切り替え可能なスイッチ素子と、で構成され、
前記適用波長の4分の1の奇数倍より短い分の前記第1の伝送線路は、前記増幅素子に寄生する入力容量と並列共振する値のインダクタとして働く、増幅回路。 - 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の出力端子と接地電位間に、前記増幅素子がオフ状態時に前記増幅素子の出力インピーダンスを高くする制御回路とを有し、
前記制御回路は、
一端が前記出力端子に接続された第1の伝送線路と一端が接地された第2の伝送線路を含み、前記第1の伝送線路と前記第2の伝送線路の長さの合計が適用波長の4分の1の奇数倍となる伝送線路と、
前記出力端子と接地電位の間を、前記適用波長の4分の1の奇数倍分の前記第1の伝送線路および前記第2の伝送線路で接続するか、それより短い前記第1の伝送線路で接続するかを切り替え可能なスイッチ素子とで構成され、
前記適用波長の4分の1の奇数倍より短い分の前記第1の伝送線路は、前記増幅素子に寄生する出力容量と並列共振する値のインダクタとして働く、増幅回路。 - 入力端子からの信号を増幅して出力端子に出力する増幅素子と、
前記増幅素子の入力端子と接地電位間に、前記増幅素子がオフ状態時に前記増幅素子の入力インピーダンスを高くする第1の制御回路と、前記増幅素子の出力端子と接地電位間に、前記増幅素子がオフ状態時に前記増幅素子の出力インピーダンスを高くする第2の制御回路とを有し、
前記第1の制御回路は、
一端が前記入力端子に接続された第1の伝送線路と一端が接地された第2の伝送線路を含み、前記第1の伝送線路と前記第2の伝送線路の長さの合計が適用波長の4分の1の奇数倍となる伝送線路と、
前記入力端子と接地電位の間を、前記適用波長の4分の1の奇数倍分の第1の伝送路および前記第2の伝送線路で接続するか、それより短い前記第1の伝送線路で接続するかを切り替え可能なスイッチ素子と、で構成され、
前記第1の制御回路の前記適用波長の4分の1の奇数倍より短い分の第1の伝送線路は、前記増幅素子に寄生する入力容量に並列共振するインダクタとして働き、
前記第2の制御回路は、
一端が前記出力端子に接続された第3の伝送線路と一端が接地された第4の伝送線路を含み、前記第3の伝送線路と前記第4の伝送線路の長さの合計が適用波長の4分の1の奇数倍となる伝送線路と、
前記出力端子と接地電位の間を、前記適用波長の4分の1の奇数倍分の前記第3の伝送線路および前記第4伝送線路で接続するか、それより短い前記第3の伝送線路で接続するかを切り替え可能なスイッチ素子とで構成され、
前記第2の制御回路の前記適用波長の4分の1の奇数倍より短い分の前記第3の伝送線路は、前記増幅素子に寄生する出力容量に並列共振するインダクタとして働く、増幅回路。 - 互いに異なる利得を与えられて並列に接続された少なくとも2つの、請求項1〜8のいずれか1項に記載の増幅回路を有し、いずれか1つの増幅回路を除く他の増幅回路の前記入力インピーダンスまたは前記出力インピーダンスのいずれかあるいは両方を高インピーダンスにすることにより利得を変更する増幅回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352664A JP3951123B2 (ja) | 2002-12-04 | 2002-12-04 | 増幅回路 |
CNB2003801049392A CN100448166C (zh) | 2002-12-04 | 2003-12-03 | 放大电路 |
US10/537,470 US7298215B2 (en) | 2002-12-04 | 2003-12-03 | Amplifying circuit |
PCT/JP2003/015468 WO2004051845A1 (ja) | 2002-12-04 | 2003-12-03 | 増幅回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352664A JP3951123B2 (ja) | 2002-12-04 | 2002-12-04 | 増幅回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004187080A JP2004187080A (ja) | 2004-07-02 |
JP3951123B2 true JP3951123B2 (ja) | 2007-08-01 |
Family
ID=32463239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002352664A Expired - Fee Related JP3951123B2 (ja) | 2002-12-04 | 2002-12-04 | 増幅回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7298215B2 (ja) |
JP (1) | JP3951123B2 (ja) |
CN (1) | CN100448166C (ja) |
WO (1) | WO2004051845A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006197227A (ja) * | 2005-01-13 | 2006-07-27 | Renesas Technology Corp | 可変利得増幅回路、受信機及び送信機 |
CN101116241A (zh) * | 2005-02-07 | 2008-01-30 | 艾利森电话股份有限公司 | 电子电路 |
CN101917167B (zh) | 2010-08-24 | 2014-05-14 | 惠州市正源微电子有限公司 | 射频功率放大器功率合成电路 |
US8803602B2 (en) | 2012-07-06 | 2014-08-12 | Analog Devices, Inc. | Common mode bias circuit |
US9509253B2 (en) * | 2014-02-13 | 2016-11-29 | Fujitsu Limited | Bandwidth improvement for amplifiers |
JP2018014543A (ja) * | 2014-11-28 | 2018-01-25 | ソニー株式会社 | 増幅器 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2959004B2 (ja) | 1989-12-22 | 1999-10-06 | 日本電気株式会社 | 半導体集積回路 |
JPH05206818A (ja) | 1992-01-28 | 1993-08-13 | Mitsubishi Electric Corp | 半導体スイッチ |
JP2848502B2 (ja) | 1992-04-24 | 1999-01-20 | 日本電信電話株式会社 | マイクロ波半導体スイッチ |
JPH06283938A (ja) | 1993-03-25 | 1994-10-07 | Mitsubishi Electric Corp | 増幅装置 |
JPH07235802A (ja) | 1994-02-23 | 1995-09-05 | Nippon Telegr & Teleph Corp <Ntt> | 高周波スイッチ回路 |
US5862461A (en) * | 1995-08-31 | 1999-01-19 | Sony Corporation | Transmitting apparatus and method of adjusting gain of signal to be transmitted, and receiving apparatus and method of adjusting gain of received signal |
SE505202C2 (sv) * | 1995-10-04 | 1997-07-14 | Allgon Ab | Förbiledningsanordning i en förstärkarenhet |
JPH10126164A (ja) | 1996-10-18 | 1998-05-15 | Matsushita Electric Ind Co Ltd | 高効率電力増幅器 |
JP4166318B2 (ja) * | 1998-03-25 | 2008-10-15 | 松下電器産業株式会社 | 電力増幅器 |
JP3712909B2 (ja) | 1999-04-01 | 2005-11-02 | 日本電信電話株式会社 | 高出力電力増幅器 |
JP3853536B2 (ja) | 1999-04-26 | 2006-12-06 | 株式会社東芝 | チューナ |
JP4144113B2 (ja) | 1999-05-20 | 2008-09-03 | ソニー株式会社 | 低雑音増幅器回路 |
JP3790086B2 (ja) | 2000-03-23 | 2006-06-28 | 日本電信電話株式会社 | 高周波電力増幅器 |
JP2001345653A (ja) * | 2000-06-05 | 2001-12-14 | Matsushita Electric Ind Co Ltd | 高周波切替回路 |
JP2002135060A (ja) * | 2000-10-19 | 2002-05-10 | Matsushita Electric Ind Co Ltd | 電力増幅装置及び方法 |
JP2002141752A (ja) | 2000-10-30 | 2002-05-17 | Matsushita Electric Ind Co Ltd | 電力増幅器 |
JP3820136B2 (ja) | 2000-11-14 | 2006-09-13 | 日本無線株式会社 | 電力増幅器の並列運転システム |
JP2002185270A (ja) | 2000-12-18 | 2002-06-28 | Matsushita Electric Ind Co Ltd | 電力増幅器および通信機器 |
JP2002271152A (ja) | 2001-03-08 | 2002-09-20 | Matsushita Electric Ind Co Ltd | 電力増幅器及びこの電力増幅器を搭載した携帯電話機 |
-
2002
- 2002-12-04 JP JP2002352664A patent/JP3951123B2/ja not_active Expired - Fee Related
-
2003
- 2003-12-03 CN CNB2003801049392A patent/CN100448166C/zh not_active Expired - Fee Related
- 2003-12-03 US US10/537,470 patent/US7298215B2/en not_active Expired - Fee Related
- 2003-12-03 WO PCT/JP2003/015468 patent/WO2004051845A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN1720658A (zh) | 2006-01-11 |
JP2004187080A (ja) | 2004-07-02 |
US20060033573A1 (en) | 2006-02-16 |
US7298215B2 (en) | 2007-11-20 |
WO2004051845A1 (ja) | 2004-06-17 |
CN100448166C (zh) | 2008-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9077290B2 (en) | Low-noise amplifier with impedance boosting circuit | |
JP4956059B2 (ja) | 可変利得増幅器 | |
US6724259B2 (en) | Variable gain amplifier | |
US7109790B2 (en) | High linearity doherty communication amplifier with integrated output matching unit | |
US8427240B2 (en) | Low-noise amplifier with gain enhancement | |
US6862437B1 (en) | Dual band tuning | |
US7602240B2 (en) | Power amplifier with an output matching network | |
US7486133B2 (en) | Transmitting output stage with adjustable output power and process for amplifying a signal in a transmitting output stage | |
US20230108382A1 (en) | Dual-band low-noise amplifier circuit, low-noise amplifier, and device | |
KR930007289B1 (ko) | 증폭회로 | |
WO2002031969A2 (en) | Linear power amplifier bias circuit | |
TW201014161A (en) | Driver amplifier having a programmable output impedance adjustment circuit | |
JP2004522350A (ja) | 無線端末のための可変利得低雑音増幅器 | |
CN102244504B (zh) | 毫米波衰减器及分流切换电路 | |
US7248119B2 (en) | Broadband amplifier with improved noise figure and distortion characteristics | |
JP3951123B2 (ja) | 増幅回路 | |
JP2010239401A (ja) | 可変利得増幅回路および無線通信装置 | |
WO2007056730A2 (en) | Variable passive components with high resolution value selection and control | |
WO2011034473A1 (en) | Method and arrangement in a mobile communications system | |
JP2007243872A (ja) | トランジスタ回路及びそれを用いた高周波増幅器 | |
US20240171134A1 (en) | Feedback circuit with adjustable gain and radio frequency circuit utilizing the same | |
JP2007519366A (ja) | 広帯域チューナ用の集積化可変周波数フィルタ | |
US11309842B2 (en) | Power amplifier circuit | |
JPH10126215A (ja) | 可変減衰装置 | |
US20230077479A1 (en) | High-efficiency amplifier architecture with de-gain stage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040427 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20041224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20041224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070410 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |