JP3941420B2 - 管内点検装置 - Google Patents

管内点検装置 Download PDF

Info

Publication number
JP3941420B2
JP3941420B2 JP2001163662A JP2001163662A JP3941420B2 JP 3941420 B2 JP3941420 B2 JP 3941420B2 JP 2001163662 A JP2001163662 A JP 2001163662A JP 2001163662 A JP2001163662 A JP 2001163662A JP 3941420 B2 JP3941420 B2 JP 3941420B2
Authority
JP
Japan
Prior art keywords
inspection
pipe
main body
cable
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001163662A
Other languages
English (en)
Other versions
JP2002357563A (ja
Inventor
敬二 田中
孝司 菊池
清志 泉
浩一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001163662A priority Critical patent/JP3941420B2/ja
Publication of JP2002357563A publication Critical patent/JP2002357563A/ja
Application granted granted Critical
Publication of JP3941420B2 publication Critical patent/JP3941420B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、流体が流される管の内部を点検する装置と方法に関するものである。
【0002】
【従来の技術】
従来、特開平11−094179号公報「管内自動点検装置」あるいは特開平09−152406号公報「配管内面検査装置」あるいは特開平06−050719号公報「配管内面検査装置」にあるように管内の流体を抜いたあとの詳細点検を可能とする管内点検装置の概念は示されていた。
【0003】
【発明が解決しようとする課題】
しかし、管内の流体が流れている状態でしかも長い管内を効率よく詳細点検まですることについてはあまり考慮されていなかった。
【0004】
本発明の目的は、管内に流体の流れが存在する状態の管内の点検を効率よく実施可能とする管内点検装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明の目的を達成するための第1の手段は、点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサは伸縮機構で管内面方向に進退自在に、且つその伸縮機構を旋回機構で管の円周方向に回転可能に点検装置本体に装着し、且つ前記点検用センサに近接センサを設け、且つ前記点検センサを搭載した伸縮機構と等価な慣性モーメントで前記伸縮機構とは反対方向へ回転可能とする旋回機構を点検装置本体に設けたことを特徴とする管内点検装置である。
【0006】
第1の手段では、点検用センサを管内面に伸縮機構で接近させて管内面を検査し、点検用センサの管内面への異常な接触を、近接センサのセンサ情報に基づき伸縮機構を伸縮制御して防止する。その上、点検センサを装着した伸縮機構と等価な慣性モーメントの旋回機構を点検センサを装着した伸縮機構の旋回方向とは反対方向へ回転させることで、旋回時の反動で、点検装置本体が揺れることなく、安定した点検センサでの点検が可能となる。
【0007】
第2の手段は、点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサが管内の流体の水面より上方を点検領域とするように、又は管内の流体の水面より下方を点検領域とするように、あるいは管内の流体の水面より下方と上方を点検領域とするように少なくとも水面より下方の点検用センサは左右と下の3個以上の複数、点検装置本体に装着し、且つ水面より上方を点検する点検用センサは水面より上になるように、水面より下方を点検するための点検用センサは水面より下になるように点検装置本体の浮力体が調整されていることを特徴とする管内点検装置である。
【0008】
第2の手段では、管内面の気相部分のみの点検と液相の部分の管内面の点検とそれら両方の点検と点検領域を自由に設定できる。
【0009】
第3の手段は、点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサは伸縮機構で管内面方向に進退自在に、且つその伸縮機構を旋回機構で管の円周方向に回転可能に点検装置本体に装着し、管の円周方向の回転移動をガイド可能とする車輪付きの押し当てパッドを突っ張り機構で管内面方向に進退自在に支持して点検装置本体の円周方向複数箇所に装備し、且つ点検装置本体に円周方向の姿勢を検出するための傾斜センサとか鉛直方向検出センサを設けたことを特徴とする管内点検装置である。
このような第3の手段では、突っ張り機構で車輪付きの押し当てパッドが管内面に当たると押し当てパッドに付いている車輪により管の円周方向に本体は軽く回転する。このことによって、複数の押し当てパッドがどのような順番で管内面に当たっても本体が回転して、突っ張り機構部に無理な力が発生しないようにできるので、突っ張り機構の強度部材を薄くして、軽量で使い勝手のよい点検装置にできる。また、突っ張り機構の制御も特に本体の姿勢と突っ張り制御する順番も特に考慮する必要はないので、簡単な制御で実現可能となる。
その上、点検装置本体の姿勢がどのようになっているか分からなくとも、点検装置本体に円周方向の姿勢を検出するための傾斜センサとか鉛直方向検出センサを設けて、検査基準点を明確にすることが可能となる。
【0010】
第4の手段は、前記第3の手段において、前記車輪付きの押し当てパッドの車輪をブレーキ装置でロックするか、別の突っ張り機構で点検装置本体から支持した固定パッドを管内面に押し当てて、円周方向の回転を固定する手段を備えたことを特徴とする管内点検装置である。
【0011】
このような第4の手段では、前記第3の手段で成せる内容に加えて、突っ張り機構が突っ張り後、次に車輪付きパッドの車輪をブレーキ装置などでロックするか、別の突っ張り機構で点検装置本体から支持した固定パッドを管内面に押し当てて、円周方向の回転を固定することにより、突っ張り機構に管の円周方向にガイドする車輪を用いても、これによって旋回機構で点検用センサを伸縮機構と共に管の円周方向に回転しても点検装置本体がその回転の反動で回転することは防止できる。
【0045】
【発明の実施の形態】
以下に本発明の実施例を図面を用いて説明する。図1は本発明を適用した管内点検システムのケーブルレス点検装置本体の基本的な一実施例を示す。点検装置本体100は浮力体10の内側に点検用センサとして照明20と広角レンズ30を付けた撮像装置40と撮像装置40で撮影した点検結果データを記録する画像記録装置50とそれらの電源となるバッテリーなどの動力源60が搭載されている。
【0046】
その浮力体10の浮力により広角レンズ30の部分が水面1の上にでて管内の気相部分の撮影ができるように自重と浮力とのバランスが調整されている。この状態で管2内で流水が流れていれば点検装置本体100も流れにそって移動して管路に沿って管内気相部の撮影データを画像記録装置に録画しながら移動可能となる。
【0047】
この点検装置本体100の電源を入れて管2の上流の部位に設けた挿入口から点検装置本体100を管2内に入れれば点検装置本体100には外部からケーブルが接続されていないケーブルレスなので、取り扱いは簡単で、管2の下流側の部位で取り出して電源を切って、画像記録装置50からたとえば8mmテープとか、ハードディスクなどの記録媒体を取り出して再生装置にかければ、事務所などで点検結果を確認することができるようになる。
【0048】
現場での点検作業は点検装置本体100がケーブルレスなのでケーブルの取り扱い等の始末を配慮することなく効率よく行えるものである。ここで、広角レンズ30のレンズ面には防水コートを施しておき、水滴などが広角レンズ30に付着して撮影条件を悪くすることを防止してもよい。また、照明20の配置は光が直接撮像装置へ入らない配置とし、場合によっては照明にリフレクタを設けて直接光が広角レンズ30に入らないようにするのがよい。
【0049】
また、浮力体10は流体抵抗を考慮した形状にするととともに水中での安定性を確保するために水平あるいは垂直の翼を設けて、点検装置本体100が安定に同じ姿勢で管2内の流体の流れに乗って流れていくように考慮するのがよい。ここで、もちろん撮像装置40は通常の可視カメラに限るものではなく、赤外線カメラでもよいし、X線などの放射線センサでもよいし、超音波センサでもよく、その場合、照明も各センサの特性に合った線源を照射することとなる。動力源60はバッテリーでなくエンジンと発電機の組み合わせなどでもよい。また、単に映像記録装置50を搭載するだけでなく、撮像装置40に取り込んだ情報(データ)としてのセンサ信号を処理したり、判断させたりするための処理回路を点検装置本体100内に搭載して、点検装置本体100を回収後にデータを分析しなくとも、その場で結果がすぐに分かるようにしてもよい。
【0050】
図2は図1の実施例の点検装置が管内で浮いている断面を見た時の本発明の一実施例である。広角レンズ30は気相にでていて、画角は広いので管内の気相全面を撮影することが可能となる。ここで、なぜ、気相を重視するかを補足しておくと、管2内面の酸化などは酸素のある気相に接する管2の内面で生じ、液相である水中では生じにくいということもある。また、汚泥などでたとえば硫化水素などの腐食性ガスが気相部に充満しているパイプラインなども腐食されるのは気相に接するパイプ内面であるからである。
【0051】
図3は二個の浮力体10を中空体で繋いで一体化した大型の浮力集合体を作り、その内側に図1の実施例の点検装置よりも大きな動力源及び大きな照明を搭載可能とした場合の一実施例を示す。動力源60の容量を大きくすればその重量も重くなるので、浮力体10も大きくして大きな浮力を生じるように調整する必要がある。
【0052】
また、管2内は照明がないので十分な明るさを得るためには大光量で大きな照明20を搭載するのがよい。この場合、点検装置本体100の長手方向の長さが長くなるので、照明20を広角レンズ30から大きく離した配置もできるので、直接光を避けて間接照明的により良好な照明配置設計も可能となる。
【0053】
図4は図3の実施例よりさらに大きな容量の動力源60を搭載して、長時間の連続点検作業が可能とする場合の基本的な一実施例を示す。点検装置本体100をさらに長くすると管路が狭隘で曲がっている個所は通りにくくなるので、浮力体10を分割して、それぞれをユニバーサルジョイントにより構成した連結部
15で接続する。動力源60は重たいので分割した浮力体10ごとに動力源も分割して搭載するようにした。
【0054】
広角レンズ30と照明20の配置間隔の関係はより間が広くなるので、照明条件はよりよい間接照明とすることが可能となる。
【0055】
図5は本発明を適用した管内点検システムの命綱を設けた点検装置本体100の基本的な一実施例を示す。本実施例は図1の実施例で点検装置本体100に命綱120を接続したものである。これにより、白抜きの矢印の方向に流れる管2内の流水により点検装置本体100は抵抗を受けてその流れに乗って下流側へ流されるが、命綱120を緩めなければその場に位置し流されることはなく、命綱120を緩めることにより点検装置本体100を移動させることが可能となる。
【0056】
本実施例では広角レンズ部30の洗浄に用いるための洗浄ノズルを浮力体10の外側に装備している。点検装置本体100に薬品あるいは純水などの洗浄液を蓄圧タンク32に充填して浮力体10内に搭載し、ホースとバルブ33を介して洗浄ノズル31に蓄圧タンク32を連通する。洗浄ノズル31は広角レンズ30の周囲に3個,4個配置しておく。また、バルブ33の開閉制御を行うバルブ制御回路34も点検装置本体100に搭載する。
【0057】
ここで、バルブ33の制御方法の一実施例を述べると、たとえば、点検装置本体100に搭載した各機器が稼動するように点検装置本体のスイッチをONしてから所定の時間経過後にバルブ33が自動的に開閉するようにバルブ制御回路を組んでおけば、そのスイッチを押してから管2内へ点検装置本体100を入れて、管2内の水面に着水させ、揺れが安定してから、自動的にバルブが開いて、洗浄ノズル31から洗浄液が蓄圧タンク32内の圧力で広角レンズ30に向かって噴出してその広角レンズ30の外側面を綺麗に洗浄することとなる。
【0058】
バルブ33を開かせるバルブ制御回路はタイマー回路であってもよい。また、点検装置本体100に衝撃を検出する加速度センサを付けておき、その信号をバルブ制御回路34へ取り込み、その信号をトリガにして、着水後安定するまでの所定時間経過後にバルブ33を開にして、洗浄させる回路構成であってもよいし、また、点検途中で管内の流水の波をかぶって広角レンズ面が汚れることも想定されるので、定期的にバルブ33を開閉させて、定期的にレンズ30を洗浄するようにする回路構成であってもよい。
【0059】
図6は図5の実施例で撮像装置40を首振機構付撮像装置70に置き換え、その撮像装置70のカメラ制御や首振機構の動作制御を司る制御装置75を搭載した場合の基本的な一実施例を示す。図5の実施例の撮像装置40とその広角レンズ30の代わりに透明なドーム状ケースを広角レンズのあった場所に装備し、その内側に首振機構付撮像装置70が収納されている。このようにして首振機構付撮像装置70とその制御装置75が撮像装置40の代わりに点検装置本体100となっている浮力体10内に搭載されている。
【0060】
点検装置本体100に綱120が接続されて、点検装置本体100が下流方向に流れて移動する速度を任意に操作可能とした点は図5の実施例と同様である。所定のゆっくりした一定速度で綱120を緩めて管2内に送り出すようにして、首振機構付撮像装置70を一定の速度で左右に振るように制御内容を制御装置
75に予め設定しておけば、点検装置本体100は一定速度でゆっくり流れながら管2内の気相部に接する管内面を撮影して画像記録装置50に記録でき、その記録内容を用いて詳細な点検作業を行う。この場合、広角レンズで撮影した映像よりも分解の高い撮影映像を容易に得ることが可能となる。
【0061】
図7は本発明を適用した管内点検システムの点検装置本体100にケーブル
150を接続して設けた基本的な一実施例を示す。本実施例は点検装置本体100が図2の実施例と同様である。その点検装置本体100にケーブル150を接続している。ケーブル150は通信ケーブル151と給水ホース152をいっしょに束ねた複合ケーブルとなっている。通信ケーブル151は管2外の操作部と点検装置本体100内に搭載した通信装置80間での通信のためのラインとして用いられる。給水ホース152は点検装置本体100内に搭載された小型ポンプ
35と管2外の給水源との間を連通するのに用いられている。
【0062】
小型ポンプ35は給水源の液体を洗浄液として吸込バルブ33を介して洗浄ノズル31にその洗浄液を高圧で供給している。この場合、制御装置75は通信装置80と接続され操作部からの指令を受けてバルブ33の開閉制御も司るように回路構成が成されている。そして、操作部から任意のタイミングで洗浄用のバルブ33の開閉制御ができるとともに、洗浄液も操作部側から給水ホース152を介して供給されるので、首振機構付撮像装置70の上方を覆っている透明なドーム状のカバーの外面を十分な量の洗浄液で十分な回数洗浄を行うことが可能となる。
【0063】
また、操作部からの指令が通信ケーブル151を通じて制御装置75に入力されるので、制御装置75で首振機構付撮像装置70の向きやズームレンズ付きであればズーム比や絞りなどの撮影条件を操作部から操作することができる。その他の構成は図5の実施例と同様である。また、ケーブル150を巻き取ったり繰り出したりするためのドラムを管外に設けてそのドラムを回転させてドラムに巻きかけたケーブル150を操作する。
【0064】
操作部は管2外に設置された通信装置とその通信装置に接続された電子計算機(コンピュータ)が主たる構成となっていて、通信ケーブル151が電子計算機側の通信装置と点検装置本体内の通信装置80との間を接続している。そして電子計算機で作成された操作信号が通信ケーブル151を介して点検装置本体内の通信装置に受信され、制御装置75に配信された後に制御装置75で制御される機器の制御に利用される。また、首振機構付撮像装置70で撮像して得られた情報(データ)は各通信装置と通信ケーブル151を通じて電子計算機に送信され、電子計算機のモニター画面に首振機構付撮像装置70で撮像した内容が映し出される。
【0065】
本実施例の場合には、撮影した画像などのデータもリアルタイムで通信ケーブル151を介して操作部で見ることができる。点検装置本体100をゆっくり流すことはケーブル150も前記図5の実施例の綱120の効果と同じである。図6における本実施例の場合には通信ケーブル151を介して映像を確認しながら首振機構付撮像装置70の首振操作とか、洗浄ノズル31からの洗浄液の噴出の操作を行うことが可能で、点検装置本体100を同じ場所に停止させてその位置で詳細な点検を時間をかけて行うことも可能となる。本実施例のように給水ホース152をケーブル150に複合すると太くなることから、給水ホース152を設けない場合には、小型ポンプ35のポンプ吸い込み口に接続される給水口にフィルタを付けて管2内の流体をフィルタで綺麗にして給水口から吸い上げて、洗浄ノズル31から噴出させて洗浄液として利用するようにしてもよい。
【0066】
図8は図7の実施例でさらに電源ケーブル153もケーブル150に複合させた場合の一実施例を示す。電源部90を点検装置本体を構成する浮力体10内に搭載して、電源部90に接続した電源ケーブル153を給水ホース152や通信ケーブル151と束ねて一本のケーブル150に複合させた。ケーブル150は、電源ケーブル153と給水ホース152と通信ケーブル151との3本を単純に束ねたものでもよいし、その中から給水ホース152を省略してもよいし、通信信号と電力を重畳させて、通信ケーブル151と電源ケーブル153も分けないで一線で兼用する方式を採用してもよいものである。
【0067】
また、ケーブル150はひっぱり強度を確保するためにテンションワイヤを通してもよいし、通信ケーブル151には光ファイバケーブルを採用してもよい。また、洗浄ノズル31の他にも超音波洗浄機能を備えた装置を点検装置本体100に搭載しても、ワイパ機能を備えた装置を点検装置本体100に搭載して、より洗浄性能を良いものにしてもよい。
【0068】
図9及び図10は図1の実施例における点検装置本体100にガイドローラを追加する場合の実施例を示しており、図9が平面図を、図10が管の断面で見た正面図を示す。点検装置本体100の前後左右にガイドローラ200を配置し、そのガイドローラ200はアーム210の先端に回転自在に付いている。そのアーム210と点検装置本体100との間にはアーム210を管2の内面方向に突っ張る様に突張機構220が設けられる。そのため、突張機構220でガイドローラ200を常時管内面へ押し当てるようにしている。
【0069】
ガイドローラ200は滑らかに回転するようになっているので点検装置本体
100が管2内の流水にのって流れる方向に対しては滑らかに転がるようになっている。この例では突張機構220はバネでアーム210を常に引き寄せることでガイドローラ200が管内面に押し当てられるようにするものである。
【0070】
本実施例のようにすれば点検装置本体100は管2の片側へ寄ってしまうことはなく、常に管2の中央部分を移動しながら撮影することが可能となる。なお、突張機構220のバネにはダンパーを併用して高速振動は吸収可能な突っ張り機構としてもよいし、バネにかえて能動的にシリンダのようなアクチュエータでアーム210を動かして管2のサイズにあわせて設定して運用するようにしてもよい。また、本実施例ではアーム210とバネでローラ200を管2の内面に押し当てる方法で示しているが、伸縮シリンダの空気バネでローラ200を管2内面に押し当ててもよいし、パンタグラフ機構とバネの組み合わせでローラ200を管2内面に押し当ててもよい。
【0071】
図11は図4の点検装置本体100にケーブル150とガイドローラ200を追加する場合の実施例を示している平面図である。図11の構成は、図9,図10の実施例と同様にガイドローラ200をアーム210と突張機構220にて管内面に押し当てるようにしたものを三つの浮力体の左右に計6個設け、ケーブル150が接続される上流側には突張機構220のない固定式のガイドローラ205を管2内面から離して同じく左右に6個配置した。
【0072】
これにより、図4の実施例のように3つの浮力体10が連結されたような場合にもガイドローラ200は適切に設けることはでき、管2内の中央部分から常に撮影して安定した撮影が可能とできる。これらのガイドローラ200の追加はどのような点検装置本体にも可能で有効に作用する。また、ガイドローラ方式及び配置も本実施例はあくまで一例であり、浮力体10の形状,大きさに応じて、適切に配置すればよい。ガイドローラ205は浮力体10や浮力体10から突き出た部材の管2内面への接触事故を回避乃至はやわらげるように機能する。
【0073】
以上は小型の点検装置について説明したが、大型の点検装置について次から説明する。
【0074】
図12は本発明を適用した管内点検システムで、ケーブル150を点検装置本体100に接続してある。点検装置本体100はケーシング102とその両端側部分に装着した浮力体10a,10bを備えている。そのケーシング102の両端側に突張機構310が装着される。その突張機構310は押当パッド300を管2内面に対して進退移動自在に支持している。ケーシング102の中央部分には旋回機構330が装着される。その旋回機構330には電動シリンダ装置による伸縮機構340が装着される。その伸縮機構340はセンサユニット(点検用センサともいう。)を管2内面に対して進退移動自在に支持している。
【0075】
さらに、ケーシング102の一端部にはケーブル150が接続され、他端部にはスラスタ370が装着される。ケーシング102には、走行機構360が伸縮機構を介して管2内面方向に進退自在に装着される。点検装置本体100は管内の流水に浮いている。その浮く力、即ち浮力は浮力体10a,10bの大きさや浮力体内に充填する気体の種類で調整する。浮力が調整された点検装置本体は図12のように伸縮機構340を縮めた状態でセンサユニット350の上面が館内の水面から上に出て浮く状態となる。
【0076】
ケーブル150は管の外側に配備されたドラムに巻きかけられており、そのドラムの回転によりケーブル150の送り出しを調整したり、ドラムの回転を止めたりして、操作することで、点検装置本体100をゆっくり流したり、止めたりすうことが可能となっている。管2内の流水が点装置本体100に当たって生じた抵抗力がケーブル150を引く力、即ち張力に変換されてケーブル150に付与されるから、ケーブルの緩みは少なく且つ点検装置本体100は安定した姿勢で浮遊できる。
【0077】
また、点検装置本体100には旋回機構330でセンサユニット350の付いている伸縮機構340が管2の円周方向に回転可能なようになっている。また、伸縮機構340でセンサユニット350を管に近つけたり離したりすることができる。図12の状態は管内の流水で浮遊中なので、伸縮機構340を最短にして、浮遊中にセンサユニット350が管内面に当たらないような姿勢としている状態を示している。
【0078】
センサユニット350は可視カメラや赤外線カメラ、あるいはスキャン機構付きの超音波センサでもよいし、管内面の点検検査のために必要となるいかなるセンサを搭載してもよいし、照明機構付きでもレーザ付きでも首振機構付きでも前後左右へのスキャン機構付きでも、X線走査センサ付きでもかまわない。また、点検装置本体100には押当パッド300が先端に付いた突張機構310が円周方向に複数個、前後にも2列で付いている。この押当パッド300等の機能は別の図で説明するが、図12は浮遊中の状態を示しているので、突張機構310は縮まった状態で浮遊中に押当パッド300が管内面に当たらないようにしている。
【0079】
点検装置本体100が浮遊中に旋回機構330や伸縮機構340を動かしてセンサユニット350の位置を変えて浮遊移動しながら管内面の点検を効率よく行うようにしてもよい。センサユニット350の外周に近接センサや接触センサなどを設けておけば、その信号で伸縮機構340を縮めるように制御可能とすれば、センサユニット350を管に当てて損傷させることもないようにできる。センサユニット350を動かすと反動で本体が揺れるので、浮遊中は早く動かさないようにして、センサユニット350内の首振り機構とか魚眼レンズなどの広角撮像のセンサを搭載してなるべく旋回させないようにしてもよい。
【0080】
また、点検装置本体100には走行機構360が円周周りに複数個、2列で設けてある。また、下流側にはスラスタ370を設けた。点検装置本体100を上流側に回収しようとした場合には管2とケーブル150の摩擦抵抗等で長いケーブルになると巻き取り困難となるので、スラスタ370の推進力で流水の流れに逆らって推進力が出させ、早い流水で長いケーブルの場合にも容易に点検装置本体100を上流側方向で回収可能とすることができる。
【0081】
また、走行機構360を支持している伸縮機構は浮遊して移動しているさなかでは伸縮させる必要はないが、浮遊中は走行機構360がガイドローラの機能としてはたらき、管内面と接触し様とした際の滑らかな移動を保証している。その他の部分は上流側を浮力体10a,下流側を浮力体10bに覆うようにした。浮力体の形状は流水に沿って流れやすくするとともに管内面と接しても滑らかに滑るような形状として、その他の突起物が衝撃的に管に当たらないようにするのがよい。浮力体10a,10bの材質も滑らかに滑るように管内面に対して摩擦係数の低いものを選択する。なお、下流側に流れるだけで逆走はさせないとした場合にはスラスタ370は不要としてもかまわない。
【0082】
図13は図12の実施例で押し当てパッド使用中の側面図と上流側に設けた操作部の基本的な一実施例を示す。点検装置本体100から出ているケーブル150は管2に装備されている挿入口3から出て管外のケーブル巻き取り用のドラム400に巻き取り、そのドラム400の回転でケーブル150の送り出しと巻き取りができるようにしている。また、ケーブル150は通信ケーブルと電源ケーブルと給水ホースを束ねて一本に複合させ、ドラム400のところからそれらの電源や信号とか、供給水は供給され、通信ケーブルを用いた通信系は操作部500に接続されて電子計算機等にセンサユニットでセンシングして得た情報が入力され、電子計算機のモニターでその情報が観察できる。そのため、操作部500の単純な構成は映像関係を写すモニターとか、制御情報の通信やセンサの情報を表示,解析,処理なども行う電子計算機などから構成されるものである。
【0083】
その電子計算機はノートパソコンにして、電源は発電機からもとれるようにしておけば、屋外のパイプラインを点検する際に運搬しやすい、使い勝手のよい点検システムとなる。挿入口3の部分ではケーブルは大きく曲がってこすれるので、ケーブルガイド450を挿入口3の部分に設けて、ケーブル150が滑らかにケーブルガイド450でガイドされるようにしている。
【0084】
この構成で点検装置本体100を所定の場所まで浮遊させて移動させたらば、突張機構310を構成している電動シリンダ装置にケーブル150を通じて電力と電子計算機からの操作指令信号とを操作部500から供給して、その突張機構310を伸張させ、円周上に複数個配置した押当パッド300を管2の内面に押し当てるようにする。突っ張りを解除する場合には、電子計算機からの操作指令で突っ張り機構の電動シリンダ装置を縮めることで行える。このようにすると、点検装置本体100は管内にしっかりと固定される。すなわち、浮遊中のように揺れることはなくなるので、その後に、旋回機構330と伸縮機構340を使ってセンサユニット350を安定に管内面に対して位置決めできるようになる。それによって、センサユニット350に搭載する各種のセンサで管内面の詳細な点検データを取得することができる。たとえば、マクロ撮影した拡大可視画像で円周全部とか、超音波センサで管の円周全体の厚みを計測するとか、内部欠陥の有無を探傷させることも容易に実現可能となる。当然センサユニットには洗浄ノズルなどの洗浄機能の有る装置を設けて常に最良の条件でセンシングができるようにしてもよく、この際には、ケーブル150を通じて洗浄液が洗浄機能の有る装置に供給される。
【0085】
センサユニット350を支持している伸縮機構340に対しても突張機構310と同様に、それを構成している電動シリンダ装置にケーブル150を通じて電力と電子計算機からの操作指令信号とを操作部500から供給して、その伸縮機構340を伸縮させることが出来る。同じようにして旋回機構を構成する旋回駆動モータ等に電力と電子計算機からの操作指令信号とを操作部500から供給して伸縮機構340ごとセンサユニット350の旋回位置を制御できる。
【0086】
汚泥の水中(液相)側の管内面を点検する場合には常時ある程度の量の水道水などを吹き付けて綺麗な水の噴射柱を形成させて、その中を通して撮影するとか、超音波を当てるとかするようにしてもよい。
【0087】
本実施例で押し当てパッドは2列設けたが、何列でも安定に点検装置本体100を管に固定できればかまわない。ケーブル150が張っている状態であれば1列でもある程度は固定することは可能である。ここでドラム400は電動駆動式にしてもよいし、ドラム400の回転位置をケーブル150の長さとして操作部500の電子計算機へ取り込み、管2の配管のマップ上での点検装置本体100の現在位置を表示するとか、その位置に対応付けて検査、点検結果データを編集,蓄積するようにしてもかわまない。もちろん、ドラム400の駆動制御から、センサユニット350の首振制御,旋回機構330,伸縮機構340,突張機構310,スラスタ370など全てを所定のタイミングで自動的に動作するようにプログラムして、電子計算機から自動的に操作指令を出す自動点検システムとしてもよい。
【0088】
図14は図13の実施例の管断面図で押当パッド300を突張機構310で押し当てるための変形状態変位図を示す。状態aは管内の流水の水位が低く点検装置本体100が浮遊しない状態を、状態cは管内の水位が十分あって浮遊している状態を示す。状態bはいずれの場合にでも突張機構310を突っ張って押当パッド300を管内面に押し当てた状態を示す。
【0089】
状態cで管内の気相部を点検しようとすればセンサユニット350を使って少し首を振れば可能である。この状態で突張機構310を伸ばせば状態bのように変形可能である。状態aの場合には浮遊しての移動はできないので、ケーブル150で牽引するか走行機構360を使って走行移動することが可能である。
【0090】
走行機構360a,360b,360c,360dは転がってどの走行機構が管内面に接触するかわからないので、円周上にどの位置でもどこかの走行機構は接触するように配置している。よって、走行機構を駆動することにより、管内の水深が浅い場合にも点検装置を移動させることが容易に行えるようになる。この場合の気相部分の検査は旋回機構330なども使用して大きくセンサユニット350を移動しながら点検する。この場合、管2底面に点検装置本体100が走行機構で着地して安定しているのでセンサユニットの移動による点検装置本体100が反動で大きく揺れることもない。
【0091】
この状態から押し当てパッドを突っ張る場合には下側のパッドを先に突っ張り左右に多少転がりながら状態bの姿勢に変形させることでできる。単純に一度に突っ張った場合には押し当てパッドが円周方向に管内面でこすれるが、頑強な突っ張り機構としておけばそのような変形手順でも可能である。
【0092】
図15は図13及び図14の実施例で押当パッド300を車輪付き押当パッド300Aとした場合の基本的な位置実施例を示す。各押し当てパッドは車輪付きの押当パッド300Aにして突っ張った際に回転自在な車輪がパッドに先行して管内面に接触して、さらに突っ張りの力が増してくると、車輪が管内面を転動して図15のように点検装置本体100が管2の中心に合うようになる。このような状態では各パッドの車輪とも安定位置になって静止する。
【0093】
このようにすれば、押し当てパッドが管内面とこすれて突っ張りの途中で押し当てパッドや突張機構310に無理な力はかからないで円滑に突張機構310を突っ張ることが可能となる。そのため、突張機構310も市販のシリンダなどが使用でき十分頑強な特殊なものにしないで済む。
【0094】
この車輪付き押し当てパッドで容易に本体を管の中心付近で固定する突っ張り方法について突っ張り機構が圧力で伸縮駆動されるシリンダ装置の場合について解説をさらに加えると、最初は全部の突っ張り機構を圧力1(低圧)で動作させると負荷のかかっていない突っ張り機構が先に伸びるので、管内径から予め設定してある所定の伸縮量の位置まで突っ張り機構が伸びた場合、その突っ張り機構の180度反対側の突っ張り機構の圧力を圧力2(高圧)に切り替えるように制御することで、高圧にしたまだ伸びていない側の突っ張り機構が伸びるようになるので、容易に点検装置本体100をほぼ管2の中心で固定するように突張機構310を制御することも可能である。全突っ張り機構が突っ張り後、次には車輪付きパッドの車輪をブレーキ装置などでロックするか、別の突っ張り機構で点検装置本体100から支持した固定パッドを管内面に押し当てて、円周方向の回転を固定するのがよい。
【0095】
これによって旋回機構330でセンサユニット350を伸縮機構340と共に回転しても点検装置本体100がその回転の反動で回転することはない。また、点検装置本体100の姿勢はどのようになっているか分からないので、検査基準点を明確にするため、点検装置本体100に傾斜センサとか鉛直方向検出センサを搭載しておき、センサユニット350を管2の鉛直方向真上に位置させて、その位置から旋回回転させて管円周方向の点検をするようにしてもよい。また、突っ張り状態によって管2の中心に対して偏心して点検装置本体100が固定されてもセンサユニット350の近接センサなどの信号を使えば伸縮機構340を伸縮制御させながら旋回機構330で回転させることもできるので、管2内面に対して所定の位置で安定にセンサユニット350を回転させることも可能である。但し、1台の点検装置本体100で多くのサイズの管に適用できるようにする場合で、突っ張り機構のストロークに余裕が無くて管サイズによっては記述の偏心が大きくなった場合、このような制御は有効となる。
【0096】
図16は図12の実施例で浮遊状態時のセンサユニット350の旋回機構330動作時の反動による揺れを防止した基本的な一実施例を示す。センサユニット350,伸縮機構340,旋回機構330を同じ重さ,同じ寸法にして二組をケーシング102に装着してある。但し、二組の伸縮機構340は同じ動作,旋回機構330は互いに反対の方向へ回転動作させるようにしたものである。この場合は常に同じ反動トルクが両方で逆向きに生じるので、打ち消しあって、結果、点検装置本体100は反動で揺れることはなく、浮遊中にセンサユニット350を大きく、早く旋回させても反動で点検装置本体100が揺れることなく詳細点検を行うことが可能となる。
【0097】
ここで、打ち消す反動を生成させる側の旋回機構は同じ慣性モーメントになっていればよいので、かならずしも同じ重さ,寸法でなくてもよい。常に同じ慣性モーメントなるように伸縮量などを制御すればコンパクトにしてケーシング102内に収納してもかまわない。この場合には流体の中を回転させるセンサユニットと本体ケース内の同じ慣性モーメントのものを回転させる場合の粘性抵抗の補正をした方がより望ましい。ケーシング内を綺麗な流体で充填させておけば簡略的に粘性抵抗もある程度は模擬できる。ダミー慣性をケーシング内に入れておくことで、除染する必要がなくなるメリットはある。あるいは、両方にセンサユニットを搭載して同じようにセンシングに利用することでもよいし、前記二組のうち片方に照明、片方にカメラを分けて搭載するようにしてもかまわない。
【0098】
図17は図12〜図16の実施例で点検装置本体100と操作部500の途中に中継器101を設ける場合の中継器101の基本的な一実施例を示す。図13の点検装置本体100からセンサユニットと伸縮機構,旋回機構を除いたものであれば中継器101となる。本例では浮力体10a,10bや走行機構360,スラスタ370を設けた場合の実施例としている。
【0099】
中継器101は点検装置本体100と操作部500の間にケーブルの長さに応じて何台挿入してもかまわない。中継器101は前後にケーブル150がコネクタで着脱自在に接続しておき、ケーブル150を延長したい場合に中継器101を介して繋いで延長していくこととなる。中継器101も流体抵抗を受ける形状の浮力体10a,10bとかスラスタ370と走行機構360を中央のケーシング102に装着して一体化させる。ケーブル150がどんなに長くなっても中継器101から中継器101間のケーブル150を、中継器101が管内の流水から受けた抵抗をケーブル150に張力として伝えるので、その張力を駆動力としてさばくことができる。そのため、原理的にはケーブル150の長さを制限無く延長していくことが可能となり、延長しても浮力体で管路内を円滑に流れたり、スラスタで逆に上流側に上ったり、走行機構で水位が低い場所で走行移動させることが可能となる。
【0100】
図18は中継器の浮力体による円滑浮遊原理の説明図を示す。本実施例ではスラスタ370と走行機構360は採用せず図9,図10のガイドローラ200を採用した点検装置本体100に適用した場合で説明する。図18の点検装置本体100は図9,図10に示した実施例から下流側のガイドローラと突っ張り機構を除いたものと同じ構造をもっている。その点検装置本体100の上流側の端部にはケーブル150の一端が接続され、ケーブル150の多端は中継器103の下流側端部に接続されている。その中継器103の上流側端部には他のケーブル150の一端が接続され、その他端は操作部500のドラム400に巻きかけられてケーブルの巻き取りや繰り出しが出来る。
【0101】
中継器103は、楕円球体の浮力体に図9のように突っ張り機構で管内面に押し付けられるガイドローラを備えて、管内の中央を円滑に移動できるように工夫されている。そのため、中継器103の有る中継点のケーブル150の位置は管内の端によらないで中央を通過するようにできる。
【0102】
点検装置本体100には管2内の流水4aにより流水抵抗Fdが発生してその力でケーブル150に張力がはたらいている。但し、管2に曲がり部があるとその部分でケーブル150の摩擦が生じて摩擦抵抗力がケーブル150に作用して、ケーブルが長くなり多くの摩擦力で水流抵抗Fd以上になるとそれ以上のケーブルではケーブルに張力があがらなくなり、結果として点検装置本体100はいくらケーブルを緩めても流れ無い状況が発生する。たとえばそのようなケーブルの点検装置本体100からの長さの限界地点がA地点の若干上流よりであって、ケーブル張力FcAが小さくなってきている場合を想定すると、A地点の中継器103でO地点側のケーブルを延長接続すると、中継器103にも流水4bによる水流抵抗Fdが発生するので、O地点側のケーブル150には大きなケーブル張力が発生するようになり、O地点ではFcOのケーブル張力が発生している状況を作ることができる。この原理であればどんなに長くなっても途中に中継器を入れてくことで、ケーブル150に張力を復活させることができ、点検装置本体100、各中継器103はケーブル150が長くなっても円滑に流れて移動できるようになる。
【0103】
図19の(a)図は最初に実施する小型の点検装置による先発点検方法の基本的な一実施例を示す。先発の点検装置本体として図3の実施例による点検装置本体100を挿入口3から管2内の流水に入れる。この際には、点検装置本体100の電源をONにして挿入口3から管内に落とす。点検装置本体100は管2の中の流水にのって流れるので、下流側にたとえば、網などの回収用治具460をセットしておけば、点検装置本体100は流れてきて網460にかかるので、点検装置本体100のひっかかった網460を下流側の挿入口から引き上げれば容易に点検装置本体100を回収できる。
【0104】
点検装置本体100を引き上げたら点検装置本体100の電源をOFFにして、点検用センサ(撮像装置)による点検結果データを画像記録装置から取り出す。ここで使用する点検装置本体100は図3の実施例ばかりでなく、図1,図2,図4,図9,図10,図21に示した実施例によるものであってもよい。これらの点検装置本体100はケーブルや命綱が接続されていないことからケーブルレスの点検装置と称せられる。
【0105】
次に先発の点検装置本体として綱とかケーブルがついている点検装置本体100を用いた場合の先発点検方法を図19の(b)図を用いて説明する。図19の(b)図で点検装置本体100としては、図5−図8のいずれかの実施例による点検装置本体100が採用される。図19の(b)図で点検装置本体100は管2に設けられている挿入口3から管内に挿入されるが、綱やケーブル150の一端が点検装置本体100に接続されており、他端側は操作部500のドラム400から送り出されるようになっている。そのため、予め挿入口3でのケーブルが大きく曲がる個所にはケーブルガイド450をセットしておき、綱やケーブル150が挿入口3の鋭角な角に当たってケーブル150が傷まないようにしている。また、下流側にも回収用治具460と挿入口と同じようなケーブルガイド450を予めセットしておく。この方法によれば点検装置本体100は、ドラムの回転によりケーブルをゆっくり緩めていくことで、管2内をゆっくり移動させられ、点検データを点検センサで取得しながら下流側へ流れていき、回収治具460にて同様に回収可能となる。
【0106】
このときに点検装置本体100とケーブル150を点検装置本体100側で容易に切り離せるようにコネクタ100Sを設けておくことにより、回収治具460で回収後、点検装置本体100をコネクタ100Sで切り離すことができ、ケーブル150のみを操作部500のドラム400へ容易に巻き取ることが可能となる。
【0107】
もちろん、操作部500のドラム400からケーブル150を切り離して下流側でケーブル150をドラムに巻き取るようにしてもよいが、その場合にはケーブル150が流れで絡まったりする可能性もあるので、上流側の切り離したケーブル端に釣糸などをつないで、ケーブル150を下流側で回収するまでは釣糸を挿入口側で緩めていき、ケーブル150には常に張力がかかって真っ直ぐな状態にしながら流していくのがよい。釣糸は最後にそのまま流しても軽くて途中で詰まることもないので、下流まで流れてきたら回収治具で回収することにすればよい。
【0108】
コネクタ100Sを遠隔コネクタにしておき、管2の中で回収治具460にひっかかった状態でコネクタ100Sを切り離せるようにしておけば、具体的には治具で遠隔コネクタ100Sを切り離すとか、操作部などなかの電気信号、あるいは無線信号などで遠隔で外せるようにしておけば、回収治具460ではケーブル150の切り離されて点検装置本体100bのみを回収すればよくなるので、特に作業現場が高い位置で離れているような場合に容易に回収できるようになる。
【0109】
このような使い方に向いている点検装置本体100の実施例は一例として図5,図6,図7,図8,図11,図18,図21などに示した一例はあるが、小型で綱あるいはケーブル付きであればよい。
【0110】
図19で説明したような点検で得られた画像データを操作部500の電子計算機のモニター等に再生、あるいは点検装置本体100内の画像記録装置から取得して再生する。その再生した内容を検討して、管内の状況を点検確認すると共に、後発の大型の点検装置本体100が管内を通過するに支障ある状況の有無を確認する。
【0111】
大型の点検装置本体100が管内を通過するに支障が無い状況であれば、次に大型の点検装置本体を通過させる。
【0112】
点検装置本体が大型になると管内に挿入しても途中でそれ以上は下流へ進めない状況に陥ることも予想される。そのため、先に図19で示したような方法で先発の小型の点検装置で大型の点検装置も流すことができることを確認しておけば安心して大型の点検装置本体を使用できるし、万一、引っかかって回収できなくなるという状況に陥ることも未然に防止できる。
【0113】
図20は次に実施する大型の点検装置本体の運用概念の基本的な一実施例を示す。先発での点検の後に、後発の点検で使用する図12〜図18のいずれかの実施例による大型の点検装置本体100を挿入口3から管2内に挿入し、予めケーブルガイド450をセットしておく。下流側までの点検が終わって流れてきたら、網などの回収治具460で点検装置本体100を回収すればよいものである。ここでも、点検装置本体100とケーブル150を点検装置本体側のコネクタ100Sで切り離せるようにしておけば、ケーブル150のみを容易に上流側へ回収できる。
【0114】
また、コネクタ100Sが遠隔コネクタで回収治具に引っかかったときに切り離しができれば、回収治具460で点検装置本体100のみを引き上げればよいので、大型の点検装置本体100を引き上げる際の作業性がよくなる。図20の(a)図の例は図13の実施例による点検装置を採用している。
【0115】
また、図20の(b)図で示した例は、図13の点検装置本体からスラスタ370を取り除いた後に綱かケーブル150を接続したものである。
【0116】
図19の(b)図のように点検装置本体100で先発の点検を実施して綱あるいはケーブルを上流側に回収しない状況にあっては、既に挿入口3から下流側の回収口まで綱あるいはケーブルが通った状態なので、あるいは予め釣糸とかを流して挿入口3から下流側まで通して、次にケーブル150を通すこともできるが、そのような方法で綱かケーブルを通して、図20の(b)図のように大型の点検装置本体100の下流側に向く端部にすでに通されているその綱あるいはケーブルを接続すれば、点検装置本体100を上流側と下流側とで綱あるいはケーブルを張った状態で点検作業を行うことが可能となる。
【0117】
このようにすれば水位がなくなって点検装置本体が浮遊しなくなっても綱あるいはケーブルを牽引することで点検装置本体100を前進,後退のどちらでも移動させることが可能となる。また、ケーブルが長くなっても図17に示したような走行機構付きの中継器を途中に入れることでケーブル摩擦などの負荷による長さの制限はなく長くすることが可能となる。綱あるいはケーブルはどちらが綱でもよいし両方ケーブルあるいは両方綱でもかまわない。綱は大きな張力を出せるメリット、ケーブルは動力源など供給したいり、点検データをリアルタイムで通信したりできる機能があるので、それらの特性を生かしていろいろな組み合わせも可能である。図20の実施例では上流側も下流側もケーブル150であるが、動力と通信、給水と通信などと機能を分担させて、それぞれのケーブルを細くてもかまわない。図20の(b)図での実施例では点検装置本体100の下流側に利用されているケーブルは図19の(b)図の実施例で用いたケーブル150を管内に通しておいたままとして、接続しなおすことにより再度の利用を行っている。
【0118】
この方式の最大のメリットは綱、あるいはケーブルで点検装置本体100を確実に前進,後退させることができるということがある。これは、必ずしも後発の大型の点検装置本体に対する効果ではなく、先発の小型の点検装置本体の場合に適用しても有効に適用可能な方法である。
【0119】
また、この場合は回収治具460は網のようなものよりも、大きなカーブ状にローラを並べたようなものをセットすれば図20の(b)図の点検装置本体100を回収する場合、点検装置本体100より下流側のケーブル150を引いて点検装置本体100をケーブル150で引っ張りあげることも可能となる。また、図20の(b)図の点検装置本体100よりも上流側のケーブル150はコネクタ100Sを外すことで容易に上流側へ回収可能となることは前述のとおりである。
【0120】
図21は図1の実施例の点検装置本体でさらに液相内の点検も可能とした場合の基本的な一実施例を示す。図1の実施例で説明したような気相点検用センサユニット350Aは水面1の上に出ているが、液相側の点検もできるように液相用センサユニット350Lを3個配置した一例である。ここでは基本的な一実施例として下側と左右とに配置して液相の管内面を全面視野に容易に入るように考慮したが、センサの計測、スキャン範囲などを考慮して配置は決めればよい。なお、図21の実施例の場合、左右の液相用センサは管内面に接触する恐れがあるので、図9,図10,図11などで示したガイドローラを設けるのがよい。その他の構成は図1と同じである。
【0121】
図22は図3の実施例の点検装置本体でさらにセンサユニットの照明を通常照明とスリット照明を用いた場合の基本的な一実施例を示す。点検装置本体100の点検用センサとしては撮像装置71を所定の角度で固定して、片方にスリット照明20Sを、もう片方に拡散方式の通常照明20(光を拡散して照射する照明)を設ける。両照明はスイッチ21a,21bで制御装置76が所定のタイミングでON/OFFできるようにしておく。これは勿論、ケーブル付きの場合には操作部からON/OFF制御してもかまわない。通常照明20をOFFして、スリット照明20SをONするとスリット光が管2の内面に当たり、その反射光が撮像装置71に入ってくる。
【0122】
撮像装置71内の撮像面の位置からスリット光の入射角度θが分かる。ここで、すでにスリット照明20Sの位置a,撮像装置の位置bは既知なので、光源位置aからスリット光の反射点Pまでの距離は三角測量の原理から計算で求めることが可能である。この点Pの距離を管2の円周上で計算すると管内面の断面形状が得られ、それは管内面の減肉データとなる。次に、照明20をONして即座に撮影すれば、ほとんど同じ位置で撮影したことになるので、通常照明20で撮影した映像と対応付けて管断面の形状データを容易に得ることが可能となる。撮像装置71は広角レンズのものでもよいが、形状計測の分解能を上げるため、複数台の撮像装置を並べて同時に撮影するようにしてもよい。
【0123】
図23は図22の実施例で複数の撮像装置を搭載した場合に撮影される映像の概念を示す。3台の撮像装置を正面と左右に少し向きを変えて固定して同時に撮影した場合の概念である。同時に撮影することで各映像のスリット光の映像S1,S2,S3は同じスリット光の一部分の映像であり、多少でもラップするように撮影されれば、それらを繋ぎ合わせて、管内の気相の断面形状を精度よく1回で計測することが可能となる。
【0124】
以上図1〜図23を用いて具体的な実施例の一例を示したが、点検中に流水が止められないパイプラインなどの場合には有効でそのまま適用できるが、点検中に流水が止まる場合にも点検装置本体にスラスタを設けるとか、あるいは点検のために流水をさせるとか、あるいは流水を発生させる装置を点検する区間のさらに上流側と下流側に仮設して点検区間だけに流水を発生させるようにして、点検を行うようにしてもよい。たとえば、フラッシングなどを兼ねて綺麗な流体を用いて流水を発生させ透明度を良くして点検することでもかまわない。
【0125】
【発明の効果】
以上のように本発明によれば、管内の流体を除くとか、流体の流れを止めるという非効率的なことを実施せずに、非常に長い管路でも管内で流体が流れている状態において管内の点検を効率よく実施することの出来る点検装置と点検方法が提供できる。
【図面の簡単な説明】
【図1】本発明を適用した管内点検システムのケーブルレス点検装置本体の基本的な一実施例を示す図。
【図2】図1の実施例の点検装置が管内で浮いている状態の断面を見た時の本発明の一実施例を示す図。
【図3】図1の実施例の点検装置で大きな動力源及び大きな照明を搭載可能として長手方向に大きくした場合の一実施例を示す図。
【図4】図3の実施例からさらに大きな動力源を搭載して、長時間の連続運転が可能とする場合の基本的な一実施例を示す図。
【図5】本発明を適用した管内点検システムの命綱を設けた点検装置本体の基本的な一実施例を示す図。
【図6】図5の実施例で撮像装置を首振機構付撮像装置とした場合の基本的な一実施例を示す図。
【図7】本発明を適用した管内点検システムのケーブルを設けた点検装置本体の基本的な一実施例を示す図。
【図8】図7の実施例でさらに電源ケーブルも複合させた場合の一実施例を示す図。
【図9】点検装置本体にガイドローラを追加する場合の一実施例を図1の実施を例にした基本的な一実施例を示す平面図。
【図10】図9の実施例の管の断面正面図。
【図11】点検装置本体にケーブルとガイドローラを追加する場合の一実施例を図4の実施例を例にした基本的な一実施例の平面図。
【図12】本発明を適用した管内点検システムで、ケーブルを付けて、伸縮機構と押し当てパッドを設けて、センサ部を伸縮,旋回可能とした場合の基本的な一実施例で、さらに、スラスタと走行機構も設けた点検装置本体の基本的な一実施例の浮遊中の側面図。
【図13】図12の実施例で点検装置の押し当てパッド使用中の側面図と上流側に設けた操作部の基本的な一実施例を示す図。
【図14】図13の実施例の管断面図で押し当てパッドを突っ張り機構で押し当てる場合の点検装置の変形状態変位図。
【図15】図13及び図14の実施例で押し当てパッドを車輪付き押し当てパッドとした場合の基本的な位置実施例を示す図。
【図16】図12の実施例で浮遊状態時のセンサユニットの旋回機構動作時の反動による揺れを防止した基本的な一実施例を示す図。
【図17】図12〜図16の実施例で点検装置本体と操作部の途中に中継器を設ける場合の中継器の基本的な一実施例を示す図。
【図18】中継器の浮力体による円滑浮遊原理の説明図。
【図19】最初に実施する小型の点検装置の運用概念の基本的な一実施例を示す図。
【図20】次に実施する大型の点検装置の運用概念の基本的な一実施例を示す図。
【図21】図1の実施例の点検装置本体でさらに液相内の点検も可能とした場合の基本的な一実施例を示す図。
【図22】図3の実施例の点検装置本体でさらにセンサユニットの照明を通常照明とスリット照明を用いた場合の基本的な一実施例を示す図。
【図23】図22の実施例で複数の撮像装置を搭載した場合に撮影される映像の概念を示す図。
【符号の説明】
1…水面、2…管、3…挿入口、10…浮力体、15…連結部、20…照明、20S…スリット照明、21a,21b…スイッチ、30…広角レンズ、31…洗浄ノズル、32…蓄圧タンク、33…バルブ、34…バルブ制御回路、35…小型ポンプ、40,71…撮像装置、50…画像記録装置、60…動力原、70…首振機構付撮像装置、75,76…制御装置、80…通信装置、100…点検装置本体、100S…コネクタ、120…綱、150…ケーブル(複合ケーブル)、151…通信ケーブル、152…給水ホース、153…電源ケーブル、200,205…ガイドローラ、210…アーム、220,310…突張機構、300…押当パッド、300A…車輪付押当パッド、330…旋回機構、340…伸縮機構、350…センサユニット、350L…液相用センサユニット、360…走行機構、370…スラスタ、400…ドラム、450…ガイド、460…回収治具、500…操作部。

Claims (4)

  1. 点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサは伸縮機構で管内面方向に進退自在に、且つその伸縮機構を旋回機構で管の円周方向に回転可能に点検装置本体に装着し、且つ前記点検用センサに近接センサを設け、且つ前記点検センサを搭載した伸縮機構と等価な慣性モーメントで前記伸縮機構とは反対方向へ回転可能とする旋回機構を点検装置本体に設けたことを特徴とする管内点検装置。
  2. 点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサが管内の流体の水面より上方を点検領域とするように、又は管内の流体の水面より下方を点検領域とするように、あるいは管内の流体の水面より下方と上方を点検領域とするように少なくとも水面より下方の点検用センサは左右と下の3個以上の複数、点検装置本体に装着し、且つ水面より上方を点検する点検用センサは水面より上になるように、水面より下方を点検するための点検用センサは水面より下になるように点検装置本体の浮力体が調整されていることを特徴とする管内点検装置。
  3. 点検用センサを点検装置本体に搭載して管内を移動する管内点検装置において、点検用センサは伸縮機構で管内面方向に進退自在に、且つその伸縮機構を旋回機構で管の円周方向に回転可能に点検装置本体に装着し、管の円周方向の回転移動をガイド可能とする車輪付きの押し当てパッドを突っ張り機構で管内面方向に進退自在に支持して点検装置本体の円周方向複数箇所に装備し、且つ点検装置本体に円周方向の姿勢を検出するための傾斜センサとか鉛直方向検出センサを設けたことを特徴とする管内点検装置。
  4. 請求項3において、前記車輪付きの押し当てパッドの車輪をブレーキ装置でロックするか、別の突っ張り機構で点検装置本体から支持した固定パッドを管内面に押し当てて、円周方向の回転を固定する手段を備えたことを特徴とする管内点検装置。
JP2001163662A 2001-05-31 2001-05-31 管内点検装置 Expired - Fee Related JP3941420B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163662A JP3941420B2 (ja) 2001-05-31 2001-05-31 管内点検装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163662A JP3941420B2 (ja) 2001-05-31 2001-05-31 管内点検装置

Publications (2)

Publication Number Publication Date
JP2002357563A JP2002357563A (ja) 2002-12-13
JP3941420B2 true JP3941420B2 (ja) 2007-07-04

Family

ID=19006586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163662A Expired - Fee Related JP3941420B2 (ja) 2001-05-31 2001-05-31 管内点検装置

Country Status (1)

Country Link
JP (1) JP3941420B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220028565A (ko) * 2020-08-28 2022-03-08 한국로봇융합연구원 다중 센서 및 조명을 기반으로 해상에 부유하는 객체를 탐지하기 위한 장치

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219130A (ja) * 2003-01-10 2004-08-05 Hitachi Ltd 管内壁面画像撮影装置
JP5053119B2 (ja) * 2008-02-22 2012-10-17 岡三リビック株式会社 流路管内調査装置
JP5485660B2 (ja) * 2009-11-16 2014-05-07 積水化学工業株式会社 既設管の更生方法
KR101111150B1 (ko) 2010-02-08 2012-02-15 주식회사 삼영기술 무동력 부유식 차집관로 검사장치
KR101146195B1 (ko) 2010-02-08 2012-05-24 주식회사 삼영기술 동력 전달 부유식 차집관로 검사장치
JP5487409B2 (ja) * 2010-07-02 2014-05-07 独立行政法人農業・食品産業技術総合研究機構 壁面自動追尾型水路トンネル撮影装置
KR101226222B1 (ko) * 2010-11-09 2013-01-28 송재성 수륙양용 이동촬영장치 및 이를 이용한 하수관거 촬영방법
KR20120133482A (ko) * 2011-05-31 2012-12-11 수자원기술 주식회사 부유형 관로 프로브
ES2859755T3 (es) * 2013-02-01 2021-10-04 Abb Power Grids Switzerland Ag Dispositivo y método para inspección in-situ de transformador
KR101633318B1 (ko) * 2014-09-03 2016-06-24 대우조선해양 주식회사 대형구조물의 능동형 진동 제어장치
JP6927507B2 (ja) * 2015-07-16 2021-09-01 株式会社新日本コンサルタント 構造物検査装置
KR101943036B1 (ko) * 2017-01-18 2019-01-28 주식회사 유엔지니어링 부유식 차집관로 검사 장치
KR102055344B1 (ko) * 2017-09-13 2019-12-13 주식회사 뉴보텍 관로의 세정과 완주가 가능한 제트추진형 관로 조사 장치 및 관로 조사 공법
CN108445014B (zh) * 2018-05-04 2023-08-08 北京城市排水集团有限责任公司 一种双盖式排水管道带水检测装置及其使用方法
KR101963417B1 (ko) * 2018-10-26 2019-03-28 (주)와콘엔지니어링 상ㆍ하수관 관로내부 초음파조사장치
JP7285793B2 (ja) * 2020-01-15 2023-06-02 関西電力株式会社 流水路点検装置
KR102160989B1 (ko) * 2020-05-22 2020-09-29 김비나 축소고정장치 및 렌즈 이물질 제거장치가 장착된 지중관로 측정장치
CN112663762B (zh) * 2020-12-08 2022-06-21 中建海峡建设发展有限公司 一种水利水电工程的排水管加固结构
KR102410534B1 (ko) * 2021-06-16 2022-06-22 (주)와콘엔지니어링 방향전환 및 장력을 최소화 한 상ㆍ하수관 관로점검장치
CN113653880B (zh) * 2021-07-14 2022-12-16 江阴金童石化装备有限公司 一种石油化工输送管道
WO2023060013A1 (en) * 2021-10-05 2023-04-13 SonDance Solutions LLC Methods and systems to locate anomalies along an inside surface of a conveyance pipe
CN114910037B (zh) * 2022-04-18 2024-03-12 中国电建集团华东勘测设计研究院有限公司 一种检测桩基冲刷坑形态的装置及方法
KR102481365B1 (ko) * 2022-06-08 2022-12-27 주식회사 한미엔텍 하수관로용 조사 장치
JP7390630B1 (ja) 2022-06-27 2023-12-04 東京都公立大学法人 点検装置
CN116809659B (zh) * 2023-08-28 2023-11-07 常州赛密思新材料有限公司 一种实时检测钢带质量的压延机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220028565A (ko) * 2020-08-28 2022-03-08 한국로봇융합연구원 다중 센서 및 조명을 기반으로 해상에 부유하는 객체를 탐지하기 위한 장치
KR102430524B1 (ko) * 2020-08-28 2022-08-08 한국로봇융합연구원 다중 센서 및 조명을 기반으로 해상에 부유하는 객체를 탐지하기 위한 장치

Also Published As

Publication number Publication date
JP2002357563A (ja) 2002-12-13

Similar Documents

Publication Publication Date Title
JP3941420B2 (ja) 管内点検装置
JP4677595B1 (ja) 配管検査装置
JP5955101B2 (ja) ケーブル検査装置
WO2019198768A1 (ja) 無人飛行体
JPS6234048A (ja) 管内走行装置、及び管内点検走行装置
JP4397261B2 (ja) 浮揚ガスを用いた無人飛行体
JP4145949B1 (ja) 流路管内調査装置、流路管内調査装置を利用した管内調査方法、流路管内調査方法における未回収物の回収方法
JP4663476B2 (ja) 水圧鉄管の厚み測定方法
JPH0695804B2 (ja) 架空ケ−ブル点検装置
JP5487409B2 (ja) 壁面自動追尾型水路トンネル撮影装置
KR101226222B1 (ko) 수륙양용 이동촬영장치 및 이를 이용한 하수관거 촬영방법
JP5545750B2 (ja) ケーブル収容管点検装置
JP2002137180A (ja) 遠隔移動ロボット
JP2805607B2 (ja) 無人消防車
JP2005324327A (ja) 遠隔移動ロボット
JP4223355B2 (ja) 管内撮影装置
JP3139297U (ja) 管内検査ロボット
KR101895839B1 (ko) 관로 내부조사장치 및 이를 이용한 관로 내부조사방법
KR101263354B1 (ko) 다굴절 관로 로봇
JP2750521B2 (ja) 消火流体供給用ホースの送り出し装置および無人消防車
JP2004333285A (ja) 管路内の調査方法と装置
JP6817115B2 (ja) 筒状部材の検査装置
JP5214947B2 (ja) 自走式管内検査ロボット
JPS61200464A (ja) 管内走行装置
WO2010139865A1 (fr) Flotteur d'inspection de reseaux d'assainissement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees