JP3922090B2 - 表示装置及び表示制御方法 - Google Patents

表示装置及び表示制御方法 Download PDF

Info

Publication number
JP3922090B2
JP3922090B2 JP2002142363A JP2002142363A JP3922090B2 JP 3922090 B2 JP3922090 B2 JP 3922090B2 JP 2002142363 A JP2002142363 A JP 2002142363A JP 2002142363 A JP2002142363 A JP 2002142363A JP 3922090 B2 JP3922090 B2 JP 3922090B2
Authority
JP
Japan
Prior art keywords
display
light emitting
power supply
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142363A
Other languages
English (en)
Other versions
JP2003330421A (ja
Inventor
敏浩 佐藤
勉 古橋
成彦 笠井
博基 粟倉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2002142363A priority Critical patent/JP3922090B2/ja
Publication of JP2003330421A publication Critical patent/JP2003330421A/ja
Application granted granted Critical
Publication of JP3922090B2 publication Critical patent/JP3922090B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、EL(エレクトロルミネッセンス)素子や有機EL素子その他の自発光タイプの表示素子である自発光素子を搭載した表示装置およびその駆動方法に関する。
【0002】
【従来の技術】
EL(エレクトロルミネッセンス)素子や有機EL素子等に代表される自発光素子において、その発光輝度は自発光素子を流れる電流量に比例するという性質があり、自発光素子を流れる電流量を制御することで階調表示が可能になる。以上のような自発光素子を複数配置して表示装置を作成することができる。
【0003】
アクティブマトリクスによる自発光素子ディスプレイは、単純マトリクスによる自発光素子ディスプレイに比べ、画面の輝度、消費電力の点で有利である。しかし、アクティブマトリクスによる自発光素子ディスプレイにおいては、各画素に、信号レベルの可変量を電流の可変量に正確にV−I変換できるようなTFT(Thin Film Transistor)素子を必要とする。そこで、このようなTFT素子を必要とせず階調表示を行う方法として、1画素ごとに、入力信号に応じたパルス幅変調を用いて1フレーム期間中に階調をかける方法が特開2000−235370号公報に開示されている。
【0004】
また、自発光素子を長時間使用した場合、経時的に自発光素子の劣化が進行し、その発光輝度は低下してしまうという問題がある。自発光素子の経時的な劣化によって生じる輝度の変化を補償する技術は、特開2001−13903号公報等に開示されている。 特開2000-330517号公報には、有機ELに流れる電流の大きさを測定して有機ELに注入される電荷量を測定し、総電荷量が予め定められた値に達した場合に、駆動トランジスタへのゲート電圧の供給を停止することによって、有機ELに注入される電荷量を制御し、有機ELを所定の平均輝度で発光させる点が開示されている。
【0005】
特開2000-221945号公報には、映像信号の1フィールド分の平均輝度に基づいて、パネルに印加する電圧を制御することによって、例えば、平均輝度が低い場合はピーク輝度を伸長し、平均輝度が高い場合はピーク輝度を伸長しないで、データのビット数を多くすることなく表現できる階調数を増大する点が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開2001−13903号公報に開示されている技術は、自発光素子に印加する電圧を変化させたり、自発光素子を発光させるために、信号のパルス幅を調整して、劣化の進行した自発光素子の発光輝度を補うものである。よって、自発光素子の劣化の進行自体を軽減するものではない。
【0007】
特開2000-235370号公報や特開2000-330517号公報、特開2000-221945号公報にも、表示素子の劣化の進行を軽減することは開示されていない。
【0008】
自発光素子は、電流密度が大きいとき、換言すれば自発光素子の発光輝度が明るいときほど自発光素子の劣化が進行しやすい。しかし、自発光素子の劣化の進行を軽減するために単純に表示輝度を落とすだけでは、表示装置の表示画質が低下してしまう。
【0009】
自発光素子は、温度によって電圧−電流密度特性が異なるという性質がある。前述のように、自発光素子の発光輝度は流れる電流量に比例するという性質があるから、自発光素子は温度変化に伴ってその発光輝度が変化する。よって、温度の変化によって自発光素子の発光輝度が過剰な上昇をし、劣化の進行が加速されることもある。また逆に、温度の変化によって自発光素子の発光輝度が低下した場合、画質の低下を招いてしまう。
【0010】
本発明によれば、低い階調(例えば、黒)が表示されている場合の輝度上昇を抑えつつ、高い階調(例えば、白)が表示されている場合のピーク輝度を高める表示装置及びその方法を提供することを目的とする。
【0011】
本発明は、表示素子の劣化の進行を軽減する表示装置及びその方法を提供することを目的とする。
【0012】
本発明は、温度の変化に起因する表示素子の発光輝度の変化を抑制する表示装置およびその方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、複数の画素が配置された画素アレイと、データ信号駆動回路と、走査信号駆動回路と、電源部とを備え、電源部からの電力により複数の画素の発光部にかかる電圧を、フレーム期間内にて変調する。例えば、電源部からの電力により複数の画素の発光部にかかる電圧は、複数の画素の発光部の陰極側の電位を制御することにょり、変調する。また、1フレーム期間内での変調は、1フレーム期間内で暗い画素が消灯していて明るい画素が点燈している期間に、電源部からの電力により複数の画素の発光部にかかる電圧を高くする。
【0014】
本発明は、複数の表示素子を有する画素アレイと、データ信号駆動回路と、走査信号駆動回路と、電源部とを備え、1フレーム期間内で暗い表示素子が消灯していて明るい表示素子が点燈している期間に、電源部からの電力により複数の表示素子にかかる電圧を高くする。
【0015】
【発明の実施の形態】
表示装置において、暗い領域が多い画像を表示するときには明るい部分のピーク輝度を高くしなければ迫力が低下し画質に影響してしまう。しかし、明るい領域の多い画像を表示するときには通常より表示輝度を落としても表示品質に対する影響は少ない。そこで、表示画面の平均輝度を検出する手段と、表示輝度を制御する手段とを設ける。平均輝度の高い画像を表示するときには、画面の表示輝度を落とすよう制御する。画面の平均輝度に応じた表示輝度の制御を行うことで、表示品質を損ねることなく表示装置内の自発光素子の発光量を軽減し、自発光素子の長寿命化を図ることができる。その他に、表示装置の構成次第で、低消費電力化、温度変化に起因する発光輝度変化の補償、表示品位の向上、各色ごとの劣化速度のばらつきに起因する色バランスのズレの補償などに対して、効果が得られることがある。
【0016】
以下、本発明の第1の実施例を、図面を用いて詳細に説明する。
【0017】
本発明の第1の実施形態においては、自発光素子の発光輝度は自発光素子を流れる電流量に比例することを利用し、表示装置全体の自発光素子を流れる電流の総量を測定することで、表示装置の表示画面全体の平均輝度情報を得る。平均輝度の高い場合においては通常よりも実際の表示輝度を落とすべく、自発光素子に印加する電圧を制御する。また、表示装置全体の自発光素子を流れる電流の総量を測定することで温度の変化に伴う表示装置の平均輝度の変化を捉えることができ、温度変化に起因する自発光素子の発光輝度の変化を抑制することも可能である。
【0018】
図1は本発明の第1の実施例である自発光素子表示装置の例である。以下、自発光素子として有機EL素子を用いたものとして説明する。
【0019】
図1において、1〜5は外部から入力される映像デジタル信号で、1は表示データデジタル信号(画像信号)、2は垂直同期信号(制御信号)、3は水平同期信号(制御信号)、4はデータイネーブル信号(制御信号)、5は同期クロック(制御信号)である。垂直同期信号2は表示一画面周期(1フレーム)の信号で表示データデジタル信号1の1フレーム分の始まりと終わりを示す。水平同期信号3は一水平周期の信号で表示データデジタル信号1の1水平ライン分の始まりと終わりを示す。データイネーブル信号4は表示データデジタル信号1が有効である期間を示す信号ある。1〜4は全て同期クロック5に同期して入力される。本実施例では、表示データデジタル信号1は、一画面分(1フレーム分)が左上端の画素から順次ラスタスキャン形式で転送されるものとして以下説明する。6は表示制御部、7は表示データアナログ信号、8はデータ信号駆動回路制御信号、9は走査信号駆動回路制御信号である。表示制御部6は表示データデジタル信号1に応じて、所定の電圧のアナログ信号に変換し、表示データアナログ信号7として出力する。また、表示制御部6は、外部から入力された1〜5の信号に応じて、データ信号駆動回路制御信号8と走査信号駆動回路制御信号9を出力する。10はデータ信号駆動回路、11はデータ線、12は走査信号駆動回路、13は走査線、14は表示部である。データ信号駆動回路10は、データ信号駆動回路制御信号8によって制御され、データ線11を介して表示部14に表示データ信号を書き込む。走査信号駆動回路12は、走査信号駆動回路制御信号9によって制御され、走査線13を介して表示部14に書き込み選択信号を送る。15は発光電源部、16は発光電力供給線である。発光電源部15は有機EL素子が発光するために必要な電力を、発光電力供給線16を介して表示部14に供給する。17は陰極電位制御回路で、18は陰極電流線である。陰極電位制御回路17は表示部14内部の有機EL素子の陰極側電位を制御する。表示部14は、データ信号駆動回路10によって書き込まれた表示データに応じて、内部の有機EL素子の発光強度を変化させて画像を表示する。発光電源部15は、電源を発生する機能とその電源の電流値を制御する機能を有するのが好ましい。表示部14は、マトリックス状に複数の画素が配置された画素アレイである。
【0020】
図2は表示部14の内部構成の一実施例である。
【0021】
図2において、111は第1データ線、112は第2データ線であり、これらは端部でデータ信号駆動回路10に接続されている。131は第1走査線、132は第2走査線であり、これらは端部で走査信号駆動回路12に接続されている。画素の内部の構成を第1行第1列画素141にのみ示しているが、第1行第2列画素142、第2行第1列画素143、第2行第2列画素144についても同様の構成である。21はスイッチングTFTであり、22はデータ記憶容量、23はドライブTFT、24が有機EL素子である。スイッチングTFT21のゲートは第1走査線131に接続されており、ドレインは第1データ線111に接続されている。走査信号駆動回路12によって、第1走査線に選択信号が出力されると、スイッチングTFT21はオン状態になり、データ信号駆動回路10が第1データ線111に出力するアナログ電圧による表示データ信号電圧がデータ記憶容量22に充電され、記録される。データ記憶容量22に記録された表示データ信号は、走査信号駆動回路12によって、スイッチングTFT21がオフされた後も保持されつづける。ドライブTFT23はデータ記録容量22に充電された電圧に応じてソース・ドレイン間の電流量が変化する。このことを利用し、有機EL素子24を流れる電流量を制御し、有機EL素子24の発光輝度を調節する。有機EL素子24の陰極は、陰極電流線18を介して陰極電位制御回路17に接続されている。
【0022】
図3は有機EL素子に一定電流を流し、発光させつづけたときの、有機EL素子を流れる電流の密度と輝度半減寿命との関係図である。電流の密度と輝度半減寿命の関係は、反比例関係である。有機EL素子の発光輝度は有機EL素子の表面積に対する電流量の密度に比例する。図3のグラフは、有機EL素子の電流密度が大きいとき、すなわち有機EL素子の発光輝度が明るいときには、発光輝度が暗いときに比べて有機EL素子の劣化が速く進むことを示している。
【0023】
図4は本発明における表示装置の表示輝度制御法の例を示している。外部から表示装置に入力される表示階調信号に対して実際に表示する輝度を、表示装置の表示画面の平均輝度が高いときと低いときについて表している。平均輝度の低い場合の階調値に対する表示輝度は、平均輝度の高い場合の階調値に対する表示輝度よりも大きい。つまり、平均輝度の低い場合の輝度特性の勾配は、平均輝度の高い場合の輝度特性の勾配よりも大きい。本発明においては、表示装置の表示画面の平均輝度の高い場合には、実際の表示輝度を通常よりも少し落とすよう制御する。平均輝度は、1画面分(1フレーム分)の各画素の輝度の平均値である。但し、平均輝度は、複数画面分の各画素の輝度の平均値であってもよいし、1画面の部分(例えば、数ライン分の画面部分)の各画素の輝度の平均値であってもよい。
【0024】
図5は有機EL素子の両極間に印可する電圧を一定とし、温度を変化させた場合の、温度−電流密度特性のグラフである。室温周辺で電流密度が急上昇しているのがわかる。有機EL素子の発光輝度は電流密度に比例する。有機EL素子の温度が室温周辺のとき、温度が変化することによる輝度変化が大きくなることを示している。
【0025】
図6は本発明の一実施例として、陰極電位制御回路17において表示装置の画面の平均輝度測定とその結果に応じた発光輝度制御を行う場合の陰極電位制御回路17の構成を示したものである。171は電流測定回路、172は電圧制御回路、173は表示部14の平均輝度情報、178は電圧制御回路172の基準電圧である。電流測定回路171で陰極電流線18から陰極電位制御回路17に流れ込む電流を測定し、その電流値から表示部の平均輝度情報173を得て、平均輝度情報173と基準電圧178を元に電圧制御回路172を制御し、図2における有機EL素子24の陰極側の電位を変動させる。
【0026】
図7は電流測定回路171の動作を表した図である。電流測定回路171は陰極電流線18から陰極電位制御回路17に流れ込む電流量を測定し、その電流量に応じて表示部の平均輝度情報173として電圧信号を出力する。平均輝度情報173の信号電圧と陰極電流線18の電流量との関係は、ほぼ比例関係である。図7のグラフは陰極電流線18から陰極電位制御回路17に流れ込む電流量と表示部の平均輝度情報173として出力する信号の電圧の関係を示している。
【0027】
図8は、電圧制御回路172の動作を表した図である。201は有機EL素子24の陰極側の電位、202は有機EL素子に印可される電圧である。表示部14の平均輝度情報173の信号電圧が増加すると陰極電位制御回路17の出力電位すなわち有機EL素子24の陰極側の電位201が上昇し、有機EL素子に印可される電圧202が減少することを示している。
【0028】
図9は図6で示した本発明における陰極電位制御回路17の構成図である。174は差動増幅器で、175は抵抗、176はアナログ加算回路、177はバッファ、178は基準電圧である。電流検出回路171では、抵抗175を陰極電流が流れることで、抵抗175の両端には電位差が生じる。その電位差を差動増幅器174が任意の増幅率で増幅し、アナログ電圧信号という形で表示部の平均輝度情報173を出力する。アナログ加算回路176は、表示部の平均輝度情報173の信号電圧と基準電圧178の和を電圧信号で出力する。バッファ177は陰極電位制御回路の出力電流容量を高めるために設置し、その出力電圧はアナログ加算回路176の出力電圧と同じにする。
【0029】
以下、図1〜9を用いて、本実施例における表示輝度制御手法について説明する。
【0030】
まず、図1、図2を用いて表示部内の各画素の表示輝度を制御する方法を説明する。表示装置の外部から入力された表示データデジタル信号1、垂直同期信号2、水平同期信号3、データイネーブル信号4、同期クロック5はまず表示制御部6に入力される。表示制御部は垂直同期信号2、水平同期信号3、データイネーブル信号4、同期クロック5を参考に、所定のタイミングで走査信号駆動回路制御信号9を走査信号駆動回路12に、データ信号駆動回路制御信号8をデータ信号駆動回路10に出力する。また、表示制御部6は表示データデジタル信号1を所定の電圧範囲のアナログ電圧信号に変換し、表示データアナログ信号7として、データ信号駆動回路10に出力する。走査信号駆動回路12は走査信号駆動回路制御信号9を受けて走査線13に選択信号を出力する。選択信号とは表示部14内の画素におけるスイッチングTFT21をオンにする電圧信号である。表示部において一番上のラインの走査線から1本ずつ順に選択信号を出力する。それゆえ、走査線に選択信号が出力されているライン上の画素のみスイッチングTFT21がオンになっており、データ線11を介して画素の保持容量22に表示信号を書き込むことが可能になる。一方、データ信号駆動回路10は表示データアナログ信号7をデータ線11に出力する。表示部14内一番左のデータ線から順に表示データアナログ信号7を出力する。こうして選択信号が出力されている走査線と表示データアナログ信号を出力するデータ線の交点部の画素のデータ記憶容量22に、アナログ電圧信号である表示データアナログ信号7を書き込んでゆく。ところで、本実施例では、画素の表示データを1画素ずつ書き込んでゆく点順次書き込み方式をとっているが、データ信号駆動回路10で表示部の横方向一ライン分の表示データをラッチし、表示データを一ライン分一気に出力する線順次書き込み方式をとってもよい。また、本実施例では表示装置の外部から入力されるデジタル映像データ信号を表示制御部6でアナログ電圧信号に変換しているが、データ信号駆動回路10においてデジタル信号からアナログ信号に変換しても構わない。
【0031】
図3の説明の項で述べたように、有機EL素子の発光輝度が明るいときには、発光輝度が暗いときに比べて有機EL素子の劣化が速く進む。それゆえ、劣化の進行を軽減するためには、表示輝度を落とすことが有効である。ただし、単純に表示輝度を落とすと表示品位に影響することが考えられるが、白い部分の多い画像を表示するときのように画面が全体的に明るい場合には、画面全体の表示輝度を下げてもあまり表示品位に影響しない。しかし、黒い部分の多い画像を表示するときのように画面全体が概ね暗い場合は明るい部分の表示輝度を落とすと表示品位に影響してしまう。そこで、図4のように画面全体の表示輝度の平均が高い場合に、表示輝度を落とすよう表示装置を制御すれば、表示品位を確保しつつ、有機EL素子の劣化を抑制することができる。但し、画面全体の表示輝度の平均が低い場合に、表示輝度を上げてもよい。
【0032】
また、図5に示すように、温度が上昇すると有機EL素子の電流密度は上昇し、有機ELの発光輝度も上昇してしまう。しかし、上記の制御法を用いれば、温度が上昇し表示装置の画面全体の平均輝度が上昇するときにも表示輝度を落とすよう作用する。ゆえに、上記制御法は、有機EL素子の温度変化に起因する表示輝度の変化を抑制する手段としても有効である。
【0033】
次に、上記の有機EL素子の劣化を抑制するための制御法を実施する手段について述べる。上記の制御法を実施するためには、表示装置の画面表示の平均輝度を測定する手段と、表示装置の表示輝度を制御する手段が必要である。そこで、その実施例の一つとして、陰極電位制御回路17において表示装置の画面全体の有機EL素子に流れる電流の総和を測定し表示部14の平均輝度の情報を得て、その情報を元に有機EL素子24の陰極側の電位を制御し表示装置の表示輝度を制御する方法について述べる。この方法を実施するときの陰極電位制御回路17の一構成例を図6に示す。有機EL素子の発光輝度は、その有機EL素子を流れる電流量に比例する。そこで、表示装置の画面全体の有機EL素子を流れる電流量の総和を測定すれば表示装置の画面全体の平均輝度を推定することができる。そこで、表示装置内にある有機EL素子24の陰極から陰極電流線18を介して陰極電位制御回路17に流れ込む電流を陰極電位制御回路17内に設けた電流測定回路171で測定する。そしてその電流量から表示部の平均輝度情報173を得る。表示部の平均輝度情報はアナログの電圧信号とし、図7に示すように陰極電流線18を流れる電流量に比例するアナログ電圧信号とする。そしてこの平均輝度情報173を基に電圧制御回路172を制御し、有機EL素子24の陰極側の電位を図8のように制御する。図8のように有機EL素子24の陰極側の電位を制御することで、表示部14の平均輝度の高いときは有機EL素子24に印加する電圧202を小さく、また表示部14の平均輝度の低いときは有機EL素子24に印加する電圧202を大きくすることができる。このようにして、表示部の平均輝度に応じて図4のように表示輝度を制御することが可能になる。
【0034】
この制御法を実施するための陰極電位制御回路17の回路構成例を図9に示す。例えば、図1、図9において、発光電源部15の電圧を15V、陰極電位制御回路17の基準電圧178の電圧を0V、電流検出回路の抵抗175の抵抗値を1Ω、差動増幅器174の増幅率を100倍と設定したとする。陰極電流線18を流れる電流が10mAだった場合、抵抗175の両端の電位差は10mVで、差動増幅器はこれを増幅し、表示部の平均輝度情報173の電圧値は1Vになる。アナログ加算回路176は表示部の平均輝度情報173と基準電圧178の和を出力するから、アナログ加算回路176の出力電圧は1Vとなる。よって、抵抗175の両端の電位差は小さいので無視すると、陰極電位制御回路17の出力電圧は1Vとなる。それゆえ、陰極電流線18を流れる電流が10mAのときは発光電源部15と陰極電位制御回路17の間の電位差は14Vとなる。また、上記の例に対して、表示部14の平均輝度が3倍だったとき、すなわち陰極電流線18を流れる電流が30mAだった場合は、同様に計算して陰極電位制御回路17の出力電圧は3Vとなる。陰極電流線18を流れる電流が30mAのときは発光電源部15と陰極電位制御回路17の間の電位差は12Vとなる。上記の例のように、図6の回路構成で、表示部14の平均輝度に応じて発光電源部15と陰極電位制御回路17の間の電位差を制御することができ、平均輝度が上昇すると有機EL素子24に印加する電圧を下げ、発光輝度を下げる制御が可能である。
【0035】
上記の実施例では表示部14内の有機EL素子24を流れる電流の総量の測定することで表示部の平均輝度を測定する手段と、表示部の平均輝度に応じて有機EL素子に印加する電圧を制御する手段を、陰極電位制御回路17に設けたが、これらはどちらも発光電源部15に設けてもよい。陰極電位制御回路17に平均輝度測定手段を設け、表示部の平均輝度に応じて有機EL素子に印可する電圧を制御する手段を発光電源部15に設けてもよい。その逆の配置でもよい。
【0036】
また、上記の実施例において、平均輝度はそれほど高くなくても、表示制御部6に入力される表示データデジタル信号1の最大表示値と最小表示値を監視して、それらの差が小さいときには、さらに表示輝度を落とすよう制御してもよい。
【0037】
本発明の第2の実施例を、図面を用いて詳細に説明する。
【0038】
本発明の第2の実施例においては、平均輝度情報に応じて信号線駆動手段の出力信号電圧を制御し、画面の表示輝度を制御する。
【0039】
図10は本発明の第2の実施例を実現するための有機EL素子表示装置の構成例を示したものである。その構成は図1で示した本発明の第1の実施例のときと大部分において同様であり、図面内の各部は図1に示したものと同様の動作をする。ただし、第1の実施例におけるデータ信号駆動回路10の代わりに、第2の実施例では出力制御機能付データ信号駆動回路19が新たに設けられている。出力制御機能付データ信号駆動回路19は陰極電位制御回路17で測定した平均輝度情報173に応じて表示データアナログ信号7を変換し、データ線11に出力する。以下、平均輝度情報173は表示部14の平均輝度に比例するアナログ電圧信号であるとして説明する。
【0040】
図11は、出力制御機能付データ信号駆動回路19にアナログ増幅回路を設け、平均輝度情報173に応じて、表示データアナログ信号7を増幅してデータ線11に出力するような構成にした場合の、データ信号駆動回路19の入出力の関係を示している。101は表示部14の平均輝度が低い場合のグラフで、102が表示部14の平均輝度が高い場合のグラフである。平均輝度が高い場合ほど、表示データアナログ信号を高い電圧にしてデータ線11に出力する。ところで、図2において、画素回路のドライブTFT23はP−MOSであるので、ドライブTFT23のゲートの電位が高くなるとソース・ドレイン間を流れる電流量は減少し、有機EL素子24の発光輝度は暗くなる。ゆえに、上記の出力制御機能付データ信号駆動回路19の構成で、表示部14の平均輝度が高くなると表示輝度を落とす制御が可能である。
【0041】
また、平均輝度情報に応じた表示部14の表示輝度制御手段を出力制御機能付データ信号駆動回路19に設けたが、表示制御部6に設けて上記制御法と同様の制御を行ってもよい。
【0042】
本発明の第3の実施例を、図面を用いて詳細に説明する。
【0043】
本発明の第3の実施例においては、平均輝度情報に応じて、外部から入力される表示データ信号にデジタル信号処理を施し、表示データを変換することで画面の表示輝度を制御する。
【0044】
図12は本発明の第3の実施例を実現するための有機EL素子表示装置の構成例を示したものである。その構成は図1で示した本発明の第1の実施例のときと大部分において同様であり、図面内の各部は図1に示したものと同様の動作をする。ただし、第1の実施例における表示制御部6の代わりに、第3の実施例では信号変換部60が新たに設けられている。信号変換部60は表示制御部6の有する機能のほかに、以下に説明する機能が追加される。
【0045】
図13は信号変換部60において入力された表示データデジタル信号1を表示データアナログ信号7に変換して出力する様子を示したもので、その他の信号については本発明の第1の実施例の説明の項の表示制御部6の説明で述べたので省略してある。61は変換テーブルで、62はD/Aコンバーターで、173は表示部14の平均輝度情報である。本発明の第3の実施例では、図11のように信号変換部60の信号処理部分に複数の変換テーブル61を設け、陰極電位制御回路17に流れ込む電流を測定することで得た表示部14の平均輝度情報173の値に応じて変換テーブル61の中から最適なテーブル1つを選択し、その選択されたテーブルにを用いて表示データデジタル信号1をデジタル信号処理により変換し、変換されたデータをD/Aコンバーターでさらにアナログ電圧信号に変換して、表示データアナログ信号7として出力する。上記の信号変換部60の構成を用いることで、平均輝度情報に応じた表示輝度の制御が可能である。
【0046】
本発明の第4の実施例について述べる。
【0047】
本発明の第4の実施例においては、画面の外に単数もしくは複数の自発光素子を設け、その発光輝度に応じて流れる電流を検出し、その電流量に基づいて表示画面の表示輝度を制御する。そして、温度変化に起因する自発光素子の発光輝度の変化を補償し、過剰な発光輝度の上昇を抑制することで、自発光素子の劣化を軽減することが可能である。
【0048】
図14において、301は画面外有機EL素子、302は電流測定装置、303は温度情報である。
【0049】
温度の変化に起因する表示輝度の変化を抑制し、また過剰な表示輝度の増大に伴う自発光素子の劣化の進行を軽減する目的においては、図14のように、表示部14の外部で表示部14の近傍に単体もしくは複数の画面外有機EL素子301を設置して、定電圧を印加したときの電流量を電流測定装置302で計測することにより、表示部14の温度を推定することができる。図14では、この温度情報303を基に、第3の実施例で示した表示輝度制御手段で、表示部14の表示輝度を制御した場合について示している。第1、第2の実施例で示した表示輝度制御手段を用いて、表示部14の表示輝度の制御を行うことも可能である。
【0050】
さらに、本発明の第5の実施例を、図面を用いて詳細に説明する。
【0051】
本発明の第5の実施例は、特開2000−235370号公報に開示されるような、1画素毎に入力信号に応じたパルス幅変調(PWM)信号を用いて階調表示を行う表示装置に対して適用される。本発明の第5の実施例は、パルス幅変調方式による階調表示とは、自発光素子を点燈/消灯の2値で制御し、1フレーム期間内における点燈時間又は消灯時間(発光時間)の長さを制御することで階調表示を行う方法である。各画素が1フレーム期間内のうちの所定の時間連続して点燈するパルス幅変調方式に対して、この実施形態を適用することができる。この条件のパルス幅変調方式においては、1フレーム期間内に明るい画素しか点燈していない時間帯があり、この時間帯に自発光素子の両極間に印可する電圧を高めれば、明るい画素のみピーク輝度を高めることができ、コントラストを高くし、画質の向上を図ることが可能である。また、暗い画素も点燈している時間帯は自発光素子の両端に通常の電圧を印可するので、黒表示を白浮きさせることなくピーク輝度を高めることが可能である。
【0052】
図15は本発明の第5の一実施例である有機EL素子表示装置の例である。図1と同一の符号は、第1の実施例と同様の機能を有する。
【0053】
図15において、63は表示フェーズ信号、28はPWM制御信号である。この実施例において新たに設けたPWM方式表示制御部65は、第1の実施例と同様に表示データデジタル信号1を、所定の電圧のアナログ信号に変換し、表示データアナログ信号7として出力する。また、PWM方式表示制御部65は、第1の実施例と同様に、外部から入力された1〜5の信号に応じて、所定のタイミングでデータ信号駆動回路制御信号8と走査信号駆動回路制御信号9を出力する。また、PWM方式表示制御部65は、表示同期陰極電位制御回路27を制御するための制御信号である表示フェーズ信号63を出力する。表示フェーズ信号63は1フレーム周期の信号である。さらに、PWM方式表示制御部65は、PWM表示部34内の画素回路のPWM回路を制御するためのPWM制御信号28を出力する。表示部として新たにPWM表示部34が設けられたが、データ信号駆動回路10、走査信号駆動回路12の動作は、第1の実施例のときと同様である。データ信号駆動回路10は、データ信号駆動回路制御信号8によって制御され、データ線11を介してPWM表示部34に表示データ信号を書き込む。走査信号駆動回路12は、走査信号駆動回路制御信号9によって制御され、走査線13を介してPWM表示部34に書き込み選択信号を送る。発光電源部15は有機EL素子が発光するために必要な電力を発光電力供給線16を介してPWM表示部34に供給する。27は表示同期陰極電位制御回路である。表示同期陰極電位制御回路27は、表示フェーズ信号63に応じてPWM表示部34内部の有機EL素子の陰極側電位を制御する。PWM表示部34は、データ信号駆動回路10によって書き込まれた表示データに応じて、内部の各画素の有機EL素子の1フレーム期間あたりの発光時間を変化させて階調表示をし、画像を表示する。1フレーム周期(1フレーム期間)とは、1画面分のデータが表示装置に入力される周期(期間)である。但し、1フレーム期間内で、複数のサブフィールドによる走査が繰り返されてもよい。
【0054】
図16はPWM表示部34の内部構成を示している。
【0055】
以下、第1行第1列画素341について説明する。画素の内部の構成を第1行第1列画素341にのみ示しているが、第1行第2列画素342、第2行第1列画素343、第2行第2列画素344についても同様の構成である。25はPWM回路、26は点燈スイッチである。本実施例において、有機EL素子24の表示輝度は、有機EL素子24に印可する電圧をON−OFF制御することにより、1フレーム期間内における点燈時間と消灯時間の割合を変化させることで、表示輝度を制御する。PWM回路25は、PWM制御信号28の点燈開始パルスを受けて点燈スイッチ26をONにして有機EL素子24に所定の電圧を印加して点燈を開始させ、PWM制御信号28の与えるパルスをカウントし、データ記憶容量22に記録された電圧に応じて所定のタイミングで点燈スイッチ26をOFFにして有機EL素子24への電圧印加を停止し有機EL素子24を消灯させる。
【0056】
以上のように図15と図16に示した構成で、有機EL素子24の点燈時間を制御することによる各画素の階調表示が可能になる。ただし、図15と図16の構成はあくまでPWM方式による階調表示方法の一例であり、PWM制御をする手段として画素回路内にカウンターを設けるよう限定するものではない。また、PWM制御信号28の波形も、特にクロック信号に限定するものではない。
【0057】
図17は本実施例におけるパルス幅変調方式の概念を表している。例えば階調番号0から63までの64階調を表示する場合、図17において、まず時刻がT0のときに、点燈時間が0である階調番号が0の画素以外は点燈を開始し、以後、時間の経過と共に階調番号の低いものから順に消灯してゆき、最後に階調番号63である画素が消灯する。これはひとつの例であり、全画素が消灯している状態から始まり、階調番号の高いものから順に点燈を開始してもかまわない。以上のように、階調に応じて点燈時間の長さを制御することで階調表示を行う。
【0058】
図18にデータ信号線を通してPWM回路25に入力するアナログ電圧と有機EL素子24の点燈時間の関係を示す。階調数が高くなり、信号電圧が高くなると共に1フレーム期間内における点燈時間が長くなることを示している。
【0059】
図19は表示同期陰極電位制御回路27の出力電圧制御法の一例を示したものである。表示フェーズ信号63は、1フレーム周期の信号で、1フレーム期間の始まりから終わりまでの時刻を表す信号である。図19中では表示フェーズ信号63を鋸型の波として表記しているが、表示フェーズ信号63は単数又は複数ビットのデジタル信号であってもよいし、アナログ信号でも構わない。また、図19中では帰線期間として最低階調から最高階調まですべての画素が消灯している期間を書きこんであるが、この期間は特に設けなくてもよい。表示同期陰極電位制御回路27は表示フェーズ信号63に応じて、階調の低い暗い画素が消灯していて階調番号の高い明るい画素だけが点燈している時間帯のみ有機EL素子24の陰極側の電位を下げ、有機EL素子24の両極間にかかる電圧を高める。このように制御することで、階調の高い画素のみ高輝度で発光させることができ、ピーク輝度が高まる。ピーク輝度を高めることで画面表示の迫力を高めることができる。また、低い階調の画素が点燈している時間帯には有機EL素子24に高い電圧をかけないので黒浮きを押さえ、コントラストを高めることができる。また、本実施例では、明るい画素に対してのみ高電圧をかけピーク輝度を確保し、その他の画素には低い電圧しかかけないので、ピーク輝度の割には全体的に有機EL素子への電圧ストレスが小さくなり、有機EL素子の劣化軽減に関しても有効である。
【0060】
本発明の第6の実施例を、図面を用いて詳細に説明する。本発明の第6の実施例も、1画素毎に入力信号に応じたパルス幅変調信号を用いて階調表示を行う表示装置に対して適用される。本発明の第6の実施例は、パルス幅変調方式で、表示画面の平均輝度を検出し、平均輝度の高い画像を表示している場合は、ピーク輝度を高めても表示品質の向上につながらないので、ピーク輝度上昇制御を停止させる。こうすることで、不要な電力消費を抑え、自発光素子の劣化を軽減でき、表示品質の向上を図ることができる。
【0061】
図20は本発明の第6の一実施例である有機EL素子表示装置の例である。図1と同一の符号は、第1の実施例と同様の機能を有する。
【0062】
図20において、37は平均輝度監視表示同期陰極電位制御回路である。第6の実施例で新たに設けた平均輝度監視表示同期陰極電位制御回路37は、表示フェーズ信号63と、PWM表示部34の平均輝度に応じてPWM表示部34内部の有機EL素子24の陰極側電位を制御する。PWM表示部34は、データ信号駆動回路10によって書き込まれた表示データに応じて、内部の有機EL素子の1フレーム期間あたりの発光時間(点燈時間又は消灯時間)を変化させて階調表示をし、画像を表示する。
【0063】
図21は平均輝度監視表示同期陰極電位制御回路37の構成を示している。171は電流測定回路で、373はPWM表示部の平均輝度情報である。
【0064】
PWM表示部34の各画素の発光に寄与した電流が陰極電流線18を介して電流測定回路171に流れ込む。第1の実施例と同様にこの電流を電流測定回路171で測定する。ただ、パルス幅変調(PWM)方式で表示部を駆動する場合、1フレーム期間中にPWM表示部34の全画素が点燈する時間帯から全画素が消灯する時間帯まで陰極電流線18を流れる電流値はめまぐるしく変化する。そこで、電流測定回路171の内部にローパスフィルタ等を設けて測定電流値を平均化すればPWM表示部34の平均輝度を測定することが可能である。PWM表示部の平均輝度情報373は上記のようにして得た平均輝度測定値を信号化したものである。
【0065】
372は表示同期電圧制御回路である。出力電圧を制御する表示同期電圧制御回路372は、PWM表示部34の平均輝度情報373の他に表示フェーズ信号63に応じて出力電圧を制御する。
【0066】
図22は平均輝度監視表示同期陰極電位制御回路37の出力電圧制御法の一例を示したものである。表示フェーズ信号63に応じて、階調の低い暗い画素が消灯していて階調番号の高い明るい画素だけが点燈している時間帯のみ有機EL素子24の陰極側の電位を下げ、有機EL素子24の両極間にかかる電圧を高める。このように制御することで、階調の高い画素のみ高輝度で発光させることができ、ピーク輝度が高まる。ピーク輝度を高めることで画面表示の迫力を高めることができる。また、低い階調の画素が点燈している時間帯には有機EL素子24に高い電圧をかけないので黒浮きを押さえ、コントラストを高めることができる。画像データに対応する階調が、所定の中間階調(最も大きい階調と最も小さい階調の間の階調)に比較して、大きいか又は小さいかによって、高い階調か低い階調かを決定する。
【0067】
しかし、画面の大部分を明るい画素が占めるような画像を表示するとき、換言すれば平均輝度の高い画像を表示するときにはピーク輝度を高めても表示画質の向上には結びつかない。そこで、平均輝度の高い画像を表示するときには上記の有機EL素子24への印加電圧昇圧制御を停止する。先述のように平均輝度の高低は電流測定回路171で測定する。
【0068】
第6の実施例のように有機EL素子に印加する電圧を制御することで、消費電力と自発光素子の劣化を抑えながら画質の向上を図ることができる。また、表示の平均輝度を測定することで、温度の変化による発光輝度の変化および、有機EL素子の劣化の程度を推定することができるため、これらの補償を行うことも可能である。
【0069】
なお、有機EL素子24の陰極に印可する電圧の波形は図22に示すものに限定するわけではなく、本発明の主旨を逸脱しない範囲において任意に設定してかまわない。また、本実施例では平均輝度検出手段と有機EL素子24に印可する電圧の制御手段を、有機EL素子24の陰極側に設けたが、これらを陽極側に設けてもよい。
【0070】
本発明の第7の実施例について述べる。図23は本発明の第7の実施例を実現するための有機EL素子表示装置の構成例を示したものである。本発明の第7の実施例は、自発光素子の発光電力を供給する電線には表示画面の平均輝度に比例する電流が流れることを利用し、これら電力供給線に抵抗を挿入し、この抵抗の部分で表示部分の平均輝度に比例した電圧降下を生じさせる。表示部分の平均輝度が高い場合には表示輝度を落とす制御を簡素な構成で行うことが可能である。
図23において、47は陰極電源部、30は輝度調整用抵抗である。
【0071】
陰極電源部47は有機EL素子24の陰極側の電源で、一定の電圧を出力する電源である。輝度調整用抵抗30は陰極電流線18上、即ち、表示部14の外部で、表示部14と陰極側電源37との間に設けられた抵抗である。
【0072】
表示部14内の各画素の有機EL素子の発光に供給する電力は、有機EL素子24の陽極側からは、発光電源部15から発光電力供給線16を介して供給する。有機EL素子24の陰極側からは、陰極電流線18、輝度調整用抵抗30を介して陰極側電源47から供給する。
【0073】
表示部14を発光させると、第1の実施例で述べたように表示部14の平均輝度に比例した電流が陰極電流線18を流れる。この電流によって輝度調整用抵抗30の両端には電位差が生じ、この電位差は陰極電流線18を流れる電流値に比例する。それゆえ、有機EL素子24の陰極側の電位は陰極電流線18を流れる電流に応じて変化し、陰極電流線を流れる電流が大きいほど有機EL素子24の陰極側の電位が上昇し、有機EL素子24の両極間に印可される電圧が減少する。このようにして、平均輝度の高い画像を表示したときに表示輝度を落とし、逆に平均輝度の低い画像を表示するときにピークの表示輝度を高める制御ができ、自発光素子の劣化を抑制することができる。
【0074】
以上、本発明の第7の実施例においては有機EL素子24の陰極側に輝度調整用抵抗30を挿入することで、簡素な構成により平均輝度に応じた表示輝度の制御が可能になることを示した。ただし、輝度調整用抵抗30を、有機EL素子24の陽極側の発光電力供給線16に挿入してもかまわない。
【0075】
本発明の第8の実施例について述べる。図24は本発明の第8の実施例を実現するための有機EL素子表示装置の構成例を示したものである。本発明の第8の実施形態は、表示部の発光電源線をRGBなど色ごとに設け、各色ごとに発光に寄与する電流をモニターして平均輝度を測定し、各色ごとの平均輝度に応じた発光輝度の制御を行う。これによって、各色ごとの劣化速度のばらつきを補正することが可能になる。
【0076】
35はR発光電源部、36はR発光電力供給線、44は電源分離型表示部、45はG発光電源部、46はG発光電力供給線、55はB発光電源部、56はB発光電力供給線である。
【0077】
第8の実施例では発光電源部をR・G・Bの各色毎に設け、R発光電源部35はR色の画素専用の発光電源で、R発光電力供給線36はR色の画素専用の電力供給線である。以下、G発光電源部45、G発光電力供給線46、B発光電源部55、B発光電力供給線56はG・Bの各色において、35、36と同様なはたらきをする。ただし、R発光電源部35、G発光電源部45、B発光電源部55は、R・G・B各発光電源線の電流を測定することによる平均輝度測定手段と、出力電圧を制御することによる表示輝度制御手段を備えている。また、44は電源分離型表示部で、R・G・B各色ごとに発光電源線を分離した構造の表示部である。
【0078】
データ信号駆動回路10は、データ信号駆動回路制御信号8によって制御され、データ線を介して電源分離型表示部44に表示データ信号を書き込む。走査信号駆動回路12は、走査信号駆動回路制御信号9によって制御され、走査線13を介して電源分離型表示部44に書き込み選択信号を送る。以上のようにして、走査信号駆動回路12によって選択された表示部14内の画素に表示データ信号を書きこみ、階調表示を行う。
【0079】
電源分離型表示部44内の各画素の有機EL素子の発光に供する電力は、R色の有機EL素子24の陽極側からは、R発光電源部35からR発光電力供給線36を介して供給する。G色の有機EL素子24の陽極側からは、G発光電源部45からG発光電力供給線46を介して供給する。B色の有機EL素子24の陽極側からは、B発光電源部55からR発光電力供給線56を介して供給する。有機EL素子24の陰極側からは、陰極電流線18を介して陰極側電源47から供給する。
【0080】
図25は電源分離型表示部44の内部構成の一実施例である。441と444はR色画素回路で、442と445はG色画素回路、443と446はB色画素回路である。R色画素回路はR発光電力供給線35に接続されており、G色画素回路はG発光電源線45に接続されており、B色画素回路はB発光電源線55に接続されている。
【0081】
次に第8の実施例における表示装置の動作について説明する。R発光電源部35、G発光電源部45、B発光電源部55はそれぞれ独立に、第1の実施例で説明したように平均輝度に応じた表示輝度の制御を行う。
【0082】
有機EL素子においては、各色ごとに材料特性が異なり、その劣化の進行の仕方も各色ごとに異なる。このことが、色バランスがずれる原因になってしまう。ここで、3色のうちの1色が、他の色に比べて劣化が速く進行してしまったとする。劣化の進行した色は他の色に比べて平均輝度が低下してしまう。劣化の進んだ色の発光電源部では、平均輝度が低下すると表示輝度を高めるよう作用する。また、劣化があまり進んでいない色に関しては平均輝度が高くなるので、輝度を落とすよう作用する。以上のようにして、平均輝度検出手段と発光輝度制御手段を各色ごとに設けると、素子劣化に起因する色ずれを補償することが可能になる。無論、ピーク輝度を確保しつつ自発光素子の劣化を抑制することもできる。
【0083】
第8の実施例の構成の説明において、平均輝度検出手段として発光電源線の電流値を測定する手法を用いるよう示しているが、各色毎に平均輝度を測定し各色毎に発光強度を制御するという点を逸脱しなければ、平均輝度検出手段を特に限定はしない。また、第8の実施例の構成の説明において、表示輝度制御手段として発光電源線に供給する電圧を制御する手法を用いるよう示しているが、各色毎に平均輝度を測定し各色毎に発光強度を制御するという点を逸脱しなければ、表示輝度制御手段を特に限定はしない。さらに、第6の実施例に、第8の実施例で示したR・G・B各色ごとの発光輝度制御を適用しても構わない。
【0084】
以上、自発光素子として有機EL素子を例に取り、8通りの実施例を示したが、本発明は対象を有機EL素子に限定するのではなく、その他の自発光素子に対しても適用可能である。
【0085】
本願において開示される発明によって得られる効果を簡単に説明すれば、以下のとおりである。
【0086】
自発光素子表示装置において、画面の表示輝度の平均を測定し、その値が大きいときのみ表示装置に入力される映像信号に対する表示輝度を暗くすることで、表示品位を保ちつつ有機EL素子の長寿命化を図ることができ、また、温度変化に起因する表示輝度の変化を抑制することもできる。
【0087】
また、R・G・B等各色ごとに発光電源配線を分けて上記の制御を行えば、各色ごとの劣化進行のばらつきを補正し、色バランスの劣化を抑制することも可能である。
【0088】
また、パルス幅変調方式により階調表示を行う自発行素子表示装置においては、明るい画素のみ点燈している時間帯に、自発光素子に印加する電圧を高めれば、黒表示部の輝度上昇を抑えつつ白表示部のピーク輝度を高めることが可能である。
【0089】
【発明の効果】
本発明によれば、低い階調(例えば、黒)が表示されている場合の輝度上昇を抑えつつ、高い階調(例えば、白)が表示されている場合のピーク輝度を高め、これによってコントラストを高め、画質を向上するという効果を奏する。
【0090】
本発明によれば、表示素子の劣化の進行を軽減するという効果を奏する。
【0091】
本発明によれば、温度の変化に起因する表示素子の発光輝度の変化を抑制するという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例を実現するための有機EL素子表示装置の例である。
【図2】図1記載の表示部14の内部構成の一実施例である。
【図3】有機EL素子に一定の電流を流しつづけたときの、有機EL素子を流れる電流の密度と、劣化によって発光輝度が半減するまでの時間の関係を表した図である。
【図4】階調値に対する実際の表示輝度の関係の一例を示したグラフである。画面表示の平均輝度の高いときと低いときに分けて示している。
【図5】自発光素子に一定電圧を印加して駆動したときの温度−電流密度特性のグラフである。
【図6】図1記載の陰極電位制御回路17の内部構成の概略図である。
【図7】図1記載の陰極電流線18を流れる電流と、その電流に対して図6記載の電流測定回路171が表示部の平均輝度情報173として出力するアナログ電圧信号の出力の例を示したグラフである。
【図8】平均輝度情報173に応じて有機EL素子24の陰極の電位が変化し、有機EL素子に印可される電圧が変化する動作の概念を示している。
【図9】図1記載の陰極電位制御回路17の内部構成の一実施例である。
【図10】本発明の第2の実施例を実現するための有機EL素子表示装置の例である。
【図11】図10記載のデータ信号駆動回路19の表示データの入出力の関係を示したグラフ。表示部の平均輝度が低い場合と高い場合について示している。
【図12】本発明の第3の実施例を実現するための有機EL素子表示装置の例である。
【図13】図12記載の信号変換部60の構成について表示データ信号に関連する部分のみ示している。
【図14】本発明の第4の実施例を実現するための有機EL素子表示装置の例である。
【図15】本発明の第5の実施例を実現するための有機EL素子表示装置の構成例である。
【図16】図15記載のPWM表示部34の内部構成を示している。
【図17】パルス幅変調駆動方式の概念図である。
【図18】図16記載のPWM回路25に入力するアナログ電圧と有機EL素子24の点燈時間の関係の一例を示す。
【図19】図15記載の平均輝度監視表示同期陰極電位制御回路27の出力電圧の制御法の概念を示した
【図20】本発明の第6の実施例を実現するための有機EL素子表示装置の構成例である。
【図21】図20記載の平均輝度監視表示同期陰極電位制御回路37の構成を示している。
【図22】図20記載の平均輝度監視表示同期陰極電位制御回路37の出力電圧制御法の概念を示している。
【図23】本発明の第7の実施例を実現するための有機EL素子表示装置の構成例である。
【図24】本発明の第8の実施例を実現するための有機EL素子表示装置の構成例である。
【図25】図24記載の電源分離型表示部44の内部構成の一実施例である。
【符号の説明】
1…表示データデジタル信号、2…垂直同期信号、3…水平同期信号、4…データイネーブル信号、5…同期クロック、6…表示制御部、7…表示データアナログ信号、8…データ信号駆動回路制御信号、9…走査信号駆動回路制御信号、10…データ信号駆動回路、11…データ線、12…走査信号駆動回路、13…走査線、14…表示部、15…発光電源部、16…発光電力供給線、17…陰極電位制御回路、18…陰極電流線、19…出力制御機能付データ信号駆動回路、21…スイッチングTFT、22…データ記憶容量、23…ドライブTFT、24…有機EL素子、27…表示同期陰極電位制御回路、28…PWM制御信号、30…輝度調整用抵抗、34…PWM方式表示部、35…R発光電源部、36…R発光電源線、37…平均輝度監視表示同期陰極電位制御回路、45…G発光電源部、46…G発光電源線、47…陰極側電源、55…B発光電源部、56…B発光電源線、60…信号変換部、61…変換テーブル、62…D/Aコンバーター、63…表示フェーズ信号、65…PWM方式表示制御部、70…表示データ信号、100…デジタル式データ信号駆動回路、101…平均輝度が高い場合のデータ線11の出力、102…平均輝度が低い場合のデータ線11の出力、111…第1データ線、112…第2データ線、131…第1走査線、132…第2走査線、141…第1行第1列画素、142…第1行第2列画素、143…第2行第1列画素、144…第2行第2列画素、171…電流測定回路、172…電圧制御回路、173…表示部14の平均輝度情報、178…基準電圧、201…自発光素子24の陰極側電位、202…自発光素子24に印可される電圧、301…画面外有機EL素子、302…電流測定装置、303…温度情報、372…表示同期電圧制御回路、373…PWM表示部の平均輝度情報、441…第1行第1列R画素、442…第1行第1列G画素、443…第1行第1列B画素、444…第2行第1列R画素、445…第2行第1列G画素、446…第2行第1列B画素

Claims (20)

  1. 発光部と、前記発光部の点燈と消灯を切り替えるスイッチと、容量素子と、パルス幅変調方式によって前記容量素子に蓄えられた電荷に応じたパルス数がカウントされたタイミングで前記スイッチを制御して該発光部の1フレーム期間内の点燈/消灯時間を制御するPWM回路と、画像信号に応じた電荷を前記容量素子に充電するスイッチング素子とを夫々含む複数の画素が配置された画素アレイと、
    フレーム期間毎に画像データを受信し且つ該画像データに基づき前記画像信号を出力するためのデータ信号駆動回路と、
    前記複数の画素の各々における前記スイッチング素子による前記画像信号の受信タイミングを制御するための走査信号を出力するための走査信号駆動回路と、
    前記発光部の発光に必要な電力を出力するための電源部と、
    前記電源部からの電力により前記複数の画素の発光部にかかる電圧を制御する制御回路と、
    前記発光部の前記1フレーム期間内の点燈/消灯時間を制御するのに用いられるPWM制御信号を生成するPWM制御部とを備えた表示装置において、
    前記PWM回路は、前記PWM制御信号に従って前記スイッチをONして前記電源部からの電力を前記発光部に供給して前記発光部を点燈し、前記1フレーム期間内の前記容量素子に蓄えられた電荷に応じた前記PWM制御信号のパルス数がカウントされたタイミングで前記スイッチをOFFして前記電源部から前記発光部へ供給する電力を停止して前記発光部を消灯し、
    前記制御回路は、前記1フレーム期間内で、暗い画素と明るい画素が点燈している期間に前記電源部からの電力により前記複数の画素の発光部にかかる電圧よりも、前記暗い画素が消灯していて前記明るい画素が点燈している期間に前記電源部からの電力により前記複数の画素の発光部にかかる電圧を高くする表示装置。
  2. 前記電源部は、前記画素アレイ内のRGBの各色に対応するよう別個に設けられ、RGBの各色ごとに別個に前記電源部からの電力により前記複数の画素の発光部にかかる電圧の制御をする請求項1に記載の表示装置。
  3. 前記制御回路は、前記複数の画素の発光部の陰極側の電位を制御することによって、前記複数の画素の発光部にかかる電圧を制御する請求項1に記載の表示装置。
  4. 前記制御回路は、前記複数の画素の電流値を検出し、前記電流値に基づいて前記電源部からの電力により前記複数の画素の発光部にかかる電圧を制御する請求項1に記載の表示装置。
  5. 前記制御回路は、前記電流値に基づいて1フレーム期間分の輝度を算出し、前記1フレーム期間分の輝度に基づいて、前記電源部からの電力により前記複数の画素の発光部にかかる電圧を制御する請求項4に記載の表示装置。
  6. 前記制御回路は、前記電流値に基づいて前記発光部の劣化状態を算出し、前記発光部の劣化状態に基づいて、前記電源部からの電力により前記複数の画素の発光部にかかる電圧を制御する請求項4に記載の表示装置。
  7. 前記制御回路は、前記複数の画素の発光部の陰極側の電位を下げることによって、前記電源部からの電力により前記複数の画素にかかる電圧を、前記1フレーム期間内にて高くする請求項3に記載の表示装置。
  8. 前記画素アレイとは別に設けられた他の発光部と、
    前記他の発光部の電流値を検出する検出回路とを備え、
    前記制御回路は、検出された前記電流値に基づいて、前記電源部からの電力により前記複数の画素の発光部にかかる電圧を制御する請求項1に記載の表示装置。
  9. 前記1フレーム期間内の点燈時間が長い場合に前記画素は明るくなり、前記1フレーム期間内の点燈時間が短い場合に前記画素は暗くなる請求項1から8の何れかに記載の表示装置。
  10. 前記制御回路は、前記1フレーム期間の始めに画素が点燈している場合は、暗い画素から順に消灯を開始し、
    前記制御回路は、前記1フレーム期間の始めに画素が消灯している場合は、明るい画素から順に点燈を開始する請求項1から9の何れかに記載の表示装置。
  11. マトリックス状に配置された複数の表示素子を有する画素アレイと、
    画像データに基づき、前記複数の表示素子の各々に前記画像データに応じた階調を表示させるための画像信号を発生するためのデータ信号駆動回路と、
    前記画像信号を出力すべき表示素子を1又は複数のライン単位で選択するための走査信号駆動回路と、
    前記複数の表示素子を発光させるための電力を発生する電源部とを備えた表示装置において、
    1フレーム期間内で、暗い表示素子と明るい表示素子が点燈している期間に前記電源部からの電力により前記複数の表示素子にかかる電圧よりも、前記暗い表示素子が消灯していて前記明るい表示素子が点燈している期間に前記電源部からの電力により前記複数の表示素子にかかる電圧を高くする制御回路を備え、
    各表示素子は、パルス幅変調方式によって点燈/消灯動作を行い、
    各表示素子は、発光部と、前記発光部の点燈と消灯を切り替えるスイッチと、容量素子と、パルス幅変調方式によって前記容量素子に蓄えられた電荷に応じたパルス数がカウントされたタイミングで前記スイッチを制御して該発光部の1フレーム期間内の点燈/消灯時間を制御するPWM回路と、画像信号に応じた電荷を前記容量素子に充電するスイッチング素子とを含み、
    前記各表示素子は、PWM制御信号に従って前記スイッチがONされて前記電源部からの電力が供給されて点燈し、前記1フレーム期間内の前記容量素子に蓄えられた電荷に応じた前記PWM制御信号のパルス数がカウントされたタイミングで前記スイッチがOFFされて前記電源部から前記発光部へ供給される電力が停止して消灯する表示装置。
  12. 前記制御回路は、前記画像信号の信号電圧を制御することによって、前記容量素子に充電する電荷を制御して前記PWM制御信号のパルスのカウント数を制御して前記1フレーム期間内の前記スイッチをOFFするタイミングを制御して前記電源部から前記発光部へ供給される電力を停止するタイミングを制御して前記発光部の前記1フレーム期間内の点燈/消灯時間を制御して前記表示素子の発光輝度を制御する請求項11に記載の表示装置。
  13. 前記制御回路は、パルス幅変調方式によって前記表示素子を点燈/消灯して前記表示素子の発光時間を制御することによって、前記表示素子の発光輝度を制御する請求項11に記載の表示装置。
  14. 前記制御回路は、前記複数の表示素子を発光させるための電流値を検出し、検出された前記電流値に基づいて、所定の表示期間分の輝度を算出し、前記所定の表示期間分の輝度に基づいて前記表示素子にかかる電圧を制御する請求項11に記載の表示装置。
  15. 前記画素アレイとは別に設けられた他の表示素子と、
    前記他の表示素子の電流値を検出する検出回路とを備え、
    前記制御回路は、検出された前記電流値に基づいて、前記表示素子の発光輝度を算出し、前記所定の表示期間分の輝度に基づいて前記表示素子にかかる電圧を制御する請求項11に記載の表示装置。
  16. 前記表示素子は、自発光する請求項11から15の何れかに記載の表示装置。
  17. 前記制御回路は、前記複数の表示素子の陰極側の電位を制御することによって、前記電源部からの電力により前記複数の表示素子にかかる電圧を制御する請求項11から16の何れかに記載の表示装置。
  18. 前記制御回路は、前記複数の表示素子の陰極側の電位を下げることによって、前記電源部からの電力により前記複数の表示素子にかかる電圧を高くする請求項17に記載の表示装置。
  19. 前記1フレーム期間内の点燈時間が長い場合に前記表示素子は明るくなり、前記1フレーム期間内の点燈時間が短い場合に前記表示素子は暗くなる請求項11から18の何れかに記載の表示装置。
  20. 前記制御回路は、前記1フレーム期間の始めに表示素子が点燈している場合は、暗い表示素子から順に消灯を開始し、
    前記制御回路は、前記1フレーム期間の始めに表示素子が消灯している場合は、明るい表示素子から順に点燈を開始する請求項11から19の何れかに記載の表示装置。
JP2002142363A 2002-05-17 2002-05-17 表示装置及び表示制御方法 Expired - Fee Related JP3922090B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142363A JP3922090B2 (ja) 2002-05-17 2002-05-17 表示装置及び表示制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142363A JP3922090B2 (ja) 2002-05-17 2002-05-17 表示装置及び表示制御方法
TW92125927A TWI259431B (en) 2002-05-17 2003-09-19 Display apparatus and display control method

Publications (2)

Publication Number Publication Date
JP2003330421A JP2003330421A (ja) 2003-11-19
JP3922090B2 true JP3922090B2 (ja) 2007-05-30

Family

ID=29702668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142363A Expired - Fee Related JP3922090B2 (ja) 2002-05-17 2002-05-17 表示装置及び表示制御方法

Country Status (2)

Country Link
JP (1) JP3922090B2 (ja)
TW (1) TWI259431B (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804711B2 (ja) * 2003-11-21 2011-11-02 パナソニック液晶ディスプレイ株式会社 画像表示装置
JP2005157009A (ja) * 2003-11-26 2005-06-16 Toshiba Matsushita Display Technology Co Ltd El表示装置。
JP4797336B2 (ja) * 2004-05-17 2011-10-19 セイコーエプソン株式会社 電気光学装置および電子機器
JP4274070B2 (ja) 2004-07-23 2009-06-03 ソニー株式会社 表示装置及びその駆動方法
JP2006078582A (ja) * 2004-09-07 2006-03-23 Hitachi Displays Ltd 表示装置
JP2006091681A (ja) 2004-09-27 2006-04-06 Hitachi Displays Ltd 表示装置及び表示方法
JP4847034B2 (ja) * 2005-03-25 2011-12-28 廣輝電子股▲ふん▼有限公司 ホワイトバランスの動的調整可能なアクティブマトリックス有機発光ダイオード駆動制御回路及びその調整方法
WO2006109554A1 (ja) * 2005-03-30 2006-10-19 Pioneer Corporation 表示パネルおよび表示装置
JP2007241225A (ja) * 2005-06-16 2007-09-20 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いた表示装置の駆動方法および有機発光素子を用いた表示装置の駆動回路
JP5352047B2 (ja) * 2005-07-27 2013-11-27 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP5020815B2 (ja) * 2005-09-30 2012-09-05 エルジー ディスプレイ カンパニー リミテッド 画像表示装置
JP5071954B2 (ja) * 2005-11-24 2012-11-14 東北パイオニア株式会社 発光表示パネルの駆動装置および駆動方法
JP4862369B2 (ja) * 2005-11-25 2012-01-25 ソニー株式会社 自発光表示装置、ピーク輝度調整装置、電子機器、ピーク輝度調整方法及びプログラム
JP2008102224A (ja) * 2006-10-17 2008-05-01 Sony Corp 駆動条件最適化装置、寿命特性制御装置、有機el表示装置、電子機器、駆動条件最適化方法及びコンピュータプログラム
AU2008263014B2 (en) * 2007-06-13 2012-07-26 Sony Corporation Display device, video signal processing method and program
JP2009031711A (ja) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd 有機電界発光表示装置及びその駆動方法
KR100902219B1 (ko) 2007-12-05 2009-06-11 삼성모바일디스플레이주식회사 유기전계발광 표시장치
WO2009141914A1 (ja) * 2008-05-23 2009-11-26 パイオニア株式会社 アクティブマトリクス型表示装置
US8284218B2 (en) 2008-05-23 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device controlling luminance
US9928781B2 (en) 2014-01-27 2018-03-27 Joled Inc. Organic EL display device and driving method

Also Published As

Publication number Publication date
JP2003330421A (ja) 2003-11-19
TW200512705A (en) 2005-04-01
TWI259431B (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US9672769B2 (en) Display apparatus and method of driving the same
KR101350592B1 (ko) 유기발광 표시장치
US10062324B2 (en) Luminance control device and display device comprising the same
JP6111400B2 (ja) 映像信号処理回路、映像信号処理方法、及び、表示装置
KR101442680B1 (ko) 유기 발광 표시 장치의 구동 장치 및 구동 방법
JP4423848B2 (ja) 画像表示装置、および、その色バランス調整方法
TWI364234B (en) A method of aging compensation in an oled display
KR100842511B1 (ko) 화상 표시 장치
US7221343B2 (en) Image display apparatus
US7847764B2 (en) LED device compensation method
KR101416904B1 (ko) 유기전계발광 표시장치의 화소 구동 장치
US7696773B2 (en) Compensation scheme for multi-color electroluminescent display
JP4191931B2 (ja) 表示装置
US9202412B2 (en) Organic EL display apparatus and method of fabricating organic EL display apparatus
KR100707640B1 (ko) 발광 표시장치 및 그 구동 방법
KR100518294B1 (ko) 전류 구동형 발광 소자를 갖는 표시 장치 및 그 구동 방법
TWI417836B (zh) A display device, a driving method of a display device, and a computer-readable medium
CN104517568B (zh) 有机发光显示装置
KR101157109B1 (ko) 디스플레이 디바이스 내의 전력 레벨 제어 및/또는 콘트라스트 제어를 위한 방법 및 장치
TWI252707B (en) Display device and driving method therefor
US9058772B2 (en) Display device and driving method thereof
JP4302945B2 (ja) 表示パネルの駆動装置及び駆動方法
US7227519B1 (en) Method of driving display panel, luminance correction device for display panel, and driving device for display panel
US8497885B2 (en) Display apparatus and drive method thereof
US8125414B2 (en) Electroluminescent display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees