JP3919003B2 - Dcブラシレスモータのロータ角度検出装置 - Google Patents

Dcブラシレスモータのロータ角度検出装置 Download PDF

Info

Publication number
JP3919003B2
JP3919003B2 JP2002280408A JP2002280408A JP3919003B2 JP 3919003 B2 JP3919003 B2 JP 3919003B2 JP 2002280408 A JP2002280408 A JP 2002280408A JP 2002280408 A JP2002280408 A JP 2002280408A JP 3919003 B2 JP3919003 B2 JP 3919003B2
Authority
JP
Japan
Prior art keywords
voltage
axis
motor
rotor angle
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002280408A
Other languages
English (en)
Other versions
JP2004120888A (ja
Inventor
信幸 今井
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002280408A priority Critical patent/JP3919003B2/ja
Priority to US10/669,327 priority patent/US6909290B2/en
Publication of JP2004120888A publication Critical patent/JP2004120888A/ja
Application granted granted Critical
Publication of JP3919003B2 publication Critical patent/JP3919003B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、DCブラシレスモータのロータ角度をロータの位置検出センサを用いることなく検出するDCブラシレスモータのロータ角度検出装置に関する。
【0002】
【従来の技術】
DCブラシレスモータを駆動して所望のトルクを得るためには、磁極を有するロータの電気角(以下、ロータ角度という)に対応した適切な位相で電機子に電圧を印加する必要がある。そして、ロータ角度を検出する位置検出センサを省いてDCブラシレスモータと駆動装置のコストダウンを図るべく、位置検出センサを用いずにロータ角度を検出する種々の方法が提案されている。
【0003】
例えば、特許文献1及び特許文献2には、いわゆるdq座標系によりDCブラシレスモータの制御を行うモータ制御装置において、一方の軸方向に推定用交流信号電圧を印加したときに、他方の軸側に生じる電流によりロータ角度を検知する方法が記載されている。
【0004】
また、本願発明者らも、先の出願(特願2001−288303)において、位置検出センサを用いずにロータ角度を検出するロータ角度検出装置を提案している。かかるロータ角度検出装置においては、突極型のDCブラシレスモータの3相の電機子に印加する駆動電圧に高周波の検査用電圧を重畳したときに、該3相の電子機のうちの第1相に流れる電流の検出値及び第2相に流れる電流の検出値と、該検査用電圧に応じた高周波成分とを用いて、該モータのロータ角度の2倍角の正弦値に応じた正弦参照値と該2倍角の余弦値に応じた余弦参照値とを算出する。
【0005】
そして、該正弦参照値と余弦参照値に基づいて、ロータ角度を初期追従性良くモータパラメータの影響をほとんど受けることなくロータ角度を検出することができる。
【0006】
しかし、このように、ロータ角度を検知するために駆動電圧に検査用電圧を重畳したときに、モータから耳障りなノイズが発生する場合がある。
【0007】
【特許文献1】
特開平10−323099号公報
【特許文献2】
特開平11−332279号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記背景を鑑みてなされたものであり、駆動電圧に検査用電圧を重畳してロータ角度を検出する際に、耳障りなノイズが発生することを抑制したDCブラシレスモータのロータ角度検出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
先ず、本発明について説明する前に、本発明の基本的な考え方を図1を参照して説明する。図1(a)に示したように、突極型のロータ2を使用した場合、ロータ2とU,V,Wの各電機子3,4,5間のギャップの磁気抵抗は周期的に変化し、その変化はロータ2が1回転する間に2回、すなわちロータ2が半回転する間に1周期分変化する。そして、該磁気抵抗は、ロータ2が図中▲1▼の位置となったときに最大となり、ロータ2が図中▲2▼の位置となったときに最小となる。
【0010】
図1(a)の磁気回路を模式的に表したものが図1(b)であり、前記磁気抵抗の1周期あたりの平均値が0.5であると仮定すると、U,V,Wの各相における磁気抵抗Ru,Rv,Rwは、以下の式(1)〜式(3)で示される。
【0011】
【数1】
Figure 0003919003
【0012】
【数2】
Figure 0003919003
【0013】
【数3】
Figure 0003919003
このとき、U相からみたギャップの磁気抵抗Rguは、以下の式(4)により求めることができる。
【0014】
【数4】
Figure 0003919003
そのため、U相が単位巻線であると仮定すると、U相の自己インダクタンスLuは以下の式(5)により求めることができる。
【0015】
【数5】
Figure 0003919003
またU,W相間の相互インダクタンスMuwと、U,V相間の相互インダクタンスMuvは、磁気回路の構成より、それぞれ以下の式(6),式(7)により求めることができる。
【0016】
【数6】
Figure 0003919003
【0017】
【数7】
Figure 0003919003
V相、W相についても、同様にして自己インダクタンスと相互インダクタンスを求めることができ、これらにより、突極性を有するDCブラシレスモータの電圧方程式は、各相の自己インダクタンスの直流分をl、lの変動分をΔl、各相間の相互インダクタンスの直流分をmとすると、以下の式(8)で表すことができる。
【0018】
【数8】
Figure 0003919003
ここで、Vu、Vv,VwはそれぞれU相、V相、W相の電機子に印加される電圧、Iu,Iv,IwはそれぞれU相,V相,W相の電機子に流れる電流、rはU相,V相,W相の電機子の電気抵抗、ωはロータ2の電気角速度、Keは誘起電圧定数である。
【0019】
さらに、電気角速度ωがほぼ0で誘起電圧やロータ2の角速度変化による影響が小さく、抵抗rによる電圧降下も無視できるレベルである場合には、前記式(8)は、以下の式(9)により近似することができる。
【0020】
【数9】
Figure 0003919003
ここで、上記式(9)を相間電流、電圧による式に変形すると、以下の式(10)が得られる。
【0021】
【数10】
Figure 0003919003
また、上記式(10)のインダクタンス行列は正則であるので、上記式(10)を以下の式(11),式(12)の形に変形することができる。
【0022】
【数11】
Figure 0003919003
【0023】
【数12】
Figure 0003919003
また、DCブラシレスモータをいわゆるdq座標系で扱う場合は、ロータ角度の推定値(θ^)を用いて、以下の式(13),式(14)で表される3相/dq変換を上記式(11)に施すと、ロータ角度の推定値(θ^)と実際値(θ)が等しい(θ^=θ)場合、以下の式(15)が得られる。
【0024】
【数13】
Figure 0003919003
【0025】
【数14】
Figure 0003919003
【0026】
【数15】
Figure 0003919003
【0027】
【数16】
Figure 0003919003
【0028】
【数17】
Figure 0003919003
ここで、上記式(11)におけるロータ角度(θ)が、ロータ角度の実際値からθeだけずれた推定値である場合には、該推定値を用いて3相/dq変換されたId^,Iq^,Vd^,Vq^と、ロータ角度の実際値を用いて変換されたId,Iq,Vd,Vqとの間に、以下の式(18),式(19)の関係が成り立つ。
【0029】
【数18】
Figure 0003919003
【0030】
【数19】
Figure 0003919003
但し、θe:ロータ角度の実際値と推定値の位相差。
【0031】
したがって、以下の式(20)の関係式が導かれる。
【0032】
【数20】
Figure 0003919003
そして、上記式(8)の場合と同様に、電気角速度ωがほぼ0で、誘起電圧やロータ2の角度変化による影響が小さく、抵抗rによる電圧降下も無視できるレベルである場合は、上記式(20)は、以下の式(21)で近似することができる。
【0033】
【数21】
Figure 0003919003
以上の説明を基礎として本発明を以下に説明する。本発明の第1の態様は、DCブラシレスモータの3相の電機子に駆動電圧を印加する電圧印加手段と、該駆動電圧に、所定周期における一定の電圧出力パターンが設定された基本電圧列データに、該所定周期ごとに値が変化する変調用係数を乗じて生成された検査用電圧を重畳する検査用電圧重畳手段と、前記モータの電機子に流れる電流を検出する電流検出手段と、該検査用電圧重畳手段により前記駆動電圧に前記検査用電圧が重畳されたときに、前記所定周期内において、所定の制御サイクルで前記電流検出手段の検出電流を参照し、各制御サイクルにおける前記電流検出手段による検出電流の変化量と前記基本電圧列データと前記変調用係数とに基づいて、前記モータのロータ角度の2倍角の正弦値に応じた正弦参照値と該2倍角の余弦値に応じた余弦参照値とを算出する参照値算出手段と、該正弦参照値と該余弦参照値とに基づいて前記モータのロータ角度を検出するロータ角度検出手段とを備えたことを特徴とする。
【0034】
かかる本発明によれば、前記検査用電圧重畳手段により前記駆動電圧に重畳される前記検査用電圧は、前記基本電圧列データ列に前記所定周期ごとに値が変化する前記変調用係数を乗じて生成される。そのため、前記検査用電圧の周波数は前記所定周期ごとに変調されて周波数成分が分散される。そして、これにより、前記駆動電圧に前記検査用電圧を重畳したときに、特定の周波数成分をもった耳障りなノイズが発生することを抑制することができる。
【0035】
また、上記式(11)における微分期間(dt)を前記制御サイクルの長さ(Δt)とし、ある制御サイクルにおける前記駆動電圧と前記検査用電圧をそれぞれv(1),{Hu(1),Hw(1)}とし、該制御サイクルにおける前記電流検出手段の検出電流の変化量を{ΔIu(1),ΔIw(1)}とすると、上記式(11)は以下の式(22)の形で表される。
【0036】
【数22】
Figure 0003919003
同様に、次の制御サイクルにおける前記駆動電圧と前記検査用電圧をそれぞれv(2),{Hu(2),Hw(2)}、前記電流検出手段の検出電流の変化量を{ΔIu(2),ΔIw(2)}とすると、上記式(11)は以下の式(23)の形で表される。
【0037】
【数23】
Figure 0003919003
そして、上記式(22)と式(23)を辺々減算すると、前記制御サイクルが短い場合、駆動電圧v(1)と駆動電圧v(2)がほぼ等しいと想定できるため、以下の式(24)が得られる。
【0038】
【数24】
Figure 0003919003
上記式(24)により、前記駆動電圧と独立な、検査用電圧の差分電圧(dHu(1),dHw(1))と、電流検出値の変化量(ΔIu(1),ΔIw(1),ΔIu(2),ΔIw(2))のみについての関係式が得られ、上記式(24)を変形して以下の式(25)が得られる。
【0039】
【数25】
Figure 0003919003
そして、前記所定周期中にn個の制御サイクルが含まれるものとし、各制御サイクル及び該制御サイクルの次の制御サイクルについての上記式(25)をまとめると、以下の式(26)が得られる。
【0040】
【数26】
Figure 0003919003
上記式(26)において、n>1であるとき、行列Cは、ゼロベクトルでない独立な電圧ベクトル(dV(i),dV(j)、1≦i≦n、1≦j≦n、i≠j)が2個以上あれば列フルランクであり、前記正弦参照値(Vs)と前記余弦参照値(Vc)の最小2乗推定値が以下の式(27)で算出できる。
【0041】
【数27】
Figure 0003919003
ここで、行列Cは前記検出用電圧の関数であり、前記検査用電圧が前記所定周期ごとに一定の電圧出力パターンを繰り返し出力する場合は、その成分が一定となるため、上記式(27)における行列Dの成分を予め算出することができる。そのため、前記所定周期内の各制御サイクルにおける前記電流検出手段の検出電流の変化量から算出される検出電流の2階差分(ddIuw)と、各制御サイクルにおける検出用電圧(Hu,Hw)により予め算出可能な行列Dの成分との簡易な演算により、前記正弦参照値(Vs)と前記余弦参照値(Vc)を算出することができる。
【0042】
そして、前記基本電圧列データに前記変調用係数を乗じて前記検査用電圧を生成する場合は、上記式(26)における行列Cは、前記基本電圧列データの関数である行列に前記変調用係数を乗じた形で表される。そのため、詳細は後述するが、この場合は、上記式(27)を、前記基本電圧列データにより各成分を予め算出可能な行列と前記変調用係数と検出電流の2階差分(ddIuw)との演算により、前記正弦参照値と前記余弦参照値を算出する形で表すことができる。したがって、前記参照値算出手段は、各制御サイクルにおける前記基本電圧列データと前記電流検出手段の検出電流の変化量と前記変調用係数とにより、前記正弦参照値(Vs)と前記余弦参照値(Vc)を算出することができる。
【0043】
そして、前記ロータ角度検出手段は、例えば以下の式(28)により前記モータのロータ角度(θ)を算出することができる。
【0044】
【数28】
Figure 0003919003
また、本発明の第2の態様は、DCブラシレスモータを、該モータの界磁の磁束方向であるq軸上にあるq軸電機子と該q軸と直交するd軸上にあるd軸電機子とを有する等価回路に変換して扱い、前記d軸電機子に印加するd軸電圧と前記q軸電機子に印加するq軸電圧を、前記モータのロータ角度に基づいて3相の駆動電圧に変換するdq/3相電圧変換手段と、該駆動電圧を前記モータの3相の電機子に印加する電圧印加手段と、d軸電圧とq軸電圧に、所定周期における一定の電圧出力パターンが設定された基本電圧列データに、該所定周期ごとに値が変化する変調用係数を乗じて生成された検査用電圧を重畳する検査用電圧重畳手段と、前記モータの3相の電機子に流れる電流を検出する電流検出手段と、該電流検出手段による検出電流と前記モータのロータ角度とに基づいて、前記d軸電機子に流れるd軸実電流と前記q軸電機子に流れるq軸実電流とを算出する3相/dq電流変換手段と、前記検査用電圧重畳手段によりd軸電圧及びq軸電圧に前記検査用電圧が重畳されたときに、前記所定周期内において、所定の制御サイクルで前記d軸実電流と前記q軸実電流を参照し、各制御サイクルにおける該d軸実電流及び該q軸実電流の変化量と前記基本電圧列データと前記変調用係数とに基づいて、前記モータのロータ角度の実際値(θ)と推定値(θ^)との位相差(θ−θ^)の2倍角の正弦値に応じた正弦参照値と、該位相差(θ−θ^)の2倍角の余弦値に応じた余弦参照値とを算出する参照値算出手段と、該正弦参照値と該余弦参照値とに基づいて、前記モータのロータ角度を検出するロータ角度検出手段とを備えたことを特徴とする。
【0045】
かかる本発明によれば、前記第1の態様と同様に、前記検査用電圧の周波数は前記所定周期ごとに変調されて周波数成分が分散される。そして、これにより、前記検査用電圧を重畳したときに、特定の周波数成分をもった耳障りなノイズが発生することを抑制することができる。
【0046】
また、上記式(21)における微分期間(dt)を前記制御サイクルの長さ(Δt)とし、ある制御サイクルにおいて、前記モータのロータ角度の推定値(θ^)に基づいて前記dq/3相電圧変換手段及び前記3相/dq変換手段による変換処理を行ったときの、該制御サイクルにおけるd軸電圧及びq軸電圧と前記検査用電圧をそれぞれv_dq^(1),Hd^(1),Hq^(1)、d軸実電流及びq軸実電流の変化量を{ΔId^( 1),ΔIq^(1)}とすると、上記式(21)は以下の式(29)の形で表される。
【0047】
【数29】
Figure 0003919003
同様に、次の制御サイクルにおいて、前記モータのロータ角度の推定値(θ^)に基づいて前記dq/3相電圧変換手段及び前記3相/dq変換手段による変換処理を行ったときの、該制御サイクルにおけるd軸電圧及びq軸電圧と前記検査用電圧をそれぞれv_dq^(2),Hd^(2),Hq^(2)、d軸実電流及びq軸実電流の変化量を{ΔId^(2),ΔIq^(2)}とすると、上記式(21)は以下の式(30)の形で表される。
【0048】
【数30】
Figure 0003919003
そして、上記式(29)と式(30)を辺々減算すると、前記制御サイクルが短い場合、v_dq^(1)とv_dq^(2)がほぼ等しいと想定できるため、以下の式(31)が得られる。
【0049】
【数31】
Figure 0003919003
上記式(31)により、d軸電圧及びq軸電圧と独立な検査用電圧の差分電圧(dHd(1),dHq(1))と、電流検出値の変化量(ΔId^(1),ΔIq^(1),ΔId^(2),ΔIq^(2))のみについての関係式が得られ、上記式(31)を変形して以下の式(32)が得られる。
【0050】
【数32】
Figure 0003919003
そして、前記所定周期中にn個の制御サイクルが含まれるものとし、各制御サイクル期間に対しての上記式(32)をまとめると、以下の式(33)が得られる。
【0051】
【数33】
Figure 0003919003
また、前記第1の態様と同様に、前記正弦参照値(Vs)と余弦参照値(Vc)の最小2乗推定値が以下の式(34)により算出できる。
【0052】
【数34】
Figure 0003919003
ここで、行列C^は前記検出用電圧の関数であり、前記検出用電圧が前記所定周期ごとに一定の電圧出力パターンを繰り返し出力する場合は、その成分が一定となるため、上記式(34)における行列D^の成分を予め算出することができる。そのため、前記所定周期内の各制御サイクルにおけるd軸実電流とq軸実電流の変化量から算出されるd軸実電流及びq軸実電流の2階差分(ddIdq^)と、各制御サイクルにおける検出用電圧(Hd^,Hq^)により予め検出可能な行列D^の成分との簡易な演算により、前記正弦参照値(Vs^)と前記余弦参照値(Vc^)を算出することができる。
【0053】
そして、前記基本電圧データに前記変調用係数を乗じて前記検査用電圧を生成する場合は、上記式(33)における行列C^は、前記基本電圧列データの関数である行列に前記変調用係数を乗じた形で表される。そのため、詳細は後述するが、この場合は、上記式(34)を、前記基本電圧列データにより各成分を予め算出可能な行列と前記変調用係数とd軸実電流及びq軸実電流の2階差分(ddIdq)との演算により、前記正弦参照値と前記余弦参照値を算出する形で表すことができる。したがって、前記参照値算出手段は、各制御サイクルにおける前記基本電圧列データとd軸実電流及びq軸実電流の変化量と前記変調用係数とにより、前記正弦参照値(Vs)と前記余弦参照値(Vc)を算出することができる。
【0054】
そして、前記ロータ角度検出手段は、例えば以下の式(35)により前記モータのロータ角度の実際値(θ)と推定値(θ^)の位相差(θe=θ−θ^)を算出することができ、該推定値(θ^)と該位相差(θe)とによりロータ角度の実際値(θ)を検出することができる。
【0055】
【数35】
Figure 0003919003
また、前記第1の態様及び第2の態様において、前記基本電圧列データは、前記電圧出力パターンにおける出力電圧の平均が0となるように設定されていることを特徴とする。
【0056】
かかる本発明によれば、前記検査用電圧の重畳により前記駆動電圧又は前記d軸電圧及びq軸電圧に与える影響を減少させることができる。
【0057】
また、前記ロータ角度検出手段は、所定の制御サイクルごとに前記正弦参照値と前記余弦参照値とを算出し、該正弦参照値と余弦参照値を用いて前記モータの実際値(θ)と推定値(θ^)との位相差(θ−θ^)に応じた位相差データを算出し、前回の制御サイクルにおいて算出したモータのロータ角度を前回の制御サイクルにおける前記モータのロータ角度の推定値(θ^)とし、前回の制御サイクルにおいて算出した前記位相差データに応じた前記位相差(θ−θ^)を解消するように該位相差データに基づいて前記モータのロータ角度の推定値(θ^)を逐次更新しつつ算出するオブザーバにより、前記モータのロータ角度を更新することによって、今回の制御サイクルにおける前記モータのロータ角度の推定値(θ^)を算出し、該ロータ角の推定値(θ^)を前記モータのロータ角度とすることを特徴とする。
【0058】
かかる本発明によれば、前記ロータ角度検出手段は、前回の制御サイクルにおいて前記正弦参照値と前記余弦参照値とを用いて算出された前記位相差データと、前回の制御サイクルにおいて検出された前記モータのロータ角度を、前記オブザーバに適用して、今回の制御サイクルにおける前記モータのロータ角度の推定値(θ^)を算出することができる。これにより、前記ロータ角度検出手段は、次回の制御サイクル以降において、前記モータのロータ角度を精度良く検出することができる。
【0059】
【発明の実施の形態】
本発明の実施の形態の一例について図1〜図5を参照して説明する。図1はDCブラシレスモータの構成図、図2は第1の実施の形態におけるモータコントローラの制御ブロック図、図3は検査用電圧の周期及び検査用電圧と電機子電流の推移を示した図、図4は検査用電圧の生成方法の説明図、図5は第2の実施の形態におけるモータコントローラの制御ブロック図である。
【0060】
先ず、図1〜図4を参照して、本発明の第1の実施の形態について説明する。図2に示したモータコントローラ10は、図1に示した突極型のDCブラシレスモータ1(以下、モータ1という)の電機子3,4,5に流れる電流をフィードバック制御するものであり、モータ1をロータ2の界磁極の磁束方向であるq軸上にあるq軸電機子と該q軸と直交するd軸上にあるd軸電機子とを有するdq座標系による等価回路に変換して扱う。
【0061】
そして、モータコントローラ10は、外部から与えられるd軸指令電流(Id_c)とq軸指令電流(Iq_c)とに応じて、d軸電機子に流れる電流(以下、d軸電流という)とq軸電機子に流れる電流(以下、q軸電流という)をフィードバック制御する。
【0062】
モータコントローラ10は、d軸電機子への印加電圧(以下、d軸電圧(Vd)という)とq軸電機子への印加電圧(以下、q軸電圧(Vq)という)とを、モータ1のU,V,Wの3相の電機子に印加する駆動電圧(Vu_c,Vv_c,Vw_c)に変換するdq/3相変換部20、該駆動電圧(Vu_c,Vv_c,Vw_c)に検査用電圧(Hu,Hw)を重畳する検査用電圧重畳部21(本発明の検査用電圧重畳手段に相当する)、及び駆動電圧(Vu_c,Vv_c,Vw_c)に検査用電圧(Hu,Hw)を重畳した電圧(Vu,Vv,Vw)をモータ1のU,V,Wの各相の電機子にそれぞれ印加するよう複数のスイッチング素子をブリッジ接続したインバータ回路からなるパワードライブユニット22(本発明の電圧印加手段に相当する)を備える。
【0063】
さらに、モータコントローラ10は、モータ1のU相の電機子に流れる電流を検出するU相電流センサ23(本発明の電流検出手段に相当する)、モータ1のW相の電機子に流れる電流を検出するW相電流センサ24(本発明の電流検出手段に相当する)、U相電流センサ23の検出電流値(Iu_s)とW相電流センサ24の検出電流値(Iw_s)とに応じてd軸電流の検出値であるd軸実電流(Id_s)とq軸電流の検出値であるq軸実電流(Iq_s)とを算出する3相/dq変換部26(本発明の3相/dq電流変換手段に相当する)、モータ1のロータ角度(θ)を検出する角度検出部25(本発明の参照値算出手段とロータ角度検出手段に相当する)、及びd軸とq軸間で干渉し合う速度起電力の影響を打ち消す処理を行なう非干渉演算部27を備える。
【0064】
モータコントローラ10は、d軸指令電流(Id_c)とd軸実電流(Id_s)を第1減算器28で減算し、その減算結果に第1のPI演算部29でPI(比例積分)処理を施し、第1加算器30で非干渉成分を加算して、d軸指令電流(Id_c)とd軸実電流(Id_s)の偏差に応じたd軸電圧(Vd)を生成する。
【0065】
また、モータコントローラ10は、同様にして、q軸指令電流(Iq_c)とq軸実電流(Iq_s)を第2減算器31で減算し、その減算結果に第2のPI演算部32でPI処理を施し、第2加算器33で非干渉成分を加算して、q軸指令電流(Iq_c)とq軸実電流(Iq_s)との偏差に応じたq軸電圧(Vq)を生成する。
【0066】
そして、モータコントローラ10は、d軸電圧(Vd)とq軸電圧(Vq)とをdq/3相変換部20に入力する。これにより、パワードライブユニット22を介して、d軸指令電流(Id_c)とd軸実電流(Id_s)との偏差、及びq軸指令電流(Iq_c)とq軸実電流(Iq_s)との偏差を小さくする3相電圧(Vu,Vv,Vw)がモータ1の電機子に印加されて、モータ1の電機子に流れる電流がフィードバック制御される。
【0067】
ここで、dq/3相変換部20によりd軸電圧(Vd)とq軸電圧(Vq)を3相の電圧指令(Vu_c,Vv_c,Vw_c)に変換する際には、モータ1のロータ角度(θ)が必要となる。また、3相/dq変換部26によりU相電流センサ23の検出電流値(Iu_s)とW相電流センサ24の検出電流値(Iw_s)をd軸実電流(Id_s)とq軸実電流(Iq_s)に変換する際にも、モータ1のロータ角度(θ)が必要となる。
【0068】
そして、モータコントローラ10は、レゾルバ等の位置検出センサを用いずに、第3加算器34及び第4加算器36において、検査用電圧重畳部21により駆動電圧(Vu_c,Vv_c,Vw_c)に検査用電圧(Hu,Hw)を重畳することによって、ロータ角度(θ)の検出処理を行う。以下、モータコントローラ10におけるロータ角度(θ)の検出処理について説明する。
【0069】
なお、モータコントローラ10は本発明のDCブラシレスモータのロータ角度検出装置の機能を含み、パワードライブユニット22、検査用電圧重畳部21、及び角度検出部25により、本発明のDCブラシレスモータのロータ角度検出装置が構成される。
【0070】
先ず、検査用電圧重畳部21は、図3(a)に示したように、コントローラ10の制御サイクル(Δt)のn周期分{t(1)〜t(n)}を1周期(T)とする検査用電圧Huw(Hu,Hw)を、以下の式(36)により生成する。なお、本実施の形態では、検査用電圧重畳部21は、駆動電圧のU相及びW相(Vu_c,Vw_c)に検査用電圧(Hu,Hw)を重畳しているが、他の組合わせにより駆動電圧のいずれかの2相に検査用電圧を重畳してもよい。
【0071】
【数36】
Figure 0003919003
但し、Huw(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベル、i:検査用電圧の1周期における制御サイクルの時系列番号(i=1,2,…,n)、k:検査用波電圧の周期の時系列番号(k=1,2,…)、Hu(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベルのu相成分、Hw(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベルのw相成分、s(k):時系列番号kの周期における変調信号(s)の値(本発明の変調用係数に相当する)、dh(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける基本電圧列データ(dhuw)の値。
【0072】
なお、基本電圧列データ(dhuw={dhuw(1),dhuw(2),…,dhuw(n)})は、予めメモリ(図示しない)に記憶されている。また、変調信号(s)のデータ{s(1),s(2),…}は、予めメモリに記憶してもよく、信号処理でよく使用されるM系列等の手法を用いて生成してもよい。そして、変調信号(s)のデータを極力ランダムに変化させることにより、検査用電圧の周波数成分をより拡散させて、特定周波数のノイズが発生することを抑制することができる。
【0073】
また、基本電圧列データ(dhuw)は、以下の式(37)に示したように、1周期における平均が0となるように設定されている。
【0074】
【数37】
Figure 0003919003
この場合、上記式(36)に示したように、変調信号(s)は検査用電圧の1周期毎に変更されるため、検査用電圧の1周期(T)における電圧レベルの平均が0となる。そして、これにより、検査用電圧の重畳によって駆動電圧の振幅が次第に大きくなり、モータ1の電機子電流のフィードバック制御系に影響を及ぼすことが抑制される。
【0075】
そして、角度検出部25は、検査用電圧重畳部21により検査用電圧(Hu,Hw)が重畳されたときに、各制御サイクル(t(1)〜t(n))におけるU相電流センサ22の検出電流値(Iu_s)とW相電流センサ23の検出電流値(Iw_s)の変化量を用いてモータ1のロータ角度を検出する。
【0076】
ここで、検査用電圧(Hu,Hw)のk番目の周期T(k)の制御サイクルt(i)におけるU相電流センサ22の検出電流値(Iu_s)の2階差分とW相電流センサ24の検出電流値(Iw_s)の2階差分を、以下の式(38)に示したようにそれぞれddIu(i+k・n),ddIw(i+k・n)とする。
【0077】
【数38】
Figure 0003919003
また、検査用電圧(Hu,Hw)のk番目の周期T(k)の制御サイクルt(i)における変化量{dHu(i+k・n),dHw(i+k・n)}は、上記式(36)により、以下の式(39),式(40)で表される。
【0078】
【数39】
Figure 0003919003
【0079】
【数40】
Figure 0003919003
そのため、上記式(25)における行列c(1)に対応する行列c(i+k・n)は、以下の式(41)により表される。
【0080】
【数41】
Figure 0003919003
そして、図3(a)のTs(k-1番目の周期T(k-1)の制御サイクルt(i)〜k番目の周期T(k)の制御サイクルt(i))において、各制御サイクルについての上記式(25)をまとめると、以下の式(42)の形で表すことができ、さらに式(42)を変形して以下の式(43),式(44)を得ることができる。
【0081】
【数42】
Figure 0003919003
【0082】
【数43】
Figure 0003919003
【0083】
【数44】
Figure 0003919003
ここで、図3(b)は、制御サイクルt(i-2)〜t(i+2)における検査用電圧(Huw)と検出用電流(Iuw)の推移を示した時系列グラフである。制御サイクル期間t(i)における検出電流の変化量(dIuw(i))と制御サイクル期間t(i+1)における検出電流の変化量(dIuw(i))から、上記式(38)における検出電流の2階差分(ddIuw(i))を算出することができる。
【0084】
そして、検査用電圧(Hu,Hw)は、上記式(36)により、周期Tの一定の電圧出力パターンが設定された基本電圧列データ(dhuw)と変調信号(s)とを乗じて生成される。そのため、基本電圧列データ(dhuw)に応じて算出される上記式(41)の行列c(i)の成分は一定となる。したがって、上記式(43)における行列Cの成分も一定となり、行列Cに基づいて算出される上記式(44)の行列Dの成分も一定となる。
【0085】
そこで、モータコントローラ10のメモリには、基本電圧列データ(dhuw)により予め算出された行列Dの成分のデータが記憶されており、角度検出部25は、メモリに記憶された行列Dの成分のデータを用いて上記式(44)の演算を実行する。
【0086】
この場合、角度検出部25は、行列Dの成分と検出電流の2階差分(ddIuw)及び変調信号(s)間の簡単な演算によりロータ角度(θ)の2倍角に応じた正弦参照値(Vs=3Δlsin2θ)と余弦参照値(Vc=3Δlcos2θ)を算出することができ、正弦参照値と余弦参照値の算出時間を短縮することができる。
【0087】
そして、角度検出部25は、以下の式(45)によりモータ1のロータ角度(θ)を算出する。
【0088】
【数45】
Figure 0003919003
また、角度検出部25により、モータ1のロータ角度の推定値(θ^)を用いて、オブザーバによる追従演算によってロータ角度の推定値(θ^)の推定誤差が0に収束するように修正し、該推定値(θ^)をモータ1のロータ角度の検出値とすることも可能である。以下、オブザーバによるロータ角度の推定値(θ^)の修正処理について説明する。
【0089】
モータ1が一定の角速度で回転しているとすると、制御サイクル(Δt)ごとのロータ角度(θ)と角速度(ω)との関係は以下の式(46)で表される。
【0090】
【数46】
Figure 0003919003
但し、θ(i),ω(i):制御サイクルiにおけるロータ角度と角速度、θ(i+1),ω(i+1):制御サイクルi+1におけるロータ角度と角速度。
【0091】
そして、ロータ角度の実際値(θ)と推定値(θ^)との位相差(θ−θ^)を以下の式(47)により算出し、上記式(46)に、ロータ角度の推定値(θ^)と角速度の推定値(ω^)を入力して、該位相差(θ−θ^)に演算ゲインK1,K2,K~によるゲインを乗じてフィードバックする以下の式(48)に示した演算を実行する。
【0092】
【数47】
Figure 0003919003
【0093】
【数48】
Figure 0003919003
上記式(48)により、ロータ角度の推定値(θ^)を実際値(θ)に収束させることができる。また、上記式(48)のoffsetの値を変更することにより、検出されるロータ角度の位相を強制的にずらして、ロータ角度の検出誤差を減少させることができる。
【0094】
なお、上記式(47)の√(Vs+Vc)の演算は時間がかかるので、以下の式(49)により近似してもよい。
【0095】
【数49】
Figure 0003919003
また、検査用電圧の具体的な出力パターンとしては、例えば図4(a)に示したように、基本電圧列データ(dhuw)を周期Tの交流電圧xの出力パターンに応じて設定し、変調信号(s)のデータ{s(1),s(2 ),…}を図4(c)のx=(x,−x)、x=(x,−x)、x=(x,−x)、・・・、x=(xn−1,−xn−1)の関係が成り立つように設定することが考えられる。
【0096】
この場合、図4(a)に示した一定周期Tの交流電圧xは、f=1/Tの周波数成分を多く含んでいるため、駆動電圧(Vu,Vw)に重畳したときに該周波数fに偏ったノイズが生じる。そこで、図4(b)に示したように、1周期の出力(x)の次の1周期の出力を反転(−x)することにより、周波数fの周波数成分を打ち消すことができる。
【0097】
そして、図4(c)に示したように、周波数成分を順次打ち消すように変調を行うことにより、周波数のスペクトラムがさらに拡散される。これにより、特定周波数に偏った耳障りなノイズの発生を抑制することができる。
【0098】
また、上記式(43)が成り立つときに、上記式(44)となる行列Dは一意には決まらない。例えば、重み付き最小2乗法として知られているように、正則な重み行列Wを用いて、以下の式(50),式(51)によりDを決定してもよい。
【0099】
【数50】
Figure 0003919003
【0100】
【数51】
Figure 0003919003
また、行列Tを以下の式(52)で定義すると、以下の式(53),式(54)が成り立つ。
【0101】
【数52】
Figure 0003919003
但し、I:3次の正方行列、I:m次の正方行列、n:Cの行数(基本電圧列データの個数)、m:n−3、0:成分が全て0の行列。
【0102】
【数53】
Figure 0003919003
【0103】
【数54】
Figure 0003919003
但し、M:任意のm次の正方行列。
【0104】
そして、行列Mに対して、以下の式(55),式(56)が成り立つ。
【0105】
【数55】
Figure 0003919003
【0106】
【数56】
Figure 0003919003
したがって、任意のn次正則行列Wと任意のm次正方行列Mを用いて、Dを以下の式(57)で表される行列としてもよい。
【0107】
【数57】
Figure 0003919003
次に、本発明の第2の実施の形態について説明する。図5を参照して、本第2の実施の形態のモータコントローラ40は、角度検出部50と検査用電圧重畳部51の構成のみが上記第1の実施の形態のモータコントローラ10と相違する。
【0108】
なお、モータコントローラ40は本発明のDCブラシレスモータのロータ角度検出装置の機能を含み、dq/3相変換部20、3相/dq変換部26、パワードライブユニット22、角度検出部50、及び検査用電圧重畳部51により本発明のDCブラシレスモータのロータ角度検出装置が構成される。また、図2に示したモータコントローラ10と同様な構成については、同一の符号を付して説明を省略する。
【0109】
検査用電圧重畳部51は、第5加算器52でd軸電圧(Vd)に検査用電圧(Hd)を重畳し、第6加算器53でq軸電圧(Vq)に検査用電圧(Hq)を重畳する。また、角度検出部50は、検査用電圧(Hd,Hq)が重畳されたときに、モータ1のロータ角度の推定値(θ^)に基づいて3相/dq電流変換部26により算出されたd軸実電流(Id_s^)及びq軸実電流(Iq_s^)を用いて、モータ1のロータ角度を検出する。以下、モータコントローラ40におけるモータ1のロータ角度の検出処理について説明する。
【0110】
検査用電圧重畳部51は、上述した第1の実施の形態と同様に、図3(a)に示したように、モータコントローラ40の制御サイクル(Δt)のn周期分を1周期とする検査用電圧(Hd^,Hq^)を、以下の式(58)により生成する。
【0111】
【数58】
Figure 0003919003
但し、Hdq^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベル、i:検査用電圧の1周期における制御サイクルの時系列番号(i=1,2,…,n)、k:検査用電圧の周期の時系列番号(k=1,2,…)、Hd^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベルのd軸成分、Hq^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける検査用電圧の出力レベルのq軸成分、s(k):時系列番号kの周期における変調信号(s)の値(本発明の変調用係数に相当する)、dhdq^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける基本電圧列データ、dhd^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける基本電圧列データのd軸成分、dhq^(x):検査用電圧の重畳を開始してからx番目の制御サイクルにおける基本電圧列データのq軸成分。
【0112】
なお、基本電圧列データ(dhdq^={dhdq^(1),dhdq^(2),…,dhdq^(n)})のデータは、予めメモリ(図示しない)に記憶されている。また、変調信号(s)のデータ{s(1),s(2),…}は、予めメモリに記憶してもよく、信号処理でよく使用されるM系列等の手法を用いて生成してもよい。
【0113】
また、基本電圧列データ(dhdq^={dhdq^(1),dhdq^(2),…,dhdq^(n)})は、以下の式(59)に示したように、1周期における平均が0となるように設定されている。
【0114】
【数59】
Figure 0003919003
この場合、上記式(58)に示したように、変調信号(s)は検査用電圧(Hdq^)の1周期毎に変更されるため、検査用電圧(Hdq^)の1周期(T)における電圧レベルの平均は0となる。そして、これにより、d軸電圧(Vd)及びq軸電圧(Vq)のレベルが次第に高くなって、モータ1の電機子電流のフィードバック制御系に影響を及ぼすことが抑制される。
【0115】
そして、角度検出部50は、検査用電圧重畳部51により検査用電圧(Hd^,Hq^)が重畳されたときに、各制御サイクル(t(1)〜t( n))において、モータ1のロータ角度の推定値(θ^)に基づいて3相/電流変換部26により算出されるd軸実電流及びq軸実電流を用いてモータ1のロータ角度を検出する。
【0116】
ここで、検査用電圧(Hd^,Hq^)のk番目の制御サイクルT(k)の制御サイクルt(i)におけるd軸実電流の2階差分とq軸実電流の2階差分を、以下の式(60)に示したようにそれぞれddId^(i+k・n),ddIq^(i+k・n)とする。
【0117】
【数60】
Figure 0003919003
また、検査用電圧(Hd^,Hq^)のk番目の周期T(k)の制御サイクルt(i)における変化量{dHd^(i+k・n),dHq^(i+k・n)}は、上記式(58)により、以下の式(61),式(62)で表される。
【0118】
【数61】
Figure 0003919003
【0119】
【数62】
Figure 0003919003
そのため、上記式(32)における行列c(1)に対応する行列c^(i+k・n)は、以下の式(63)により表される。
【0120】
【数63】
Figure 0003919003
そして、図3(a)のTs(k-1番目の周期T(k-1)の制御サイクルt(i)〜k番目の周期T(k)の制御サイクルt(i))において、各制御サイクルについての上記式(32)をまとめると、以下の式(64)の形で表すことができ、さらに式(64)を変形して以下の式(65),式(66)を得ることができる。
【0121】
【数64】
Figure 0003919003
【0122】
【数65】
Figure 0003919003
【0123】
【数66】
Figure 0003919003
そして、上記式(66)の行列D^の成分は、基本電圧列データ(dhdq^)により予め算出することができる。そこで、モータコントローラ40のメモリには、このようにして算出された行列D^の成分のデータが記憶されており、角度検出部50は、メモリに記憶された行列D^の成分のデータを用いて上記式(66)の演算を実行する。
【0124】
この場合、角度検出部50は、行列D^の成分と各制御期間における検出電流の2階差分(ddIdq^)及び変調信号(s)間の簡易な演算によりロータ角度の実際値(θ)と推定値(θ^)との位相差(θe=θ−θ^)の2倍角に応じた正弦参照値(Vs^=Lsin2θe)と余弦参照値(Vc^=Lcos2θe)を算出することができる。そのため、正弦参照値(Vs^)と余弦参照値(Vc^)の算出時間を短縮することができる。
【0125】
そして、角度検出部50は、以下の式(67)によりモータ1のロータ角度の実際値(θ)と推定値(θ^)との位相差(θe)を算出して、ロータ角度(θ=θ^+θe)を検出する。
【0126】
【数67】
Figure 0003919003
また、上述した第1の実施の形態と同様に、以下の式(68)又は式(69)によるオブザーバの追従演算によって、ロータ角度の推定値(θ^)を、推定誤差(θe)が0に収束するように修正して、ロータ角度を検出することもできる。
【0127】
【数68】
Figure 0003919003
【0128】
【数69】
Figure 0003919003
また、上記式(68),式(69)のoffsetの値を変更することにより、検出されるロータ角度の位相を強制的にずらして、検出誤差を減少させることができる。
【0129】
なお、上記式(69)における√(Vs^+Vc^)の演算は時間がかかるので、以下の式(70)により近似してもよい。
【0130】
【数70】
Figure 0003919003

【図面の簡単な説明】
【図1】DCブラシレスモータの構成図。
【図2】第1の実施の形態におけるモータコントローラの制御ブロック図。
【図3】図3は検査用電圧の周期及び検査用電圧と電機子電流の推移を示した図。
【図4】検査用電圧の生成方法の説明図。
【図5】第2の実施の形態におけるモータコントローラの制御ブロック図。
【符号の説明】
1…DCブラシレスモータ、2…ロータ、3…U相の電機子、4…V相の電機子、5…W相の電機子、10…モータコントローラ、20…dq/3相変換部、21…検査用電圧重畳部、22…パワードライブユニット、23…U相電流センサ、24…W相電流センサ、25…角度検出部、26…3相/dq変換部、27…非干渉演算部、40…モータコントローラ、50…角度検出部、51…検査用電圧重畳部

Claims (4)

  1. DCブラシレスモータの3相の電機子に駆動電圧を印加する電圧印加手段と、該駆動電圧に、所定周期における一定の電圧出力パターンが設定された基本電圧列データに、該所定周期ごとに値が変化する変調用係数を乗じて生成された検査用電圧を重畳する検査用電圧重畳手段と、前記モータの電機子に流れる電流を検出する電流検出手段と、
    該検査用電圧重畳手段により前記駆動電圧に前記検査用電圧が重畳されたときに、前記所定周期内において、所定の制御サイクルで前記電流検出手段の検出電流を参照し、各制御サイクルにおける前記電流検出手段による検出電流の変化量と前記基本電圧列データと前記変調用係数とに基づいて、前記モータのロータ角度の2倍角の正弦値に応じた正弦参照値と該2倍角の余弦値に応じた余弦参照値とを算出する参照値算出手段と、
    該正弦参照値と該余弦参照値とに基づいて前記モータのロータ角度を検出するロータ角度検出手段とを備えたことを特徴とするDCブラシレスモータのロータ角度検出装置。
  2. DCブラシレスモータを、該モータの界磁の磁束方向であるq軸上にあるq軸電機子と該q軸と直交するd軸上にあるd軸電機子とを有する等価回路に変換して扱い、
    前記d軸電機子に印加するd軸電圧と前記q軸電機子に印加するq軸電圧を、前記モータのロータ角度に基づいて3相の駆動電圧に変換するdq/3相電圧変換手段と、該駆動電圧を前記モータの3相の電機子に印加する電圧印加手段と、
    d軸電圧とq軸電圧に、所定周期における一定の電圧出力パターンが設定された基本電圧列データに、該所定周期ごとに値が変化する変調用係数を乗じて生成された検査用電圧を重畳する検査用電圧重畳手段と、
    前記モータの3相の電機子に流れる電流を検出する電流検出手段と、該電流検出手段による検出電流と前記モータのロータ角度とに基づいて、前記d軸電機子に流れるd軸実電流と前記q軸電機子に流れるq軸実電流とを算出する3相/dq電流変換手段と、
    前記検査用電圧重畳手段によりd軸電圧及びq軸電圧に前記検査用電圧が重畳されたときに、前記所定周期内において、所定の制御サイクルで前記d軸実電流と前記q軸実電流を参照し、各制御サイクルにおける該d軸実電流及び該q軸実電流の変化量と前記基本電圧列データと前記変調用係数とに基づいて、前記モータのロータ角度の実際値(θ)と推定値(θ^)との位相差(θ−θ^)の2倍角の正弦値に応じた正弦参照値と、該位相差(θ−θ^)の2倍角の余弦値に応じた余弦参照値とを算出する参照値算出手段と、
    該正弦参照値と該余弦参照値とに基づいて、前記モータのロータ角度を検出するロータ角度検出手段とを備えたことを特徴とするDCブラシレスモータのロータ角度検出装置。
  3. 前記基本電圧列データは、前記電圧出力パターンにおける出力電圧の平均が0となるように設定されていることを特徴とする請求項1又は請求項2記載のDCブラシレスモータのロータ角度検出装置。
  4. 前記ロータ角度検出手段は、所定の制御サイクルごとに前記正弦参照値と前記余弦参照値とを算出し、該正弦参照値と余弦参照値を用いて前記モータの実際値(θ)と推定値(θ^)との位相差(θ−θ^)に応じた位相差データを算出し、
    前回の制御サイクルにおいて算出したモータのロータ角度を前回の制御サイクルにおける前記モータのロータ角度の推定値(θ^)とし、前回の制御サイクルにおいて算出した前記位相差データに応じた前記位相差(θ−θ^)を解消するように該位相差データに基づいて前記モータのロータ角度の推定値(θ^)を逐次更新しつつ算出するオブザーバにより、前記モータのロータ角度を更新することによって、今回の制御サイクルにおける前記モータのロータ角度の推定値(θ^)を算出し、該ロータ角の推定値(θ^)を前記モータのロータ角度とすることを特徴とする請求項1から請求項3のうちいずれか1項記載のDCブラシレスモータのロータ角度検出装置。
JP2002280408A 2002-09-26 2002-09-26 Dcブラシレスモータのロータ角度検出装置 Expired - Fee Related JP3919003B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002280408A JP3919003B2 (ja) 2002-09-26 2002-09-26 Dcブラシレスモータのロータ角度検出装置
US10/669,327 US6909290B2 (en) 2002-09-26 2003-09-25 Rotor angle detecting apparatus for DC brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280408A JP3919003B2 (ja) 2002-09-26 2002-09-26 Dcブラシレスモータのロータ角度検出装置

Publications (2)

Publication Number Publication Date
JP2004120888A JP2004120888A (ja) 2004-04-15
JP3919003B2 true JP3919003B2 (ja) 2007-05-23

Family

ID=32040481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280408A Expired - Fee Related JP3919003B2 (ja) 2002-09-26 2002-09-26 Dcブラシレスモータのロータ角度検出装置

Country Status (2)

Country Link
US (1) US6909290B2 (ja)
JP (1) JP3919003B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884523A (zh) * 2019-03-11 2019-06-14 重庆长安新能源汽车科技有限公司 一种电驱动系统的下线检测方法及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682545B2 (ja) * 2004-06-25 2011-05-11 ダイキン工業株式会社 モータの回転位置角推定方法及びモータの回転位置角推定装置並びにインバータ制御方法及びインバータ制御装置
JP4459778B2 (ja) * 2004-10-19 2010-04-28 本田技研工業株式会社 Dcブラシレスモータのロータ角度検出方法及びdcブラシレスモータの制御装置
JP4653640B2 (ja) * 2005-11-17 2011-03-16 本田技研工業株式会社 Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP4716118B2 (ja) * 2006-03-29 2011-07-06 株式会社ジェイテクト モータ制御装置
JP5011824B2 (ja) * 2006-05-31 2012-08-29 株式会社ジェイテクト 異常判定装置
JP4637148B2 (ja) * 2007-08-27 2011-02-23 株式会社日立製作所 電力変換装置
JP4889808B2 (ja) * 2008-04-09 2012-03-07 三菱電機株式会社 磁極位置検出装置及び方法
FI121616B (fi) * 2008-04-24 2011-01-31 Kone Corp Sähkökoneen roottorin asennon määritys
MX2013001122A (es) * 2010-07-28 2013-03-12 Mitsubishi Electric Corp Aparato de control para maquina giratoria de ca.
FR3017325B1 (fr) * 2014-02-13 2016-04-22 Sidel Participations Installation de conditionnement thermique de preformes avec refroidissement d'une portion de la preforme par une lame d'air pulse
CN105116333B (zh) * 2015-09-14 2017-11-03 南京工程学院 多旋翼飞行器电机拉力线性度测量装置及其控制系统和方法
EP3264586B1 (en) * 2016-06-28 2020-04-29 STMicroelectronics Design and Application s.r.o. A method of controlling electric motors, corresponding device and motor
JP6750364B2 (ja) 2016-07-22 2020-09-02 株式会社デンソー 回転電機の回転角推定装置
JP7205117B2 (ja) * 2018-09-06 2023-01-17 株式会社アドヴィックス モータ制御装置
US11353337B2 (en) 2020-11-03 2022-06-07 Semiconductor Components Industries, Llc Offset cancel systems and methods for resolver-type sensors
CN116073713B (zh) * 2022-10-25 2024-08-30 华北电力大学 变矢量序列感应电机无模型预测电流控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178512A (ja) * 1995-12-28 1997-07-11 Mitsubishi Electric Corp センサシステム及びセンサ
JP3282541B2 (ja) 1997-05-21 2002-05-13 株式会社日立製作所 モータ制御装置
JP3953189B2 (ja) 1998-05-15 2007-08-08 東洋電機製造株式会社 永久磁石形同期電動機の制御装置
JPH11356085A (ja) * 1998-06-10 1999-12-24 Aisin Seiki Co Ltd 電気モータのコイル短絡検出装置
US6448724B1 (en) * 1999-10-28 2002-09-10 Delphi Technologies, Inc. Apparatus and method for commutation noise reduction
JP3529752B2 (ja) * 2001-02-16 2004-05-24 本田技研工業株式会社 Dcブラシレスモータのロータ角度検出装置
JP2002345288A (ja) * 2001-05-15 2002-11-29 Toshiba Tec Corp 三相ブラシレス電動機の起動方法、その駆動制御回路、電動送風機及び電気掃除機
JP3630410B2 (ja) * 2001-05-22 2005-03-16 三菱電機株式会社 位置検出装置および異常検出装置
JP3914107B2 (ja) * 2002-07-12 2007-05-16 本田技研工業株式会社 Dcブラシレスモータの制御装置
JP3914108B2 (ja) * 2002-07-15 2007-05-16 本田技研工業株式会社 Dcブラシレスモータの制御装置
JP3967642B2 (ja) * 2002-07-26 2007-08-29 株式会社ジェイテクト 車両用操舵制御システム
JP3920750B2 (ja) * 2002-09-24 2007-05-30 本田技研工業株式会社 Dcブラシレスモータの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884523A (zh) * 2019-03-11 2019-06-14 重庆长安新能源汽车科技有限公司 一种电驱动系统的下线检测方法及系统
CN109884523B (zh) * 2019-03-11 2021-08-13 重庆长安新能源汽车科技有限公司 一种电驱动系统的下线检测方法及系统

Also Published As

Publication number Publication date
US20040066205A1 (en) 2004-04-08
US6909290B2 (en) 2005-06-21
JP2004120888A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3919003B2 (ja) Dcブラシレスモータのロータ角度検出装置
JP4263582B2 (ja) ブラシレスモータ制御装置
JP3529752B2 (ja) Dcブラシレスモータのロータ角度検出装置
US9294019B2 (en) Method and apparatus for controlling power converter with inverter output filter
JP5781235B2 (ja) 同期機制御装置
JP2011211815A (ja) 永久磁石モータの制御装置
JP5428202B2 (ja) 永久磁石形同期電動機の制御装置
JP5321792B2 (ja) 永久磁石形同期電動機の制御装置
JP2019075868A (ja) モータ制御装置およびモータシステム
JP2004048958A (ja) Dcブラシレスモータの制御装置
CN109451782B (zh) 电动助力转向装置
JP6248847B2 (ja) 永久磁石形同期電動機の制御装置
JP3920750B2 (ja) Dcブラシレスモータの制御装置
JP3914107B2 (ja) Dcブラシレスモータの制御装置
WO2020105204A1 (ja) 電力変換装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP2006158046A (ja) 交流電動機のセンサレス制御方法および装置
JP4146733B2 (ja) Dcブラシレスモータの制御装置
JP7154987B2 (ja) 永久磁石同期電動機の制御装置,マイクロコンピュータ,電動機システム及び永久磁石同期電動機の運転方法
JP3674638B2 (ja) 誘導電動機の速度推定方法および誘導電動機駆動装置
JP4119183B2 (ja) Dcブラシレスモータのロータ角度検出装置
JP4119195B2 (ja) Dcブラシレスモータのロータ角度検出装置
JP4119184B2 (ja) Dcブラシレスモータのロータ角度検出装置
JP4684691B2 (ja) ブラシレスdcモータの制御装置
JP7163641B2 (ja) 同期電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Ref document number: 3919003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees