JP3893101B2 - 高純度チタンの製造方法 - Google Patents

高純度チタンの製造方法 Download PDF

Info

Publication number
JP3893101B2
JP3893101B2 JP2002337547A JP2002337547A JP3893101B2 JP 3893101 B2 JP3893101 B2 JP 3893101B2 JP 2002337547 A JP2002337547 A JP 2002337547A JP 2002337547 A JP2002337547 A JP 2002337547A JP 3893101 B2 JP3893101 B2 JP 3893101B2
Authority
JP
Japan
Prior art keywords
titanium
acid
sponge
sponge titanium
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002337547A
Other languages
English (en)
Other versions
JP2004169139A (ja
Inventor
俊一郎 山口
順三 日野
文二 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2002337547A priority Critical patent/JP3893101B2/ja
Publication of JP2004169139A publication Critical patent/JP2004169139A/ja
Application granted granted Critical
Publication of JP3893101B2 publication Critical patent/JP3893101B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スポンジチタン中の不純物の分離を効率よく行い、ニッケル、鉄、または酸素等の不純物が極めて少ない高純度でありかつ品質の安定したチタンを得るための高純度チタンの製造方法に関する。
【0002】
【従来の技術】
金属チタンは、耐食性などの優位性から幅広い用途において用いられている材料である。特に航空機用の材料に用いられる金属チタンは、安全性の面で高品質でかつ安定した品質が求められる。また、近年のVLSIに代表される半導体工業の急速な進歩のなかで、例えば、16〜64MビットDRAM等のSiMOS(Metal Oxide Semiconductor)メモリー等の半導体素子やバリヤ材などの形成に用いられるスパッタリング用チタンターゲットやチタンシリサイドターゲットには、特に極めて高い純度のものが要求されている。具体的には、チタンターゲット等の半導体用の金属チタンは、4N5〜6N(99.995%〜99.9999%)レベルの高純度品が要求され、更に、酸素濃度は200ppm以下、Fe、Cr、Ni等の重金属濃度は数ppm以下、好ましくは1ppm以下であることが要求されている。
【0003】
近年、これらスパッタリング用チタンターゲットに用いる高純度チタン材を高純度化する種々の技術が開示されている。特許文献1の特公平7−103432号公報には、スパッタリングターゲット用高純度チタン材が開示されており、具体的にはクロール法などで製造したチタン原料を溶融塩電解法またはアイオダイド法により粗チタン粒とし、これを塩酸とフッ酸の混酸により酸処理して表面の不純物を除去して製造する方法が開示されている。また特許文献2の特開2000−87271号公報には、溶融塩電解法で得られたチタン材をフッ酸および硝酸の混酸に浸漬させ、その後酸を順次水に置換してチタン材を洗浄する方法が開示されている。
【0004】
上記の従来技術によるチタン材は高純度であり、品質的にはスパッタリング用チタンターゲット用に適している。しかしながら、クロール法などで得られたチタン原料を、さらに溶融塩電解法やアイオダイド法によりチタンを精製するため、製造コストがかかり、最終的に得られる高純度チタン材の価格は極めて高く、工業的にスパッタリング用チタンターゲットとして用いられていない。
【0005】
そこで、スパッタリング用チタンターゲットに用いる高純度チタンを安価に製造するため、種々の試みがなされている。例えば、特許文献3の特開平9−104931号公報には、クラッド鋼で構成された反応容器を用いて製造されたスポンジチタンの円筒状塊の底部から厚さが塊高さの25%以上の部分と頂部から厚さが塊高さの10%以上の部分とを切断除去し、かつ円筒状塊の円周部から厚さが塊直径の18%以上の円周部分を切断除去してのち、前記の円筒状塊重量の30%未満に相当する中心部分のスポンジチタンを採取し、切断プレスで粒径10〜 300mmに切断したのち溶解原料とする高純度チタン材の製造方法が開示されている。クロール法では、スポンジチタンを反応容器内で還元反応して生成する際、反応容器の金属成分が溶出してスポンジチタンを汚染する。特開平9−104931号公報では、反応容器に起因する不純物成分は円筒状スポンジチタン塊の外周部に堆積するとの分析から、不純物成分の比較的少ない中心部を採取し、高純度チタン材を得るというものである。この結果反応容器からの不純物は低減され、安価なスパッタリング用チタンターゲット用高純度チタンを得ることができる。
【0006】
【特許文献1】
特公平7−103432号公報(特許請求の範囲、第4頁第7欄、実施例)
【特許文献2】
特開2000−87271号公報(特許請求の範囲、実施例)
【特許文献3】
特開平9−104931号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
しかしながら、従来のクロール法で得られるスポンジチタンを溶融して製造される高純度チタン材は、スパッタリング用チタンターゲットとして用いるには未だ十分に高純度化されているとは言えないものである。特に、ニッケルなどの不純物がチタン材に残留することがあり、チタン薄膜形成に重大な欠陥を招来する恐れがあった。すなわち従来の方法ではニッケルなどの不純物成分の低減には限界があり、クロール法においてさらなるチタンの高純度化が望まれていた。
【0008】
従って、本発明の解決しようとする課題は、塊状スポンジチタンに残留するニッケルなどの不純物を効率よく除去し、高純度で且つ安定した品質の高純度チタンを製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行なった結果、(1)クロール法において、汚染の原因は反応容器からの溶出のみではなく、還元反応時に用いられる金属マグネシウムおよび副生される塩化マグネシウムも汚染の原因となること、(2)クロール法によるスポンジチタンの製造工程は、四塩化チタンと金属マグネシウムを高温で反応させ、先ず粉状の金属チタンが生成される。この粉状金属チタンは反応容器内で沈降し堆積するが、高温雰囲気のため焼結し、細孔を有するスポンジ状の塊となる。このとき溶融した金属マグネシウムおよび溶融した塩化マグネシウムが細孔内に閉じ込められしまう。このようなスポンジチタンをそのまま溶解原料とすると、金属マグネシウム中のニッケル成分がそのまま金属チタンに混入したり、また塩化マグネシウムが空気や水分と接触して結果的にチタン中の酸素含有量が増加すること、(3)さらに、生成したスポンジチタンを従来行なわれている再度減圧下で加熱処理することにより、金属マグネシウムや塩化マグネシウムを除去しても、結果として微量のニッケルなどの不純物成分はスポンジチタンの細孔に残留してしまうこと、(4)これら塊状スポンジチタンの細孔に残留したニッケルなどの不純物は、その後解砕して特定の粒径の顆粒状スポンジチタンとし、これを酸処理すれば、塊状スポンジチタンに残留するニッケルなどの不純物を効率よく除去でき、高純度で且つ安定した品質の高純度チタンを得ることができること等を見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、四塩化チタンを金属マグネシウムで還元して塊状スポンジチタンを生成させる塊状スポンジチタン生成工程と、該塊状スポンジチタンを解砕して平均粒径2〜50mmの顆粒状スポンジチタンに調整する解砕工程と、酸水溶液に該顆粒状スポンジチタンを浸漬させ、これを減圧処理する酸処理工程を有する高純度チタンの製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明において、塊状スポンジチタン生成工程は、四塩化チタンを金属マグネシウムで還元して塊状スポンジチタンを生成させる工程である。すなわち、塊状スポンジチタンは、加熱炉内に設置された反応容器にマグネシウムを入れ、不活性ガスを導入しながら、900℃前後の温度に加熱し、そこに四塩化チタンを滴下し、溶融金属マグネシウムで還元する所謂クロール法により生成させる。バッチサイズは、設備規模、操作性等を考慮して、通常3トン/バッチ以上、好ましくは3〜10トン/バッチである。
【0012】
反応容器内で塊状スポンジチタンを生成させた後、副生する塩化マグネシウム及び未反応の金属マグネシウムを反応容器から抜出す未反応物等除去工程を実施する。この塩化マグネシウムは還元反応中、生成量が多くなると金属チタン生成反応を阻害するため、反応中に随時抜出す。また、四塩化チタンの滴下が終了し還元反応が終了した後、残りの溶融塩化マグネシウムを抜出す。この抜出し方法は通常、反応容器内の底部に溜まっている溶融塩化マグネシウムを加圧下で押出すことで行なわれる。
【0013】
還元反応が終了し、且つ未反応物等除去工程を行なった後、塊状スポンジチタンを抜出すが、該抜出しに先立ち、反応容器内を減圧、加熱し、生成塊状スポンジチタン表面および細孔中の塩化マグネシウム等を蒸発させ、分離除去する工程を実施することが、残りの塩化マグネシウムを薬液を使用することなく、可能な限り除去できる点で有用である。この分離除去工程の条件としては、真空度1.3〜1.3×10−2Pa(10−2〜10−4Torr)、加熱温度1000〜1100℃、加熱時間10〜100時間である。また、この分離除去工程は、例えば反応容器と連結管を介して連通する反応容器と同等もしくは類似の容器である凝縮器と、該凝縮器内を減圧する減圧手段と、該凝縮器の外面を冷却する水冷手段を設けた装置で行なうことができる。この装置を用いることにより、反応容器から抜出された塩化マグネシウム蒸気等は水冷された凝縮器内の内壁に凝固する。
【0014】
分離除去工程後、塊状スポンジチタンを常温まで冷却し、反応容器底部から挿入したパンチにより突き上げ、反応容器上端から取り出し、解砕工程を実施する。解砕工程は、例えば上記方法で取り出した塊状スポンジチタンを作業盤上で解砕することによって、塊状スポンジチタンを微細化し、平均粒径2〜50mm、好ましくは4〜19mm、粒径範囲0.1〜100mm、好ましくは1〜50mmの顆粒に調整する工程である。
【0015】
塊状スポンジチタンを解砕する方法としては、特に制限されず、通常塊状スポンジチタンを大型プレス切断機である程度の大きさの塊状物に切断し、次いでこの塊状物をジョークラッシャーあるいはダブルロールクラッシャー等の破砕機または破砕整粒機により最終的に上記平均粒径の範囲に調整する。
【0016】
解砕工程は大気中または除湿下で行なう。このうち、除湿下で行なうことが、大気中の水分がスポンジチタン、スポンジチタン中に残存する微量の塩化マグネシウムあるいは未反応のマグネシウムと接触し、スポンジチタンを汚染し、スポンジチタン中の酸素含有量を増加することを防止する点で好ましい。除湿条件は、例えば雰囲気中の絶対湿度を10g-H0/m以下にすればよく、この条件は例えばエアーコンディショナー、除湿機または乾燥空気の供給等で制御することができる。
【0017】
塊状スポンジチタンをより微細化したほうが、後の酸処理で不純物は除去し易いが、平均粒径を2mm未満とすると、逆に空気中の窒素、水分あるいは酸素と接触しスポンジチタンが窒素、水分あるいは酸素で汚染されてしまう。他方、平均粒径が50mmを超えると、後の酸処理での不純物除去が困難となり、また必要に応じて減圧下での加熱処理を行う場合、スポンジチタンが焼結凝集してしまい、加熱処理を行なった容器からスポンジチタンを抜出すことが困難となる。4〜19mmに整寸すると、操業性が安定し、一層効果的である。すなわち、解砕工程で上記平均粒径の範囲に制御することにより、窒素、水分および酸素による汚染を最低限に抑えると共に、酸処理した際、スポンジチタンの細孔に効率的に酸が浸透し、不純物を効率的に除去できるという効果が得られる。
【0018】
次いで粒径を調整した顆粒状スポンジチタンを酸で処理する酸処理工程を行なう。スポンジチタンは前述したように粉状チタンが焼結して生成したものであり、その内部には通常直径30〜40μm、細孔容積0.18〜0.22ml/gのような多くの細孔を有する。上記のように塊状スポンジチタンは分離除去工程において精製されるが、金属マグネシウム中にニッケル成分が含有されている場合、この分離除去工程での分離操作によってマグネシウム成分は除去されるが、ニッケル成分についてはスポンジチタンの表面および細孔内部に残存してしまい、結果として高純度のものは得られない。本発明はこの点に着目し、上記のようにスポンジチタンを平均粒径が特定範囲にある顆粒状にし、酸処理を行い、スポンジチタン中の不純物、特に細孔中に残存するニッケルなどの不純物を除去するようにしたものである。
【0019】
酸処理工程としては、例えば(1)酸水溶液に該顆粒状スポンジチタンを浸漬させる方法、(2)酸水溶液に該顆粒状スポンジチタンを浸漬させ、超音波振動する方法、(3)酸水溶液に該顆粒状スポンジチタンを浸漬させ、これを減圧処理する方法、(4)酸水溶液に該顆粒状スポンジチタンを浸漬させ、これを減圧処理下で超音波振動するか、または減圧処理した後、超音波振動する方法および(5)減圧下で該顆粒状スポンジチタンに酸水溶液または酸の蒸気を供給する方法が挙げられる。この中、(2)〜(5)の方法が好ましい。通常、酸の水溶液中にスポンジチタンを浸漬させただけでは、スポンジチタンの細孔中には酸が浸透しにくいが、上記(2)〜(5)の方法であれば、酸水溶液または酸の蒸気を細孔内部にくまなく浸透させることができ、細孔中に残存する極々微量のニッケル等の不純物を除去することができる。また、特に(4)の方法とすれば、細孔中の空気を抜きつつまたは抜いた後に超音波振動を与えることができ、一層確実に細孔に酸を浸透させることができる。上記(2)〜(5)の方法を実施する装置としては、超音波発信装置を具備した容器を用いるか、減圧手段を具備した減圧容器を用いるか、あるいは超音波発信装置を具備すると共に、減圧手段を具備した容器を用いればよい。超音波振動条件あるいは減圧条件としては、特に制限されず、超音波発信出力、減圧度、処理時間など適宜の条件を決定すればよい。
【0020】
本酸処理工程において用いられる酸としては、硝酸、塩酸、硫酸およびフッ酸などの鉱酸;硝酸と塩酸、硝酸とフッ酸、硝酸と硫酸および塩酸とフッ酸などの混酸が挙げられる。これらの中、ニッケルなどの不純物金属のみを溶解し、金属チタンを溶解しない酸が好ましく、特に好ましい酸は硝酸である。また、これらの酸は水溶液、または加熱し蒸気にして用いられる。酸の濃度としては、特に制限されないが、水溶液の場合、好ましくは0.3〜7.5N、特に好ましくは0.7〜3.0Nである。また処理温度は水溶液の場合、0〜100℃、好ましくは10〜50℃である。
【0021】
酸処理工程を経た顆粒状スポンジチタンは必要に応じて水洗する。また水洗の後、あるいは水洗を行うことなしに上記酸処理工程を経た顆粒状スポンジチタンを、減圧下で加熱処理する乾燥工程を行なうことが好ましい。減圧下で加熱処理を行うことにより、スポンジチタンの細孔内部に残留している塩化マグネシウムや未反応のマグネシウムを更に除去することができ、一層不純物の少ない高純度チタンを得ることができる。乾燥工程は別途の加熱処理容器において行なうことができる。顆粒状のスポンジチタンを、減圧下で加熱処理する条件としては、特に制限されないが、例えば真空度1.3〜1.3×10−2Pa、通常1.3×10−2Pa、加熱温度600〜1100℃、好ましくは900〜1050℃、加熱時間10〜100時間である。
【0022】
上記のように減圧下で加熱処理する前に、顆粒状スポンジチタンを加熱処理容器に投入するが、投入後、容器内をアルゴンガスで置換をすることが、空気中の酸素および窒素でスポンジチタンが汚染されることを防止することができる点で好ましい。さらに、スポンジチタンおよび加熱処理容器中の水分を除去するため、上記加熱処理の前に300〜500℃程度の低温で予備処理することも好ましい態様の一つである。
【0023】
また、本発明の高純度チタンの製造方法は、前記酸処理工程または前記乾燥工程を経た顆粒状スポンジチタンを、真空アーク溶解または電子ビーム溶解により溶解させる溶解工程を行うものである。該工程を経て高純度チタンのインゴットを得る。溶解工程のうち電子ビーム溶解は、最終的な高純度チタン中の酸素含有量を低減できる点で有利である。
【0024】
さらに、上記のようにして得られた高純度チタン(インゴット)を、熱間鍛造または冷間鍛造により任意の形状に加工する。スパッタリングターゲットは、スパッタリングを行う際、スパッタ粒子が散乱しないようなものが好ましい。そのためにはターゲットを形成した際のチタンの結晶粒子が均一で微細であることが要求され、さらに結晶方位含有率のばらつきが少ないことが望ましい。具体的なスパッタリングターゲットの加工方法としては、高純度チタンを700℃程度の温度で熱間鍛造し、結晶粒度を均一化し、その後400〜500℃でさらに鍛造した後、最後に700℃付近で熱処理を施す。
【0025】
以上のように本発明の方法で得られた高純度チタンは不純物成分の含有量が極めて少ない。具体的には、ニッケル成分が1ppm以下、好ましくは0.5ppm以下、鉄成分が6ppm以下、好ましくは4ppm以下、酸素の含有量が300ppm以下、好ましくは200ppm以下である。このため、スパッタリングターゲット用として適している。
【0026】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
参考例1
還元反応容器内において四塩化チタンと溶融金属マグネシウムを還元反応し、塊状スポンジチタンを生成させた(塊状スポンジチタン生成工程)。この後、溶融塩化マグネシウムおよび未反応の溶融金属マグネシウムを抜き出し(未反応物等除去工程)、1.3×10−1Paの減圧下、1055℃で80時間加熱処理を行い不純物を分離した(分離除去工程)。塊状スポンジチタンを還元反応容器から抜き出し、切断機にて塊状に切断および解砕した。その後、ジョークラッシャーにて解砕して、平均粒径10mm、粒径範囲4〜19mmの顆粒に調整した(解砕工程)。次いで、顆粒状スポンジチタンを、超音波発信装置(UE−1200Z26S−4A型、最高出力1.2KW;超音波工業社製)を具備した容器内に充填し、これに硝酸水溶液0.6Nをスポンジチタンが浸漬されるまで充填し、180分、超音波振動により処理を行った(酸処理工程)。その後純水にてスポンジチタンを十分に洗浄して、300℃で10時間加熱して乾燥し最終製品とした。得られた最終製品の不純物成分、Ni、Feおよび酸素の含有量を測定した。その結果を表1に示す。
【0027】
参考例2
参考例1で得た最終製品である高純度スポンジチタンを還元反応容器に充填した。その後還元反応容器内をアルゴンガスで置換し、次いで真空度1.3×10−1Paの減圧下で400℃まで加熱し、50時間経過後再度アルゴンガスを装入した。その後、還元反応容器内及び冷却凝縮装置内を真空度1.3×10−1Paの減圧にし、700℃で2時間、800℃で2時間、900℃で2時間、最後に1000℃に昇温し、40時間減圧下での加熱処理を行った(乾燥工程)。乾燥工程終了後、常温まで冷却した後、容器内のスポンジチタンを抜き出し解砕してスポンジチタンの最終製品とした。得られた最終製品の不純物成分、Ni、Feおよび酸素の含有量を測定した。その結果を表1に示す。
【0028】
実施例
参考例1記載の酸処理工程に代えて、顆粒状スポンジチタンを超音波発信装置を具備した容器内に充填し、これに硝酸水溶液0.6Nをスポンジチタンが浸漬されるまで充填した後、容器内を真空度1Paの減圧にして3時間脱気し、その後、減圧状態を維持しつつ180分、超音波振動により処理を行う酸処理工程を行なった以外は、参考例1と同様の方法で行なった。得られた最終製品の不純物成分、Ni、Feおよび酸素の含有量を測定した。その結果を表1に示す。
【0029】
参考例3
超音波振動を施さなかった以外は,参考例1と同様の方法で行い、顆粒状スポンジチタンを得た。すなわち、参考例3の酸処理方法は、硝酸水溶液0.6Nに顆粒状スポンジチタンを180分間浸漬処理したものである。得られた最終製品の不純物成分、Ni、Feおよび酸素の含有量を測定した。その結果を表1に示す。
【0030】
比較例1
酸処理工程以降の処理を行わなかった以外は、参考例1と同様の方法で行い、顆粒状スポンジチタンを得た。得られた最終製品の不純物成分、Ni、Feおよび酸素の含有量を測定した。その結果を表1に示す。
【0031】
【表1】
Figure 0003893101
【0032】
【発明の効果】
以上のように、本発明では、四塩化チタンと金属マグネシウムを還元するクロール法による塊状スポンジチタンの製造方法において、塊状スポンジチタンを解砕して、平均粒径2〜50mmの顆粒状に調整した後、酸で処理することにより、不純物が効率的に除去でき、結果としてニッケルなどの不純物の少ない極めて高純度のチタンが効率よく製造でき、スパッタリングターゲットの材料として有用である。

Claims (6)

  1. 四塩化チタンを金属マグネシウムで還元して塊状スポンジチタンを生成させる塊状スポンジチタン生成工程と、該塊状スポンジチタンを解砕して平均粒径2〜50mmの顆粒状スポンジチタンに調整する解砕工程と、酸水溶液に該顆粒状スポンジチタンを浸漬させ、これを減圧処理する酸処理工程を有することを特徴とする高純度チタンの製造方法。
  2. 前記酸処理工程が、酸水溶液に該顆粒状スポンジチタンを浸漬させ、これを減圧処理下で超音波振動するか、または減圧処理した後、超音波振動することを特徴とする請求項1に記載の高純度チタンの製造方法。
  3. 前記酸処理工程が、減圧下で該顆粒状スポンジチタンに酸水溶液または酸の蒸気を供給することからなることを特徴とする請求項1記載の高純度チタンの製造方法。
  4. 前記酸処理工程で使用する酸が硝酸であることを特徴とする請求項1記載の高純度チタンの製造方法。
  5. 前記酸処理工程を経た顆粒状スポンジチタンを、減圧下で加熱処理する乾燥工程を更に有することを特徴とする請求項1記載の高純度チタンの製造方法。
  6. 前記酸処理工程または前記乾燥工程を経た顆粒状スポンジチタンを、真空アーク溶解または電子ビーム溶解により溶解させる溶解工程を更に有することを特徴とする請求項1〜のいずれか1項記載の高純度チタンの製造方法。
JP2002337547A 2002-11-21 2002-11-21 高純度チタンの製造方法 Expired - Fee Related JP3893101B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337547A JP3893101B2 (ja) 2002-11-21 2002-11-21 高純度チタンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337547A JP3893101B2 (ja) 2002-11-21 2002-11-21 高純度チタンの製造方法

Publications (2)

Publication Number Publication Date
JP2004169139A JP2004169139A (ja) 2004-06-17
JP3893101B2 true JP3893101B2 (ja) 2007-03-14

Family

ID=32701028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337547A Expired - Fee Related JP3893101B2 (ja) 2002-11-21 2002-11-21 高純度チタンの製造方法

Country Status (1)

Country Link
JP (1) JP3893101B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769352B1 (ko) * 2006-05-18 2007-10-24 주식회사 랜코 금속성 분말 재생방법
JP5088927B2 (ja) * 2006-10-16 2012-12-05 株式会社大阪チタニウムテクノロジーズ 高純度チタンインゴットの製造方法
CN110462072B (zh) * 2017-03-31 2021-12-10 东邦钛株式会社 海绵钛和海绵钛的制造方法以及钛铸锭或钛合金铸锭的制造方法
JP6933942B2 (ja) * 2017-09-22 2021-09-08 東邦チタニウム株式会社 スポンジチタンの製造方法
JP7029325B2 (ja) * 2018-03-19 2022-03-03 東邦チタニウム株式会社 TiCl4又はスポンジチタンの製造方法
JP6750056B2 (ja) * 2019-02-27 2020-09-02 東邦チタニウム株式会社 チタン粉の製造方法、スポンジチタンの製造方法、チタン粉および、ガス収集装置
JP7335510B2 (ja) 2020-02-05 2023-08-30 日本製鉄株式会社 チタン合金の溶解鋳造方法
JP6878639B1 (ja) * 2020-02-27 2021-05-26 東邦チタニウム株式会社 スポンジチタンの酸素濃度の分析方法
JP7220186B2 (ja) * 2020-08-11 2023-02-09 東邦チタニウム株式会社 チタン粉の製造方法、スポンジチタンの製造方法、チタン粉および、ガス収集装置
CN114107700A (zh) * 2021-12-03 2022-03-01 江西宏科特种合金有限公司 一种海绵钛的生产系统

Also Published As

Publication number Publication date
JP2004169139A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4652574B2 (ja) 高純度タンタルおよびそれを含む、スパッタターゲットのような製品
KR100438670B1 (ko) 탄탈륨 스퍼터링 타겟 및 그의 제조 방법
RU2346891C2 (ru) Получение высокочистого моноксида ниобия и изготовление из него конденсатора
JPH02225634A (ja) 溶融金属キャリヤー中で脱酸剤を使用するチタン金属及びその他類以の金属の脱酸法
JP3893101B2 (ja) 高純度チタンの製造方法
JP2002530534A5 (ja)
CN104841929B (zh) 一种微细铌粉及其制造方法
WO2009052007A1 (en) Method for the production of tantalum powder using reclaimed scrap as source material
JP3671133B2 (ja) チタンの製造方法
JP5088927B2 (ja) 高純度チタンインゴットの製造方法
JP2001262246A (ja) スポンジチタンの製造方法
JP5403825B2 (ja) 高純度スポンジチタン粒の保管方法及びこれを用いた高純度チタンインゴット製造方法
JP2921790B2 (ja) 低酸素チタン材および低酸素チタン溶解素材の製造方法
JP3195156B2 (ja) チタンの製造方法
JP2008223078A (ja) 高純度チタンの製造方法
JPH04116161A (ja) チタンターゲット材およびその製造方法
JP4309675B2 (ja) チタン合金の製造方法
JP3129709B2 (ja) 低酸素高純度チタン材の製造方法
JP4023282B2 (ja) イリジウムスパッタリングターゲットの製造方法及びその方法で得られたターゲット
JP3735060B2 (ja) 低酸素チタン材の製造方法
JP2784324B2 (ja) チタンの製造方法
JP7354393B1 (ja) スポンジチタンの製造方法およびチタン成形物の製造方法
JP2002332528A (ja) 高純度ルテニウムのリサイクル方法及びリサイクルされた高純度ルテニウムからのターゲットの製造方法
JPH09227965A (ja) 精製金属ルテニウム粉末とその製造方法
JP7026543B2 (ja) 低塩素濃度チタン粉、チタン合金粉、およびそれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees