JP3866211B2 - アクチュエータの制御装置 - Google Patents

アクチュエータの制御装置 Download PDF

Info

Publication number
JP3866211B2
JP3866211B2 JP2003089777A JP2003089777A JP3866211B2 JP 3866211 B2 JP3866211 B2 JP 3866211B2 JP 2003089777 A JP2003089777 A JP 2003089777A JP 2003089777 A JP2003089777 A JP 2003089777A JP 3866211 B2 JP3866211 B2 JP 3866211B2
Authority
JP
Japan
Prior art keywords
actuator
engagement member
state value
contact
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003089777A
Other languages
English (en)
Other versions
JP2004252924A (ja
Inventor
裕司 安井
孝名子 下城
栄二郎 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003089777A priority Critical patent/JP3866211B2/ja
Priority to EP03029424A priority patent/EP1433983A3/en
Priority to CNB2003101131295A priority patent/CN100385360C/zh
Priority to US10/743,464 priority patent/US7071638B2/en
Publication of JP2004252924A publication Critical patent/JP2004252924A/ja
Application granted granted Critical
Publication of JP3866211B2 publication Critical patent/JP3866211B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6807Status of gear-change operation, e.g. clutch fully engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2823Controlling actuator force way characteristic, i.e. controlling force or movement depending on the actuator position, e.g. for adapting force to synchronisation and engagement of gear clutch
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39341Sliding mode based impedance control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42094Speed then pressure or force loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42123Position loop then force, current loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42343Optimum, adaptive sliding mode controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42347Switch to a saturation control signal if deviation from switch line is too large
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42352Sliding mode controller SMC, select other gain
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49356Tool with constant force against workpiece during machining

Description

【0001】
【発明の属する技術分野】
本発明は、アクチュエータの作動に応じて変化する状態値が目標値と一致するように、該アクチュエータの作動を制御するアクチュエータの制御装置に関する。
【0002】
【従来の技術】
アクチュエータにより駆動される機構として、例えば、図16に示したように、自動車のエンジンに連結された入力軸100と一体に回転するカップリングスリーブ101と、駆動輪(図示しない)に連結されて入力軸100に回転自在かつ軸動不可に設けられた被同期ギヤ102との間にシンクロナイザリング103を設け、シフトホーク104を介してアクチュエータ105によりカップリングスリーブ101を移動させることによって、カップリングスリーブ101と被同期ギヤ102の連結/遮断を切り換えるようにした変速機の同期機構110が知られている。
【0003】
同期機構110において、カップリングスリーブ101は中空構造となっており、中空部の内周面にスプライン111が形成されている。そして、シンクロナイザリング103の外周面にカップリングスリーブ101のスプライン111と係合可能なスプライン112が形成され、被同期ギヤ102のシンクロナイザリング103と対向する部分の外周面にもカップリングスリーブ101のスプライン111と係合可能なスプライン113が形成されている。
【0004】
カップリングスリーブ101と被同期ギヤ102を連結するときは、シフトホーク104によりカップリングスリーブ101が被同期ギヤ102の方向に移動する。そして、カップリングスリーブ101とシンクロナイザリング103とが接触してシンクロナイザリング103が被同期ギヤ102に押付けられると、シンクロナイザリング103と被同期ギヤ102間に生じる摩擦力によって被同期ギヤ102の回転速度が増加若しくは減少する。
【0005】
その結果、カップリングスリーブ101の回転数と被同期ギヤ102の回転数とが同期して、カップリングスリーブ101のスプライン111がシンクロナイザリング103のスプライン112と係合し、さらにカップリングスリーブ101が移動してカップリングスリーブ101のスプライン111が被同期ギヤ102のスプライン113と係合する。
【0006】
ここで、カップリングスリーブ101がシンクロナイザリング103を被同期ギヤ102に押付ける際のカップリングスリーブ101の移動速度が速すぎると、カップリングスリーブ101がシンクロナイザリング103と接触したときにカップリングスリーブ101が跳ね返されたり、カップリングスリーブ101が過大な力で被同期ギヤ102に押し込まれて、同期機構110が破損するおそれがある。
【0007】
そこで、従来は、カップリングスリーブ101を被同期ギヤ102の方向に移動させる際に、両者の距離が所定値以下となったときにカップリングスリーブ101の移動速度を低下させるようにしていた。また、アクチュエータ105とシフトホーク104の間にバネ等の機械的な緩衝機構を設けて、カップリングスリーブ101とシンクロナイザリング103の接触時の衝撃を減少させる方法も知られている(特許文献1)。
【0008】
そして、カップリングスリーブ101がシンクロナイザリング103に接触してからカップリングスリーブ101と被同期ギヤ102の係合が完了するまでの間は、カップリングスリーブ101をシンクロナイザリング103に押付ける必要があるが、この押付け力が過大となると同期機構110の破損が生じるおそれがある。そのため、該押付け力が予め定められた目標レベルに安定して一致するように、アクチュエータ105の作動を制御する必要がある。
【0009】
【特許文献1】
特開平2002−195406号公報
【0010】
【発明が解決しようとする課題】
本発明は上記背景を鑑みてなされたものであり、アクチュエータの作動に応じて変化する状態値を所定の目標値に安定して一致させることができるアクチュエータの制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたものであり、アクチュエータの作動に応じて変化する第1の状態値を把握する第1の状態値把握手段と、該アクチュエータの作動に応じて変化する該第1の状態値と異なる第2の状態値を把握する第2の状態値把握手段と、前記第1の状態値が第1の目標値と一致するように、該第1の状態値と該第1の目標値との偏差の減衰挙動と減衰速度を可変的に指定可能な第1の応答指定型制御を用いて、少なくとも該偏差を第1の状態量として、該第1の状態量を変数とした第1の線形関数により規定される第1の切換関数上の平衡点に該第1の状態量を収束させるように前記アクチュエータを駆動する第1の操作量を決定すると共に、前記第2の状態値が第2の目標値と一致するように、フィードバック処理により前記第1の線形関数の演算係数を変更することによって前記第1の応答指定型制御の応答特性を決定する操作量決定手段とを備えたことを特徴とする。
【0012】
かかる本発明によれば、例えば、前記アクチュエータに外乱が加わったときに、前記第1の状態値に基づく前記第1の応答指定型制御では該外乱の影響を排除することが困難であるときには、前記第2の状態値を前記第2の目標値と一致するように、フィードバック処理により前記第1の応答指定型制御の応答特性を決定することによって、前記外乱による影響を排除することができる。さらに、本発明によれば、詳細は後述するが、前記第1の線形関数の演算係数を変更すると外乱に対する抑制能力が変化する。そのため、前記操作量決定手段は、該演算係数を変更することにより、前記第1の応答指定型制御の応答特性を容易に変更することができる。
【0013】
前記操作量決定手段は、前記演算係数を第2の操作量とし、前記第2の状態値と前記第2の目標値との偏差の減衰挙動と減衰速度を可変的に指定可能な第2の応答指定型制御を用いて、少なくとも該偏差を第2の状態量として、該第2の状態量を変数とした第2の線形関数により規定される第2の切換関数上の平衡点に該第2の状態量を収束させるように、前記第2の操作量を決定することを特徴とする。
【0014】
かかる本発明によれば、前記第1の応答指定型制御の応答特性を、前記第2の応答指定型制御により決定することによって、前記第1の応答指定型制御の応答特性を発散することなく短時間で目標とする応答特性に収束させることができるため、前記アクチュエータの作動をさらに安定化させることができる。
【0018】
さらに、本発明によれば、前記操作量決定手段は、前記演算係数を発散することなく短時間で目標値に収束させて、前記第1の応答指定型制御の応答特性を決定することができるため、前記アクチュエータの作動を安定して制御することができる。
【0019】
また、前記アクチュエータは移動体を移動させる駆動源であり、前記第1の状態値は前記移動体の移動位置であり、前記第2の状態値は前記アクチュエータの作動により前記移動体に働く力の大きさであることを特徴とする。
【0020】
かかる本発明によれば、前記移動体の位置を制御する前記第1の応答指定型制御の応答特性の設定により、前記移動体に働く力の大きさを制御することができる。そして、このように、1つの制御系である前記第1の応答指定型制御によって、前記移動体の移動位置と前記移動体に働く力の大きさという2つの状態値を制御することにより、該2つの状態値を別個の制御系を切り換えて行う場合に比べて、該2つの状態値間の制御の切換を滑らかに行うことができる。
【0021】
また、前記アクチュエータは、1軸方向に移動自在に設けられた接触体と連結されて該接触体を移動させ、該接触体と、前記アクチュエータと、該接触体が所定位置に移動したときに該接触体と接触する被接触体とを備えた接触機構の作動を制御して、前記アクチュエータにより前記接触体を前記所定位置を超えて移動させて前記被接触体に押付ける工程を実行し、該工程における前記接触体の目標位置を前記第1の目標値として設定する目標位置設定手段を有し、前記第1の状態値把握手段として、前記接触体の実位置を前記第1の状態値として把握する実位置把握手段を有し、前記第2の状態値把握手段として、前記接触体による前記被接触体に対する押付け力を前記第2の状態値として把握する押付け力把握手段を有することを特徴とする。
【0022】
かかる本発明によれば、前記操作量決定手段は、前記第1の応答指定型制御により前記接触体の実位置を前記目標位置に収束させると共に、前記押付け力把握手段により把握される押付け力が目標押付け力と一致するように前記第1の応答指定型制御の応答特性を決定する。そして、これにより、前記接触体が移動する経過位置を前記目標位置に収束させつつ、前記接触体による前記被接触体に対する押付け力を前記目標押付け力に維持することができる。そのため、前記接触体による前記被接触体に対する押付け力が過大となることを防止して、安定して前記接触体を前記被接触体に押付けることができる。
【0023】
また、前記アクチュエータは、供給される電流の大きさに応じて出力が変化する電気アクチュエータであって、前記第1の操作量は該電気アクチュエータへの供給電圧であり、前記押付け力把握手段は、該電気アクチュエータへの供給電流を検出して該供給電流に基づいて前記接触体による前記被接触体に対する押付け力を把握することを特徴とする。
【0024】
かかる本発明によれば、前記押付け力把握手段は、前記アクチュエータへの供給電流の検出値に基づいて前記接触体による前記被接触体に対する押付け力を容易に把握することができる。そして、前記操作量決定手段は、前記第1の操作量として前記アクチュエータへの供給電圧を調節することにより、前記接触体による前記被接触体に対する押付け力を容易に調節することができる。
【0025】
また、前記接触機構は、動力の伝達/遮断を切り換える同期機構であり、前記接触体は軸上に一体回転可能に設けられた第1の係合部材であり、前記被接触体は、前記軸に相対回転可能かつ軸動不可な第2の係合部材と該第1の係合部材との間に、該第1の係合部材と該第2の係合部材に対して回転自在且つ前記軸方向に移動自在に設けられて、前記軸が回転した状態で該第1の係合部材と第2の係合部材とに接触したときに生じる摩擦力により、該第1の係合部材と該第2の係合部材の回転数を同期させて該第1の係合部材と該第2の係合部材とを係合可能とする同期部材であることを特徴とする。
【0026】
かかる本発明によれば、前記アクチュエータにより前記第1の係合部材を前記同期部材に押付けて前記第2の係合部材と係合させる際に、前記操作量決定手段は、前記第1の係合部材の実位置が前記目標位置と一致するように前記第1の操作量を決定すると共に、前記第1の係合部材による前記同期部材に対する押付け力が前記目標押付け力に一致するように、前記演算係数を設定する。そして、これにより、前記第1の係合部材による前記同期部材に対する押付け力が過大となって、前記同期機構の破損が生じることを防止して、前記第1の係合部材と前記第2の係合部材とを安定して係合させることができる。
【0027】
【発明の実施の形態】
本発明の実施の形態について、図1〜図15を参照して説明する。図1は同期機構及びその制御装置の構成図、図2は図1に示した同期機構のモデル化の説明図、図3は図1に示した制御装置の制御ブロック図、図4は図3に示したスライディングモードコントローラの作用を示したグラフ、図5はコンプライアンスパラメータの変更による効果を示したグラフ、図6は到達則ゲインと適応則ゲインの設定条件を示したグラフ、図7は電流フィードバック処理を加えた制御装置の制御ブロック図、図8は制御工程の切換タイミングを示したグラフ、図9はウェーブレット変換フィルタの構成図、図10はウェーブレット変換フィルタにおけるデシメーション処理の説明図、図11は制御装置の作動フローチャート、図12は目標位置とコンプライアンスパラメータの設定テーブルを示した図、図13は電流フィードバック処理を加えた制御装置の他の例の制御ブロック図、図14は電流フィードバック処理を加えた制御装置の他の例の制御ブロック図、図15は工作機械による穴あけ工程を示した図である。
【0028】
図1を参照して、制御装置1(本発明のアクチュエータの制御装置に相当する)は、自動車の変速機に備えられた同期機構2(本発明の接触機構に相当する)の作動を制御するものであり、マイクロコンピュータやメモリにより構成された電子ユニットである。
【0029】
同期機構2は、エンジン若しくは電気モータと連結された入力軸5と一体に回転するカップリングスリーブ6(本発明の移動体、接触体及び第1の係合部材に相当する)、駆動輪(図示しない)に連結された出力軸(図示しない)と連結されて入力軸5に回転自在かつ軸動不可に設けられた被同期ギヤ7(本発明の第2の係合部材に相当する)、カップリングスリーブ6と被同期ギヤ7の間の入力軸5に回転自在且つ入力軸5の軸方向に移動自在に設けられたシンクロナイザリング8(本発明の被接触体及び同期部材に相当する)、及び電気モータ10(本発明のアクチュエータに相当する)とカップリングスリーブ6とに連結されたシフトホーク11を備えている。
【0030】
シフトホーク11は、電気モータ10の回転に応じてカップリングスリーブ6を入力軸5の軸方向に移動させる。また、カップリングスリーブ6は中空構造となっており、中空部の内周面にスプライン12が形成されている。そして、シンクロナイザリング8の外周面にカップリングスリーブ6のスプライン12と係合可能なスプライン13が形成され、被同期ギヤ7のシンクロナイザリング8と対向する部分の外周面にもカップリングスリーブ6のスプライン12と係合可能なスプライン14が形成されている。
【0031】
そして、入力軸5と共に回転したカップリングスリーブ6がシフトホーク11により被同期ギヤ7の方向に移動すると、カップリングスリーブ6とシンクロナイザリング8が接触し、さらにシンクロナイザリング8と被同期ギヤ7も接触する状態となる。このとき、接触により生じる摩擦力により、シンクロナイザリング8を介してカップリングスリーブ6と被同期ギヤ7の回転数が同期する。
【0032】
このように、カップリングスリーブ6と被同ギヤ7の回転数が同期した状態で、カップリングスリーブ6をさらに被同期ギヤ7の方向に移動させると、カップリングスリーブ6に形成されたスプライン12が、シンクロナイザリング8に形成されたスプライン13を通過して被同期ギヤ7に形成されたスプライン14と係合する。そして、これにより、入力軸5と出力軸間で動力が伝達される状態となる。
【0033】
また、電気モータ10は制御装置1から出力される電圧(Vin,本発明の第1の操作量に相当する)の印加により作動し、回転数センサ15による電気モータ10の回転数検出信号(Es)が制御装置1に入力される。
【0034】
制御装置1は、電気モータ10の電機子に流れる電流(Im,以下、電機子電流という)を検出する電流検出部20、回転数センサ15からの回転数検出信号(Es)等に基づいてカップリングスリーブ6の実位置(Psc,本発明の第1の状態値に相当する)を把握する実位置把握部21(本発明の第1の状態値把握手段及び実位置把握手段に相当する)、カップリングスリーブ6を移動させてシンクロナイザリング8を介して被同期歯車7と係合させる過程におけるカップリングスリーブ6の目標位置(Psc_cmd,本発明の第1の目標値に相当する)を設定する目標位置設定部22(本発明の目標位置設定手段に相当する)、電気モータ10に流れる電流の目標値である目標電流(Im_cmd)を設定する目標電流設定部23、及び電気モータ10に印加する電圧(Vin,本発明の第1の操作量に相当する)を決定する電圧決定部24(本発明の操作量決定手段に相当する)を備えている。
【0035】
そして、実位置把握部21は、カップリングスリーブ6が移動を開始してから、シンクロナイザリング8との接触によりカップリングスリーブ6と被同期ギヤ7の回転数が同期して、シンクロナイザリング8を介してカップリングスリーブ6と被同期ギヤ7とが係合するまで挙動を、慣性系物体と弾性系物体の衝突とみなしてモデル化し、該モデルに基づいてカップリングスリーブ6の位置を把握する。
【0036】
図2は該モデルを表したものであり、実位置把握部21は、カップリングスリーブ6を電気モータ10やシフトホーク11(図1参照)を含めて等価慣性がJmである慣性系物体30とみなし、シンクロナイザリング8(図1参照)を等価慣性がMsであってバネ係数がKsである弾性系物体31とみなして、カップリングスリーブ6の位置を把握する。なお、図2中、Tmは電気モータ10の出力トルクであり、Psc_defはシンクロナイザリング8(図1参照)の待機位置である。以下、図2に示したモデルを表すモデル式の算出手順について説明する。
【0037】
先ず、慣性系物体30が弾性系物体31に接触する前(カップリングスリーブ6がシンクロナイザリング8に接触する前)の連続時間系のモデル式の導出について説明する。
【0038】
図1に示した電気モータ10の運動方程式は以下の式(1)で表される。
【0039】
【数1】
Figure 0003866211
【0040】
但し、Jm:電気モータ10及びシフトホーク11を含めたカップリングスリーブ6の等価慣性、ω:電気モータ10の回転速度(回転数センサ15により検出される)、Tm:電気モータ10の出力トルク。
【0041】
また、電気モータ10の出力トルク(Tm)と電気モータ10の電機子電流(Im)との関係は以下の式(2)で表され、電気モータ10の電機子に生じる電圧(Vm,以下、電機子電圧という)と電機子の電気抵抗(Rm,以下、電機子抵抗という)との関係は以下の式(3)で表される。
【0042】
【数2】
Figure 0003866211
【0043】
但し、Im:電気モータ10の電機子電流、Km:トルク変換係数。
【0044】
【数3】
Figure 0003866211
【0045】
但し、Vm:電気モータ10の電機子電圧、Rm:電気モータ10の電機子抵抗。
【0046】
したがって、上記式(1)に上記式(2)及び式(3)の関係を適用して、以下の式(4)を得ることができる。
【0047】
【数4】
Figure 0003866211
【0048】
さらに、電気モータ10への印加電圧(Vin)と、電気モータ10に生じる逆起電力との関係は以下の式(5)で表される。
【0049】
【数5】
Figure 0003866211
【0050】
但し、Vin:電気モータ10への印加電圧、Km’:逆起電力定数。
【0051】
そして、上記式(5)の関係を上記式(4)に適用すると、以下の式(6)を得ることができる。
【0052】
【数6】
Figure 0003866211
【0053】
また、電気モータ10の回転速度(ω)及び回転角度(θ)と、慣性系物体30の位置(Psc)との関係は、以下の式(7)及び式(8)で表される。
【0054】
【数7】
Figure 0003866211
【0055】
【数8】
Figure 0003866211
【0056】
但し、ω:電気モータ10の回転速度、θ:電気モータ10の回転角度、t:電気モータ10が作動を開始してからの経過時間、Rsc:電気モータ10の回転角度(θ)と慣性系物体30の間のレバー比及びギヤ比。
【0057】
したがって、上記式(7),式(8)から、以下の式(9),式(10),式(11)を得ることができる。
【0058】
【数9】
Figure 0003866211
【0059】
【数10】
Figure 0003866211
【0060】
【数11】
Figure 0003866211
【0061】
そして、上記式(9),式(10),式(11)を上記式(6)に代入すると、以下の式(12)を得ることができる。
【0062】
【数12】
Figure 0003866211
【0063】
また、同期機構2の制御に必要な要素として、カップリングスリーブ6の位置(Psc)の他に、電気モータ10に掛かる負荷を検出するための電機子電流(Im,本発明の第2の状態値に相当する)がある。そこで、上記式(4)及び式(11)から、電機子電流(Im)に関するモデル式である以下の式(13)を得る。
【0064】
【数13】
Figure 0003866211
【0065】
但し、Im:電気モータ10の電機子電流。
【0066】
以上により、電気モータ10への印加電圧(Vin)を入力とし、カップリングスリーブ6の実位置(Psc)と電気モータ10の電機子電流(Im)を出力とする1入力2出力系のモデルは、上記式(12)と式(13)により表すことができる。
【0067】
次に、慣性系物体30が弾性系物体31と接触して、弾性系物体31からの反力を受けるようになったとき(カップリングスリーブ6がシンクロナイザリング8と接触して、シンクロナイザリング8からの反力を受けるようになったとき)の連続時間系のモデル式の導出について説明する。
【0068】
図2における慣性系物体31の運動方程式は以下の式(14)で表される。
【0069】
【数14】
Figure 0003866211
【0070】
但し、Ms:弾性系物体31の等価慣性、Psc_def:弾性系物体31の待機位置、Ksc:弾性系物体30のバネ定数、Fsc:弾性系物体31が慣性系物体30から受ける力(弾性系物体31が慣性系物体30に与える反力)。
【0071】
上記式(14)を反力(Fsc)について整理すると、以下の式(15)の形で表される。
【0072】
【数15】
Figure 0003866211
【0073】
ここで、反力(Fsc)は、弾性系物体31が慣性系物体30に対して与える反力となり、該反力(Fsc)が掛かったときの慣性系物体30の運動方程式は以下の式(16)で表される。
【0074】
【数16】
Figure 0003866211
【0075】
この式(16)を変形すると以下の式(17)の形となり、電気モータ10の逆起電力を考慮すると、電気モータ10への印加電圧(Vin)と電機子電圧(Vm)との関係は以下の式(18)で表される。
【0076】
【数17】
Figure 0003866211
【0077】
【数18】
Figure 0003866211
【0078】
また、式(18)に上記式(10)及び式(11)を代入すると以下の式(19)の形となり、式(19)を整理して以下の式(20)を得ることができる。
【0079】
【数19】
Figure 0003866211
【0080】
【数20】
Figure 0003866211
【0081】
さらに、電気モータ10の電機子電流(Im)については、上記式(16)に上記式(11)を代入して、以下の式(21)を得ることができる。
【0082】
【数21】
Figure 0003866211
【0083】
以上により、弾性系物体31からの反力を考慮したモデルは、上記式(20)と式(21)により表すことができる。
【0084】
次に、上記式(20)及び式(21)により表される連続時間系のモデル式に基づいて、離散時間系のモデル式を導出する。
【0085】
先ず、連続時間系のモデルの状態変数(x1,x2)を以下の式(22)のように設定すると、上記式(20)より、連続系のモデルを以下の式(23)により表すことができる。
【0086】
【数22】
Figure 0003866211
【0087】
【数23】
Figure 0003866211
【0088】
ここで、制御装置1のサンプリング周期をTとすると、上記式(23)は、オイラー近似により以下の式(24)の形で表され、式(24)を変形して以下の式(25)及び式(26)を得ることができる。
【0089】
【数24】
Figure 0003866211
【0090】
但し、t:サンプリング時点、T:サンプリング周期。
【0091】
【数25】
Figure 0003866211
【0092】
【数26】
Figure 0003866211
【0093】
さらに、オイラー近似により、上記式(26)におけるx2(t-T)は以下の式(27)で表すことができる。
【0094】
【数27】
Figure 0003866211
【0095】
そして、上記式(25)に上記式(26)及び式(27)を代入して整理すると、以下の式(28)を得ることができる。
【0096】
【数28】
Figure 0003866211
【0097】
式(28)におけるt=kTとして整理すると、以下の式(29)の形となり、式(30)を得ることができる。
【0098】
【数29】
Figure 0003866211
【0099】
【数30】
Figure 0003866211
【0100】
そして、上記式(30)における係数を以下の式(31)に示したように置き換えると、式(30)は以下の式(32)の形で表すことができる。
【0101】
【数31】
Figure 0003866211
【0102】
【数32】
Figure 0003866211
【0103】
そこで、制御装置1は、上記式(32)により表される離散時間系のモデルにおける外乱項dを0とした以下の式(33)で表されるモデルに基づいて、図3に示した構成により設計される。以下、図3に示した制御装置1の構成について説明する。
【0104】
【数33】
Figure 0003866211
【0105】
先ず、上記式(33)で表されるモデルに対して、▲1▼慣性系物体30の実位置(Psc)を目標位置(Psc_cmd)に迅速に追従させ、▲2▼慣性系物体30と弾性系物体31の接触時のコンプライアンス性(ゴムのような弾性)を実現する、スライディングモードコントローラ40の設計手順について説明する。
【0106】
スライディングモードコントローラ40は、応答指定型制御の一例であるスライディングモード制御(本発明の第1の応答指定型制御に相当する)を用いて、慣性系物体30の挙動を制御する。そして、スライディングモードコントローラ40には、上記式(33)に基づいて実位置把握部21により算出される慣性系物体30の実位置(Psc)と、目標位置設定部22により設定される慣性系物体30の目標位置(Psc_cmd)と、後述するコンプライアンスパラメータ(VPOLE)とが入力される。
【0107】
そして、慣性系物体30の実位置(Psc)と目標位置(Psc_cmd)との偏差(Esc)を以下の式(34)に示したように定義すると、偏差(Esc)の収束挙動や外乱が偏差(Esc)に与える影響度合を指定する切換関数(σ,本発明の第1の線形関数に相当する)は、式(34)の状態変数がPsc(k)とPsc(k-1)の2つであるため、以下の式(35)のように定義される。
【0108】
【数34】
Figure 0003866211
【0109】
【数35】
Figure 0003866211
【0110】
但し、VPOLE:コンプライアンスパラメータ(切換関数設定パラメータ)。
【0111】
スライディングモードコントローラ40は、この切換関数(σ)が、σ(k)=0となるように制御入力を決定する。また、σ(k)=0は、上記式(35)から、以下の式(36)の形に変形することができる。
【0112】
【数36】
Figure 0003866211
【0113】
ここで、式(36)は入力のない1次遅れ系を意味しているため、スライディングモードコントローラ40は、制御系の応答を上記式(36)の1次遅れ系に収束させる制御を実行する。
【0114】
したがって、図4(a)に示したように、縦軸をEsc(k)とし横軸をEsc(k-1)とした位相平面を設定すると、上記式(36)は、該位相平面上の線形関数を意味することがわかる。また、上記式(36)は入力のない1次遅れ系であるから、コンプライアンスパラメータ(VPOLE,本発明の演算係数に相当する)を以下の式(37)の範囲内に設定して、該1次遅れ系を安定化させれば、時間の経過(k→∞)により偏差(Esc)が必ず0に収束する系となる。
【0115】
【数37】
Figure 0003866211
【0116】
このことから、図4(a)に示した位相平面上において、偏差の状態量(Esc(k),Esc(k-1)、本発明の第1の状態量に相当する)が切換関数(σ(k)=0,本発明の第1の切換関数に相当する)上に載ると、該状態量は入力のない1次遅れ系に拘束されるため、時間の経過と共に位相平面の原点{(Esc(k),Esc(k-1))=(0,0)}に自動的に収束することになる。
【0117】
そこで、スライディングモードコントローラ40は、このような切換関数上での偏差の状態量(Esc(k),Esc(k-1))の挙動を利用して、図4(a)に示したように、上記式(35)でσ=0となるように制御入力(Vin)を決定することによって、該状態量を切換関数(σ(k)=0)上に拘束し、外乱やモデル化誤差の影響を受けることなく、該状態量を位相平面の原点に収束させる。
【0118】
なお、偏差の状態量が切換関数に漸近するまでの挙動(図中P1からP2までの過程)を到達モードといい、切換関数上を該状態量が自動的に原点方向に収束する挙動(図中P2からP0までの過程)をスライディングモードという。
【0119】
また、上記式(36)のコンプライアンスパラメータ(VPOLE)を正(0<VPOLE<1)に設定すると、式(36)で表される1次遅れ系は振動安定形となるため、偏差(Esc)を収束させる制御においては好ましくない。そこで、コンプライアンスパラメータ(VPOLE)を−1から0の範囲(−1<VPOLE<0)で決定することにより、偏差(Esc)の収束応答を図4(b)に示したように設定する。図4(b)において、a,b,cは、コンプライアンスパラメータ(VPOLE)をそれぞれ−1,−0.8,−0.5に設定した場合の偏差(Esc)の推移を示しており、この場合、VPOLE=−1に設定すると、偏差(Esc)は0に収束せずに一定値となる。
【0120】
続いて、上記式(36)の動特性、すなわち、スライディングモードコントローラ40の応答指定特性について説明する。図5は、コンプライアンスパラメータ(VPOLE)を−0.5,−0.8,−0.99,−1.0に設定して、σ=0かつEsc=0である状態でステップ外乱Dを与えた場合の制御系の応答を示したグラフであり、縦軸を上から偏差(Esc)、切換関数(σ)、外乱(D)とし、横軸を時間(k)としたものである。
【0121】
図5から明らかなように、コンプライアンスパラメータ(VPOLE)の絶対値を小さくするほど、外乱(D)が偏差(Esc)に与える影響が小さくなり、逆に、コンプライアンスパラメータ(VPOLE)の絶対値を大きくして1に近づけるほど、スライディングモードコントローラが許容する偏差(Esc)が大きくなるという特性がある。そして、このとき、コンプライアンスパラメータ(VPOLE)に拘わらず切換関数の値(σ)の挙動が同一となっていることから、外乱(D)に対する許容量(外乱に対する抑制能力)をコンプライアンスパラメータ(VPOLE)によって指定できることがわかる。
【0122】
そして、図2に示した慣性系物体30と弾性系物体31の接触時には、▲1▼慣性系物体30が弾性系物体31により跳ね返される、▲2▼慣性系物体30が過大な衝突力により弾性系物体31に押し込まれる、という状態となることを回避しつつ慣性系物体30を弾性系物体31に押付ける必要がある。
【0123】
そこで、上述した特性に着目し、慣性系物体30と弾性系物体31の接触時には、コンプライアンスパラメータ(VPOLE)を−1の近傍に設定して外乱に対する偏差(Esc)の許容量を大きくする(外乱に対する抑制能力を低くする)ことによって、慣性系物体30と弾性系物体31が接触する際に電気モータ10の作動によるコンプライアンス性を生じさせることが有効である。
【0124】
これにより、慣性系物体30と弾性系物体31との接触時に過大な衝撃が生じることを抑制することができ、また、過大な力を弾性系モデル31に与えることなく、慣性系モデル30を弾性系モデル31に押付けることができる、という効果が得られる。
【0125】
この効果を図1に示した実際の同期機構1に適用して考察すると、カップリングスリーブ6がシンクロナイザリング8に接触する際に生じる衝撃を和らげることができる。また、過大な力をシンクロナイザリング8に与えることなくカップリングスリーブ6をシンクロナイザリング8に押付けて、カップリングスリーブ6と被同期ギヤ7の回転数の同期させて係合させることができる。
【0126】
次に、スライディングモードコントローラの制御入力(Vin)は、以下の式(38)に示したように、3つの制御入力の総和により設定される。
【0127】
【数38】
Figure 0003866211
【0128】
但し、Vin(k):k番目のサンプリング周期における電気モータ10への印加電圧、Ueq(k):k番目のサンプリング周期における等価制御入力、Urch(k):k番目の制御サイクルにおける到達則入力、Uadp(k):k番目のサンプリング周期における適応則入力。
【0129】
なお、等価制御入力とは偏差の状態量(Esc(k),Esc(k-1))を切換関数(σ=0)上に拘束するための入力であり、到達則入力とは該状態量を該切換関数に載せるための入力であり、適応則入力とはモデル化誤差や外乱を吸収して該状態量を該切換関数に載せるための入力である。
【0130】
以下に、等価制御入力(Ueq(k))、到達則入力(Urch(k))、及び適応則入力(Uadp(k))の設定方法について説明する。
【0131】
先ず、等価制御入力(Ueq)は、厳密には位相平面上の任意の場所において、偏差の状態量をその場所にホールドする機能を持つ。そのため、等価制御入力(Ueq)は、以下の式(39)を満たす印加電圧(Vin)として算出される。
【0132】
【数39】
Figure 0003866211
【0133】
式(39)に上記式(35)及び式(34)を代入すると、以下の式(40)が得られる。
【0134】
【数40】
Figure 0003866211
【0135】
そして、式(40)に上記式(33)を代入して整理することにより、等価制御入力(Ueq)についての以下の式(41)を得ることができる。
【0136】
【数41】
Figure 0003866211
【0137】
次に、到達則入力(Urch)は、以下の式(42)により算出される。
【0138】
【数42】
Figure 0003866211
【0139】
但し、F:到達則ゲイン、Δ:切換振幅(機械的なバックラッシュやガタ等の非線形特性の吸収パラメータ)。
【0140】
また、切換振幅(Δ)をゼロ(Δ=0)とすれば、上記式(42)は以下の式(43)の形で表される。
【0141】
【数43】
Figure 0003866211
【0142】
また、適応則入力(Usdp)は、以下の式(44)により算出される。
【0143】
【数44】
Figure 0003866211
【0144】
但し、G:適応則ゲイン。
【0145】
ここで、上記式(41)の等価制御入力(Ueq(k))、上記式(43)の到達則入力(Urch(k))、及び上記式(44)の適応則入力(Uadp(k))を上記式(38)に代入して得られる制御入力(Usl(k))を電気モータ10への印加電圧(Vin)として上記式(33)に代入すると、以下の式(45)が得られる。
【0146】
【数45】
Figure 0003866211
【0147】
そして、式(45)に上記式(34)及び式(35)を適用してσについて整理すると、以下の式(46)を得ることができる。
【0148】
【数46】
Figure 0003866211
【0149】
ここで、到達則入力(Urch(k))と適応則入力(Uadp(k))の役割は、偏差状態量(Esc(k),Esc(k-1))を切換関数(σ=0)上を移動させること、すなわち、上記式(46)の安定化(σ→0)であるので、上記式(46)が安定になるように到達則ゲイン(F)と適応則ゲイン(G)を決定する必要がある。
【0150】
そこで、上記式(46)をZ変換すると、以下の式(47)が得られ、式(47)を変形して以下の式(48)が得られる。
【0151】
【数47】
Figure 0003866211
【0152】
【数48】
Figure 0003866211
【0153】
この場合、上記式(48)が安定となる条件は、左辺の第2項と第3項の係数(F−2,GT+1−F)が、図6の三角領域内に入る組合わせとなるので、これらの係数が該三角領域内に入る組合わせとなるようにF,Gの値を決定すればよい。
【0154】
そして、スライディングモードコントローラ40は、このようにして決定したF,Gの値により上記式(43),式(44)から到達則入力(Urch(k))と適応則入力(Uadp(k))をそれぞれ決定し、また、上記式(41)から等価制御入力(Ueq(k))を決定して、上記式(38)により電気モータ10への印加電圧(Vin)を決定する。
【0155】
次に、図1を参照して、実際の同期機構2においては、カップリングスリーブ6と被同期ギヤ7の回転数を同期させるため、一定の力でカップリングスリーブ6をシンクロナイズザリング8に押付ける必要がある。そこで、図2に示したモデルにおいて、慣性系物体30と弾性系物体31とが接触した後、一定の押付け力を慣性系物体30から弾性系物体31に加える制御を行うための構成が必要となる。
【0156】
ここで、慣性系物体30と弾性系物体31とが接触した状態での電気モータ10の電機子電流(Im)は上記式(21)により示されるが、回転同期を図っている間は慣性系物体30の加速度はゼロ(Pscの2階微分がゼロ)であると考えられるので、上気式(21)は以下の式(49)の形となる。
【0157】
【数49】
Figure 0003866211
【0158】
そして、一定の押付け力は、慣性系物体30が弾性系物体31から受ける力(Fsc)の反力であるから、押付け力を一定に保つためには、以下の式(50)の関係が成り立てばよい。
【0159】
【数50】
Figure 0003866211
【0160】
但し、Im_cmd:目標電流値。
【0161】
なお、目標電流値(Im_cmd)が本発明の押付け力の目標値に相当し、電流検出部20が本発明の押付け力把握手段に相当し、電流検出部20により検出される電気モータ10の電機子電流(Im)が本発明の押付け力に相当する。
【0162】
また、上記式(50)を離散時間化して、実際の電機子電流(Im)と目標電流値(Im_cmd)との偏差(Eim)を算出する以下の式(51)を得ることができる。
【0163】
【数51】
Figure 0003866211
【0164】
ここで、上記式(20)と式(21)から分かるように、同期機構2は、電気モータ10に印加する電圧(Vin)を入力とし、慣性系物体30の位置(Psc)と電気モータ10の電機子電流(Im)を出力とする1入力2出力系のモデルとして表される。
【0165】
しかし、慣性系物体30と弾性系物体31が接触するまでは、慣性系物体30の位置(Psc)の制御のみを行えばよい。そのため、スライディングモードコントローラ40は、同期機構2を、電気モータ10への印加電圧(Vin)を入力とし慣性系物体30の位置(Psc)を出力とする1入力1出力系のモデルで表して制御を行えばよい。
【0166】
そのため、電気モータ10の電機子電流(Im)のフィードバック制御を行なうためには、スライディングモードコントローラ40を、1入力1出力系のモデルを対象としたものから1入力2出力系のモデルを対象としたものに切り換える必要がある。しかし、このようにスライディングモードコントローラ40を切り換えると、入力(Vin)の不連続性が生じてスライディングモードコントローラ40を切り換えた時の制御状態を安定化させることが難しい。
【0167】
そこで、電圧決定部24は、スライディングモードコントローラ40の切り換えを行わず、以下に説明するように、スライディングモードコントローラ40のコンプライアンス性を設定するコンプライアンスパラメータ(VPOLE)を、電気モータ10の電機子電流(Im)のフィードバックにより調整することによって、慣性系物体30から弾性系物体31への押付け力を安定化させる。
【0168】
先ず、電機子電流(Im)のフィードバック制御は、▲1▼電機子電流(Im)の目標電流(Im_cmd)に対する速応性、▲2▼押付け力に比例する電機子電流(Im)の安定性、を考慮して以下の式(52)から式(57)による簡易型のスライディングモード制御(本発明の第2の応答指定型制御に相当する)を用いて行う。
【0169】
【数52】
Figure 0003866211
【0170】
【数53】
Figure 0003866211
【0171】
【数54】
Figure 0003866211
【0172】
【数55】
Figure 0003866211
【0173】
【数56】
Figure 0003866211
【0174】
【数57】
Figure 0003866211
【0175】
但し、Limit:−1〜0の制限処理、F_Im:到達則ゲイン、G_Im:適応則ゲイン、POLE_Im:切換関数設定パラメータ、VPOLE_bs:VPOLEの基準値、Urch_Im:到達則入力、Uadp_Im:適応則入力。
【0176】
電流フィードバック系の制御ブロック図を示すと図7のようになる。図7の制御ブロック図では、1入力2出力系のモデルを制御対象とするスライディングモードコントローラを用いる代わりに、1入力1出力のモデルを制御対象とするスライディングモードコントローラ40の外に電機子電流(Im)を制御する電流フィードバック部50aを備えた2重フィードバック系となっている。
【0177】
なお、電流フィードバック部50aは、図3に示したコンプライアンスパラメータ算出部41に含まれる。そして、減算器51により上記式(52)によって電流偏差(E_Im,本発明の第2の状態量に相当する)が算出され、切換関数算出部52により上記式(53)によって切換関数(σ_Im,本発明の第2の線形関数に相当する)の値が算出され、比例演算器53により上記式(54)によって到達則入力(Urch_Im)が算出され、積分器55及び積分乗算器56により上記式(55)によって適応則入力(Uadp_Im)が算出される。
【0178】
また、加算器57及び加算器58により上記式(56)によって電流フィードバックを反映させたコンプライアンスパラメータ(VPOLE_Im)が算出され、リミッタ59により上記式(57)によって制限処理がなされてスライディングモードコントローラ40に対するコンプライアンスパラメータ(VPOLE)が決定される。
【0179】
なお、上記式(55)の切換関数を0(σ_Im(k)=0)とした切換関数が本発明の第2の切換関数に相当し、上記式(56)により算出されるコンプライアンスパラメータ(VPOLE_Im)が本発明の第2の操作量に相当する。
【0180】
次に、図3に示したコンプライアンスパラメータ算出部41は、同期機構2の作動を制御するスライディングモードコントローラ40のコンプライアンス性を設定するコンプライスパラメータ(VPOLE)を、以下の3つの工程に分けて設定する。
【0181】
工程1:目標値追従制御…慣性系物体30の位置(Psc)制御と慣性系物体30と弾性系物体31の接触時のコンプライアンス性の制御。コンプライアンスパラメータ(VPOLE)を慣性系物体30の位置(Psc)に応じて決定する。
【0182】
工程2:回転同期制御…弾性系物体31への押付け力の制御。コンプライアンスパラメータ(VPOLE)を、上述した電気モータ10の電機子電流のフィードバックにより決定する。
【0183】
工程3:静止制御…回転同期後(同期機構2におけるカップリングスリーブ6と被同期ギヤ7の係合が完了した後)の慣性系物体30の前進挙動を停止する制御。コンプライアンスパラメータ(VPOLE)を一定に保つ。
【0184】
そして、コンプライアンスパラメータ算出部41は、同期機構2の機械的なバラツキや経年変化等により、工程1から工程2に切り換える位置や、工程2から工程3に切り換えるタイミングのばらつきや変化が生じても、安定して工程の切り換えを行う必要がある。以下に工程の切り換えタイミングを決定する方法について説明する。
【0185】
図8の上段のグラフは、各工程の切り換わり時における慣性系物体30の実位置(Psc,図中d)と目標位置(Psc_cmd,図中e)との偏差(Esc=Psc−Psc_cmd)の変化を示したものであり、縦軸が慣性系物体30の実位置(Psc)及び目標位置(Psc_cmd)に設定され、横軸が時間(t)に設定されている。グラフから明らかなように、各工程の切り換え時には、偏差(Esc)が以下のように変化する。
【0186】
・工程1から工程2への切り換え時:弾性系物体31との接触により慣性系物体30の移動が抑制されて、目標位置(Psc_cmd)に対して実位置(Psc)が遅れる状態となり、偏差(Esc)が負方向に増大する。
【0187】
・工程2から工程3への切り換え時:弾性系物体31と慣性系物体30の回転同期が終了して、慣性系物体30の位置(Psc)が目標位置(Psc_cmd)に達すると、偏差(Esc)が正方向に減少する。
【0188】
そこで、このような偏差(Esc)の変化を検出することによって各工程の切り換えを行い、図8の下段に示したように、コンプライアンスパラメータ(VPOLE,図中f)の値を各工程に応じて設定すればよい。
【0189】
しかし、図1に示した実際の同期機構2は、機械的なバックラッシュやガタ、フリクションが大きい制御対象である。そのため、制御装置1のサンプリング周期を短く設定した方が制御性が高くなるが、サンプリング周期を短く設定して偏差(Esc)を算出すると、SN比が低下して偏差(Esc)の変化を検出し難くなる。そこで、Vin決定部24に備えられたウェーブレット変換フィルタ43(図3参照)は、以下に説明するように、偏差(Esc)にウェーブレット変換を施して偏差(Esc)の低周波成分のみを抽出することにより、偏差(Esc)の変化を検出し易くする。
【0190】
ウェーブレット変換43を用いたフィルタ(以下、ウェーブレット変換フィルタという)は、図9(a)に示した構成を有し、以下の式(58)によるハーフバンドローパスフィルタ処理とデシメーション処理を2回繰り返すことによってフィルタリングを行う。
【0191】
【数58】
Figure 0003866211
【0192】
但し、u:入力データ、η:サンプリング周期の時系列番号。
【0193】
図9(a)に示した1段目のハーフバンドローパスフィルタ70は、今回のサンプリング周期入力値(Esc(k))と前回のサンプリング周期の入力値(Esc(k-1))に対して上記式(57)の処理を行い、2段目のハーフバンドローパスフィルタ71は、1段目のハーフバンドローパスフィルタ70の出力にデシメーション処理72を施したEsc_wv1(m1)の今回値と前回値(Esc_wv1(m1)とEsc_wv1(m1-1))に対して、上記式(58)の処理を行う。
【0194】
図9(b)に示したように、ハーフバンドローパスフィルタ70,71は、サンプリング周波数の半分(ナイキスト周波数)以上の周波数成分を阻止し、低周波成分のゲインが1より大きいので、低周波成分に対するゲインを増幅する効果が得られる。
【0195】
また、図9(a)におけるデシメーション処理72,73(2↓)は間引き処理であり、図10(a)に示したように、入力データ(u)を1つおきにサンプリングする間引き処理を行う。
【0196】
ウェーブレット変換フィルタ43は、ハーフバンドローパスフィルタ70,71による処理とデシメーション処理72,73を繰り返し施すことによって、図10(b)のグラフに示したようにゲインを増幅しつつ低周波成分(Esc_wv)を抽出する。なお、図10(b)に示したグラフの縦軸はゲイン、横軸は周波数に設定されている。
【0197】
そして、これにより、入力信号(Esc)の高周波成分が除去されると共に、入力信号(Esc)に対するゲインが増幅されるため、入力信号(Esc)の低周波成分の変化をSN比を向上させて抽出することができる。
【0198】
そして、コンプライアンスパラメータ算出部41は、偏差(Esc)のウェーブレット変換値(Esc_wv)の変化量であるΔEsc_wv(=Esc_wv(m)−Esc_wv(m-1))を用いて、以下に示すように各工程の切り換えを行う。
【0199】
・工程1から工程2への切り換え:Psc>Psc_def 且つ Esc_wv>X_SCCNT
・工程2から工程3への切り換え:Psc>Psc_def かつ ΔEsc_wv>X_SCDONE
但し、Psc_vp:工程1におけるVPOLE可変開始位置、X_SCCNT:Esc_wvの接触判定閾値、X_SCDONE:回転同期完了判定閾値。
【0200】
なお、上記切換条件におけるEsc_wv及びΔEsc_wvが本発明の目標位置に対する実位置の乖離度合に相当し、X_SCCNT及びX_SCDONEが本発明の所定レベルに相当する。
【0201】
以上説明した手法により構成された制御装置1により、同期機構7の作動を制御する手順を図11に示したフローチャートに従って説明する。制御装置1は、自動車のメインコントローラ(図示しない)から変速機のシフトを指示する信号を受信すると、STEP1からSTEP2に進む。
【0202】
そして、制御装置1は、メインコントローラによって選択されたシフト位置(1速、2速、・・・、ニュートラル)に応じて、目標位置設定部22により、図12(a)に示したようにカップリングスリーブ6の移動パターンを目標位置(Psc_cmd)として設定する。また、制御装置1は、工程1におけるコンプライアンスパラメータ(VPOLE)の変更位置(Psc_vp)とシンクロナイザリング8の待機位置(Psc_def)を設定する。
【0203】
そして、続くSTEP3で、制御装置1は、実位置把握部21により上記式(33)によって算出されるカップリングスリーブ6の実位置(Psc)と目標位置(Psc_cmd)との偏差(Esc)を算出する。なお、図中kはk番目のサンプリング周期を意味し、Psc(k)及びPsc_cmd(k)はそれぞれk番目のサンプリング周期におけるカップリングスリーブ6の実位置と目標位置を表す。
【0204】
次のSTEP4で、制御装置1は、上述したウェーブレット変換フィルタ43による処理を行って、偏差(Esc)のウェーブレット変換値(Esc_wv)を算出する。なお、図中Esc_wv(m)は、図9(a)に示したようにk番目のサンプリング周期における偏差(Esc(k))に基づいて算出されたウェーブレット変換値を表している。
【0205】
次のSTEP5〜STEP7は、上述した各工程(工程1,工程2,工程3)の切り換えタイミングを判断する処理であり、STEP5及びSTEP6が工程1から工程2への切り換え条件を設定し、STEP7は工程2から工程3への切り換え条件を設定している。
【0206】
先ず、STEP5でカップリングスリーブ6の実位置(Psc(k))が、シンクロナイザリング8の待機位置(Psc_def)を通過するまではSTEP20に分岐し、図12(b)に示したコンプライアンスパラメータ(VPOLE)の設定テーブルに従って、コンプライアンスパラメータ算出部41がコンプライアンスパラメータ(VPOLE)を0の近傍(例えば−0.2)に設定する。なお、図12(b)に示した設定テーブルは、縦軸がコンプライアンスパラメータ(VPOLE)に設定され、横軸がカップリングスリーブ6の実位置(Psc)に設定されている。
【0207】
これにより、カップリングスリーブ6の移動を開始してからコンプライアンスパラメータ(VPOLE)の変更位置(Psc_vp)に到達するまでは、同期機構2のコンプライアンス性が低くなり、外乱の影響を抑制して安定してカップリングスリーブ6を移動させることができる。
【0208】
また、カップリングスリーブ6がコンプライアンスパラメータ(VPOLE)の変更位置(Psc_vp)を通過した時に、コンプライアンスパラメータ算出部41は、コンプライアンスパラメータ(VPOLE)を−1の近傍(例えば−0.99)まで低下させる。このように、実際にカップリングスリーブ6とシンクロナイザリング8が接触する直前に予めコンプライアンスパラメータ(VPOLE)の値を低下させて同期機構2のコンプライアンス性を高めることによって、カップリングスリーブ6がシンクロナイザリング8に接触したときに生じる衝撃を和らげることができる。
【0209】
そして、次のSTEP6で、上述した工程1から工程2への切り換え条件であるEsc_wv(m)>X_SCCNTが成立したとき、すなわち、カップリングスリーブ6とシンクロナイザリング8との接触が検知されたときにSTEP7に進む。STEP7では、上述した工程2から工程3への切り換え条件であるΔEsc_wv(m)>X_SCDONEが成立したとき、すなわち、カップリングスリーブ6とシンクロナイザリング8との回転同期がなされて、カップリングスリーブ6がシンクロナイザリング8を通過して被同期ギヤ7と係合したときに、STEP30に分岐する。
【0210】
一方、STEP7で、ΔEsc_wv(m)>X_SCDONEが成立しないときにはSTEP8に進み、コンプライアンスパラメータ算出部41は、工程1から工程2に切り換えて上述した電流フィードバックによるコンプライアンスパラメータ(VPOLE)の算出処理を実行する。そして、電圧決定部24は、このようにして算出したコンプライアンスパラメータ(VPOLE)を用いてスライディングモードコントローラ40により電気モータ10に対する印加電圧(Vin)を算出し、該印加電圧(Vin)を電気モータ10に印加する。
【0211】
このように、工程2においては、電気モータ10の電機子電流(Im)のフィードバック処理により電気モータ10の電機子電流(Im)が目標電流(Im_cmd)に維持されて、電気モータ10の出力トルクが一定に制御され、カップリングスリーブ6のシンクロナイザリング8に対する押付け力を安定化させることができる。
【0212】
そして、これにより、カップリングスリーブ6が過剰な力でシンクロナイザリング8に押付けられて、同期機構2の破損が生じることを防止することができる。
【0213】
また、工程3においては、STEP30において、コンプライアンスパラメータ算出部41によりコンプライアンスパラメータ(VPOLE)が一定値(X_VPOLE_END)に設定される。そして、電圧決定部24は、該コンプライアンスパラメータ(VPOLE=X_VPOLE_END)を用いてスライディングモードコントローラ40により電気モータ10に対する印加電圧(Vin)を算出し、該印可電圧(Vin)を電気モータ10に印可してカップリングスリーブ6の移動を速やかに停止する。
【0214】
これにより、カップリングスリーブ6と被同期ギヤ7との係合が完了した後も、カップリングスリーブ6が非同期ギヤ7に過剰な力で押付けられて、同期機構2の破損等が生じることを防止することができる。
【0215】
なお、本実施の形態では、上述したように、慣性系物体30の位置(Psc)が目標位置(Psc_cmd)に到達したときに、工程1による慣性系物体30の位置に応じてコンプライアンスパラメータ(VPOLE)を決定する制御から、工程2による弾性系物体30への押付け力(モータ10の電機子電流の大きさに比例する)に応じてコンプライアンスパラメータ(VPOLE)を決定する制御に切り換えたが、アクチュエータによって駆動する機構の仕様によっては、電気モータ10の電気子電流(Im)の変化に応じて、制御態様の切換条件を設定してもよい。
【0216】
また、本実施の形態では、図7に示した構成により、電流フィードバック部50aにおいて、上述した演算処理を行ってコンプライアンスパラメータ(VPOLE)を決定したが、他の構成として、図13に示したように、電流偏差(Im−Im_cmd)とコンプライアンスパラメータ(VPOLE)との関係を予め設定した相関マップ60を備えた電流フィードバック部50bを用い、該相関マップ60に電流偏差(Im−Im_cmd)を適用してコンプライアンスパラメータ(VPOLE)を決定するようにしてもよい。
【0217】
また、さらに他の構成として、図14に示した電流フィードバック部50cにより、I−PD制御を行ってコンプライアンスパラメータ(VPOLE)を決定してもよい。なお、減算器51,加算器58,リミッタ59は、図7に示した電流フィードバック部50aにおける同一符号の構成と同様である。
【0218】
電流フィードバック部50cにおいては、以下の式(59)及び式(60)を用いてコンプライアンスパラメータ(VPOLE(k))が算出される。具体的には、比例演算器61により以下の式(59)の右辺の第2項の演算が行われ、Z変換器62と減算器63と微分演算器64とにより式(59)の右辺の第3項の演算が行われ、減算器51と積分乗算器66とにより式(59)の右辺の第4項の演算が行われる。
【0219】
【数59】
Figure 0003866211
【0220】
但し、VPOLE_Im(k):k番目のサンプリング周期におけるコンプライアンスパラメータ)、VPOLE_bs:コンプライアンスパラメータの基準値、KIMP:比例項のフィードバックゲイン、KIMD:微分項のフィードバックゲイン、KIMI:積分項のフィードバックゲイン、Im(k):k番目のサンプリング周期におけるモータ10の電機子電流。
【0221】
【数60】
Figure 0003866211
【0222】
但し、Im_cmd:目標電流値。
【0223】
そして、加算器67と加算器68と加算器58とにより、上記式(59)の右辺の各項の加算が行われてVPOLE_Im(k)が算出され、リミッタ59により上記式(57)の制限処理が行われて、コンプライアンスパラメータ(VPOLE(k))が決定される。
【0224】
また、本実施の形態では、図1に示したように、カップリングスリーブ6を入力軸5側に設け、被同期ギヤ7を駆動軸と連結した同期機構2を対象としたが、カップリングスリーブを出力軸側に設けて、被同期ギヤを入力軸と連結した同期機構に対しても本発明の適用が可能である。
【0225】
また、本実施の形態では、電圧決定部24は、外乱等の影響を考慮した適応則入力を有する適応スライディングモードを用いたが、該適応則入力を省略した一般のスライディングモード制御を用いるようにしてもよく、また、バックステッピング制御等の他の種類の応答指定型制御を用いることもできる。また、電圧決定部24は、スライディングモード制御を用いて電流フィードバック処理を行ったが、スライディングモード制御を用いずに電流フィードバック処理を行う場合にも、本発明の効果を得ることができる。
【0226】
また、本実施の形態では、実位置把握部21は、図2に示したモデルに基づいてカップリングスリーブ6の実位置(Psc)を把握したが、位置センサを設けて該位置センサの位置検出信号とモータ10とカップリングスリーブ6間のレバー比等から、直接的にカップリングスリーブ6の実位置(Psc)を把握するようにしてもよい。
【0227】
また、本実施の形態では、自動車の変速機に備えられた同期機構2に対して本発明を適用した例を示したが、本発明の適用対象はこれに限られない。例えば、図15は、ワーク80に対してエンドミル81によって穴あけ加工を施す工作機械を、エンドミル81側を慣性系物体としワーク80側を弾性系物体としてモデル化し、本発明を適用した例を示している。なお、エンドミル81はチャック82により上下移動アクチュエータ83に取り付けられている。
【0228】
図15に示したように、上述した同期機構2に対する制御の場合と同様に、穴あけ加工を施す工程は以下の3つに分けられる。
【0229】
・工程1:エンドミル81がワーク80に接触するまで、エンドミル81の先端を短時間でワーク80に到達させ、かつ、エンドミル81とワーク80の接触時の衝撃を抑制する。
【0230】
・工程2:エンドミル81に一定の押付け力(Fc)を加えながらワーク80を切削する。
【0231】
・工程3:ワーク80の穴あけが終了してワーク80からの抗力がなくなると、エンドミル81が急激に下降するため、チャック82がワーク80に衝突しないようにエンドミル81の下降を停止する。
【0232】
そして、エンドミル81の実位置(Py)を図1に示した同期機構2におけるカップリングスリーブ6の実位置(Psc)に置換え、工程1におけるコンプライアンスパラメータ(VPOLE)の変更位置(Py_vp,同期機構2の制御におけるPsc_vpに相当する)と、ワーク80の待機位置(Py_def,同期機構2の制御におけるPsc_defに相当する)等を設定して、上下移動アクチュエータ83の作動を制御することによって、穴あけ時間の短縮を図ると共にエンドミル81とワーク80の接触時の衝撃を和らげることができる。
【0233】
また、工程2において、エンドミル81よりワーク80に過剰な押付け力が加わることを防止して、エンドミル81の押付け力を所定の目標押付け力に維持することができ、工程3において、エンドミル81の速やかに停止させることができる。
【0234】
なお、本実施の形態では、本発明のアクチュエータとして電気モータ10を用いた例を示したが、他の種類の電気アクチュエータや、空圧や油圧アクチュエータを用いた場合であっても、本発明の適用が可能である。
【0235】
また、本実施の形態では、本発明の第1の状態値がアクチュエータにより移動される物体の位置であり、本発明の第2の状態値が該物体に働く力の大きさである例を示したが、他の種類の状態値を採用してアクチュエータの作動を制御する場合にも本発明の適用が可能である。
【図面の簡単な説明】
【図1】同期機構及びその制御装置の構成図。
【図2】図1に示した同期機構のモデル化の説明図。
【図3】図1に示した制御装置の制御ブロック図。
【図4】図3に示したスライディングモードコントローラの挙動を示したグラフ。
【図5】コンプライアンスパラメータの変更による効果を示したグラフ。
【図6】到達則ゲインと適応則ゲインの設定条件を示したグラフ。
【図7】電流フィードバック処理を加えた制御装置の制御ブロック図。
【図8】制御工程の切換タイミングを示したグラフ。
【図9】ウェーブレット変換フィルタの構成図。
【図10】ウェーブレット変換フィルタにおけるデシメーション処理の説明図。
【図11】制御装置の作動フローチャート。
【図12】目標位置とコンプライアンスパラメータの設定テーブルを示した図。
【図13】電流フィードバック処理を加えた制御装置の他の例の制御ブロック図。
【図14】電流フィードバック処理を加えた制御装置の他の例の制御ブロック図。
【図15】工作機械による穴あけ工程を示した図。
【図16】従来の同期機構の構成図。
【符号の説明】
1…制御装置、2…同期機構、5…入力軸、6…カップリングスリーブ、7…被同期ギヤ、8…シンクロナイザリング、10…モータ、11…シフトホーク、15…回転数センサ、20…電流検出部、21…実位置把握部、22…目標位置設定部、23…目標電流設定部、24…電圧決定部、30…慣性系物体、31…弾性系物体

Claims (6)

  1. アクチュエータの作動に応じて変化する第1の状態値を把握する第1の状態値把握手段と、該アクチュエータの作動に応じて変化する該第1の状態値と異なる第2の状態値を把握する第2の状態値把握手段と、
    前記第1の状態値が第1の目標値と一致するように、該第1の状態値と該第1の目標値との偏差の減衰挙動と減衰速度を可変的に指定可能な第1の応答指定型制御を用いて、少なくとも該偏差を第1の状態量として、該第1の状態量を変数とした第1の線形関数により規定される第1の切換関数上の平衡点に該第1の状態量を収束させるように前記アクチュエータを駆動する第1の操作量を決定すると共に、前記第2の状態値が第2の目標値と一致するように、フィードバック処理により前記第1の線形関数の演算係数を変更することによって前記第1の応答指定型制御の応答特性を決定する操作量決定手段とを備えたことを特徴とするアクチュエータの制御装置。
  2. 前記操作量決定手段は、前記演算係数を第2の操作量とし、前記第2の状態値と前記第2の目標値との偏差の減衰挙動と減衰速度を可変的に指定可能な第2の応答指定型制御を用いて、少なくとも該偏差を第2の状態量として、該第2の状態量を変数とした第2の線形関数により規定される第2の切換関数上の平衡点に該第2の状態量を収束させるように、前記第2の操作量を決定することを特徴とする請求項1記載のアクチュエータの制御装置。
  3. 前記アクチュエータは移動体を移動させる駆動源であり、
    前記第1の状態値は前記移動体の移動位置であり、
    前記第2の状態値は前記アクチュエータの作動により前記移動体に働く力の大きさであることを特徴とする請求項1又は請求項2記載のアクチュエータの制御装置。
  4. 前記アクチュエータは、1軸方向に移動自在に設けられた接触体と連結されて該接触体を移動させ、該接触体と、前記アクチュエータと、該接触体が所定位置に移動したときに該接触体と接触する被接触体とを備えた接触機構の作動を制御して、前記アクチュエータにより前記接触体を前記所定位置を超えて移動させて前記被接触体に押付ける工程を実行し、
    該工程における前記接触体の目標位置を前記第1の目標値として設定する目標位置設定手段を有し、
    前記第1の状態値把握手段として、前記接触体の実位置を前記第1の状態値として把握する実位置把握手段を有し、
    前記第2の状態値把握手段として、前記接触体による前記被接触体に対する押付け力を前記第2の状態値として把握する押付け力把握手段を有することを特徴とする請求項記載のアクチュエータの制御装置。
  5. 前記アクチュエータは、供給される電流の大きさに応じて出力が変化する電気アクチュエータであって、前記第1の操作量は該電気アクチュエータへの供給電圧であり、
    前記押付け力把握手段は、該電気アクチュエータへの供給電流を検出して該供給電流に基づいて前記接触体による前記被接触体に対する押付け力を把握することを特徴とする請求項記載のアクチュエータの制御装置。
  6. 前記接触機構は、動力の伝達/遮断を切り換える同期機構であり、
    前記接触体は軸上に一体回転可能に設けられた第1の係合部材であり、前記被接触体は、前記軸に相対回転可能かつ軸動不可な第2の係合部材と該第1の係合部材との間に、該第1の係合部材と該第2の係合部材に対して回転自在且つ前記軸方向に移動自在に設けられて、前記軸が回転した状態で該第1の係合部材と第2の係合部材とに接触したときに生じる摩擦力により、該第1の係合部材と該第2の係合部材の回転数を同期させて該第1の係合部材と該第2の係合部材とを係合可能とする同期部材であることを特徴とする請求項又は請求項記載のアクチュエータの制御装置。
JP2003089777A 2002-12-26 2003-03-28 アクチュエータの制御装置 Expired - Lifetime JP3866211B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003089777A JP3866211B2 (ja) 2002-12-26 2003-03-28 アクチュエータの制御装置
EP03029424A EP1433983A3 (en) 2002-12-26 2003-12-19 Actuator control apparatus
CNB2003101131295A CN100385360C (zh) 2002-12-26 2003-12-22 驱动机构的控制装置
US10/743,464 US7071638B2 (en) 2002-12-26 2003-12-23 Actuator control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002378624 2002-12-26
JP2003089777A JP3866211B2 (ja) 2002-12-26 2003-03-28 アクチュエータの制御装置

Publications (2)

Publication Number Publication Date
JP2004252924A JP2004252924A (ja) 2004-09-09
JP3866211B2 true JP3866211B2 (ja) 2007-01-10

Family

ID=32473745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089777A Expired - Lifetime JP3866211B2 (ja) 2002-12-26 2003-03-28 アクチュエータの制御装置

Country Status (4)

Country Link
US (1) US7071638B2 (ja)
EP (1) EP1433983A3 (ja)
JP (1) JP3866211B2 (ja)
CN (1) CN100385360C (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021317B2 (ja) * 2002-12-26 2007-12-12 本田技研工業株式会社 接触機構の制御装置
EP1538370A3 (en) * 2003-12-05 2011-11-30 Honda Motor Co., Ltd. Transmission control system
JP3958740B2 (ja) * 2003-12-17 2007-08-15 本田技研工業株式会社 変速機の制御装置
JP4437531B2 (ja) * 2004-02-20 2010-03-24 アイシン精機株式会社 能動型防振制御システムにおける制御データの設定方法及び制御方法
JP3984237B2 (ja) * 2004-04-20 2007-10-03 本田技研工業株式会社 アクチュエータの制御装置
JP3970864B2 (ja) 2004-04-20 2007-09-05 本田技研工業株式会社 接触機構の制御装置
JP2006057750A (ja) * 2004-08-20 2006-03-02 Honda Motor Co Ltd アクチュエータの駆動制御装置
WO2007058571A1 (en) * 2005-11-17 2007-05-24 Volvo Construction Equipment Holding Sweden Ab Method for performing gear shifting
US7599728B2 (en) * 2006-04-03 2009-10-06 General Electric Company Magnetic resonance imaging
US7548036B2 (en) * 2006-10-10 2009-06-16 Square D Company DC motor mechanical shock protection system
JP2008185187A (ja) * 2007-01-31 2008-08-14 Yamaha Motor Co Ltd 変速装置、それを備えた車両、並びに変速機構の制御装置およびその制御方法
DE102007029006A1 (de) * 2007-06-23 2008-12-24 Schaeffler Kg Verbindung zwischen einem Getriebeelement und einem Funktionselement und Verfahren zur Herstellung der Verbindung
CN101660945B (zh) 2008-08-27 2013-02-20 中国科学院光电技术研究所 快速图像重构方法
CN106151501B (zh) * 2015-03-30 2018-10-16 长城汽车股份有限公司 自动变速器的换挡控制方法、系统及车辆
US10154829B2 (en) * 2016-02-23 2018-12-18 Edan Instruments, Inc. Modular ultrasound system
JP7099410B2 (ja) * 2019-06-28 2022-07-12 トヨタ自動車株式会社 同期噛合機構の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442302A (ja) * 1990-06-07 1992-02-12 Fanuc Ltd コンプライアンス制御方式
JP3299109B2 (ja) * 1996-04-05 2002-07-08 本田技研工業株式会社 スライディングモード制御方法
US6046878A (en) * 1997-04-30 2000-04-04 Seagate Technology, Inc. Object positioning using discrete sliding mode control with variable parameters
JPH1122816A (ja) * 1997-06-30 1999-01-26 Aisin Seiki Co Ltd シンクロメッシュ式トランスミッションの変速制御装置
JP2000046168A (ja) * 1998-07-28 2000-02-18 Aisin Seiki Co Ltd 自動車用前進速度段切換制御装置
WO2000022487A1 (de) * 1998-10-08 2000-04-20 Siemens Aktiengesellschaft Regeleinrichtung zur regelung einer strecke mit mehreren verkoppelten regelgrössen
GB2370865A (en) 2000-12-27 2002-07-10 Luk Lamellen & Kupplungsbau A compliant link
JP4320512B2 (ja) * 2001-03-27 2009-08-26 いすゞ自動車株式会社 変速機のシフト操作装置
JP4549569B2 (ja) 2001-05-14 2010-09-22 本田技研工業株式会社 プラントの制御装置

Also Published As

Publication number Publication date
CN100385360C (zh) 2008-04-30
EP1433983A3 (en) 2011-01-19
US7071638B2 (en) 2006-07-04
CN1519675A (zh) 2004-08-11
JP2004252924A (ja) 2004-09-09
US20040145321A1 (en) 2004-07-29
EP1433983A2 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
JP3866211B2 (ja) アクチュエータの制御装置
JP4021317B2 (ja) 接触機構の制御装置
US7222552B2 (en) Controller for transmission
KR100855798B1 (ko) 위치결정 서보콘트롤러
CN106020124B (zh) 伺服马达控制装置以及碰撞检测方法
CA2568220A1 (en) Control device for vehicle
JP3866212B2 (ja) アクチュエータの制御装置
CN115202216A (zh) 考虑输入约束的机械臂抗干扰有限时间控制方法
JP4507110B2 (ja) ディジタルサーボ制御装置
CN110941242A (zh) 电动机控制装置
CN108326857B (zh) 基于鲁棒自适应控制算法的书法及雕刻机器人控制方法
JP6496167B2 (ja) タンデム位置制御装置
JP4021319B2 (ja) 同期機構の制御装置
JP5660482B2 (ja) 工作機械の送り駆動系の制御方法及び制御装置
JPH0888990A (ja) モータの位置制御装置
CN109067271B (zh) 一种基于鲁棒扰动补偿方案的直流电机伺服控制方法
JP2838578B2 (ja) モータ制御装置、外乱負荷トルク推定装置
JP6564732B2 (ja) 変速機制御装置
CN114035436B (zh) 一种基于饱和自适应律的反步控制方法、存储介质及设备
CN112180735A (zh) 自抗扰微分跟踪变结构控制方法
Nurung et al. Force estimation using piezoelectric actuator with adaptive control
Singer A new method of identification and compensation of friction and machining forces in positioning systems
JP2551595Y2 (ja) 変速機の操作ロボット
JP2005045956A (ja) 電動機の制御装置
Brunt et al. Accurate motion control using improved discrete state variable filtering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Ref document number: 3866211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term