JP6564732B2 - 変速機制御装置 - Google Patents

変速機制御装置 Download PDF

Info

Publication number
JP6564732B2
JP6564732B2 JP2016088355A JP2016088355A JP6564732B2 JP 6564732 B2 JP6564732 B2 JP 6564732B2 JP 2016088355 A JP2016088355 A JP 2016088355A JP 2016088355 A JP2016088355 A JP 2016088355A JP 6564732 B2 JP6564732 B2 JP 6564732B2
Authority
JP
Japan
Prior art keywords
switching
control
value
control input
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016088355A
Other languages
English (en)
Other versions
JP2017198266A (ja
Inventor
直道 山口
直道 山口
務 赤池
務 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016088355A priority Critical patent/JP6564732B2/ja
Publication of JP2017198266A publication Critical patent/JP2017198266A/ja
Application granted granted Critical
Publication of JP6564732B2 publication Critical patent/JP6564732B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、車両に搭載されている自動変速機を制御する装置に関するものである。
車両に搭載されている自動変速機における変速機構は、一般的にソレノイドなどのアクチュエータを用いて制御される。アクチュエータは、変速機構がある定められた目標値となるようにフィードバック制御される。フィードバック制御としては、通常はPID(Proportional Integral Differential)制御が用いられている。PID制御は、制御対象を目標値と実測値との間の偏差に応じて決まる制御量を用いてアクチュエータを動かすことにより、変速機構を意図するように動作させる。
自動変速機が実際に使用される環境においては、特性変化が絶えず発生する。PID制御が動作点の違いによる制御対象の特性変化に対して対応するためには、その動作点における特性を把握し、それに合わせて制御を補正しなければならない。制御対象の特性変化としては例えば、環境的な要因や経時的な要因がある。環境要因としては、エンジンの回転数に応じた負荷抵抗の変化、搭乗者数の増減による車両負荷抵抗の変動、などが挙げられる。経時的要因としては、長期使用による機械的な磨耗による摩擦係数の変化が挙げられる。
したがってPID制御において、所望の性能を得るためには、膨大な走行シーンごとにそれぞれPIDゲインを調整する必要がある。そうすると、制御ソフトウェアが複雑になり、またゲインマップをチューニングする作業工数が増大するなどの課題がある。そこでどのような状況変化にも順応に対応でき、チューニング作業が少なくなるような、ロバスト性が高い制御技術が求められていた。
上記のようなPID制御の課題を補う制御アルゴリズムとして、近年、スライディングモード制御が注目されている。スライディングモード制御は、制御対象が備える動特性に着目し、複数のパラメータを同時に制御することにより制御性能を向上させる現代制御理論であり、ロバスト性はPID制御よりも高い。
スライディングモード制御においては、等価制御入力と非線形制御入力の2つの制御入力を用いて、制御対象を目標値に収束させる。スライディングモード制御においては、制御対象が超平面を通過する際に非線形制御入力を非連続的に切り替えるので、超平面を表す関数は切換関数と呼ばれる。
超平面とは、制御対象が設計者の意図に沿って動いているときの挙動を示した平面である。スライディングモード制御は、制御対象が目標値に向かって収束する過程において、制御対象が超平面に沿って移動する挙動(スライディングモード)が見られるという特徴がある。切換関数の値は、制御目標と超平面との間の距離に相当する。制御対象が超平面に沿って遷移しているとき(すなわちスライディングモードのとき)、切換関数の値は0となる。
等価制御入力は、制御対象を超平面近傍に安定化させる役割を担う。等価制御入力は、外乱のない状態において切換関数の値を0へと近づけるための入力である。非線形制御入力は、制御対象を超平面上に拘束する役割を担う。制御対象は外乱が発生すると超平面から外れるので、切換関数の値が0ではなくなる、非線形制御入力は、このとき切換関数を0へ近づける機能を有する。言い換えると切換関数は外乱量を表すことになる。
切換関数を超平面近傍に安定化させる等価制御入力と、切換関数を超平面上に拘束する非線形制御入力とを適切に設計することにより、外乱の影響を受け難いロバストな制御を実現することができる。
下記特許文献1〜2は、エンジンの排気ガス再循環システムにおいて、スライディングモード制御を用いた技術を記載している。これら文献が示すように、自動車の制御においてスライディングモード制御が用いられている。
特開2009−250187号公報 特開2010−229972号公報
スライディングモード制御において、制御対象を超平面近傍に安定化させるような等価制御入力を設計するためには、制御対象がどのように動くのかを把握し、その動特性を考慮する必要がある。すなわち制御対象の動的モデルを求めることが必要になる。しかし、環境や状況によって制御対象の特性は変化するので、多大な労力と時間をかけて正確な動的モデルを得ることは、現実的ではない。したがって制御対象の動的モデルとして、モデル化誤差を含んだモデルを設定し、等価制御入力はモデル化誤差を含んだ状態で設計されるのが一般的である。そうすると、等価制御入力はモデル化誤差を含んでいるので、制御対象は超平面からやや外れた近傍で制御されることになる。
これに対して非線形制御入力は、モデル化誤差を外乱の一部とみなし、切換関数すなわち外乱量の影響を打ち消すように制御する。具体的には、切換関数の値に応じて2つの制御量のうちいずれかを選択することにより(bang−bang制御、またはオンオフ制御)、制御対象を超平面上に拘束させることを図る。
スライディングモード制御における非線形制御入力のbang−bang制御は、固定ゲイン値(以下、切換ゲイン)と切換関数σの符号関数sgn(σ)との積(ゲイン×sgn(σ))、または切換ゲインと切換関数σの平滑関数との積(ゲイン×平滑関数(σ))を、制御入力として用いることに相当する。すなわち非線形制御入力は、切換関数σの前後で非連続に切り替わることになる。この場合、切換ゲインの値が大きいほど非線形制御入力は非連続的に大きく変化するので、非線形制御入力が切換関数の値に応じて切り替わる際に大きな制御段差が生じる。この制御段差は、制御対象が高周波振動する現象(チャタリング)を生じさせるので、制御対象の動作を不安定化させてしまう場合がある。
特許文献1は、スライディングモード制御においてチャタリングを抑制する手法を記載している。同文献においては、モデル化誤差が既知である部分と不確定である部分とに分けて制御を実施している。具体的には、既知である部分については外乱量を示す切換関数の積分値を制御入力に対して追加することによりモデル化誤差を補正し、不確定部分に対してのみ非線形制御入力を用いる。これにより、非線形制御入力の切換段差を低減してチャタリングの影響を抑制している。しかしこの手法は、切換関数の積分値を用いて線形的に外乱補正することと等価であるので、積分量が計算されるまでの過渡応答の遅れやオーバーシュートが生じる可能性がある。また、制御対象の非線形な変化に対して追従することは困難であるので、ロバスト性が乏しい。
特許文献2においては、あらかじめ設定した補正量マップを制御入力に対して追加することにより、モデル化誤差の影響を小さくしてチャタリングを抑制している。しかし、予期しない外乱や特性変化が発生すると、あらかじめ設定した補正量マップによって対処することは困難であるので、ロバスト性が乏しい。また状況毎に必要な補正量をあらかじめ求めておかなければならないので、そのための作業工数が増加する。
本発明は、上述した課題を解決するためになされたものであり、スライディングモード制御を用いて自動変速機を制御する際に、チャタリングを抑制することができる技術を提供することを目的とする。
本発明に係る変速機制御装置は、切換関数の値が大きいほど非線形制御入力が大きくなるように、非線形制御入力のゲインを動的に調整する。
本発明に係る変速機制御装置によれば、スライディングモード制御の非線形制御入力に起因するチャタリングを抑制し、ロバスト性を向上させることができる。
変速機制御装置110を搭載した車両100の構成図である。 TCU110の内部構成を示すブロック図である。 式11によって表される切換ゲインKnlを用いた非線形制御入力Unlの経時変化を表すタイミングチャートの例である。 TCU110の動作例を示すタイミングチャートである。
<本発明の装置構成について>
図1は、本発明に係る変速機制御装置110を搭載した車両100の構成図である。車両100は、変速機制御装置(Transmission Control Unit)110、エンジン120、変速機130、モータドライバ140、エンジン制御装置(Engine Control Unit)150を備える。
エンジン120は、クランクシャフト161、変速機130、ドライブシャフト162を介して、タイヤ163に対して動力を伝達する。クランクシャフト161は、変速機130の入力軸に対して回転を伝達する。変速機130の出力軸の回転は、ドライブシャフト162を介してタイヤ163に対して伝達される。
ECU150は、エンジン120が最適な運転状態となるように、エンジン120が内部的に備えるアクチュエータなどを制御する。エンジン120には回転数センサ121が取り付けられており、ECU150は通信路171(例えばCAN(Control Area Network)通信)を介してその検出値を取得してこれを用いエンジン120を制御する。回転数センサ121は例えば、エンジン回転数を検出するパルスセンサを用いてエンジン120の出力軸の回転を検出することができる。
変速機130は、モータ131と変速機構132を備える。変速機構132は、モータ131の回転によって変速を制御する。すなわち変速比の制御は、モータ131の回転量を連続的に制御することにより実施される。モータドライバ140は、制御線172を介してモータ131を駆動制御する。
ECU150は、エンジン回転数、エンジントルク、車速、アクセルペダル開度などの、TCU110が変速機130を制御するために必要な情報を、通信路(例えばCAN通信)173を介してTCU110に対して送信する。
TCU110は、ECU150から上記情報を受け取るとともに、通信路(例えばCAN通信)174を介してモータドライバ140からモータの状態(モータ回転量、モータ回転速度、モータトルクなど)を表す情報を受け取る。TCU110は、これら情報を用いて、後述するスライディングモード制御を実施することによりモータ131の回転量を制御量として算出し、これをモータドライバ140に対して通知する。モータドライバ140は、その制御量にしたがってモータ131を駆動制御する。
図2は、TCU110の内部構成を示すブロック図である。TCU110は、目標値設定部111、制御部112、実測値検出部116、状態量演算部117を備える。制御部112はさらに、等価制御入力演算部113、非線形制御入力演算部114、切換関数演算部115を備える。
目標値設定部111は、ECU150より受信したエンジン回転数、エンジントルク、車速、アクセルペダル開度などの情報に基づき制御量の目標値を設定し、これを制御部112に対して出力する。具体的には、例えばエンジン回転数の目標値を設定する。制御部112の動作については後述する。実測値検出部116は、回転数センサ121からエンジン回転数を取得する。
状態量演算部117は、取得したエンジン回転数に基づき、スライディングモード制御における制御対象の状態量を算出する。具体的には、後述する数式で説明するように、3次の状態量を算出する。第1次の状態量は、目標値設定部111が設定した目標値と第2次の状態量との間の偏差を時間積分した値である。第2次の状態量は、エンジン回転数である。第3次の状態量は、エンジン回転数の変化の割合である。
等価制御入力演算部113、非線形制御入力演算部114、切換関数演算部115は、後述する手順にしたがって、それぞれスライディングモード制御における等価制御入力、非線形制御入力、切換関数σを算出する。
<本発明におけるスライディングモード制御について>
以下では本発明におけるスライディングモード制御の詳細を説明する。本発明においては、エンジン回転数の指令値に対する追従性と応答性を引き出すため、サーボ制御系を設計する。具体的には、上述の1〜3次の状態量を制御対象の状態量として用いる、拡大系のコントローラを設計する。この拡大系における状態量ベクトルXは、下記式1によって表される。xはエンジン回転数、rは目標値、x1〜x3は1〜3次の制御量である。
Figure 0006564732
この拡大系コントローラを設計するための状態方程式は、下記式2によって表される。zは式1におけるx1に対応する。式2を展開して整理すると、下記式3が得られる。Uは制御入力であり、Rは目標値である。
Figure 0006564732
Figure 0006564732
切換関数σは、下記式4によって定義される。Sは超平面である。
Figure 0006564732
等価制御入力は、制御対象を超平面上に安定させる作用を有する。制御対象が超平面上に安定しているとき、切換関数σについて下記式5が成り立つ。
Figure 0006564732
式5に対して式3を代入すると、下記式6が導かれる。式6にしたがって等価制御入力を設計することができる。
Figure 0006564732
超平面Sは、設計はシステムの極を利用し極配置法を用いてフィードバックゲインを超平面Sとして選定することにより、設計することができる。したがって下記式7に基づき超平面を設計することができる。
Figure 0006564732
切換関数σの値は、制御目標と超平面との間の距離を表しているので、切換関数σ=0を実現することが非線形制御入力の目標である。切換関数σ=0を実現するためのリアプノフ関数の候補を下記式8にしたがって選択する。
Figure 0006564732
スライディングモードが存在するのは下記式9が成り立つときである。このとき非線形制御入力Unlは下記式10によって表される。
Figure 0006564732
Figure 0006564732
Knlは、非線形制御入力の大きさを決める切換ゲインである。切換ゲインKnlが正値であれば式9を満たすので、安定なスライディングモードが実現される。平滑関数は、非線形制御入力を超平面の前後で切り換える際における変化率を制限することによりチャタリングを抑制する関数である。平滑関数は切換関数σの値とその絶対値によって構成されているので、符号関数sgn(σ)と同様の効果を発揮し、非線形制御入力を超平面の前後で切り替える作用を有する。ただし平滑関数パラメータにより、超平面前後における非線形制御入力の変化率を調整することができる。
モデル化誤差や外乱の最大値よりも切換ゲインKnlを大きく設定することにより、制御対象を超平面に拘束させる機能を向上することができる。他方で、切換ゲインKnlを大きく設定することは、超平面前後で非線形制御入力を大きく非連続的に変化させることと等しいので、制御段差が生じる。これにより、制御対象が高周波振動する現象(チャタリング)が生じ、制御対象の動作を不安定化させてしまう場合がある。
そこで本発明に係るTCU110は、式10における切換ゲインKnlを下記式11にしたがって定めることとした。これにより、非線形制御入力Unlは平滑関数にしたがって切り替えられるとともに、その大きさが式11によって定められる切換ゲインKnlにしたがって変動することになる。
Figure 0006564732
切換関数σの値は、制御対象から超平面までの距離(すなわち外乱量)を表す。式11における適応ゲインKσ1(第1パラメータ)は、外乱量の時間積分に基づき算出されるので、制御対象が超平面近傍に維持されている場合は切換ゲインKnlが小さくなり、安定的に切換関数σ=0となるように制御が実施される。これに対して、モデル化誤差、負荷変動、経年劣化にともなう非線形な特性変化などが生じている場合は、外乱量が大きいことになるので切換ゲインKnlが大きくなり、制御応答性やロバスト性が維持される。
切換関数σが0に立ち下がったとき切換ゲインKnlを即座に0にすると、非線形制御入力が0と0以外との間で頻繁に切り替わり、チャタリングを生じさせる可能性がある。そこでKσ1の第1項において時定数τを導入した。Kσ1の第1項は、切換関数σ=0になった後、時定数τに対応する時間が経過した時点で0になる。したがって、切換関数σ=0になったとしても、ある程度の時間はKσ1が0にならずに維持されるので、制御対象が超平面上に拘束される状態を維持することができる。これにより過剰なチャタリングを抑制することができる。
切換関数σが0に維持される期間が続いたとき、Kσ1は時定数τが経過した後に0となる。そうすると、Kσ1のみを用いるのであれば切換ゲインKnlもその期間は0となるので、外乱が生じたときに非線形制御入力が立ち上がるのが遅れる。すなわち外乱に対してロバスト性が弱くなってしまう。そこで切換関数σ=0であっても微小な非線形制御入力が維持されるように、Kσ2(第2パラメータ)を設けた。Kσ2の作用により、切換関数σとKσ1がともに0になっても微小な切換ゲインKnlが維持されるので、制御対象を超平面近傍に維持することができる。ただし切換関数σ=0のとき制御対象と超平面との間の距離が広がるのは望ましくないので、その許容範囲を考慮した安全率を乗じてKσ2が微小範囲内に維持されるように配慮した。
Kσ2を設定する手順として例えば以下のようにすることができる。制御運転開始時はKσ1を式11にしたがって逐次算出し、実際に得られたKσ1の最大値Kσ1_maxに安全率(1未満0超の値、例えば0.5〜0.8)を乗算したものをKσ2として用いることができる。これにより、スライディングモード制御の特徴を活かしつつ、定常時の安定性を得ることができる。
図3は、式11によって表される切換ゲインKnlを用いた非線形制御入力Unlの経時変化を表すタイミングチャートの例である。切換関数σのタイミングチャートを波形301のように設定した。波形302は、式11を用いて切換ゲインKnlを算出した場合における非線形制御入力Unlの波形である。波形303は、切換ゲインKnlが固定値である場合における非線形制御入力Unlの波形である。式10はいずれの波形においても共通である。
波形303においてはKnlの値がσの値によらず一定の値であるので、σの値が変化するのにともなってUnlが大きく変化して切換段差が生じる。これに対し波形302においてはKnlの値が切換関数σの値に応じて変化するので、σの値が小さい期間においては切換段差が軽減され安定的に制御できる。またσの値が大きい期間においてはKnlが大きくなるので、制御対象を超平面に拘束する性能が上がり、応答性を上げるとともにロバスト性が得られる。
図4は、TCU110の動作例を示すタイミングチャートである。図4において、制御対象の目標値401をステップ状に変化させたときの制御応答/切換関数/非線形制御入力の波形を示している。波形402/403/404は、式11にしたがって切換ゲインKnlを算出した場合における各波形である。波形406/407/408は、切換ゲインKnlが固定値である場合における各波形である。
波形402は、定常状態となった時刻ハにおいて制御応答が目標値に収束している。これに対し波形406は、時刻ハにおいても制御応答が目標値に収束していない。また切換関数σについて、波形403は時刻ロにおいて0に収束しているのに対して、波形407は0に収束するのが遅れていることが分かる。以下、これら波形の差異をもたらす要因について補足する。
時刻イにおいては、切換関数σと超平面との間の距離が大きいことに対応して、切換関数σは増加する。非線形制御入力の波形408は切換ゲインKnlが固定値であるので、十分な制御量が得られない。したがって制御応答の波形406は目標値に対して遅れている。他方で波形404は切換関数σに応じて切換ゲインKnlが変化するので、非線形制御入力が大きくなる。したがって制御目標を超平面上へ拘束する作用が強く働くので、σ=0へ速く到達できる。この作用により制御応答も速くなる。
制御応答が定常状態に達すると(時刻ハ)、波形404は切換関数σに応じて切換ゲインKnlを小さくするので、非線形制御入力は小さくなる。したがってUnlの振幅405は、波形408の振幅409と比較して小さい。これにより、定常状態において制御対象を超平面近傍に安定させ、チャタリングの影響を抑制することができる。
<本発明のまとめ>
本発明に係るTCU110は、スライディングモード制御における非線形制御入力のゲイン(切換ゲイン)Knlを、切換関数σの値に応じて動的に調整する。これにより、制御対象が超平面近傍であるときは切換ゲインKnlが小さくなるので、過剰なチャタリングを抑制して定常時の安定性を得ることができる。また例えば予期しない外乱や動特性の変化が生じたときは切換関数σが0から離れて切換ゲインKnlが大きくなるので、制御対象を超平面へ拘束する作用を強く働かせることができる。これにより、応答性とロバスト性を維持することができる。
本発明に係るTCU110によれば、切換ゲインKnlを動的に調整するので、あらかじめ切換ゲインKnlを状況ごとに設定しておく必要がなくなる。したがって、制御が複雑になることを抑制するとともに、ゲインマップなどをチューニングする工数を減少することができる。
<本発明の変形例について>
式10において、切換ゲインKnlに対して平滑関数を乗じているが、式10における平滑関数は符号関数sgn(σ)と同様の役割を有するので、平滑関数に代えて符号関数を用いてもよい。
以上の説明においては、変速機130が備えるモータ131をスライディングモード制御によって制御する例を説明した。これは、自動変速機の変速機構においては外乱要因が非常に多く、制御対象の動特性を一義に決めることが困難であり、制御にロバスト性をもたせることが非常に重要であることに鑑みたものである。しかし本発明の対象はこれに限られるものではなく、状態量が時間的に変化する任意の制御対象をスライディングモード制御によって制御する場合にも適用することができる。
例えば、油圧ソレノイドやモータなどの電制アクチュエータ、内燃機関、制動装置などの装置を制御対象としてスライディングモード制御を実施する場合において、非線形制御入力の切換ゲインを本発明にしたがって調整することができる。
上記各構成、機能、処理部、処理手段等は、それらの一部や全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記録装置、ICカード、SDカード、DVD等の記録媒体に格納することができる。
100:車両、110:TCU、111:目標値設定部、112:制御部、116:実測値検出部、117:状態量演算部、120:エンジン、130:変速機、140:モータドライバ、150:ECU。

Claims (4)

  1. 車両が搭載している自動変速機を制御する変速機制御装置であって、
    前記自動変速機の物理状態の実測値を取得する実測値取得部、
    前記実測値に基づき前記自動変速機の状態量を算出する状態量演算部、
    前記状態量の目標値を設定する目標値設定部、
    前記状態量が前記目標値となるように前記自動変速機を動作させる制御入力を算出するとともに前記制御入力にしたがって前記自動変速機を制御するための制御指令を出力する制御部、
    を備え、
    前記状態量演算部は、前記状態量として、第1次、第2次、および第3次状態量を算出し、
    前記第1次状態量は、前記目標値と前記第2次状態量との間の偏差を時間積分した値であり、
    前記第2次状態量は、前記状態量であり、
    前記第3次状態量は、前記第2次状態量の時間微分であり、
    前記制御部は、前記状態量を用いて表される切換関数によって構成された平滑関数または符号関数に対してさらに切換ゲインを乗じることにより得られ前記制御入力算出する非線形制御入力演算部を備え、
    前記非線形制御入力演算部は、時定数を加算した上で前記切換関数を時間積分して算出される第1パラメータを用いて、前記切換関数の値が大きいほど前記切換ゲインが大きくなるように、前記切換関数の値に応じて前記切換ゲインを変化させ、前記切換関数の値が0になっても前記時定数に対応する期間は前記第1パラメータが0にならないようにする
    ことを特徴とする変速機制御装置。
  2. 前記非線形制御入力演算部は、前記第1パラメータの最大値に対して1未満0超の安全係数を乗じることにより得られる第2パラメータと、前記第1パラメータとの和を、前記切換ゲインとして算出する
    ことを特徴とする請求項記載の変速機制御装置。
  3. 前記制御部は、前記切換関数の符号を表す符号関数を前記切換ゲインに対してさらに乗じ、または前記切換関数と前記切換関数の絶対値と平滑関数パラメータによって表される平滑関数を前記切換ゲインに対してさらに乗じることにより、前記制御入力を算出する
    ことを特徴とする請求項1記載の変速機制御装置。
  4. 前記非線形制御入力演算部は、下記式1にしたがって前記切換ゲインを算出する
    ことを特徴とする請求項1記載の変速機制御装置。
    Figure 0006564732
JP2016088355A 2016-04-26 2016-04-26 変速機制御装置 Expired - Fee Related JP6564732B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088355A JP6564732B2 (ja) 2016-04-26 2016-04-26 変速機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088355A JP6564732B2 (ja) 2016-04-26 2016-04-26 変速機制御装置

Publications (2)

Publication Number Publication Date
JP2017198266A JP2017198266A (ja) 2017-11-02
JP6564732B2 true JP6564732B2 (ja) 2019-08-21

Family

ID=60239215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088355A Expired - Fee Related JP6564732B2 (ja) 2016-04-26 2016-04-26 変速機制御装置

Country Status (1)

Country Link
JP (1) JP6564732B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276795A (ja) * 2001-03-21 2002-09-25 Unisia Jecs Corp 自動変速機の変速制御装置
JP2005135186A (ja) * 2003-10-30 2005-05-26 Toshiba Corp 規範モデル追従型制御システム及び規範モデル追従型制御方法
JP5516356B2 (ja) * 2010-11-17 2014-06-11 トヨタ自動車株式会社 スライディングモード制御装置の制御入力設定方法

Also Published As

Publication number Publication date
JP2017198266A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
JP4837558B2 (ja) モータ制御装置
EP3076261A1 (en) Machinery control device and gain determination method for friction compensation
JP2005135186A (ja) 規範モデル追従型制御システム及び規範モデル追従型制御方法
CN104977949B (zh) 用于调节马达转速的方法
JP7293905B2 (ja) 摩擦補償装置
KR101721777B1 (ko) 확장형 외란 관측기를 이용하여 1차 시스템을 제어하는 방법 및 장치
KR20210052504A (ko) 진동 억제 장치, 진동 억제 방법 및 프로그램
CN103454915A (zh) 用于执行位置发送器的调整装置的自适应位置调节的方法和装置
JP2004252924A (ja) アクチュエータの制御装置
JP3362053B2 (ja) 自動車のアクチュエータを制御する装置
CN110023857B (zh) 伺服控制装置
JP6564732B2 (ja) 変速機制御装置
CN109252970B (zh) 一种发动机转速控制方法、发动机及车辆
JP2007113736A (ja) 車両の駆動力制御装置
JP5845433B2 (ja) モータ駆動装置
CN117192977A (zh) 一种基于改进交叉耦合的双轴同步控制方法及系统
JP6307842B2 (ja) エンジン制御装置、方法及びプログラム
JP2020149178A (ja) 制御装置
WO2020003822A1 (ja) 制御装置、制御方法、情報処理プログラム、および記録媒体
KR101180055B1 (ko) 비례적분미분제어기 및 그 제어 방법
JP2021088285A (ja) 車両制御装置
JP2004044808A (ja) システム制御装置
JP3866212B2 (ja) アクチュエータの制御装置
JP6607097B2 (ja) 制御装置、制御方法、情報処理プログラム、および記録媒体
JP5961422B2 (ja) スライディングモード制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6564732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees