JP3855659B2 - 薄膜型電子源およびそれを用いた表示装置 - Google Patents

薄膜型電子源およびそれを用いた表示装置 Download PDF

Info

Publication number
JP3855659B2
JP3855659B2 JP2000537238A JP2000537238A JP3855659B2 JP 3855659 B2 JP3855659 B2 JP 3855659B2 JP 2000537238 A JP2000537238 A JP 2000537238A JP 2000537238 A JP2000537238 A JP 2000537238A JP 3855659 B2 JP3855659 B2 JP 3855659B2
Authority
JP
Japan
Prior art keywords
electron source
thin film
upper electrode
lower electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000537238A
Other languages
English (en)
Inventor
敏明 楠
睦三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP3855659B2 publication Critical patent/JP3855659B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of metal-insulator-metal [MIM] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

技術分野
本発明は、金属・絶縁体・金属の3層構造を有し、真空中に電子を放出する薄膜型電子源およびそれを用いた表示装置に関する。
背景技術
薄膜型電子源とは、上部電極・絶縁層・下部電極の3層薄膜構造をもち、上部電極と下部電極の間に、上部電極が正電圧になる極性の電圧を印加して、上部電極の表面から真空中に電子を放出させるものである。薄膜型電子源の動作原理を第2図に示した。上部電極13と下部電極11との間に駆動電圧20を印加して、絶縁層12内の電界を10MV/cm程度にすると、下部電極11中のフェルミ準位近傍の電子はファウラー・ノルドハイムのトンネル現象により障壁を透過し、絶縁層12、上部電極13の伝導帯へ注入されホットエレクトロンとなる。これらのホットエレクトロンのうち、上部電極13の仕事関数φ以上のエネルギーを有するものは、真空16中に放出される。トンネル現象を利用するため,絶縁層の膜厚は3〜15nm程度と非常に薄い。
この薄膜電子源は複数本の上部電極と、複数本の下部電極を直交させてマトリクスを形成すると、任意の場所から電子線を発生させることができるので、表示装置の電子源などに用いることができる。
これまで、Al−Al−Au構造のMIM(Metal−Insulator−Metal)構造などから電子放出が観測されている。特に下部電極にAl,絶縁層にその陽極酸化膜を用いた薄膜型電子源は,陽極酸化により高耐圧で,均一な膜厚のAl絶縁層が形成できるため,良質の電子放出が得られている。
発明の開示
薄膜型電子源を用いた表示装置の解決すべき課題は、寿命が不十分なことである。電界の3層構造端部での集中,上部電極材料の絶縁層中への拡散,絶縁層と上部電極の界面等への電荷蓄積による絶縁層の劣化がその主な原因である。端部での電界集中は、端部への厚い保護絶縁層の導入により解決されている。絶縁層中への上部電極材料の拡散は,上部電極材料に昇華エンタルピーの高い材料を用いることにより解決されている。一方,絶縁層の劣化は,駆動電圧の極性を交互に反転させて、蓄積した電荷を交互に開放する方法により抑制され寿命特性も改善されているが,さらに改善することが望まれる。
その為に対策すべき点として,絶縁層の電流−電圧特性に大きな非対称性が存在することがある。即ち,電子放出を起こす、上部電極が正電圧になる極性(順方向)の電圧を印加した際には,絶縁層に電流が流れやすいのに対し,下部電極が正電圧になる極性(逆方向)の電圧を印加した際には,絶縁層に電流を流れ難い。
これは、逆方向の電圧印加の際、上部電極−絶縁層界面近傍の絶縁層に電界が十分印加されないためである。このため,逆方向電圧を印加しても絶縁層の上部電極との界面近傍に蓄積した電荷を十分に開放することができない。したがって、駆動を続けるに従い、蓄積電荷と開放電荷の差分が上部電極界面近傍の絶縁層に蓄積されていき、絶縁層が劣化してしまう。
絶縁層の電流−電圧特性の非対称性の1つの原因は、陽極酸化膜の膜厚方向の組成の不均一性にある。第3図に陽極酸化膜の形成過程を模式的に示す。陽極酸化は電解液21中で下部電極11を陽極とし、Ptなどのシート電極22を陰極として化成電圧23を印加することにより、酸化が進行する。陽極酸化中の下部電極13のAlと絶縁層12のAl界面24では、電解液21から供給される酸素イオンO2−とAlが反応することにより酸化が進行する。また絶縁層12のAlと電解液21の界面25では、Al電極から供給されるアルミニウムイオンAl3+が酸化されることによりAlが成長する。このように絶縁層12となるAl膜の成長は2つの界面で起こるが、下部電極と絶縁層の界面24ではAlとO以外不純物のない環境で成長するので純粋なAlが成長するのに対し、絶縁層と電解液の界面25では、電解液21中の電解質のアニオン26が界面に引き寄せられAl中に取り込まれるため、アニオン26を不純物として含む絶縁層17が成長する。
このアニオン26を不純物として含む絶縁層17の存在のため、逆方向の電圧印加の際、上部電極−絶縁層界面近傍の電界が緩和されてしまりい、逆方向で電流が流れ難い原因となる。
もう1つの原因は、下部電極−絶縁層の界面と、上部電極−絶縁層の界面の界面構造の違いに起因する。下部電極−絶縁層界面は陽極酸化によって形成されるため、AlとAlが連続的に遷移する構造となる。一方、上部電極−絶縁層界面は、絶縁層上への上部電極材料の真空成膜により形成されるため、組成が急峻に遷移する。このような場合、電流―電圧特性に非対称性が生じることが報告されている(ジャーナル オブ ヴアキューム サイエンス アンド テクノロジーA、10巻、1992年、2991ページ:Jarnal of Vacuum Science and Technolgy A,10(1992)p2991)。
以上を、第4図の、従来の薄膜型電子源に順方向電圧を印加した際のバンド図と、その後逆方向電圧を印加した際のバンド図にまとめて示す。順方向電圧を印加した際、トンネル現象により下部電極11から絶縁層12、17に注入された電子は、一部真空中に放出され(e)、残りは上部電極13に流れ込む電子1と、上部電極13との界面近傍の絶縁層17に蓄積される蓄積電子2となる。この蓄積電子2が絶縁層劣化の原因となる。そこで逆方向電圧を印加することにより、蓄積電子2を開放したいのであるが、上部電極13との界面近傍の絶縁層17はアニオン26を含んでいるため、蓄積電子2を開放するのに十分な電界を印加できず、蓄積電子2は絶縁層17中に残留してしまう。
本発明の目的は、絶縁層の電流―電圧特性の非対称性の対称化を進め、薄膜型電子源の長寿命化が実現することにある。またこの薄膜型電子源を用いた表示装置を提供することにある。
上記目的は、下部電極、絶縁層、上部電極をこの順に積層した構造を有し、下部電極と上部電極の間に、上部電極が正電圧になる極性の電圧を印加したとき、上部電極の表面から真空中に電子を放出する薄膜型電子源において、下部電極が陽極酸化の可能な金属をAlに添加したAl合金からなり,絶縁層が下部電極の表面を陽極酸化した陽極酸化膜からなり、下部電極と上部電極の間に、電子放出が起きる順方向の10MV/cmの電界を印加したときの順方向ダイオード電流に対する、逆方向の10MV/cmの電界を印加したときの逆方向ダイオード電流の比を、絶縁層の下部電極に対する障壁高さと絶縁層の上部電極に対する障壁高さが等しい場合に換算したときの値が、0.12より大きい薄膜型電子源により達成できる。換算値が0.5以上の場合より効果がある。ここで、換算値は絶縁層の電流―電圧特性の非対称性の程度を表しており、1が完全に対称であることを表す。また、この値が1を超えても良い。この場合、逆方向電圧を印加による、絶縁層の上部電極との界面近傍の蓄積電荷を開放する能力が大きくなる。
下部電極に添加された陽極酸化の可能な金属として,Nd,Zr,Ta,Ti,NbおよびHfからなる群の中から選ばれた少なくとも1種を用いることができる。
上部電極として、Ir、Pt、Au、Ru、Rh、Al、Al合金、Ti、Cr、および導電性のITO、ZnO、SnO、IrOおよびPdOからなる群の中から選ばれた少なくとも1種を用いることができる。
また、以上のいずれかの薄膜型電子源と、この薄膜型電子源を駆動する駆動回路と、薄膜型電子源から放出された電子で励起されて発光する蛍光面等で表示装置を構成することにより上記目的を達成することができる。駆動回路として、下部電極と上部電極の間に、正負のパルス電圧を印加するものを用いると有効である。薄膜電子源が設られた基板と蛍光面が設けられた基板の貼り合わせにフリットガラスを用いると有効である。
さらに、上記目的は、薄膜型電子源と、この薄膜型電子源を駆動する駆動回路と、薄膜型電子源から放出された電子で励起されて発光する蛍光面を有する表示装置において、薄膜型電子源が下部電極、絶縁層、上部電極をこの順に積層した構造を有し、下部電極と上部電極の間に、上部電極が正電圧になる極性の電圧を印加したとき、上部電極の表面から真空中に電子を放出し、下部電極が陽極酸化の可能な金属をAlに添加したAl合金からなり,絶縁層が下部電極の表面を陽極酸化した陽極酸化膜からなり、薄膜電子源が設られた基板と蛍光面が設けられた基板がフリットガラスで貼り合わされており、この貼り合わせが上記2つの基板を酸素を含む雰囲気中で350℃以上450℃以下の温度に加熱することによりなされた表示装置により達成できる。
発明を実施するための最良の形態
実施例1
本発明の実施例1の薄膜型電子源を第5図〜第11図および第1図を用いて説明する。本発明に適用できるAl合金は陽極酸化によって酸化される金属を添加物として含むものである。添加物としては、たとえば、Nd、Zr、Ta、Ti、Hf、Nbなどが適用可能である。またこれらの材料を複数種類添加したAl合金も有効である。例えばAl−Ti−Ta合金などが挙げられる。これらの合金の添加量は0.1%〜10%程度が適当である。ここではNdを2%としたAl−Nd合金を用いた。
まず絶縁性の基板10上にAl−Nd合金膜を形成する。成膜には例えば、スパッタリング法を用いる。膜厚は300nmとした。成膜後はエッチングにより、薄膜電子源の下部電極11の形状に加工する(第5図)。つぎにこの下部電極11の表面を陽極酸化する。化成電圧を4Vとすれば、厚さ5.5nmの絶縁層12が形成される(第6図)。次に、レジスト膜などをマスクに用い下部電極11の側面のみを選択的に厚く(100nm)陽極酸化し,保護絶縁層14とする。これにより下部電極端部での電界集中を防止するとともに、放出に寄与しない側面からのリーク電流を低減できる(第7図)。
Al合金の表面を陽極酸化して形成する絶縁層12中には、合金材料の添加物が含まれることになるが、本実施例で用いたNdや、Ta、Hf、Ti、Zr、Nbなどは、陽極酸化によりAlと同時に酸化され、絶縁体となるので絶縁特性の劣化はない。そのため、下部電極11にAlを用いた場合同様、リーク電流は少ない。
その後、スパッタリング法により上部電極13を形成する。ここでは上部電極13は耐酸化性が高いIr、Pt、Auの3層膜とし、もっとも高昇華エンタルピー材料のIrが絶縁層に接するようにし、それぞれ膜厚を1nm、2nm、3nmとした(第8図)。
このようにして作製した直後の薄膜型電子源では、電流−電圧特性の非対称性が大きい。第9図は、この薄膜型電子源の電流−電圧特性を測定したものである。十分な電子放出が得られる10MV/cmの電界を印加したときの順方向ダイオード電流に対する逆方向ダイオード電流の比は0.0064である。この例では、絶縁層12の下部電極11に対する障壁高さと、絶縁層12の上部電極13に対する障壁高さが異なっているので、これらが等しい場合に換算すると0.12となり、対称性は低い。この原因は、先に述べたように、主として化成液に接する陽極酸化膜中に電解液中に存在したアニオンが含有されることと、界面の構造が違うためである。
アニオンに起因する非対称性をなくすには、アニオンを酸化して除去するか、不動態化することが効果的である。
アニオンの種類は使用する電解液によるが、Alの陽極酸化によく使用される酒石酸やクエン酸の場合、有機アニオンが含有されることにことになる。このような場合、酸素を含む雰囲気中で350℃〜450℃で加熱すれば、アニオンはCOやHOとなって除去される。またモリブデン酸等の金属酸アニオンを含む電解液の場合、金属酸アニオンを酸素を含む雰囲気中で酸化することにより不動態化させればよい。
一方、界面構造の改善には、加熱により上部電極−絶縁層界面で原子を相互拡散させ、下部電極−絶縁層界面と同様の連続的に遷移する界面を形成すればよい。したがって、上記のアニオン除去の加熱により同時に改善することが可能である。
この方法を用いる場合、陽極酸化膜以外の薄膜型電子源の構成部分が、酸素中の加熱によって劣化しないことが重要である。従来の構造では下部電極のAlが加熱による熱応力をうけ、絶縁層を突き破るヒロックを形成するため、下部電極と上部電極間がショートする不良が生じた。
本実施例では下部電極11として陽極酸化可能な金属を添加物として含むAl合金を用いているのでストレスマイグレーション耐性が高く、ヒロックが成長し難い。特に表面が陽極酸化膜で覆われている場合、熱応力の開放が抑制され、ヒロックができにくいので耐熱性が向上する。さらに酸素を含む雰囲気中の加熱では、酸化の効果によりヒロック形成がさらに抑制され、一層耐熱性が向上する。そのため350〜450℃の高温の熱処理を行っても、3〜15nmと薄い絶縁層がヒロックに突き破られることはない。
液晶ディスプレイ用のTFTの配線でもヒロック防止のためAl合金を用いているが、陽極酸化膜は150nm程度と厚い。これはAl合金を、アモルファスSiのCVD成膜のために真空中で加熱するため、よりヒロックができやすいためである。本発明では、酸素を含む雰囲気で加熱することにより3〜15nmとはるかに薄い陽極酸化膜でも、ヒロックの発生を抑制できている。
上部電極13にはIr、Pt、Auの積層膜を用いているが、これらの金属はいずれも耐酸化性が高く、350〜450℃の加熱ではほとんど酸化されない。したがって、これらの金属は上部電極として適する材料である。貴金属としては他にRh、Ruも用いることができる。もともと酸化されている導電性酸化物も上部電極材料として好都合である。さらにAlやAl合金等の表面が不動態化する金属も、酸化が表面だけで止まるので絶縁体にならず、電極として用いることが可能である。
第10図は本実施例で作製した薄膜型電子源の電流―電圧特性を測定したものである。十分な電子放出が得られる10MV/cmの電界を印加したときの順方向ダイオード電流に対する逆方向ダイオード電流の比は0.034である。また、絶縁層12の下部電極11に対する障壁高さと、絶縁層12の上部電極13に対する障壁高さが異なっているので、これらが等しい場合に換算すると0.66となり、加熱することにより対称性が高くなっている。
また、第11図は、上部電極13の絶縁層12に接する材料にもAl−Nd合金を用い、この試料を大気雰囲気中で加熱した後、電流−電圧特性の非対称性を調べたものである。順方向ダイオード電流に対する逆方向ダイオード電流の比は0.5であり、加熱することにより対称性が高くなっている。なお、この場合は、下部電極11と上部電極13の材料が同じなので、絶縁層12の下部電極11に対する障壁高さと絶縁層12の上部電極13に対する障壁高さが等しく、先の第9図、第10図の場合に行った、障壁高さが等しい場合への換算は不要である。
ここで、下部電極11と上部電極13の材料が異なる場合、すなわち絶縁層12の下部電極11に対する障壁高さと、絶縁層12の上部電極13に対する障壁高さが異なっている場合において、測定した電流・電圧特性における順方向ダイオード電流に対する逆方向ダイオード電流の比を、これらの障壁高さが等しい場合へ換算する方法を述べる。絶縁層12のそれぞれの電極11、13の材料に対する障壁高さは、それぞれの電極材料の真空との仕事関数で見積もられる。下部電極11の主たる材料であるAlの仕事関数は4.2eVであり、本発明で用いる材料で最も仕事関数の大きいのはIr,Ptの5.3eVである(金属データブック(丸善) 1984年発行 195頁)。一方、最も仕事関数の小さいのはTiの3.9eVである。Al−Alの界面の障壁高さは約2.65eVであることが知られているので、Ir−Al、pt−Al界面の障壁高さは3.75eV、Ti−Al界面の障壁高さは2.35eVとなる。
絶縁層12に印加されている電界を等しくして、それぞれの障壁高さで注入される電子の量をファウラーノルドハイムの式で求めると、Al−Al界面から注入される電流量に対するIr−Al、Pt−Al界面から注入される電流量の比は0.05となる。この結果は第10図の結果の0.034とほぼ一致している。
本実施例の結果、電流―電圧特性の非対称性の対称化が進んだ様子を、第4図と対比させた、第1図の薄膜型電子源のバンド構造で概念的に示す。順方向電圧を印加した際、トンネル現象によって絶縁層12に注入された電子は、真空中に放出される電子e、上部電極13に流れ込む電子1、上部電極13との界面近傍の絶縁層12中に蓄積される電子2となる。この後、逆方向電圧を印加すると、非対称性が改善されているため、上部電極13との界面近傍の絶縁層12中に蓄積電子2を開放するのに十分な電界が印加される。
このように、絶縁層12を構成する陽極酸化膜の膜質が均質化し、すなわち非対称性が一定の幅に中に改善されると、絶縁層12に印加される電界が均一になり(電界勾配一定)、駆動電圧の極性を交互に反転させ、蓄積電荷3を開放することが容易となる。
実施例2
本発明を用いた表示装置の実施例を第12図〜第18図を用いて説明する。まず薄膜型電子源マトリクスを形成した基板10を以下のように作製した。はじめに、ガラスなど絶縁性の基板10上に,スパッタリング法よりA−Nd合金膜を形成する。膜厚は300nmとした。この膜をフォトリソグラフィーとエッチングにより,ストライプにパターン化し、下部電極11を形成した。続いて,下部電極表面の陽極酸化により絶縁層12を形成する。ここでは絶縁層12の膜厚は6nmとした。つづいて保護絶縁層14を形成する。これは下部電極側面を選択的に厚く陽極酸化することにより形成した。ここではその膜厚を100nmとした(第12図)。
つづいて、スパッタリング法により上部電極13を下部電極11と直交する方向にストライプ状に形成する。上部電極13はIr、Pt、Auの3層膜とし、それぞれ膜厚を1nm、2nm、3nmとした。最後に上部電極13への給電線としてAlからなる上部電極バスライン15を形成した。以上で薄膜型電子源マトリクス基板が完成する(第13図)。
つぎに表示側基板の作製法を示す(第14図)。面板110には透光性のガラスなどを用いる。まず,表示装置のコントラストを上げる目的でブラックマトリクス120を形成する。ブラックマトリクス120は,PVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した溶液を面板110に塗布し,ブラックマトリクス120を形成したい部分以外に紫外線を照射して感光させた後,未感光部分を除去し、そこに黒鉛粉末を溶かした溶液を塗布し、PVAをリフトオフすることにより形成する。
次に赤色蛍光体111を形成する。蛍光体粒子にPVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した水溶液を面板110上に塗布した後,蛍光体を形成する部分に紫外線を照射して感光させた後,未感光部分を流水で除去する。このようにして赤色蛍光体111をパターン化する。パターンは第14図に示したようなストライプ状にパターン化する。このストライプパターンは一例であって,それ以外にも,ディスプレイの設計に応じて,たとえば,近接する4ドットで一画素を構成させた「RGBG」パターンでももちろん構わない。蛍光体膜厚は1.4〜2層程度になるようにする。同様にして,緑色蛍光体112と青色蛍光体113を形成する。蛍光体としては,例えば赤色にYS:Eu(P22−R),緑色にZnSiO:Mn,青色にZnS:Ag(P22−B)を用いればよい。
次いで,ニトロセルロースなどの膜でフイルミングした後,面板110全体にAlを,膜厚50〜300nm程度蒸着してメタルバック114とする。このメタルバック114が加速電極として働く。その後,面板110を大気中400℃程度に加熱してフィルミング膜やPVAなどの有機物を加熱分解する。このようにして,表示側基板が完成する。
このようにして作製した表示側基板と基板10とをスペーサ30を介し、周囲をフリットガラス115を用いて封着する(第15図)。面板110−基板10間の距離は1〜3mm程度になるようにスペーサ30の厚さを設定する。
ここでは,R(赤),G(緑),B(青)に発光するドット毎,すなわち上部電極3列づつにスペーサの支柱を設けているが,機械強度が耐える範囲で,支柱の数(密度)を減らしても構わない。スペーサ30の製作は,厚さ1〜3mm程度のガラスやセラミックスなどの絶縁板に例えばサンドブラスト法などで所望の形状の穴を加工する。
フリットガラス115による封着は、フリットガラス115のペーストに含まれるバインダを酸化して除去するため、酸素を含む雰囲気中で行われる。その温度はフリットガラス115の種類により若干異なるが、350℃〜450℃の範囲内である。したがって、フリットガラスを用いた封着を行えば、絶縁層の電流―電圧特性の非対称性が同時に改善されて対称化が進み、生産性の上で効果的である。
封着したパネルは,10−7Torr程度の真空に排気して封じきる。このようにして,薄膜電子源を用いた表示パネルが完成する。
このように本実施例では,面板110と基板10間の距離が1〜3mm程度と長いので,メタルバック114に印加する加速電圧を3〜6KVと高電圧に出来る。したがって,上述のように,蛍光体には陰極線管(CRT)用の蛍光体を使用できる。
第16図はこのようにして作製した表示パネルと駆動回路の結線図である。下部電極11は下部電極駆動回路40へ結線し,上部電極バスライン15は上部電極駆動回路50に結線する。n番目の下部電極11Knと,m番目の上部電極バスライン15Cmの交点を(n,m)で表すことにする。メタルバツク114には3〜6KV程度の加速電圧60を常時印加する。
第17図に,駆動回路の発生電圧波形の一例を示す。時刻t0ではいずれの電極も電圧ゼロであるので電子は放出されず,したがって,蛍光体は発光しない。時刻t1において,下部電極11 K1には−V1なる電圧を,上部電極バスライン15 C1,C2には+V2なる電圧を印加する。交点(1,1),(1,2)の下部電極11−上部電極13間には(V1+V2)なる電圧が印加されるので,(V1+V2)を電子放出開始電圧以上に設定しておけば,この2つの交点の薄膜型電子源からは電子が真空中に放出される。放出された電子はメタルバック114に印加された加速電圧60により加速された後,蛍光体に入射し,発光させる。時刻t2において,下部電極11のK2に−V1なる電圧を印加し,上部電極バスライン15のC1にV2なる電圧を印加すると,同様に交点(2,1)が点灯する。このようにして,上部電極バスライン15に印加する信号を変えることにより所望の画像または情報を表示することが出来る。また,上部電極バスライン15への印加電圧V1の大きさを適宜変えることにより,階調のある画像を表示することが出来る。反転電圧の印加は、ここでは下部電極の全てに−V1を印加した後、全下部電極にV3、全上部電極に−V3を印加することにより行った。V3+V3がV1+V2と同程度になるようにする。これにより、絶縁層12の上部電極13との界面近傍に蓄積した電荷が開放され、絶縁層の劣化が抑えられる。
第18図は駆動回路の発生電圧波形の別の例である。ここでは、各下部電極11に駆動電圧−V1を印加する前に反転電圧V4を印加している。
【図面の簡単な説明】
第1図は本発明の薄膜型電子源の動作状態のバンド構造図である。
第2図は薄膜型電子源の動作原理の説明図である。
第3図は陽極酸化の説明図である。
第4図は従来の薄膜型電子源の動作状態のバンド構造図である。
第5図は本発明の実施例1の薄膜型電子源の製造工程断面図である。
第6図は本発明の実施例1の薄膜型電子源の製造工程断面図である。
第7図は本発明の実施例1の薄膜型電子源の製造工程断面図である。
第8図は本発明の実施例1の薄膜型電子源の製造工程断面図である。
第9図は本発明の実施例1中の比較例で、絶縁層の対称化処理を施す前の薄膜型電子源の電流−電圧特性図である。
第10図は本発明の実施例1の一薄膜型電子源の電流−電圧特性図である。
第11図は本発明の実施例1の別の薄膜型電子源の電流−電圧特性図である。
第12図は本発明の実施例2の表示装置の表示パネルの製造工程図である。
第13図は本発明の実施例2の表示装置の表示パネルの製造工程図である。
第14図は本発明の実施例2の表示装置の表示パネルの製造工程図である。
第15図は本発明の実施例2の表示装置の表示パネルの製造工程図である。
第16図は本発明の実施例2の表示装置の表示パネルと駆動回路の結線図である。
第17図は本発明の実施例2の表示装置の駆動回路の発生電圧波形の一例である。
第18図は本発明の実施例2の表示装置の駆動回路の発生電圧波形の別の例である。

Claims (11)

  1. 下部電極、絶縁層、上部電極をこの順に積層した構造を有し、上記下部電極と上記上部電極の間に、上記上部電極が正電圧になる極性の電圧を印加したとき、上記上部電極の表面から真空中に電子を放出する薄膜型電子源において、上記下部電極は陽極酸化の可能な金属をAlに添加したAl合金からなり、上記下部電極と上記上部電極の表面を陽極酸化した陽極酸化膜からなり、上記下部電極と上記上部電極の間に、上記電子放出が起きる順方向の10MV/cmの電界を印加したときの順方向ダイオード電流に対する、逆方向の10MV/cmの電界を印加したときの逆方向ダイオード電流の比は、上記絶縁層の上記下部電極に対する障壁高さと上記絶縁層の上記上部電極に対する障壁高さが等しい場合に換算したとき、0.12より大きいことを特徴とする薄膜型電子源。
  2. 請求の範囲第1項記載の薄膜型電子源において、上記下部電極に添加された陽極酸化の可能な金属は、Nd、Zr、Ta、Ti、NbおよびHfからなる群の中から選ばれた少なくとも1種であることを特徴とする薄膜型電子源。
  3. 請求の範囲第1項記載の薄膜型電子源において、上記上部電極は、Ir、Pt、Au、Ru、Rh、Al、Al合金、Ti、Cr、および導電性のITO、ZnO、SnO2、IrO2およびPdOからなる群の中から選ばれた少なくとも1種であることを特徴とする薄膜型電子源。
  4. 請求の範囲第1項記載の薄膜型電子源において、上記順方向ダイオード電流に対する逆方向ダイオード電流の比は、0.5以上であることを特徴とする薄膜型電子源。
  5. 請求の範囲第4項記載の薄膜型電子源において、上記下部電極に添加された陽極酸化の可能な金属は、Nd、Zr、Ta、Ti、NbおよびHfからなる群の中から選ばれた少なくとも1種であることを特徴とする薄膜型電子源。
  6. 請求の範囲第4項記載の薄膜型電子源において、上記上部電極は、Ir、Pt、Au、Ru、Rh、Al、Al合金、Ti、Cr、および導電性のITO、ZnO、SnO2、IrO2およびPdOからなる群の中から選ばれた少なくとも1種であることを特徴とする薄膜型電子源。
  7. 請求の範囲第1項乃至第6項のいずれか一項に記載の薄膜型電子源と、上記薄膜型電子源を駆動する駆動回路と、上記薄膜型電子源から放出された電子で励起されて発光する蛍光面を有することを特徴とする表示装置。
  8. 請求の範囲第7項記載の表示装置において、上記駆動回路は、上記下部電極と上記上部電極の間に、正負パルス電圧を印加するものであることを特徴とする表示装置。
  9. 請求の範囲第7項記載の表示装置において、上記薄膜型電子源が設けられた基板と上記蛍光面が設けられた基板はフリットガラスで貼り合わされていることを特徴とする表示装置。
  10. 請求の範囲第7項記載の表示装置において、上記薄膜型電子源の下部電極は陽極酸化の可能な金属をAlに0.1〜10%添加したAl合金からなり、上記絶縁層は、上記下部電極の表面を陽極酸化した陽極酸化膜からなり、上記薄膜型電子源が設けられた基板は、酸素を含む雰囲気中で350℃以上450℃以下の温度で加熱処理されていることを特徴とする表示装置。
  11. 請求の範囲第10項記載の表示装置において、上記駆動回路は、上記下部電極と上記上部電極の間に、正負のパルス電圧を印加するものであることを特徴とする表示装置。
JP2000537238A 1998-03-19 1998-03-19 薄膜型電子源およびそれを用いた表示装置 Expired - Fee Related JP3855659B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001184 WO1999048123A1 (fr) 1998-03-19 1998-03-19 Source couche mince d'electrons et affichage produit au moyen de celle-ci

Publications (1)

Publication Number Publication Date
JP3855659B2 true JP3855659B2 (ja) 2006-12-13

Family

ID=14207834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000537238A Expired - Fee Related JP3855659B2 (ja) 1998-03-19 1998-03-19 薄膜型電子源およびそれを用いた表示装置

Country Status (5)

Country Link
US (1) US6320324B1 (ja)
JP (1) JP3855659B2 (ja)
KR (1) KR100372605B1 (ja)
TW (1) TW388910B (ja)
WO (1) WO1999048123A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1208800C (zh) * 2001-10-29 2005-06-29 松下电工株式会社 场致发射型电子源及其驱动方法
JP4203954B2 (ja) * 2002-12-26 2009-01-07 株式会社日立製作所 画像表示装置
JP2006107741A (ja) * 2004-09-30 2006-04-20 Hitachi Ltd 画像表示装置とその製造方法
US7531405B2 (en) * 2005-02-28 2009-05-12 Qimonds Ag Method of manufacturing a dielectric layer and corresponding semiconductor device
JP4644148B2 (ja) * 2006-03-10 2011-03-02 株式会社日立製作所 画像表示装置
JP4670717B2 (ja) * 2006-04-14 2011-04-13 株式会社日立製作所 薄膜型電子源
GB2478674B (en) 2009-01-06 2014-05-07 Access Business Group Int Llc Smart cookware

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368795A (ja) * 1991-06-14 1992-12-21 Fuji Xerox Co Ltd 薄膜トランジスタ内蔵薄膜el素子
JP3746080B2 (ja) * 1994-02-15 2006-02-15 株式会社日立製作所 薄膜型電子源の駆動方法
JPH0831302A (ja) * 1994-07-18 1996-02-02 Toshiba Corp 電子放出素子
JP2909719B2 (ja) * 1995-01-31 1999-06-23 キヤノン株式会社 電子線装置並びにその駆動方法
US5874808A (en) * 1996-12-15 1999-02-23 Busta; Heinz H. Low turn-on voltage volcano-shaped field emitter and integration into an addressable array

Also Published As

Publication number Publication date
WO1999048123A1 (fr) 1999-09-23
KR20010041399A (ko) 2001-05-15
KR100372605B1 (ko) 2003-02-15
TW388910B (en) 2000-05-01
US6320324B1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP3864857B2 (ja) 画像表示装置
JP3855659B2 (ja) 薄膜型電子源およびそれを用いた表示装置
JPH11204024A (ja) 薄膜型電子源、これを用いた表示パネルおよび表示装置
JP2006253032A (ja) 画像表示装置
JP3630036B2 (ja) 薄膜型電子源、およびそれを用いた表示装置
JP2000030603A (ja) 薄膜型電子源、その駆動方法および製造方法並びにこれを用いた表示装置
JPH10153979A (ja) 表示装置および電子線応用機器
JP5156295B2 (ja) 画像表示装置及び電子放出素子
JP4209556B2 (ja) 表示装置
JP2001084891A (ja) 薄膜型電子源およびこれを用いた表示装置
JP4126987B2 (ja) 画像表示装置
JP2008257985A (ja) 画像表示装置とその製造方法
JP3605911B2 (ja) 薄膜型電子源およびそれを用いた表示装置
JP2002367503A (ja) 薄膜型電子源及びその作製方法、及び画像表示装置
JP4341682B2 (ja) 表示装置
JP4141591B2 (ja) 表示装置の製造方法
JP2007048613A (ja) 画像表示装置とその製造方法
JP2001023509A (ja) 薄膜型電子源および表示装置
JP2005191012A (ja) 電子源
JPH1195716A (ja) 表示装置および電子線応用機器
KR20020030827A (ko) 전자원, 전자원의 제조방법 및 표시장치
JP2004111053A (ja) 電界放出型画像表示装置
EP1553616A1 (en) Cold cathode type flat panel display
JP2002164006A (ja) 画像表示装置
JP2001023551A (ja) 表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

LAPS Cancellation because of no payment of annual fees