JP2004111053A - 電界放出型画像表示装置 - Google Patents

電界放出型画像表示装置 Download PDF

Info

Publication number
JP2004111053A
JP2004111053A JP2002234020A JP2002234020A JP2004111053A JP 2004111053 A JP2004111053 A JP 2004111053A JP 2002234020 A JP2002234020 A JP 2002234020A JP 2002234020 A JP2002234020 A JP 2002234020A JP 2004111053 A JP2004111053 A JP 2004111053A
Authority
JP
Japan
Prior art keywords
upper electrode
electron source
power supply
electrode
supply wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234020A
Other languages
English (en)
Inventor
Masakazu Sagawa
佐川 雅一
Mutsumi Suzuki
鈴木 睦三
Toshiaki Kusunoki
楠 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002234020A priority Critical patent/JP2004111053A/ja
Publication of JP2004111053A publication Critical patent/JP2004111053A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】線順次駆動方式で画像表示を行うホットエレクトロン型電子源を有する画像表示装置において、走査線に沿った輝度ムラ発生を防止する。
【解決手段】ホットエレクトロン型電子源の上部電極給電配線を走査線とし、下部電極を信号線する。上部電極給電配線は下部電極よりもシート抵抗が低い。これにより、走査線の配線シート抵抗を数m/?まで低減可能となり、ホットエレクトロン型電子源を利用して40インチの大画面FEDを構成しても、走査線に生じる電圧降下量を許容範囲以下に抑えることが可能となり、輝度むらのない高品質な画像を得ることができる。
【選択図】図41

Description

【0001】
【発明の属する技術分野】
本発明は、冷陰極電子源を利用した画像表示装置に係り、特にホットエレクトロン型電子源を利用した自発光型フラットパネルディスプレイに好適な画像表示装置に関する。
【0002】
【従来の技術】
微少で集積可能な冷陰極電子源を利用する画像表示装置(ディスプレイ)は、FED(Field Emission Display)と呼称される。冷陰極電子源には、電界放出型電子源とホットエレクトロン型電子源とに大別され、前者には、スピント型電子源、表面伝導型電子源、カーボンナノチューブ型電子源が属し、後者には金属―絶縁体―金属を積層したMIM(Metal−Insulator−Metal)型電子源、金属―絶縁体―半導体電極を積層したMIS(Metal−Insulator−Semiconductor)型電子源が含まれる。
【0003】
MIM型電子源については、例えば特開平10−153979号公報に開示されている。MIM型電子源の構造と動作原理を模式的に示した図1と図2とを用いて説明する。
【0004】
上部電極13と下部電極11との間に駆動電圧Vdを印加して、絶縁層12内の電界を1〜10MV/cm程度にすると、下部電極11中のフェルミ準位近傍の電子はトンネル現象により障壁を透過し、絶縁層(トンネル絶縁膜)12、上部電極13の伝導帯へ注入されホットエレクトロンとなる。これらのホットエレクトロンのうち、上部電極13の仕事関数φ以上のエネルギーをもって電極表面に達したものが真空20中に放出される。なお、図1中の14は保護絶縁層、15は上部電極給電配線下層、16は上部電極給電配線、17は層間絶縁膜である。
【0005】
【発明が解決しようとする課題】
FEDにおいて画像表示を行う場合、線順次駆動方式と呼ばれる駆動方法が標準的に採用されている。これは、毎秒60枚(フレーム)の静止画を表示する際、各フレームにおける表示を走査線(水平方向)毎に行う方式である。従って同一走査線上にある、信号線の数に対応する冷陰極電子源は全て同時に動作することになる。
【0006】
動作時走査線には、サブピクセルに含まれる冷陰極電子源が消費する電流に、全信号線数と色数3(RGB)をかけた電流が流れる。この走査線電流は、配線抵抗により走査線に沿った電圧降下をもたらすため、冷陰極電子源の均一な動作を妨げることになる。
【0007】
電圧降下の大小は、冷陰極電子源の方式でことなる。例えば、電界放出型電子源のスピント型電子源では、電子源電流のほぼ100%近くが真空に放出され、アノード(蛍光面)に達するので、ゲート線(走査線)に流れる電流は極めて小さく電圧降下の影響は少ない。
【0008】
これに対し、同じ電界放出型でも表面伝導型電子源や、ホットエレクトロン型であるMIM型及びMIS型電子源では、高々数%の電子源電流がアノードに達するだけで、大部分は無効電流としてゲート線(走査線)に流れ込む。従って同じアノード電流で比較すると、これらの電子源は、スピント型に比べ電圧降下による影響を受けやすい。
【0009】
本発明者等は、MIM型電子源の研究開発に従事し、数種類のFEDを設計、試作し、画像表示の検証を行ってきた。それらのFEDでは常に走査線を下部電極11に選んできた。
【0010】
これはホットエレクトロン型電子源では上部電極13の膜厚はホットエレクトロンの散乱を少なくするために数nm程度と非常に薄くしなければならず、必然的にシート抵抗が100Ω/□以上と高くなるため、走査線とするには不向きであったからである。
【0011】
一方、下部電極11は、当初から膜厚300nmのアルミニウム膜で構成し、走査線ピッチは信号線ピッチの三倍程度と余裕があるため線幅を十分取ることで、シート抵抗を数100mΩ/□に抑えることが容易であった。このため下部電極11を走査線にすることは極く自然な選択であった。
【0012】
ところがこの構成では、画面サイズの大型化に伴い顕著となる電圧降下を抑制することが困難であることが次第に明らかとなった。
【0013】
FEDでは、所定の輝度を得るために要する、走査線電流Isは次式(1)で表せる。
Is=Je×S/α  …(1)
ただし、Je:所定の輝度を得るためのアノード電流密度、S:表示画面の面積、α:エミッタ電流に占めるアノード電流の割合(電子放出効率とも呼ばれる)。
【0014】
これにより、走査線の両端に生じる電圧降下量Vdropは以下の式(2)で表せる。
Vdrop=1/2×Id×Rs×(L/W)  …(2)
ただし、Id:駆動電流、Rs:走査線のシート抵抗、L:表示画面の長辺長、W:走査線の線幅。
【0015】
ここで仮に解像度を一定に保ったまま、画面サイズを大きくしていくこと想定した場合、電圧降下量VdropはRs×S/αに比例して増加することが判る。
【0016】
これを抑制するには、
(1)電子放出係数をあげる。→上部電極13の厚さを薄くすれば良いが、下限に限界があり比例縮小はできない。
(2)シート抵抗Rsを下げる。→電極の厚さを増やすとともに、抵抗率を下げる。しかしながら下記(a)〜(c)の理由により改善が期待できない。
【0017】
(a)トンネル絶縁膜12は陽極酸化アルミナにする必要から、他の材料への変更は不可である。
(b)成膜条件の変更(例えば基板温度の高温化)によりアルミニウムの抵抗を下げることは可能であるが、膜表面の平滑性を悪くし、トンネル絶縁膜の信頼性を損なう。
(c)膜厚を増やすとアルミニウム配線は熱処理工程でヒロックやボイドを発生しやすくなる。トンネル絶縁膜を壊さないためには、電極の表面平滑性を維持することが不可欠である。
【0018】
以上の観点から、MIM型電子源が40インチクラスの大画面ディスプレイに対応するためには、シート抵抗をスケーリング可能な走査線を与えることが不可欠である。
【0019】
したがって、本発明の目的は、上記課題を解決することにあり、ホットエレクトロン型電子源を利用した画像表示装置において、走査線に生じる電圧降下量を許容範囲以下に抑えることにより、画面サイズを大きくしても輝度むらのない高品質な画像が得られる画像表示装置を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために本発明者等はこの種のホットエレクトロン型電子源を利用した画像表示装置について種々実験検討したところ、MIM型電子源における上部電極給電配線を走査線に、下部電極を信号線として、線順次駆動方式により画像表示する構成にすればよいこと、また、上部電極給電配線は、電圧降下量Vdropを許容範囲(例えば、0.5V以下)に収めるべく、膜厚、抵効率(材質)、成膜方法を変更し、シート抵抗を低減すればよいという知見を得た。
【0021】
本発明は、かかる知見に基づいてなされたものであり、下記に示す発明の実施の形態において本発明の特徴を説明する。
【0022】
【発明の実施の形態】
上記目的を達成する第1の発明は、基板上に下部電極と、絶縁薄膜からなる電子加速層と、上部電極とを順次積層した構造を有するホットエレクトロン型電子源であって、前記上部電極に正極性の電圧を印加した際に、前記上部電極表面から電子を放出する複数個の電子源素子がマトリックス状に配列され、前記複数個の電子源素子のうち、行もしくは列方向の電子源素子の下部電極に駆動電圧を印加する複数の第1の電極と、前記複数個の電子源素子のうち、列もしくは行方向の電子源素子の上部電極に駆動電圧を印加する、前記第1の電極よりもシート抵抗が低い複数の第2の電極とを有する第1の基板(電子源基板)と、
枠部材ならびに支柱部材と、
蛍光体層を有する第2の基板(表示側基板)とを備え、かつ前記第1の基板、前記枠部材及び、前記第2の基板とで囲まれる空間が真空雰囲気に保持される表示素子を備えた画像表示装置であって、
前記第1の電極を信号線、前記第2の電極を走査線として、線順次駆動方式により画像情報を表示することを特徴とする。
【0023】
上記目的を達成する第2の発明は、上記ホットエレクトロン型電子源を構成する前記第2の電極が、前記第1の電極よりもシート抵抗の低い金属膜を含む上部電極給電配線上層と、前記上部電極に電気的接続を行う上部電極給電配線下層との積層膜で構成される多層配線構造体からなることを特徴とする。
【0024】
上記目的を達成する第3の発明は、上記ホットエレクトロン型電子源を構成する前記第2の電極が、前記第1の電極よりもシート抵抗の低い金属膜からなり、しかもその端部が上部電極と電気的接続を行うために傾斜構造をしていることを特徴とする。
【0025】
上記目的を達成する第4の発明は、上記下部電極をAlもしくは例えばAl−Ndの如きAl合金、絶縁薄膜からなる電子加速層を前記下部電極の表層部を陽極酸化した絶縁薄膜、前記上部電極を例えばIr、Pt、Au等の貴金属、前記上部電極給電配線下層を例えばTi、Zr、Hf、V、Nb、Ta、Cr、Mo、Wもしくはこれらの合金からなる高融点金属、上部電極給電配線上層を前記上部電極給電配線下層より膜厚の厚い例えばAlもしくはAl合金、またはAlもしくはAl合金より抵抗率の低いAu、Ag、Ni、Cuもしくはこれらの合金で構成したことを特徴とする。
【0026】
【実施例】
以下、図面にしたがい本発明の実施例を具体的に説明する。
<実施例1>
本発明の第1の実施例としてMIM型電子源の製法を示す図3〜図12を用いて説明する。この製法によって最終的に得られるMIM型電子源の構造を後述する図12に示すように、ここでは、上部電極13が上部電極給電配線下層15に電気的に接続し、この上部電極給電配線下層15が下部電極11よりも厚いアルミニウムもしくはアルミニウム合金からなる上部電極給電配線上層16により裏打ちされている場合の製造方法を開示する。
【0027】
まず、図3に示すようにガラス等の絶縁性の基板10上に下部電極11用の金属膜を成膜する。なお、図3(a)は平面図、図3(b)はA−A’断面図、図3(c)はB−B’断面図を示す。下部電極材料としてはAlやAl合金を用いる。ここでは、Ndを2原子量%ドープしたAl−Nd合金を用いた。成膜には例えば、スパッタリング法を用いる。膜厚は300 nmとした。
【0028】
成膜後は、ホトリソグラフィ工程及びエッチング工程によりストライプ形状の下部電極11を形成する。エッチングは例えば燐酸、酢酸、硝酸の混合水溶液によるウェットエッチングを適用する。
【0029】
次に、保護絶縁層14、絶縁層12の形成方法を図4、図5を用いて説明する。なお、図4(a)及び図5(a)は平面図、図4(b)及び図5(b)はA−A’断面図、図4(c)及び図5(c)はB−B’断面図を示す。
【0030】
まず、図4に示すように下部電極11上の電子放出部となる部分をレジスト膜19で覆い、その他の露出部分を選択的に厚く陽極酸化し、酸化膜からなる保護絶縁層14とする。化成電圧を100Vとすれば、厚さ約136 nmの保護絶縁層14が形成される。
【0031】
つぎに図5に示すようにレジスト膜19を除去し、電子放出部となる残りの下部電極11の表面を薄く陽極酸化する。例えば化成電圧を6Vとすれば、下部電極11上に厚さ約10 nmの絶縁層12が形成される。この薄い絶縁層12が電子加速層(トンネル絶縁層)となる。
【0032】
次に図6に示すように上部電極13への給電配線となる電極膜(上部電極給電配線下層15及び上部電極給電配線上層16からなる積層膜)をスパッタリング法で成膜する。なお、図6(a)は平面図、図6(b)はA−A’断面図、図6(c)はB−B’断面図を示す。
【0033】
ここでは積層膜となる上部電極給電配線下層15の材料としてタングステン(W)を、上部電極給電配線上層16の材料として下部電極11と同じAl−Nd合金を用いた。
【0034】
また、その膜厚は、上部電極給電配線下層15は後で形成する上部電極13が上部電極給電配線下層15の段差で断線しないように数10nm程度と薄くし、上部電極給電配線上層16はシート抵抗を十分下げるために5umと厚くした(体裁上図面には厚さを薄くして描いた)。加えて成膜条件を変更し、基板温度を室温より高く設定することで、アルミニウムの粒成長を促し抵抗率を下げた。この場合、当然表面の平滑性は損なわれるが、MIM型電子源の機能には何ら影響はない。
【0035】
続いて、図7に示すようにホトリソグラフィリソグラフィ工程及びエッチング工程により上部電極給電配線上層16を下部電極11とは直交する方向にストライプ状に加工する。なお、図7(a)は平面図、図7(b)はA−A’断面図、図7(c)はB−B’断面図を示す。
【0036】
この場合、エッチングには例えば、 燐酸、酢酸、硝酸の混合水溶液(PAN)を使用する。続いて上部電極給電配線下層15を同じレジストパターンを流用してウェットエッチングにより加工する。Wのウェットエッチングにはアンモニアと過酸化水素の混合水溶液が適している。
【0037】
上部電極給電配線(下層15及び上層16の積層膜)の分離が完了した後、図8に示すように、層間絶縁膜17となる絶縁膜をスパッタにより全面に成膜する。ここではSiOを利用し、膜厚は300nmとした。なお、図8(a)は平面図、図8(b)はA−A’断面図、図8(c)はB−B’断面図を示す。この層間絶縁膜17は、後程上部電極を画素毎に分離させるとともに、真空容器にくみ上げた際に支柱にかかる大気圧から電子源を保護する役割がある。
【0038】
図9において、後述する電子放出部18を開けるために、ホトリソグラフィ工程とドライエッチング工程とにより層間絶縁膜17の一部を開口する(開口窓18a)。ドライエッチングのガスにはCFとOとの混合ガスが好適である。なお、図9(a)は平面図、図9(b)はA−A’断面図、図9(c)はB−B’断面図を示す。
【0039】
図10において、層間絶縁膜17をマスクとして、上述のPAN液を使用して上部電極給電配線上層16を除去する。この時、ウェットエッチングに伴うサイドエッチングにより、“ひさし”状の出張りが層間絶縁膜17に形成される。なお、図10(a)は平面図、図10(b)はA−A’断面図、図10(c)はB−B’断面図を示す。
【0040】
図11において、ホトリソグラフィ工程とウェットエッチング工程とにより上部電極給電配線下層15のW膜の一部を取り除き、トンネル絶縁膜12を露出させる。Wのエッチングにはアンモニアと過酸化水素の混合水溶液が好適である。この時留意することは、電子放出部において後から作られる上部電極13との電気的な接点を確保するため、上部電極給電配線上層16からはみ出すように上部電極給電配線下層15を加工することである。露出したトンネル絶縁膜12には、再度陽極酸化を施し、加工による損傷の修復を行う。なお、図11(a)は平面図、図11(b)はA−A’断面図、図11(c)はB−B’断面図を示す。
【0041】
図12において、露出したトンネル絶縁膜12を覆い、しかも上部電極給電配線下層15の周縁部を覆うように上部電極13を形成して電子源基板が完成する。
【0042】
上部電極13の成膜はスパッタで行う。上部電極13としては例えばIr、Pt、Auの積層膜を用い、それぞれの膜厚は数nmとする。成膜の際、上部電極13は、前述の“ひさし”部で被覆不良を起こし、画素毎に分離される。これによりホトリソグラフィ等に起因する上部電極13やトンネル絶縁膜12への損傷を回避することができた。なお、図12(a)は平面図、図12(b)はA−A’断面図、図12(c)はB−B’断面図を示す。
【0043】
以上により、本実施例の電子源基板においては、積層された上部電極給電配線上層15及び16を走査線とし、下部電極11を信号線とするものであり、走査線のシート抵抗値が10mΩ/□と云う低い抵抗値のMIM型電子源基板を得ることができた。
【0044】
本発明の画像表示装置に用いる第1の基板の一例が、この図12に示した電子源基板に該当する。すなわち、第1の基板の第1の電極が下部電極11に、そして第2の電極が積層された上部電極給電配線上層15及び16に該当する。
【0045】
<実施例2>
本発明の第2の実施例としてMIM型電子源の製法を示す図13〜19図を用いて説明する。この製法によって最終的に得られるMIM型電子源の構造を後述する図19に示すように、ここでは、上部電極13が上部電極給電配線下層15に電気的に接続し、この上部電極給電配線下層15が下部電極11よりも抵抗率の低い金属からなる上部電極給電配線上層16により裏打ちされている場合の製造方法を開示する。
【0046】
先ず実施例1の図3から図5に従いトンネル絶縁層12までを形成する。次に図13に示すごとく、上部電極給電配線下層15と上部電極給電配線上層16をこの順序でスパッタにより成膜する。なお、図13(a)は平面図、図13(b)はA−A’断面図、図13(c)はB−B’断面図を示す。
【0047】
上部電極給電配線上層16の材料として、アルミニウムより抵抗率の小さい銅Cuを5um堆積する。上部電極給電配線下層15の材料としては、下地となる絶縁層14と上部電極給電配線上層16であるCu膜との密着性を確保する観点から、高融点金属、特にクロムCrが好ましい。Crの膜厚は実施例1のWと同じ理由から数10nm程度に設定する。
【0048】
つづく図14から図19は、実施例1における図7から図12と同じ手法を踏襲する。ただし、本実施例では上部電極給電配線下層15が実施例1のWからCrに、上部電極給電配線上層16が実施例1のAlからCuに変わっているので、図19のエッチング工程において対応するウェットエッチング液はそれぞれ、硝酸第二セリウムアンモニウム水溶液および塩化第二鉄水溶液に変更する必要がある。
【0049】
以上により、本実施例の電子源基板においては、積層された上部電極給電配線上層15及び16を走査線とし、下部電極11を信号線とするものであり、走査線のシート抵抗値が5mΩ/□と云う低い抵抗値のMIM型電子源基板を得ることができた。
【0050】
本発明の画像表示装置に用いる第1の基板の一例が、この図19に示した電子源基板に該当する。すなわち、第1の基板の第1の電極が下部電極11に、そして第2の電極が積層された上部電極給電配線上層15及び16に該当する。
【0051】
<実施例3>
本発明の第3の実施例としてMIM型電子源の製法を示す図20〜図27を用いて説明する。この製法によって最終的に得られるMIM型電子源の構造を後述する図27に示すように、ここでは、実施例2の構成を拡張し、上部電極給電配線下層15を裏打ちする上部電極給電配線上層16の形成をメッキにより厚付けする場合の製造方法を開示する。
【0052】
図20において、後の工程で上部電極給電配線上層16をメッキで形成する際の下地種膜となる16’にCuを、Cuと下地との接着性を確保するため上部電極給電配線下層15としてCrを、スパッタにより連続成膜した。上部電極給電配線下層15の膜厚は実施例1におけるWと同じく数10nm程度に設定する。
【0053】
上部電極給電配線上層をメッキで形成する際の下地種膜16’の膜厚に関して特に制限はないが、メッキ処理に際して上部電極給電配線下層15が溶出しないよう、被覆性を考慮して定める。なお、図20(a)は平面図、図20(b)はA−A’断面図、図20(c)はB−B’断面図を示す。
【0054】
図21はレジストパターン19の形成工程を示しており、周知のリソグラフ技術により上記メッキ下地種膜16’上に下部電極11に直交するレジストパターン19を形成する。
【0055】
そして、図22はメッキ下地種膜16’及び上部電極給電配線下層15のエッチング工程及びメッキ下地種膜16’上へのメッキ工程を示している。すなわち、上記メッキ下地種膜16’に下部電極11に直交するレジストパターンを付与した後、このレジストパターン19をマスクにしてメッキ下地種膜16’及び上部電極給電配線下層15の二重層を選択的にエッチング除去して配線パターンを形成した。その後、レジストパターンを除去し、メッキ下地種膜16’の上に電気メッキもしくは無電解メッキによりCuを厚付けし、所望とする厚さ5umの上部電極給電配線上層16を形成する。なお、図21(a)及び図22(a)は平面図、図21(b)及び図22(b)はA−A’断面図、図21(c)及び図22(c)はB−B’断面図を示す。
【0056】
図23から図24までは、層間絶縁膜17及び実施例1における図8から図9と同じ手順に従う。すなわち、層間絶縁膜17となるSiOをスパッタにより成膜し、後述する電子放出部18を開けるために、ホトリソグラフィ工程とドライエッチング工程とにより層間絶縁膜17の一部を開口する(開口窓18a)。ドライエッチングのガスにはCFとOとの混合ガスが好適である。なお、図23(a)及び図24(a)は平面図、図23(b)及び図24(b)はA−A’断面図、図23(c)及び図24(c)はB−B’断面図を示す。
【0057】
図25において、電子放出部18の上部電極給電配線上層16をウェットエッチングにより除去するが、この際上部電極給電配線上層のメッキ種膜16’も同時に取り除かれ、上部電極給電配線下層15が露出する。
【0058】
図26から図27までは、実施例1における図11から図12と同様の手法により、上部電極給電配線下層15を加工し、トンネル絶縁膜12に再度陽極酸化を施した後、上部電極13を成膜する。
【0059】
図26において、上部電極給電配線下層15を加工(開口)するに際して、本実施例では実施例1のWをCrに替えているので、エッチング液をCr用の硝酸第二セリウムアンモニウム水溶液に変更する必要があることは言うまでもない。
【0060】
以上により、本実施例の電子源基板においては、積層された上部電極給電配線上層15及び16を走査線とし、下部電極11を信号線とするものであり、走査線のシート抵抗値が5mΩ/□と云う低い抵抗値のMIM型電子源基板を得ることができた。
【0061】
本発明の画像表示装置に用いる第1の基板の一例が、この図27に示した電子源基板に該当する。すなわち、第1の基板の第1の電極が下部電極11に、そして第2の電極が積層された上部電極給電配線上層15及び16に該当する。
【0062】
<実施例4>
本発明の第4の実施例としてMIM型電子源の製法を示す図28〜図33を用いて説明する。ここでは、後述する図33に示すように上部電極給電配線下層15がなく、上部電極13が上部電極給電配線16”のテーパー状の端部と電気的に接続される場合の製造方法を開示する。
【0063】
先ず実施例1の図3から図5に従いトンネル絶縁層12までを形成する。次に図28に示すごとく、上部電極給電配線16”をスパッタにより成膜する。上部電極給電配線16”としては、実施例1に示したAlもしくはAl合金が好ましく、特にNdを2原子量%ドープしたAl−Nd合金が好適である。ここではスパッタ法によりAl−Nd合金を5um成膜した。この際、基板温度を室温より高く設定してAl合金の粒径は大きくし、より抵抗率を下げた。なお、図28(a)は平面図、図28(b)はA−A’断面図、図28(c)はB−B’断面図を示す。
【0064】
図29において、ホトリソグラフィリソグラフィ工程、エッチング工程により上部電極給電配線16”を下部電極11とは直交する方向にストライプ状に加工する。ウェットエッチングには例えば、 燐酸、酢酸、硝酸の混合水溶液(PAN)を使用する。なお、図29(a)は平面図、図29(b)はA−A’断面図、図29(c)はB−B’断面図を示す。
【0065】
図30において、層間絶縁膜17となる多層膜をスパッタにより成膜する。ここでは層間絶縁膜下層17aにSiNと、層間絶縁膜上層17bにSiOを使用し、膜厚はそれぞれ300nmとした。この層間絶縁膜17は、後程上部電極13を画素毎に分離させるとともに、真空容器にくみ上げた際支柱にかかる圧力から電子源を保護する役割もある。なお、図30(a)は平面図、図30(b)はA−A’断面図、図30(c)はB−B’断面図を示す。
【0066】
図31において、電子放出部18を開けるために、ホトリソグラフィとドライエッチングにより層間絶縁膜の一部を開口する(開口窓18a)。ドライエッチングのガスにはCFとOとの混合ガスが好適である。この時層間絶縁膜を構成する2つの膜は、異なる速さでエッチングされるため、層間絶縁膜下層17aがより大きなサイドエッチングを受け、この部分に実施例1と同様な“ひさし”が形成される。なお、図31(a)は平面図、図31(b)はA−A’断面図、図31(c)はB−B’断面図を示す。
【0067】
図32において、ホトリソグラフィによりレジストパターンを付与し、上述のPANを使用して電子放出部18の上部電極給電配線16”を除去する。この際、電子放出部において後から作られる上部電極13との電気的な接続を図るため、剥離を伴いながらエッチングが進行するよう、レジストの硬化温度を通常より下げて密着力を落とした。これにより上部電極給電配線16”の端部には、極めて緩やかなテーパー(テーパー角が5度以下)がついた。露出したトンネル絶縁膜12には、再度陽極酸化を施し、加工による損傷を修復する。なお、図32(a)は平面図、図32(b)はA−A’断面図、図32(c)はB−B’断面図を示す。
【0068】
最後に図33において、上部電極膜13を形成して電子源基板が完成する。上部電極の成膜はスパッタで行う。上部電極13としては例えばIr、Pt、Auの積層膜を用い、それぞれの膜厚は数nmとする。この際、上部電極13は、前述の“ひさし”部で被覆不良を起こし、画素毎に分離される。これによりホトリソグラフィ等に起因する上部電極13やトンネル絶縁膜12への損傷を回避することができた。
【0069】
以上により、本実施例の電子源基板においては、上部電極給電配線16”を走査線とし、下部電極11を信号線とするものであり、走査線のシート抵抗値が10mΩ/□と云う低い抵抗値のMIM型電子源基板を得ることができた。
【0070】
本発明の画像表示装置に用いる第1の基板の一例が、この図33に示した電子源基板に該当する。すなわち、第1の基板の第1の電極が下部電極11に、そして第2の電極が上部電極給電配線16”に該当する。
【0071】
<実施例5>
本発明の第5の実施例としてMIM型電子源の製法を示す図34〜図37を用いて説明する。ここでは、後述する図37に示すように上部電極13が上部電極給電配線下層15に電気的に接続し、かつ上部電極給電配線下層15が下部電極11よりもシート抵抗の低い印刷材料(上部電極給電配線上層16)によって裏打ちされている場合の製造方法を開示する。
【0072】
先ず実施例1の図3から図5に従いトンネル絶縁層12までを形成する。次に図34に示すごとく、上部電極給電配線下層15をスパッタにより成膜する。上部電極給電配線下層15の材料としては、印刷材料の焼結工程で酸化を防止する観点から、貴金属もしくは高融点金属が好ましい。ここではWを選択するが、膜厚は実施例1のWと同じ理由から数10nm程度に設定する。なお、図34(a)は平面図、図34(b)はA−A’断面図、図34(c)はB−B’断面図を示す。
【0073】
図35において、スクリーン印刷法もしくはインクジェット法により、上部電極給電配線上層16を印刷する。用いる材料は感光性あるいは非感光性のいずれでもかまわないが、できるだけ低温で焼結可能な材料が好ましい。ここでは銀ペーストを選択し、膜厚は10umに設定する(体裁上図面には厚さを薄くして描いた)。印刷が完了したら所定の条件(420℃、大気中、10分)で焼成を行う。なお、図35(a)は平面図、図35(b)はA−A’断面図、図35(c)はB−B’断面図を示す。
【0074】
図36において、ホトリソグラフィとウェットエッチングにより上部電極給電配線下層15のW膜の一部を取り除き、トンネル絶縁膜12を露出させる。Wのエッチングにはアンモニアと過酸化水素の混合水溶液が好適である。この時留意することは、電子放出部18において後から作られる上部電極13との電気的な接点を確保するため、上部電極給電配線上層16からはみ出すように上部電極給電配線下層15を加工することである。露出したトンネル絶縁膜12には、再度陽極酸化を施し、加工による損傷を修復する。なお、図36(a)は平面図、図36(b)はA−A’断面図、図36(c)はB−B’断面図を示す。
【0075】
最後に図37において、上部電極膜13を形成して電子源基板が完成する。電極の成膜はスパッタで行う。上部電極13としては例えばIr、Pt、Auの積層膜を用い、それぞれの膜厚は数nmとする。この際、シャドーマスクを利用して、画素毎に電極を分離した。これによりホトリソグラフィ等に起因する上部電極やトンネル絶縁膜12への損傷を回避することができた。
【0076】
以上により、本実施例の電子源基板においては、上部電極給電配線下層15及び上層16を走査線とし、下部電極11を信号線とするものであり、走査線のシート抵抗値が2mΩ/□と云う低い抵抗値のMIM型電子源基板を得ることができた。
【0077】
本発明の画像表示装置に用いる第1の基板の一例が、この図37に示した電子源基板に該当する。すなわち、第1の基板の第1の電極が下部電極11に、そして第2の電極が上部電極給電配線下層15及び上層16に該当する。
【0078】
<実施例6>
ここでは、実施例6のMIM型電子源基板を用いて、画像表示装置全体の製造方法を説明する。実施例1から6いずれのMIM型電子源基板を用いた場合でも後述の表示装置製造方法は同じである。
【0079】
まず、実施例6の手法にしたがって基板10上にMIM型電子源基板を作製する。説明のため、図38に(3×3)ドットのMIM型電子源基板の例を示した。但し、実際は表示ドット数に対応した数のMIM型電子源マトリックスを形成する。図38(a)が平面図、図38(b)がA−A’断面図、図38(c)がB−B’断面図である。実施例1〜5では説明しなかったが、MIM型電子源マトリックスを表示装置に使用する場合、下部電極11、上部電極給電配線16”の電極端部は回路接続のため電極面を露出しておかなければならない。
【0080】
図39により画像表示装置として上記電子源基板に対向して配置する表示側基板(面板と略称)の作製方法を説明する。なお、図39(a)は平面図、図39(b)はA−A’断面図、図39(c)はB−B’断面図を示す。
【0081】
基板となる面板110には透光性のガラスなどを用いる。まず、画像表示装置のコントラストを上げる目的でブラックマトリックス120を形成する。ブラックマトリックス120は,PVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した溶液を面板110に塗布し,ブラックマトリックス120を形成したい部分以外に紫外線を照射して感光させた後,未感光部分を除去し、そこに黒鉛粉末を溶かした溶液を塗布し、PVAをリフトオフすることにより形成する。
【0082】
次に赤色蛍光体111を形成する。蛍光体粒子にPVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した水溶液を面板110上に塗布した後、蛍光体を形成する部分に紫外線を照射して感光させた後、未感光部分を流水で除去する。このようにして赤色蛍光体111をパターン化する。パターンは図39に示したようなストライプ状にパターン化する。
【0083】
同様にして、緑色蛍光体112と青色蛍光体113を順次形成する。蛍光体としては、例えば赤色にYS:Eu(P22−R)、緑色にZnS:Cu,Al(P22−G)、青色にZnS:Ag(P22−B)を用いればよい。
【0084】
次いで、ニトロセルロースなどの膜でフィルミングした後、面板110全体にAlを、膜厚75 nm程度蒸着してメタルバック114とする。このメタルバック114が加速電極として働く。その後、面板110を大気中400℃程度に加熱してフィルミング膜やPVAなどの有機物を加熱分解する。このようにして、表示側基板が完成する。
【0085】
このようにして製作した表示側基板(面板)110と電子源基板10とをスペーサ30を介し、周囲の枠116をフリットガラス115を用いて封着し、画像表示装置の表示パネルを組み立てる。図40に貼り合わせた表示パネルのA−A’断面〔図40(a)〕とB−B’断面〔図40(b)〕に相当する部分を示す。なお、表示パネルのA−A’断面は図38(a)及び図39(a)と同じ方向の断面であり、B−B’断面は図38(b)及び図39(b)と同じ方向の断面を示している。
【0086】
面板110−電子源基板10間の距離は1〜3mm程度になるようにスペーサ30の高さを設定する。スペーサ30は、例えば板状のガラス製またはセラミックス製を上部電極給電配線16”上に配置する。この場合、スペーサが表示基板側のブラックマトリックス120の下に配置されるため、スペーサ30は発光を阻害しない。
【0087】
ここでは、説明のため、R(赤)、G(緑)、B(青)に発光するドット毎、すなわち、上部電極給電配線16”の上に全てスペーサ30を立てているが,実際は機械強度が耐える範囲で、スペーサ30の枚数(密度)を減らし、大体1cmおきに立てればよい。
【0088】
また、本実施例では述べなかったが、支柱状のスペーサ、格子状のスペーサを使用する場合でも同様な手法によりパネル組み立てが可能である。
【0089】
封着したパネルは、10−7Torr程度の真空に排気して、封じきる。封じ後、ゲッターを活性化し、パネル内を高真空に維持する。例えば、Baを主成分とするゲッター材の場合、高周波誘導加熱等によりゲッター膜を形成できる。また、Zrを主成分とする非蒸発型ゲッターを用いてもよい。このようにして、MIM型電子源を用いた表示パネルが完成する。
【0090】
このように本実施例では,面板110と電子源基板10間の距離は1〜3mm程度と長いので、メタルバック114に印加する加速電圧を1〜10KVと高電圧に出来る。したがって、上述のように、蛍光体には陰極線管(CRT)用の蛍光体を使用できる。
【0091】
図41はこのようにして製作した画像表示装置パネルの駆動回路への結線図である。下部電極11は信号線駆動回路40へ結線し、上部電極給電配線16”は走査線駆動回路50に結線する。m番目の上部電極給電配線16”につながれた走査線駆動回路Smと、n番目の下部電極11につながれた信号線駆動回路Dnの交点に位置する画素は、座標(m,n)で表される。メタルバック114には1〜10KV程度の加速電圧(電源:高電圧発生回路)60を常時印加する。
【0092】
図42は、各駆動回路における発生電圧波形の一例を示す。
時刻t0ではいずれの電極も電圧ゼロであるので電子は放出されず、蛍光体は発光しない。
【0093】
時刻t1において、上部電極給電配線16”のうちS1だけにV1なる電圧をかけ、下部電配線11のうちD2、D3には−V2なる電圧を印加する。交点(1,2)、(1,3)において下部電極11と上部電極給電配線16”間には(V1+V2)なる電圧が印加されるので、(V1+V2)を電子放出開始電圧以上に設定しておけば、これらのMIM型電子源からは電子が真空中に放出される。放出された電子はメタルバック114に印加された加速電圧60により加速された後、蛍光体に入射し、発光を起こす。
【0094】
同様に時刻t2において、上部電極給電配線16”のS2にV1なる電圧を印加し、下部電極11のD3に−V2なる電圧を印加すると、同様に交点(2,3)が点灯する。
【0095】
このようにして、上部電極給電配線16”に印加する信号を変えることにより所望の画像または情報を表示することが出来る。また、下部電極11への印加電圧−V2の大きさを適宜変えることにより、階調のある画像を表示することが出来る。
【0096】
時刻t=t5において、トンネル絶縁膜12中に蓄積される電荷を開放するための反転電圧の印加を行う。すなわち、上部電極給電配線16”の全てに−V3を加え、同時に全下部電極11に0Vを印加する。
【0097】
以上により、走査線に生じる電圧降下量を許容値以下に抑えたMIM型FEDを作ることができた。
【0098】
ここに挙げた電圧降下量の許容値は、一義的に定まるものではなく、種々の条件により変わりうるものであることを指摘しておく。
【0099】
例えば、輝度ムラの評価基準は人間の知覚を考慮した上で決めなければならない。また、電圧降下量をあらかじめ駆動回路側で補正したうえで、駆動することも十分可能である。許容される値は大きくなる余地は十分にあり、その分シート抵抗を下げなくても良い場合がありうる。その時には、製造を容易にし歩留まりを確保する観点から、上部電極給電配線16”の膜厚を薄く設定すべきであり、上述の議論は一般性を失うことはない。
【0100】
また、ここで開示がなかった他の電子源、例えばMIS型あるいは弾道伝導(BSD)型など、放出効率が10%より小さなホットエレクトロン型電子源についても、上述の議論をそのまま当てはめることができる。すなわち、マトリックスを構成する2本の配線のうち、シート抵抗が低く、シート抵抗を下げやすい配線を走査線に定めることは極めて有効である。
【0101】
【発明の効果】
以上の実施例で具体的に示したとおり、走査線を上部電極給電配線に選ぶことにより、材質・膜厚・成膜条件に制約が事実上なくなる。その結果、走査線のシート抵抗を、10mΩ/□から数mΩ/□に下げることが可能となった。
【0102】
これにより、MIM型電子源を利用して40インチの大画面FEDを構成しても、走査線に生じる電圧降下量を許容範囲以下に抑えることができ、輝度むらのない高品質な画像を得ることができるようになった。
【図面の簡単な説明】
【図1】MIM型電子源の構造を示す図である。
【図2】MIM型電子源の動作原理を示す図である。
【図3】本発明のMIM型電子源の製法を示す図である。
【図4】本発明のMIM型電子源の製法を示す図である。
【図5】本発明のMIM型電子源の製法を示す図である。
【図6】本発明のMIM型電子源の製法を示す図である。
【図7】本発明のMIM型電子源の製法を示す図である。
【図8】本発明のMIM型電子源の製法を示す図である。
【図9】本発明のMIM型電子源の製法を示す図である。
【図10】本発明のMIM型電子源の製法を示す図である。
【図11】本発明のMIM型電子源の製法を示す図である。
【図12】本発明のMIM型電子源の製法を示す図である。
【図13】本発明のMIM型電子源の製法を示す図である。
【図14】本発明のMIM型電子源の製法を示す図である。
【図15】本発明のMIM型電子源の製法を示す図である。
【図16】本発明のMIM型電子源の製法を示す図である。
【図17】本発明のMIM型電子源の製法を示す図である。
【図18】本発明のMIM型電子源の製法を示す図である。
【図19】本発明のMIM型電子源の製法を示す図である。
【図20】本発明のMIM型電子源の製法を示す図である。
【図21】本発明のMIM型電子源の製法を示す図である。
【図22】本発明のMIM型電子源の製法を示す図である。
【図23】本発明のMIM型電子源の製法を示す図である。
【図24】本発明のMIM型電子源の製法を示す図である。
【図25】本発明のMIM型電子源の製法を示す図である。
【図26】本発明のMIM型電子源の製法を示す図である。
【図27】本発明のMIM型電子源の製法を示す図である。
【図28】本発明のMIM型電子源の製法を示す図である。
【図29】本発明のMIM型電子源の製法を示す図である。
【図30】本発明のMIM型電子源の製法を示す図である。
【図31】本発明のMIM型電子源の製法を示す図である。
【図32】本発明のMIM型電子源の製法を示す図である。
【図33】本発明のMIM型電子源の製法を示す図である。
【図34】本発明のMIM型電子源の製法を示す図である。
【図35】本発明のMIM型電子源の製法を示す図である。
【図36】本発明のMIM型電子源の製法を示す図である。
【図37】本発明のMIM型電子源の製法を示す図である。
【図38】本発明のMIM型電子源を用いた表示装置の製法を示す図である。
【図39】本発明のMIM型電子源を用いた表示装置の製法を示す図である。
【図40】本発明のMIM型電子源を用いた表示装置の製法を示す図である。
【図41】本発明を用いた表示装置での駆動回路への結線を示した図である。
【図42】本発明の表示装置での駆動電圧波形を示した図である。
【符号の説明】
10…基板、
11…下部電極、
12…トンネル絶縁層、
13…上部電極、
14…保護絶縁層、
15…上部電極給電配線下層、
16、16’…上部電極給電配線上層、
16”…上部電極給電配線、
17…層間絶縁膜、
17a…層間絶縁膜下層、
17b…層間絶縁膜上層、
18…電子放出部、
18a…開口窓、
19…レジスト、
20…真空、
30…スペーサ、
40…信号線駆動回路、
50…走査線駆動回路、
60…高電圧発生回路、
110…面板、
111…赤色蛍光体、
112…緑色蛍光体、
113…青色蛍光体、
114…メタルバック、
115…フリットガラス、
116…枠ガラス。

Claims (6)

  1. 基板上に下部電極と、電子加速層と、上部電極とを順次積層した構造を有する電子源であって、前記上部電極に正極性の電圧を印加した際に、前記上部電極表面から電子を放出する複数個の電子源素子がマトリックス状に配列され、前記複数個の電子源素子のうち、行もしくは列方向の電子源素子の下部電極に駆動電圧を印加する複数の第1の電極と、前記複数個の電子源素子のうち、列もしくは行方向の電子源素子の上部電極に駆動電圧を印加する、複数の第2の電極とを有する第1の基板と、
    部材と、
    蛍光体層を有する第2の基板とを備え、かつ前記第1の基板、前記枠部材及び、前記第2の基板とで囲まれる空間が真空雰囲気に保持される表示素子を備えた画像表示装置であって、
    前記第1の電極を信号線、前記第2の電極を走査線として、線順次駆動方式により画像情報を表示することを特徴とする画像表示装置。
  2. 上記電子源を構成する前記第2の電極が、前記第1の電極よりもシート抵抗の低い金属膜を含む上部電極給電配線上層と、前記上部電極に電気的接続を行う上部電極給電配線下層との積層膜で構成される多層配線構造体からなることを特徴とする請求項1記載の画像表示装置。
  3. 上記電子源を構成する前記第2の電極が、前記第1の電極よりもシート抵抗の低い金属膜からなり、しかもその端部が上部電極と電気的接続を行うために傾斜構造をしていることを特徴とする請求項1記載の画像表示装置。
  4. 上記下部電極をAlもしくはAl合金、絶縁薄膜からなる電子加速層を前記下部電極の表層部を陽極酸化した絶縁薄膜、前記上部電極を貴金属、前記上部電極給電配線下層を高融点金属、上部電極給電配線上層を前記上部電極給電配線下層より膜厚の厚いAlもしくはAl合金、またはAlもしくはAl合金より抵抗率の低いAu、Ag、Ni、Cuもしくはこれらの合金で構成したことを特徴とする請求項1乃至3のいずれか一つに記載の画像表示装置。
  5. 上記上部電極を構成する貴金属をIr、PtもしくはAuとし、上記上部電極給電配線下層を構成する高融点金属をTi、Zr、Hf、V、Nb、Ta、Cr、Mo、Wもしくはこれらの合金とすることを特徴とする請求項4記載の画像表示装置。
  6. 基板上に下部電極と、絶縁薄膜からなる電子加速層と、上部電極とを順次積層した構造を有する電子源であって、前記上部電極に正極性の電圧を印加した際に、前記上部電極表面から電子を放出する複数個の電子源素子がマトリックス状に配列され、前記複数個の電子源素子のうち、行もしくは列方向の電子源素子の下部電極に駆動電圧を印加する複数の第1の電極と、前記複数個の電子源素子のうち、列もしくは行方向の電子源素子の上部電極に駆動電圧を印加する、複数の第2の電極とを有する第1の基板と、
    部材と、
    蛍光体層を有する第2の基板とを備え、かつ前記第1の基板、前記枠部材及び、前記第2の基板とで囲まれる空間が真空雰囲気に保持される表示素子を備えた画像表示装置であって、
    前記第1の電極を信号線、前記第2の電極を走査線として、線順次駆動方式により画像情報を表示することを特徴とする画像表示装置。
JP2002234020A 2002-07-25 2002-08-09 電界放出型画像表示装置 Pending JP2004111053A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234020A JP2004111053A (ja) 2002-07-25 2002-08-09 電界放出型画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002216227 2002-07-25
JP2002234020A JP2004111053A (ja) 2002-07-25 2002-08-09 電界放出型画像表示装置

Publications (1)

Publication Number Publication Date
JP2004111053A true JP2004111053A (ja) 2004-04-08

Family

ID=32300518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234020A Pending JP2004111053A (ja) 2002-07-25 2002-08-09 電界放出型画像表示装置

Country Status (1)

Country Link
JP (1) JP2004111053A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253032A (ja) * 2005-03-11 2006-09-21 Hitachi Ltd 画像表示装置
CN100507992C (zh) * 2004-04-29 2009-07-01 三星Sdi株式会社 具有分隔开的接地装置的电子发射显示器(eed)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507992C (zh) * 2004-04-29 2009-07-01 三星Sdi株式会社 具有分隔开的接地装置的电子发射显示器(eed)
US7679584B2 (en) 2004-04-29 2010-03-16 Samsung Sdi Co., Ltd. Electron Emission Display (EED) with separated grounds
JP2006253032A (ja) * 2005-03-11 2006-09-21 Hitachi Ltd 画像表示装置

Similar Documents

Publication Publication Date Title
US6873115B2 (en) Field emission display
US7417379B2 (en) Cold cathode type flat panel display
US20080238293A1 (en) Self-Luminous Planar Display Device
US6765347B2 (en) Display device
JP2006253032A (ja) 画像表示装置
JP3630036B2 (ja) 薄膜型電子源、およびそれを用いた表示装置
US6617774B1 (en) Thin-film electron emitter device having multi-layered electron emission areas
JPH11204024A (ja) 薄膜型電子源、これを用いた表示パネルおよび表示装置
US20070159075A1 (en) Image display device
US20060197435A1 (en) Emissive flat panel display device
JP2004111053A (ja) 電界放出型画像表示装置
JP2005216606A (ja) 平面型表示装置
JP4126987B2 (ja) 画像表示装置
JP2008078161A (ja) 冷陰極型フラットパネルディスプレイ
US20070273268A1 (en) Planar Image Display Device and Manufacturing Method Thereof
JP4209556B2 (ja) 表示装置
JP3598267B2 (ja) 画像表示装置
JP3136415B2 (ja) 画像表示装置の製造方法
JP2001256907A (ja) 画像表示装置
WO2001026128A1 (fr) Source d'electrons, procede de fabrication, et dispositif d'affichage
JP3226442B2 (ja) 画像形成装置
JP2001084891A (ja) 薄膜型電子源およびこれを用いた表示装置
JP2004207090A (ja) 画像表示装置
EP1553616A1 (en) Cold cathode type flat panel display
JP2001023510A (ja) 薄膜型電子源および表示装置並びに電子線描画装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

RD02 Notification of acceptance of power of attorney

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A02 Decision of refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A02