JP3825573B2 - 同期回路とその遅延回路 - Google Patents

同期回路とその遅延回路 Download PDF

Info

Publication number
JP3825573B2
JP3825573B2 JP03857499A JP3857499A JP3825573B2 JP 3825573 B2 JP3825573 B2 JP 3825573B2 JP 03857499 A JP03857499 A JP 03857499A JP 3857499 A JP3857499 A JP 3857499A JP 3825573 B2 JP3825573 B2 JP 3825573B2
Authority
JP
Japan
Prior art keywords
circuit
signal
delay
clocked inverter
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03857499A
Other languages
English (en)
Other versions
JP2000235429A (ja
Inventor
克明 磯部
恒夫 稲場
浩伸 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03857499A priority Critical patent/JP3825573B2/ja
Priority to US09/505,204 priority patent/US6359480B1/en
Publication of JP2000235429A publication Critical patent/JP2000235429A/ja
Priority to US10/003,312 priority patent/US6731149B2/en
Application granted granted Critical
Publication of JP3825573B2 publication Critical patent/JP3825573B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)
  • Dram (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばシンクロナスDRAM等に適用され、外部クロック信号に同期した信号を発生する同期回路に関する。
【0002】
【従来の技術】
例えば外部クロック信号に同期した内部クロック信号を発生する回路としては、例えばSAD(Synchronous Adjustable Delay)方式の同期回路がある。この同期回路はフィードバックループを用いずに、クロック信号を複数の単位遅延素子からなる遅延線へ供給することにより、クロック信号の周期を直接測定し、この測定した周期の情報を状態保持部に記憶させる。この状態保持部に記憶された情報をもとに新たなクロック信号を複数の単位遅延素子からなる遅延線へ供給し、外部クロック信号に対して周期が整数倍遅れた遅延量を有するクロック信号を生成して同期させる。
【0003】
【発明が解決しようとする課題】
この種の同期回路において、外部クロック信号と同期をとった内部クロック信号の同期精度は単位遅延素子の遅延量に依存する。データを高速に転送する場合、クロック信号の周波数を高くする必要が生じる。このため、クロック信号の周期が単位遅延素子の遅延量に比較して無視できない程度に高くなると同期がとれなくなる虞がある。
【0004】
本発明は、上記課題を解決するためになされたものであり、その目的とするところは、クロック信号の周波数が高くなった場合においても同期精度を向上し得る同期回路を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明の同期回路は、複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、前記第1の遅延線を伝搬される前進パルス信号の伝搬位置を検出し、前記第2の遅延線を伝搬する後進パルス信号を制御する状態保持部とを具備し、前記第1、第2の遅延線を構成する前記単位遅延素子は、制御信号に応じて前記前進パルス信号又は前記後進パルス信号を伝搬する直列接続された複数のクロックドインバータ回路を有し、各クロックドインバータ回路は、前記単位遅延素子に入力する信号が第1のレベルからそれより高い第2のレベルに変化するときに応答する複数の第1のトランジスタ、前記単位遅延素子に入力する信号が前記第2のレベルから第1のレベルに変化するときに応答する複数の第2のトランジスタとを含み、複数の前記第1、第2のトランジスタのうち、前記単位遅延素子に入力する信号の立ち上がりに応答する前記第1、第2のトランジスタの電流駆動能力は、他の前記第1、第2のトランジスタの電流駆動能力より大きく設定されていることを特徴とする。
【0006】
前記第1のトランジスタのチャネル幅は、前記第2のトランジスタのチャネル幅より大きく設定される。
【0007】
前記第1のトランジスタのチャネル長は、前記第2のトランジスタのチャネル長より短く設定される。
【0008】
前記第1のトランジスタの閾値電圧は、前記第2のトランジスタの閾値電圧より小さく設定される。
【0009】
前記第1のトランジスタが形成される基板の電圧は、前記第2のトランジスタが形成される基板の電圧より高く設定される。
【0010】
また、本発明の同期回路は、複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、前記第1の遅延線を構成する単位遅延素子に対応して配置され、第1の遅延線伝搬される前進パルス信号を検出してセットされ、前記第2の遅延線に伝搬される後進パルス信号に応じてリセットされる複数の状態保持回路を有し、隣接する一対の前記状態保持回路が共にセットされたセット状態、隣接する一対の前記状態保持回路が共にリセットされたリセット状態、隣接する一対の前記状態保持回路がセット、リセットされた中間状態を有し、前記第2の遅延線を制御する状態保持部とを具備する。
【0011】
前記第2の遅延線は、前記状態保持部がセット状態の場合、前段の単位遅延素子からのパルス信号を通過し、前記状態保持部がリセット状態の場合、前段の単位遅延素子からのパルス信号に代えて前記単位遅延素子に供給されるクロック信号を通過し、前記状態保持部が中間状態の場合、前段の単位遅延素子からのパルス信号に代えて前記クロック信号を単位遅延素子が有する遅延量の1.5倍だけ遅延して通過する。
【0012】
前記第2の遅延線を構成する単位遅延素子は、前記クロック信号を通過するクロックド・インバータ回路を有し、前記状態保持部が前記中間状態であるとき、前記クロックドインバータの制御電圧を前記リセット状態の制御電圧とセット状態の制御電圧の中間に設定される。
【0013】
前記第2の遅延線を構成する単位遅延素子は、前記クロック信号を通過するクロックド・インバータ回路を有し、前記状態保持部が前記中間状態であるとき導通されるクロックド・インバータ回路を構成するトランジスタのチャネル幅、チャネル長、閾値電圧、基板電圧のうちの少なくとも一つを変化させ、前記クロックド・インバータ回路を通過するクロック信号を単位遅延素子の遅延量の1.5倍分だけ遅延させる。
【0014】
前記第2の遅延線を構成する単位遅延素子は、前記状態保持部がリセット状態のとき前記クロック信号を通過する第1のクロックド・インバータ回路と、前記状態保持部が前記中間状態であるとき前記クロック信号を通過する第2のクロックド・インバータ回路を有し、この第2のクロックド・インバータ回路の遅延量を前記第1のクロックド・インバータ回路の1.5倍に設定する。
【0015】
前記第1、第2の遅延線を構成する単位遅延素子は、前段の単位遅延素子から供給されるパルス信号を後段の単位遅延素子に伝送するクロックド・インバータ回路をそれぞれ有し、これらクロックド・インバータ回路は外部クロック信号に同期した信号により制御される。
【0016】
さらに、本発明の同期回路は、第1のクロック信号を2倍の周期の第1、第2の信号に分割する分割回路と、前記分割回路により分割された第1の信号の同期をとる第1の同期回路と、前記分割回路により分割された第2の信号の同期をとる第2の同期回路と、前記第1、第2の同期回路の出力信号を合成し、前記第1のクロック信号に同期し、前記クロック信号と同一周期の第2のクロック信号を生成する生成回路とを具備する。
【0017】
また、本発明の同期回路は、複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、前記第1の遅延線を構成する単位遅延素子に対応して配置され、第1の遅延線伝搬される前進パルス信号を検出してセットされ、前記第2の遅延線に伝搬される後進パルス信号に応じてリセットされる複数の状態保持回路を有し、隣接するn個(nは2以上の整数)の前記状態保持回路が共にセットされたセット状態、前記隣接するn個の前記状態保持回路が全てリセットされたリセット状態、前記隣接するn個の前記状態保持回路がセット、リセットのいずれかとされたn−1個の中間状態を有し、前記第2の遅延線を制御する状態保持部とを具備する。
【0018】
前記第2の遅延線を構成する単位遅延素子は、前記状態保持部がリセット状態のとき前記クロック信号を通過する第1のクロックド・インバータ回路と、前記状態保持部が前記中間状態であるとき前記クロック信号を通過するn−1個の第2のクロックド・インバータ回路を有し、これら第2のクロックド・インバータ回路の遅延量は、n=4のとき、前記第1のクロックド・インバータ回路の1+m/4倍(m=1、2…n−1)に設定される。
【0019】
さらに、本発明の同期回路は、第1のクロック信号をn倍(nは2以上の整数)の周期のn個の信号に分割するn個の分割回路と、前記n個の分割回路により分割された各信号の同期をそれぞれとるn個の同期回路と、前記n個の同期回路の出力信号を合成し、前記第1のクロック信号に同期し、前記第1のクロック信号と同一周期の第2のクロック信号を生成する生成回路とを具備する。
【0020】
また、本発明の遅延回路は、入力パルス信号が供給されるクロックド・インバータ回路と、前記クロックド・インバータ回路から出力されるパルス信号と反転された前記入力パルス信号が供給される論理回路とを具備し、前記クロックド・インバータ回路は前記論理回路から出力されるパルス信号のパルス幅の変化方向と反対方向に前記入力パルス信号のパルス幅を変化させる。
【0021】
前記論理回路はノア回路であり、前記クロックド・インバータ回路はパルス信号の後端を遅延する。
【0022】
前記論理回路はナンド回路であり、前記クロックド・インバータ回路はパルス信号の先端を遅延する。
【0023】
前記クロックド・インバータ回路は、NMOSトランジスタとPMOSトランジスタにより構成され、これらNMOSトランジスタとPMOSトランジスタのチャネル幅、チャネル長、閾値電圧、基板電圧のうちの少なくとも1つを変えることにより、NMOSトランジスタの電流駆動能力に対するPMOSトランジスタの電流駆動能力の比を1以外に設定し、パルス信号の立ち上がり時間と立ち下がり時間を異ならせる。
【0024】
また、本発明の同期回路は、複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、前記第1の遅延線を伝搬される前進パルス信号の伝搬位置に応じてセット状態、リセット状態が設定され、セット状態には前記後進パルス信号を前記第2の遅延線に伝搬させ、リセット状態にはクロック信号を前記第2の遅延線に伝搬させる状態保持部とを具備し、前記第1、第2の遅延線を構成する各単位遅延素子は、クロックド・インバータ回路と、このクロックド・インバータ回路から出力される前記前進又は後進パルス信号と前段の単位遅延素子から供給される反転された前記前進又は後進パルス信号が供給される論理回路とを有し、前記クロックド・インバータ回路は前記論理回路から出力されるパルス信号のパルス幅の変化方向と反対方向に前記前進又は後進パルス信号のパルス幅を変化させる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0026】
(第1の実施例)
第1の実施例は、外部クロック信号と同期をとった内部クロック信号の同期精度を向上させるため、同期精度と直接関係のある単位遅延素子の遅延量を小さくする。
【0027】
図1は、第1の実施例に適用されるSAD方式の同期回路11を示している。外部クロック信号ECKは遅延時間D1を有する入力バッファ回路12を介してディレイモニタ13に供給される。このディレイモニタ13は前記入力バッファ回路12と後述する出力バッファ回路が有する遅延時間D2の合計の遅延時間D1+D2を有している。このディレイモニタ13の出力信号Dinは前進パルス用の遅延線としての第1の遅延線14に供給される。この第1の遅延線14は直列接続された複数の単位遅延素子(DL)14i−3〜14i〜14i+3により構成されている。
【0028】
この第1の遅延線14の近傍には後進パルス用の遅延線としての第2の遅延線16は配置されている。この第2の遅延線16は直列接続された複数の単位遅延素子(DL)16i−3〜16i〜16i+3により構成されている。これら第1、第2の遅延線14、15の相互間には、状態保持部15が設けられている。この状態保持部15は、第1、第2の遅延線14、16を構成する各単位遅延線に対応して配置された複数の状態保持回路15i−3〜15i〜15i+3により構成されている。これら状態保持回路15i−3〜15i〜15i+3は第1の遅延線14に伝送されるパルス信号に応じて順次セットされ、第2の遅延線16に伝送されるパルス信号に応じて順次リセットされる。セット状態の状態保持回路は第2の遅延線16を結びつけ、リセット状態の状態保持回路は第2の遅延線16を切離する。第2の遅延線16を構成する各単位遅延素子16i−3〜16i+3にはクロック信号CLKがそれぞれ供給されている。前記第2の遅延線16の出力端には前述した出力バッファ回路17が接続され、この出力バッファ回路17の出力端から前記外部クロック信号ECKに同期した内部クロック信号ICKが出力される。
【0029】
また、前記外部クロック信号ECKは第1の信号発生回路18に供給される。この第1の信号発生回路18はインバータ回路18a、遅延時間dを有する遅延回路18b、これらインバータ回路18a及び遅延回路18bの出力信号が供給され、信号paを出力するノア回路18c、この信号paが供給され、反転された信号bpaを出力するインバータ回路18dにより構成されている(以下、参照符号の先頭に付した“b”は反転信号を示す)。
【0030】
さらに、前記入力バッファ12から出力されるクロック信号CLKは第2の信号発生回路19に供給される。この第2の信号発生回路19はインバータ回路19a、遅延時間dを有する遅延回路19b、これらインバータ回路19a及び遅延回路19bの出力信号が供給され、信号pを出力するノア回路19c、この信号paが供給され、反転された信号bpを出力するインバータ回路19dにより構成されている。
【0031】
また、前記第2の信号発生回路19から出力される信号bp、及び前記第2の遅延線16の出力信号Doutは第3の信号発生回路20に供給される。この第3の信号発生回路20は前記信号bp、Doutが供給されるフリップフロップ回路20a、前記信号Doutが供給されるインバータ回路20b、このインバータ回路20bの出力信号と前記フリップフロップ回路20aの出力信号が供給されるナンド回路20c、前記フリップフロップ回路20aの出力信号が供給されるインバータ回路20d、このインバータ回路20dの出力信号が供給されるインバータ回路20e、遅延時間dを有する遅延回路20f、この遅延回路20fの出力信号と前記インバータ回路20dの出力信号が供給されるナンド回路20g、このナンド回路20gと前記ナンド回路20cの出力信号が供給されるナンド回路20h、このナンド回路20hの出力信号が供給され、信号bpmを出力するインバータ回路20iとにより構成されている。
【0032】
前記第1の信号発生回路18から出力される信号pa、bpa、前記第2の信号発生回路19から出力される信号p、bp、前記第3の信号発生回路20から出力される信号bpmは、第1、第2の遅延線14、16、状態保持部15に供給される。
【0033】
図2は、図1に示す第1、第2の遅延線14、16、状態保持部15のうち、i段目の単位遅延素子14i、16i、状態保持回路15iの構成を示している。前記単位遅延素子14iは、直列接続されたクロックド・インバータ回路14a、14b、このクロックド・インバータ回路14bの出力端に直列接続されたインバータ回路14c、14d、クロックド・インバータ回路14bの出力端と接地間に接続され、ゲートに信号pが供給されたNチャネルMOSトランジスタ(以下、NMOSトランジスタと称す)NM7、入力端が接地され出力端が前記クロックド・インバータ回路14bの入力端に接続されたクロックド・インバータ回路14fにより構成されている。
【0034】
前記クロックド・インバータ回路14a、14b、14fは信号p及びbpにより制御される。前記クロックド・インバータ回路14aの入力端にはi−1段目の単位遅延素子14i−1から出力される信号Fi−1が供給され、前記クロックド・インバータ回路14bの出力端からは信号Fiが出力される。さらに、前記インバータ回路14dからは信号FFiが出力される。これらの信号Fi、FFiは単位遅延素子14i+1、及び状態保持回路15i+1にそれぞれに供給される。
【0035】
前記状態保持部15iは、直列接続されたクロックド・インバータ回路15aとインバータ回路15b、15cとにより構成されている。前記クロックド・インバータ回路15aは電源Vccと接地間に電流通路が直列接続されたPチャネルMOSトランジスタ(以下、PMOSトランジスタと称す)PM18、PM17と、NMOSトランジスタNM18、NM17とにより構成されている。
【0036】
前記PMOSトランジスタPM18のゲートには第2の遅延線16を構成するi−3段目の単位遅延素子16i−3から出力される信号bRi−3が供給されている。前記PMOSトランジスタPM17及び前記NMOSトランジスタNM18のゲートには信号bpmが供給されている。前記NMOSトランジスタM17のゲートには第1の遅延線14を構成するi−1段目の単位遅延素子14i−1から供給される信号FFi−1が供給される。前記インバータ回路15bの出力端からは信号qiが出力され、インバータ回路15bの出力端からは信号bqiが出力される。これらの信号qi、bqiは第2の遅延線16を構成する単位遅延素子16i−2に供給される。
【0037】
前記単位遅延素子16iは、直列接続されたクロックド・インバータ回路16a、16b、このクロックド・インバータ回路16bの出力端に直列接続されたインバータ回路16c、16d、クロックド・インバータ回路16bの出力端と接地間に接続され、ゲートに信号paが供給されたNMOSトランジスタNM15、入力端に信号CLKが供給され、出力端が前記クロックド・インバータ回路14bの入力端に接続されたクロックド・インバータ回路16fにより構成されている。
【0038】
前記クロックド・インバータ回路16a、16fは信号q、bqにより制御され、クロックド・インバータ回路16bは信号pa、bpaにより制御される。前記クロックド・インバータ回路16aの入力端にはi+1段目の単位遅延素子16i+1から出力される信号Ri+1が供給され、前記クロックド・インバータ回路16bの出力端からは信号Riが出力される。さらに、前記インバータ回路16cからは信号bRiが出力される。前記信号Riは単位遅延素子16i−1に供給され、前記信号bRiは状態保持部15i+2に供給される。前記インバータ回路16dは、前記単位遅延素子14iを構成するインバータ回路14dに対応したダミーのインバータ回路である。
【0039】
図3は、図2に示す単位遅延素子14iを具体的に示す回路図であり、図4は図2に示す単位遅延素子16iを具体的に示す回路図である。図3、図4において、図2と同一部分には同一符号を付す。
【0040】
図3において、クロックド・インバータ回路14aは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM2、PM1と、NMOSトランジスタNM2、NM1とにより構成され、クロックド・インバータ回路14fは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM4、PM3と、NMOSトランジスタNM4、NM3とにより構成されている。さらに、前記クロックド・インバータ回路14bは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM6、PM5と、NMOSトランジスタNM6、NM5とにより構成されている。
【0041】
図4において、クロックド・インバータ回路16aは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM10、PM9と、NMOSトランジスタNM10、NM9とにより構成され、クロックド・インバータ回路16fは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM12、PM11と、NMOSトランジスタNM12、NM11とにより構成されている。さらに、前記クロックド・インバータ回路16bは電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM14、PM13と、NMOSトランジスタNM14、NM13とにより構成されている。
【0042】
図2乃至図4は、i段目の単位遅延素子14i、16i、及び状態保持回路15iの構成を示しているが、i段目以外の単位遅延素子、及び状態保持回路も同様の構成であり、信号の入出力もi段目と同様の関係とされている。
【0043】
図5は、図1乃至図4の各部の信号を示している。図1に示すSAD方式の同期回路において、入力バッファ回路12は周期Tの外部クロック信号ECKよりD1だけ遅延した信号CLKを生成し、この信号CLKはディレイモニタ13によりD1+D2だけ遅延されて第1の遅延線14に供給される。この第1の遅延線14を構成する各単位遅延素子14i−3〜14i〜14i+3は第2の信号発生回路19から出力される信号p及びbpに応じて前進パルス信号としての信号Dinを伝送する。
【0044】
状態保持部15を構成する各状態保持回路は、第4の信号発生回路20から供給される信号bpm及び前段の単位遅延素子の出力信号に応じてセットされる。すなわち、状態保持回路は第1の遅延線14に前進パルス信号が通ったときセット状態となる。
【0045】
第2の遅延線16の単位遅延素子は状態保持回路がセット状態のとき前段からの後進パルス信号を次段に出力し、リセット状態のとき前段からの信号を受けず、共通に入力してくるクロック信号CLKを伝搬する。すなわち、第2の遅延線16は2段前の状態保持回路から供給される信号qi+2、bqi+2、及び信号発生回路18から供給される信号pa、bpaに応じて後進パルス信号、又はクロック信号CLKを伝送する。この第2の遅延線16に後進パルス信号が通過したき、対応する状態保持回路がリセット状態される。この第2の遅延線16の出力信号Doutは出力バッファ回路17を介して出力されることにより、内部クロック信号ICKが生成される。このため、内部クロック信号ICKの外部クロック信号ECKに対する遅延は
D1+(D1+D2)+2(T−(D1+D2))+D2
=2T
となる。したがって、内部クロック信号ICKは外部クロック信号ECKに同期する。
【0046】
ところで、SAD方式の同期回路はパルスの立ち上がり部だけについて同期をとっている。このため、パルスの立ち上がりに関係するトランジスタ(ある回路に供給された信号がハイレベルからローレベルに変化した時に、応答するトランジスタ)の電流駆動能力を高めることにより、単位遅延素子の遅延量を小さくすることができる。具体的には、図3、図4に示す単位遅延素子14i、16iにおいて、パルスの立ち上がりに関係するトランジスタは前進パルス用のNMOSトランジスタNM1、NM2、NM3、NM4、PMOSトランジスタPM5、PM6、及び、後進パルス用のNMOSトランジスタNM9、NM10、NM11、NM12、PMOSトランジスタPM13、PM14である。したがって、これらトランジスタの例えばチャネル幅を大きくすることにより、電流駆動能力を高めることができる。
【0047】
NMOSトランジスタとPMOSトランジスタの電流駆動能力が2:1である場合、これらトランジスタのチャネル幅の比は、通常1:2とする。したがって、この実施例においては、これらトランジスタのチャネル幅の比を、例えば1:1以下とする。
【0048】
しかし、このような構成とすることにより、電流駆動能力を高めることができるが、ゲート容量が大きくなってしまう。そこで、立ち下がりに関係するPMOSトランジスタPM1、PM2、PM3、PM4、NMOSトランジスタNM5、NM6や、PMOSトランジスタPM9、PM10、PM11、PM12、PM13、PM14のチャネル幅を小さくすることにより、増加したゲート容量をキャンセルすることができる。したがって、クロックド・インバータ回路に入力されたパルス信号に比べて、クロックド・インバータ回路から出力されるパルス信号の立ち下がり応答速度は速くなり、立ち上がり応答速度は遅くなるため、パルス幅は単位遅延素子を通る度に大きくなってしまうという問題が生じる。しかし、クロックドインバータ14b(NM5、NM6、PM5、PM6)を信号p、信号bpで制御し、クロックド・インバータ回路16bを信号pa、信号bpaによりそれぞれ制御し、それ以降パルス信号が伝搬しないように制御することでパルス幅が広がることを防止できる。
【0049】
尚、電流駆動能力を変える構成としては、チャネル幅を変える場合に限定されるものではなく、チャネル長、トランジスタの閾値電圧、あるいは基板電圧を変えることでも実現出来る。
【0050】
チャネル長を変える場合、PMOSトランジスタのチャネル長をNMOSトランジスタのチャネル長より長くする。
【0051】
トランジスタの閾値電圧を変える場合、NMOSトランジスタの閾値電圧を通常より下げ、PMOSトランジスタの閾値電圧を通常より高くする。
【0052】
基板電圧を変える場合、PMOSトランジスタのバックゲートバイアスをNMOSトランジスタのバックゲートバイアスより高くする。
【0053】
このように設定することにより、パルスの立ち上がりを高速化することができる。
【0054】
上記第1の実施例によれば、第1、第2の遅延線14、16を構成する各単位遅延素子のパルス信号の立ち上がりに関係するトランジスタ(ある回路に供給された信号がハイレベルからローレベルに変化した時に、応答するトランジスタ)の電流駆動能力を高めている。したがって、パルス信号の立ち上がり時間を高速化でき、パルス信号の立ち上がりに要する遅延時間を短縮することができ、同期精度を向上できる。
【0055】
さらに、第2の遅延素子内のクロックド・インバータ回路を所定の制御信号で制御しているため、パルス幅が広くなったパルス信号を次段へ伝搬することを防止できる。
【0056】
(実施例2)
第2の実施例では、外部クロック信号に対して内部クロック信号を半周期ずらして同期させる場合について説明する。
【0057】
第2の実施例において、第1の実施例との主な相違点は、第2の遅延線16に中間電位を与えることにより、第2の遅延線の遅延量を大きくしている点である。
【0058】
図6は、第2の実施例に係る同期回路の構成を示しており、第1の実施例と同一部分には同一符号を付している。図6において、ディレイモニタ31は入力バッファ回路12と、出力バッファ回路17の合計の遅延時間の2倍の遅延時間(2(D1+D2))を有している。また、第2の遅延線16の単位遅延素子の数は第1の遅延線14の単位遅延素子の数の半分とされ、第1の遅延線14を構成する単位遅延素子の1つおきに配置されている。すなわち、この同期回路において、第2の遅延線16を伝搬する後進パルス信号は、第1の遅延線14内を前進パルスが伝搬した単位遅延素子の数の半分の数の単位遅延素子だけ伝搬させる。このようにすることで、外部クロック信号に対して内部クロック信号を半周期ずらして同期させることができる。
【0059】
図7(a)(b)は、図6に示す状態保持部15の概略的な動作を示している。ここで、“S”はセット状態を示し、前進パルス信号が通ったときセット状態となり、後進パルス信号用の単位遅延素子はそのセット状態のときには前段からの後進パルスを次段に出力する。“R”はリセット状態を示し、後進パルス信号が通過したきリセット状態となる。後進パルス信号用の単位遅延素子は状態保持部がリセット状態のとき前段からの信号を受けず、共通に入力されるクロック信号を伝搬する。
【0060】
図7(a)(b)に示すように、半周期ずらして同期をとる同期回路の場合、状態保持回路のセット・リセットの情報を半分しか使っていない。これは無駄であるため、隣接する一対の状態保持回路で1つの情報を設定するようにする。
【0061】
つまり、図8(a)(b)(c)に示すように、一対の状態保持回路が共にセットのときをセット“S”と定義し、一対の状態保持回路が共にリセットのときをリセット“R”と定義する。さらに、図8(b)に示すように、一対の状態保持回路がセット・リセットのときは新たに中間状態“M”と定義する。すなわち、状態保持部が3値の情報を保持するようにする。中間状態“M”のとき、第2の遅延線を構成する単位遅延素子の遅延量を半分にすることは難しい。このため、中間状態“M”のときはリセット“R”と同じように、前段からの入力は受けず、共通に入力されるクロック信号CLKを伝搬するようにする。但し、第2の遅延線16を構成する単位遅延素子の遅延量を第1の遅延線14を構成する単位遅延素子の遅延量の1.5倍とする。このような構成とすることにより、単位遅延素子の遅延量の半分に同期精度を向上させることができる。この点について詳細は後述する。
【0062】
図9は、図6を具体的に示す構成図であり、図1、図6と同一部分には同一符号を付し、異なる部分についてのみ説明する。第1の遅延線14、状態保持回路15、第1の遅延線16において、隣接する2つの回路が対を構成する。第2の遅延線16は、単位遅延素子16i−6、16i−4、16i−2、16i…と、これら単位遅延素子16i−6、16i−4、16i−2、16i…を制御する信号を生成する信号発生回路16i−5、16i−3、16i−1、16i+1…が交互に配置されている。
【0063】
また、第1の信号発生回路30は、遅延時間Dを有するバッファ回路30e、インバータ回路30a、遅延時間Dを有する遅延回路30b、オア回路30c、インバータ回路30dにより構成されている。この第1の信号発生回路30は、外部クロック信号ECKをバッファ回路30eにより遅延時間Dだけ遅延した信号より信号p0、bp0を生成する。この信号p0、bp0のパルス幅は単位遅延素子の遅延量とほぼ等しく設定されている。
【0064】
図10は、図9のi段目とi+1段目の単位遅延素子14i、14i+1、16i、状態保持回路15i、15i+1、信号発生回路16i+1を示している。
【0065】
単位遅延素子14iは、直列接続されたクロックド・インバータ回路14a−1、インバータ回路14b−1、このインバータ回路14b−1の出力端に直列接続されたインバータ回路14d−1、前記クロックド・インバータ回路14a−1の出力端に接続されたインバータ回路14c−1、入力端が接地され出力端が前記インバータ回路14b−1の入力端に接続されたクロックド・インバータ回路14e−1により構成されている。前記クロックド・インバータ回路14a−1、14e−1は信号p及びbpにより制御される。前記クロックド・インバータ回路14aの入力端にはi−1段目の単位遅延素子14i−1から出力される信号Fi−1が供給され、前記インバータ回路14b−1の出力端からは信号Fiが出力される。さらに、前記インバータ回路14c−1からは信号FFiが出力される。信号Fi、FFiは単位遅延素子14i+1、及び状態保持回路15i+1にそれぞれ供給される。インバータ回路14d−1は、後述する単位遅延素子16iに設けられたインバータ回路16c−1に対応したダミーのインバータ回路である。
【0066】
単位遅延素子14i+1は、単位遅延素子14iとほぼ同様の構成であり、単位遅延素子14iと同一部分には添え字“−2”を付し説明は省略する。
【0067】
前記状態保持部15iは、直列接続されたクロックド・インバータ回路15a−1とインバータ回路15b−1とにより構成されている。前記クロックド・インバータ回路15a−1は電源Vccと接地間に電流通路が直列接続されたPMOSトランジスタPM28、PM27と、NMOSトランジスタNM28、NM27とにより構成されている。前記PMOSトランジスタPM28のゲートには第2の遅延線16を構成するi−6段目の単位遅延素子16i−6から出力される信号bRi−6が供給されている。前記PMOSトランジスタPM27及び前記NMOSトランジスタNM28のゲートには信号bpmが供給されている。前記NMOSトランジスタM27のゲートには第1の遅延線14を構成するi−1段目の単位遅延素子14i−1から供給される信号FFi−1が供給される。前記インバータ回路15b−1の出力端からは信号qiが出力される。
【0068】
状態保持回路15i+1は、状態保持回路15iとほぼ同様の構成であり、状態保持15iと同一部分には添え字“−2”を付し説明は省略する。
【0069】
前記単位遅延素子16iは、直列接続されたクロックド・インバータ回路16a−1、インバータ回路16b−1、このインバータ回路16b−1の出力端に接続されたインバータ回路16c−1、入力端に信号CLKが供給され、出力端が前記インバータ回路14b−1の入力端に接続されたクロックド・インバータ回路16d−1、前記クロックド・インバータ回路16a−1の出力端に接続されたインバータ回路16e−1、電流通路が直列接続されたPMOSトランジスタPM31、NMOSトランジスタNM31とにより構成されている。
【0070】
前記PMOSトランジスタPM31、NMOSトランジスタNM31は図示せぬi+5段目の信号発生回路から供給される信号qqi+5、bqqi+5に応じて信号bqを発生する。前記クロックド・インバータ回路16a−1は前記信号bqqi+5、qqi+5により制御され、クロックド・インバータ回路16d−1は前記信号qqi+5、bqqi+5により制御される。前記クロックド・インバータ回路16a−1の入力端には図示せぬi+2段目の単位遅延素子から出力される信号Ri+2が供給され、前記インバータ回路16b−1の出力端からは信号Riが出力される。さらに、前記インバータ回路16c−1からは信号bRiが出力される。前記インバータ回路16e−1は、前記単位遅延素子14iを構成するインバータ回路14c−1に対応したダミーのインバータ回路である。
【0071】
前記PMOSトランジスタPM31、NMOSトランジスタNM31、クロックド・インバータ回路16d−1を制御する信号は前記i+5段目の信号発生回路の出力信号に限定されるものではなく、別の段の信号発生回路の出力信号を用いることも可能である。
【0072】
前記信号発生回路16i+1は、電源Vccと接地間に直列接続されたPMOSトランジスタPM36、PM37、NMOSトランジスタNM37、NM36、及び前記PMOSトランジスタPM36、PM37の接続ノード電流通路が直列接続されたPMOSトランジスタPM38、PM39とにより構成されている。
【0073】
前記PMOSトランジスタPM36、及びNMOSトランジスタNM36のゲートには前記状態保持回路15iの出力信号qiが供給され、前記PMOSトランジスタPM37、及びNMOSトランジスタNM37のゲートには前記状態保持回路15i+1の出力信号qiが供給される。前記PMOSトランジスタPM39のゲートには前記第1の信号発生回路30から出力される信号bp0が供給され、電流通路の一端には電圧VBLが供給されている。さらに、前記PMOSトランジスタPM38のゲートには信号bqiが供給されている。前記PMOSトランジスタPM37とNMOSトランジスタNM37の接続ノードからは信号bqqi+1が出力され、この信号bqqi+1は、単位遅延素子16i−4に供給される。
【0074】
図11は、前記単位遅延素子14i、14i+1を具体的に示す回路図であり、図12は、前記単位遅延素子16i、16i+1を具体的に示す回路図である。図11、図12において、図10と同一部分には同一符号を付す。
【0075】
上記構成において、隣接する状態保持回路15i、15i+1の出力信号qi とqi+1が共にハイレベルのとき、つまり、一対の状態保持回路がセット状態のとき、信号発生回路16i+1の出力信号bqqi+1はローレベルとなる。また、信号qiとqi+1が共にローレベルのとき、つまり、一対の状態保持回路がリセット状態のとき、信号発生回路16i+1の出力信号bqqi+1はハイレベルとなる。さらに、一対の状態保持回路の出力信号のうち信号qiがハイレベルで、信号qi+1がローレベルで、且つ、前記第1の信号発生回路30の出力信号bp0がローレベルのとき、つまり、中間状態“M”の場合、信号発生回路16i+1の出力信号bqqi+1が電圧VBLというレベルになる。
【0076】
単位遅延素子16iに供給される図示せぬi+5段目の信号発生回路の出力信号bqqi+5も図示せぬi+4段目、i+5段目の状態保持回路の出力信号に応じて上記と同様にハイレベル、又はローレベルに設定される。
【0077】
単位遅延素子16iは、一対の状態保持回路がセット状態のとき、クロックド・インバータ回路16a−1とインバータ回路16b−1のパスが形成され、前段から供給される後進パルス信号が次段へ伝搬される。
【0078】
また、一対の状態保持回路がリセット状態のとき、クロックド・インバータ回路16a−1が非導通とされ、クロックド・インバータ回路16d−1が導通される。このため、前段からの後進パルス信号が遮断され、クロック信号CLKが後段に伝送される。
【0079】
一方、前述したように、中間状態“M”の場合、一対の状態保持回路の出力信号のうち信号qiがハイレベルで、信号qi+1がローレベルで、且つ、前記第1の信号発生回路30の出力信号bp0がローレベルである。このとき、信号発生回路16i+1の出力信号bqqi+1は電圧VBLというレベルになる。ここで、電圧VBLはクロック信号CLKを通過するクロックド・インバータ回路16d−1のNMOSトランジスタの電流駆動能力を低下させる電位であり、例えばリセット状態の信号bqqi+1の電位を1.8V、セット状態の電位を0Vとした場合、約1.0V程度とされる。このように電圧VBLを設定することにより、リセット状態におけるクロック信号CLKに比べて、クロック信号を1.5倍の遅延できる。
【0080】
また、図13に示すように、信号bp0はクロック信号CLKが立ち上がる寸前のタイミングで立ち下がり、クロック信号CLKが立ち上がると即立ち上がる信号であり、パルス幅が単位遅延素子の遅延量分程度とされている。したがって、信号bqqi+1(bqqi+5)は信号bp0がローレベルの時のみ電圧VBLとなる。
【0081】
すなわち、前進パルス信号が第1の遅延線14に伝搬されるに従って隣接する一対の状態保持回路の出力信号がハイレベル、及びローレベルとなるタイミングは多くある。しかし、図14(a)に示すように、隣接する一対の状態保持回路の出力信号qi、qi+1がハイレベル、及びローレベルとなった場合においても、信号bp0が発生しない場合、中間状態“M”は発生しない。
【0082】
これに対して、図14(b)に示すように、隣接する一対の状態保持回路の出力信号qi、qi+1がハイレベル、ローレベルで信号bp0が発生された場合、中間状態“M”が発生する。
【0083】
このようにして一対の状態保持回路がセット状態とリセット状態である中間状態“M”のときは、クロック信号CLKが通常時の1.5倍遅延される。したがって、第2の遅延線16から出力される信号Doutは、図13に示すように、第1の遅延線14に供給される信号Dinより時間(T−2(D1+D2))/2だけ遅れて出力され、さらに、この信号Doutが出力バッファ回路17により遅延量D2だけ遅延されるため、内部クロック信号ICKは外部クロック信号ECKより半周期遅延される。
【0084】
上記第2の実施例によれば、一対の状態保持回路がそれぞれセット状態とリセット状態である中間状態“M”のとき、クロック信号CLKが供給されるクロックド・インバータ回路16d−1を構成するNMOSトランジスタの駆動能力を低下させることにより、単位遅延素子の遅延時間を通常時の1.5倍としている。したがって、単位遅延素子の遅延量の半分に同期精度を向上でき、外部クロック信号ECKより半周期遅延した内部クロック信号ICKを発生することができる。
【0085】
図15乃至図17は、第2の実施例の変形例を示すものであり、図15乃至図17において、図9乃至図12と同一部分には同一符号を付す。図15乃至図17において、状態保持部15と第2の遅延線16の構成が、図9乃至図12と異なっている。
【0086】
すなわち、図16において、状態保持回路15iの出力端にはインバータ回路15c−1がインバータ回路15b−1に直列接続され、このインバータ回路15c−1の出力端から信号bqiが出力される。同様に、状態保持回路15i+1の出力端にはインバータ回路15c−2がインバータ回路15b−2に直列接続され、このインバータ回路15c−2の出力端から信号bqi+1が出力される。
【0087】
また、図16、図17に示すように、第2の遅延線を構成する単位遅延素子16iにおいて、クロックド・インバータ回路16a−1は信号bqi+1、qi+1により制御されている。さらに、ノア回路16f−1の入力端には信号qi+1、qiが供給されている。クロックド・インバータ回路16d−1は信号qi+1、及びノア回路16f−1の出力信号により制御されている。
【0088】
さらに、信号発生回路16i+1は、クロックド・インバータ回路16gを有している。このクロックド・インバータ回路16gは、電源Vccと接地間に直列接続されたPMOSトランジスタPM41、PM42、PM43、PM44、及びNMOSトランジスタNM41、NM42、NM43、NM44により構成されている。前記PMOSトランジスタPM41、NMOSトランジスタNM44のゲートにはクロック信号CLKが供給され、前記PMOSトランジスタPM42、及びNMOSトランジスタM43のゲートには信号bqi、信号qiがそれぞれ供給されている。さらに、PMOSトランジスタPM43、NMOSトランジスタNM42のゲートには信号qi+1、信号bqi+1がそれぞれ供給され、PMOSトランジスタPM44、NMOSトランジスタNM41のゲートには信号bp0、信号p0がそれぞれ供給されている。前記PMOSトランジスタPM44とNMOSトランジスタNM41の接続ノードは前記クロックド・インバータ回路16a−1、16d−1の出力端に接続されている。
【0089】
隣接する一対の状態保持回路15i、15i+1の出力信号qi、qi+1が共にハイレベルのとき、すなわち、セット状態のとき、単位遅延素子16iのクロックド・インバータ回路16a−1が導通し、クロックド・インバータ回路16d−1と16gが非導通とされる。このため、クロックド・インバータ回路16a−1及びインバータ回路16b−1を介して前段の単位遅延素子から出力される後進パルス信号Ri+2が伝搬可能とされる。
【0090】
また、隣接する一対の状態保持回路15i、15i+1の出力信号qi、及びqi+1が共にローレベルのとき、すなわち、リセット状態のとき、単位遅延素子16iのクロックド・インバータ回路16d−1が導通し、クロックド・インバータ回路16a−1と16gが非導通とされる。このため、クロックド・インバータ回路16d−1及びインバータ回路16b−1を介してクロック信号CLKが後段に伝搬される。
【0091】
さらに、隣接する一対の状態保持回路15i、15i+1の出力信号qiがハイレベルで、出力信号qi+1がローレベルで、かつ、第1の信号発生回路30の出力信号bp0がローレベルのとき、すなわち、中間状態のとき、クロックド・インバータ回路16a−1、16d−1がいずれも非導通とされ、クロックド・インバータ回路16gが導通される。このため、クロックド・インバータ回路16g、インバータ回路16b−1を介してクロック信号CLKが後段に伝搬される。さらに、このクロックド・インバータ回路16gを通過するクロック信号CLKの遅延量をクロックド・インバータ回路16a−1を通過するのに要する遅延量や、クロックド・インバータ回路16d−1を通過するのに要する遅延量の1.5倍となるように設定する。この設定手段としては、クロックド・インバータ回路16gを構成するNMOSトランジスタとPMOSトランジスタの例えばチャネル幅、チャネル長、これらトランジスタの閾値電圧、これらトランジスタが形成される基板の電圧のうちの少なくとも1つを変化させ、NMOSトランジスタの電流駆動能力を低下させる。
【0092】
例えばチャネル幅を変える場合、NMOSトランジスタのチャネル幅を通常のサイズより狭くする。チャネル長を変える場合、NMOSトランジスタのチャネル長をPMOSトランジスタのチャネル長より長くする。トランジスタの閾値電圧を変える場合、NMOSトランジスタの閾値電圧を通常より上げ、PMOSトランジスタの閾値電圧下げる。基板電圧を変える場合、NMOSトランジスタのバックゲートバイアスをPMOSトランジスタのバックゲートバイアスより高くする。
【0093】
また、クロックド・インバータ回路16gの遅延量がそれ自体で単位遅延素子の1.5倍以上である場合、クロックド・インバータ回路16gに供給される前記クロック信号CLKをクロックド・インバータ回路16d−1に供給されるクロック信号CLKよりインバータ回路1段前の信号とする。場合によってはクロック信号CLKよりインバータ回路2段前の信号でもよい。すなわち、クロックド・インバータ回路16d−1に供給されるクロック信号CLKより早いタイミングのクロック信号を用いればよい。
【0094】
さらに、クロックド・インバータ回路16gを構成するPMOSトランジスタ、NMOSトランジスタのサイズ、閾値電圧、基板電圧と、上記反転されたクロック信号bCLKを取り出す位置とを組み合わせてもよい。
【0095】
上記構成によっても、一対の状態保持回路がそれぞれセット状態とリセット状態である中間状態“M”のとき、クロック信号CLKが供給されるクロックド・インバータ回路16gを構成するNMOSトランジスタの駆動能力を低下させることにより、単位遅延素子の遅延時間を通常時の1.5倍としている。したがって、単位遅延素子の遅延量の半分に同期精度を向上でき、外部クロック信号ECKより半周期遅延した内部クロック信号ICKを発生することができる。
【0096】
第2の実施例では、第2の遅延線の遅延量を1.5倍とする場合について説明したが、上記電位VBLを変化させることにより、第2の遅延線の遅延量を1.5倍以外の値に設定し得ることは言うまでもない。
【0097】
(第3の実施例)
上記第2の実施例の場合、同期精度を単位遅延素子の遅延量の半分に向上させることができる。しかし、外部クロック信号に対して、同期をとった内部クロック信号は外部クロック信号に対して半周期ずれている。そこで、第3の実施例では、単位遅延素子の遅延量の半分(すなわち、半分の同期精度)を有し、内部クロック信号が外部クロック信号と同一周期とされた回路について説明する。
【0098】
図18は、本発明の第3の実施例を示すものであり、図15と同一部分には同一符号を付す。図19は図18の各部の信号を示している。図18において、倍周期信号生成回路51aは、図19に示すように、外部クロック信号ECKの2倍の周期を有する信号WECK、bWECKを生成する。この信号WECKは外部クロック信号ECKとともにナンド回路52aに供給され、前記信号bWECKは外部クロック信号ECKとともにナンド回路52bに供給される。これらナンド回路52a、52bの出力信号はインバータ回路53a、53bに供給される。これらインバータ回路12a、12bの出力信号ECKa、ECKbは、前記信号WECK、bWECKに応じて奇数、偶数に分離されたクロック信号であり、これら信号WECK、bWECKは遅延量D1を有する入力バッファ回路12a、12bにそれぞれ供給される。
【0099】
前記入力バッファ回路12a、12bから出力される奇数及び偶数のクロック信号CLKa、CLKbはノア回路54、インバータ回路55を介して合成され、ナンド回路56の一方入力端に供給される。このナンド回路56の他方入力端には電源電圧Vccが供給されている。このナンド回路56の出力信号はインバータ回路57に供給され、このインバータ回路57の出力信号CLKabはディレイモニタ31に供給される。
【0100】
一方、倍周期信号生成回路51bは、図19に示すように、外部クロック信号ECKの2倍の周期を有する信号WDin、bWDinを生成する。この信号WDinは前記ディレイモニタ31の出力信号Dinabとともにナンド回路58aに供給され、前記信号bWDinはディレイモニタ31から出力される2(D1+D2)の遅延時間を有する信号Dinabとともにナンド回路58bに供給される。これらナンド回路58a、58bの出力信号はインバータ回路59a、59bをそれぞれ介してノア回路60a、60bの一方入力端にそれぞれ供給される。これらノア回路60a、60bの他方入力端は接地されている。これらノア回路60a、60bの出力端はインバータ回路61a、61bに供給される。これらインバータ回路61a、61bの出力信号Dina、Dinbはディレイモニタ31の出力信号Dinabを信号WDin、bWDinに応じて奇数、及び偶数に分離した信号である。これら信号Dina、Dinbは前記入力バッファ回路12a、12bから出力される奇数、偶数のクロック信号CLKa、CLKbとともに、ハーフSTBD(Synchronous Traced Backward Delay)62a、62bにそれぞれ供給される。これらハーフSTBD62a、62bは、図15に示すように、後進パルス用の第2の遅延線が前進パルス用の第1の遅延線の半分とされており、状態保持部がセット状態、リセット状態、中間状態からなる3つの状態を有している。これらハーフSTBD62a、62bから出力される奇数、偶数の信号Douta、Doutbはノア回路63、インバータ回路64を介して合成される。このインバータ回路64から出力される合成出力信号Doutabは出力バッファ回路17に供給され、この出力バッファ回路17から内部クロック信号ICKが出力される。この内部クロック信号ICKは、外部クロック信号ECKと同期し、周期も外部クロック信号ECKに一致している。
【0101】
上記第3の実施例によれば、外部クロック信号を奇数のクロック信号と偶数のクロック信号に分け、奇数、偶数のクロック信号を外部クロック信号と半周期ずらしてそれぞれ独立に同期させ、これら半周期ずらして外部クロック信号と同期させた奇数、偶数の信号を合成している。したがって、同期精度を単位遅延素子の遅延量の半分に向上させることができ、しかも、外部クロック信号と同期した内部クロック信号ICKを生成できる。
【0102】
また、外部クロック信号を奇数のクロック信号と偶数のクロック信号に分け、奇数、偶数のクロック信号を外部クロック信号と半周期ずらしてそれぞれ独立に同期させる場合、奇数用の回路と、偶数用の回路とを直列接続することが考えられる。しかし、この場合、位相のずれが増幅される虞を有しているが、第3の実施例のように、奇数用の回路と、偶数用の回路とを並列接続することにより、位相のずれが増幅されることを防止できる。
【0103】
(第4の実施例)
次に、本発明の第4の実施例について説明する。第2、第3の実施例では状態保持部がセット状態、リセット状態、中間状態の3つの状態を有する構成とすることにより、内部クロック信号を外部クロック信号に対して半周期ずらして同期させた。これに対して、第4の実施例では、内部クロック信号を外部クロック信号に対して4分の1周期ずらして同期させる回路について説明する。
【0104】
図20は、第4の実施例に係る状態保持部を示している。この実施例の場合、隣接する4つの状態保持回路を1組とし、5つの状態を設定可能としている。すなわち、図20(a)に15iで示すように、4つの状態保持回路全てがリセットされている場合、リセット状態“R”、図20(e)に15iで示すように、4つの状態保持回路全てがリセットされている場合、セット状態“S”、図20(b)に15iで示すように、4つの状態保持回路のうち、1つがセット、3つがリセットされている場合、第1の中間状態“M1”、図20(c)に15iで示すように、4つの状態保持回路のうち、2つがセット、2つがリセットされている場合、第2の中間状態“M2”、図20(d)に15iで示すように、4つの状態保持回路のうち、3つがセット、1つがリセットされている場合、第3の中間状態“M3”とされる。
【0105】
図21乃至図25は、第4の実施例に係る第1の遅延線14、状態保持部15、第2の遅延線16の一部を示している。図21乃至図25において、第1乃至第3の実施例と同一部分には同一符号を付している。
【0106】
図21に示すように、状態保持部15は、4つの状態保持回路が一組とされ、第2の遅延線16は4つの状態保持回路15i+1〜15i+4に対して1つの単位遅延素子16i+1が設けられている。
【0107】
図22は、第1の遅延線14を構成する単位遅延素子14i+1、14i+2を示し、図23は第1の遅延線14を構成する単位遅延素子14i+3、14i+4を示している。各単位遅延素子14i+1〜14i+4は同一構成であり、前段の単位遅延素子の出力信号が後段の単位遅延素子、及び状態保持回路の入力信号となっている。
【0108】
単位遅延素子14i+1は、前段の単位遅延素子14iの出力信号Fiが供給されるインバータ回路71a、入力端が接地され、出力端が前記インバータ回路71aの出力端に接続されたインバータ回路72a、これらインバータ回路71a、72aの出力端に入力端が接続され、出力端から信号Fi+1を出力するインバータ回路73a、前記インバータ回路71a、72aの出力端に入力端が接続され、出力端から信号FFi+1を出力するインバータ回路74a、後述する第2の遅延線を構成する単位遅延素子に接続された信号発生回路に対応したダミーのインバータ回路75a、76a、77aとにより構成されている。
【0109】
単位遅延素子14i+2〜14i+4において、単位遅延素子14i+1と同一部分にはそれぞれ添え字“b”、“c”、“d”を付し、説明は省略する。
【0110】
図24は、状態保持回路15i+1〜15i+4の構成を示している。これら状態保持回路15i+1〜15i+4は、同一構成であり、各状態保持回路15i+1〜15i+4は、信号bpmに応じて制御されるクロックド・インバータ回路81a、81b、81c、81dと、これらクロックド・インバータ回路81a〜81dの出力端にそれぞれ接続されたインバータ回路82a、82b、82c、82dとにより構成されている。各状態保持回路15i+1〜15i+4は、第1の遅延線14を構成する単位遅延素子14i〜14i+3の出力信号FFi〜FFi+3に応じてセットされ、第2の遅延線16を構成する図示せぬ単位遅延素子16i−3の出力信号に応じてリセットされる。これら状態保持回路15i+1〜15i+4からは信号qi+1〜qi+4が出力される。
【0111】
図25は、第2遅延線16を構成する単位遅延素子16i+1を示している。この単位遅延素子16i+1は、入力端に前段の図示せぬ単位遅延素子16i+5から出力される信号Ri+5を受けるクロックド・インバータ回路91と、入力端にクロック信号CLKが供給されるクロックド・インバータ回路92と、これらクロックド・インバータ回路91、92の出力端に入力端が接続され、出力端から信号Ri+1を出力するインバータ回路93と、前記クロックド・インバータ回路91に接続されたインバータ回路94と、ノア回路95とにより構成されている。
【0112】
前記クロックド・インバータ回路91は前記状態保持回路15i+3の出力信号qi+3と、インバータ回路94により反転された信号bqi+3とにより制御される。前記ノア回路95には前記状態保持回路15i、15i+1、15i+2の出力信号qi、qi+1、qi+2が供給され、前記クロックド・インバータ回路92は、このノア回路95の出力信号と、前記状態保持回路15i+3の出力信号qi+3とにより制御される。
【0113】
前記インバータ回路93の入力端には、信号発生回路16i+2、16i+3、16i+4が接続されている。各信号発生回路16i+2、16i+3、16i+4は、クロック信号CLKより早いタイミングのクロック信号bCLKが供給されるインバータ回路96a、96b、96cと、これらインバータ回路96a、96b、96cから出力されるクロック信号CLKが供給されるクロックド・インバータ回路97a、97b、97cとにより構成されている。
【0114】
前記クロックド・インバータ回路97aのPMOSトランジスタは信号CLK、bqi、qi+1、qi+2、qi+3、bp0により制御され、NMOSトランジスタは信号CLK、qi、bqi+1、bqi+2、bqi+3、p0により制御される。
【0115】
前記クロックド・インバータ回路97bのPMOSトランジスタは信号CLK、bqi、bqi+1、qi+2、qi+3、bp0により制御され、NMOSトランジスタは信号CLK、qi、qi+1、bqi+2、bqi+3、p0により制御される。
【0116】
前記クロックド・インバータ回路97cのPMOSトランジスタは信号CLK、bqi、bqi+1、bqi+2、qi+3、bp0により制御され、NMOSトランジスタは信号CLK、qi、qi+1、qi+2、bqi+3、p0により制御される。
【0117】
上記構成において、状態保持部がセット状態のとき、つまり、隣接する4つの状態保持回路15i、15i+1、15i+2、15i+3の出力信号qi、qi+1、qi+2、qi+3が全てハイレベルのとき、第2の遅延線16の単位遅延素子16i+1はクロックド・インバータ回路91が導通され、クロックド・インバータ回路92、96a、96b、96cが非導通とされる。このため、前段の単位遅延素子の出力信号Ri+5が通過される。
【0118】
一方、状態保持部がリセット状態のとき、つまり、隣接する4つの状態保持回路15i、15i+1、15i+2、15i+3の出力信号qi、qi+1、qi+2、qi+3が全てローレベルのとき、単位遅延素子16i+1はクロックド・インバータ回路91、96a、96b、96cが非導通とされ、クロックド・インバータ回路92が導通される。このため、クロック信号CLKが通過される。
【0119】
また、状態保持部が第1の中間状態“M1”のとき、つまり、信号qiがハイレベル、信号qi+1、qi+2、qi+3がローレベルのとき、クロックド・インバータ回路97aが導通し、クロック信号CLKの立ち上がりから単位遅延素子の1.25倍の遅延量となるようなパスを形成する。
【0120】
状態保持部が第2の中間状態“M2”のとき、つまり、信号qi、qi+1がハイレベル、信号qi+2、qi+3がローレベルのとき、クロックド・インバータ回路97bが導通し、クロック信号CLKの立ち上がりから単位遅延素子の1.5倍の遅延量となるようなパスを形成する。
【0121】
状態保持部が第3の中間状態“M3”のとき、つまり、信号qi、qi+1、qi+2がハイレベル、信号qi+3がローレベルのとき、クロックド・インバータ回路97cが導通し、クロック信号CLKの立ち上がりから単位遅延素子の1.75倍の遅延量となるようなパスを形成する。
【0122】
すなわち、これらクロックド・インバータ回路97a、97b、97cの遅延量は前記クロックド・インバータ回路91、92の1+m/4(m=1、2、3)倍に設定される。
【0123】
単位遅延素子の1.25倍、1.5倍、1.75倍の遅延量は、前述したように、クロックド・インバータ回路を構成するNMOSトランジスタやPMOSトランジスタのチャネル幅等を変化させて電流駆動能力を低下させたり、信号発生回路16i+2、16i+3、16i+4の入力信号としてbCLKよりインバータ回路1段前の信号であるbbCLK等を使うことにより、実現できる。
【0124】
上記第4の実施例によれば、単位遅延素子の遅延量の4分の1の周期精度で内部クロック信号を外部クロック信号に同期させることができるため、同期精度を一層向上できる。
【0125】
(第5の実施例)
上記第4の実施例の場合、同期精度は単位遅延素子の遅延量の4分の1に向上させることはできる。しかし、外部クロック信号に対して、同期をとった内部クロック信号は4分の1周期ずれている。そこで、第5の実施例では、第4の実施例に示す同期回路を4個並列に組み合わせることによって、外部クロック信号と同期した内部クロック信号を発生する同期回路について説明する。
【0126】
図26は、第5の実施例に係る同期回路を示し、図27は図26の各部の信号を示している。この同期回路は基本的には、図18に示す回路と同様であり、外部クロック信号ECKを4つのクロック信号に分け、各クロック信号をそれぞれ独立に4分の1周期ずらして同期をとり、4分の1周期ずれた4つのクロック信号をノア回路で合成して内部クロック信号ICKを生成する。
【0127】
すなわち、外部クロック信号ECKは、4つのナンド回路101a〜101dに供給される。これらナンド回路101a〜101dには倍周期信号生成回路103、104から供給される信号(a、b、c、d)がそれぞれ供給される。ナンド回路101a〜101dの出力信号はインバータ回路102a〜102dに供給され、これらインバータ回路102a〜102dの出力信号(e、f、g、h)は、入力バッファ回路12a〜12dに供給される。これら入力バッファ回路12a〜12dの出力信号(i、j、k、l(但しi、k、lは図27中には図示していない))は、ノア回路105、インバータ回路106に順次供給されて合成される。このインバータ回路106の出力信号(m)はノア回路107a〜107c、インバータ回路108a〜108c、及びナンド回路109a〜109c、インバータ回路110a〜110cを介してディレイモニタ31に供給される。
【0128】
このディレイモニタ31の出力信号(n)はナンド回路113a〜113dに供給される。これらナンド回路113a〜113dには、倍周期信号生成回路103、104から供給される信号(o、p、q、r)がそれぞれ供給される。これらナンド回路113a〜113dの出力信号はインバータ回路114a〜114dを介してクウォータSTBD115a〜115dに供給される。前記インバータ回路114aの出力信号(s)は図27に示すようであり、他のインバータ回路114b〜114dの出力信号は、この信号(s)から前記信号(n)の1/2クロック分順次遅延している。さらに、これらクウォータSTBD115a〜115dには前記入力バッファ回路12a〜12dから供給される信号がそれぞれ供給されている。これらクウォータSTBD115a〜115dは、図21乃至図25に示すように、後進パルス用の第2の遅延線が前進パルス用の第1の遅延線の4分の1とされており、状態保持部がセット状態、リセット状態、第1乃至第3の中間状態からなる5つの状態を有している。これらクウォータSTBD115a〜115dの出力信号(w、t、u、v(但し、t、u、vは図27中には図示していない))はノア回路116、インバータ回路117に順次供給されて合成される。このインバータ回路117の出力信号(x)は出力バッファ回路17に供給され、この出力バッファ回路17の出力端より、内部クロック信号ICKが出力される。この内部クロック信号ICKは、外部クロック信号ECKと同一周期であり、外部クロック信号ECKと同期している。
【0129】
上記第5の実施例によれば、単位遅延素子の遅延量の4分の1の周期精度で内部クロック信号を外部クロック信号に同期させることができるため、同期精度を向上でき、しかも、外部クロック信号ECKと同一周期の内部クロック信号ICKを生成できる。
【0130】
上記第4、第5の実施例に示す回路は同期精度上げて、外部クロック信号と内部クロック信号との同期をとる回路の例である。これら第4、第5の実施例の本質は高周波数のクロック信号を低周波数のクロック信号に分割し、低周波数の各クロック信号を高周波数のクロック信号に同期させ、最後に低周波数の各クロック信号をオア回路(ノア回路)で合成して高周波数のクロック信号に戻している。
【0131】
第1乃至第3の実施例のように、同期回路単体では周波数の帯域が限られている。特に高周波数域において、入力バッファ回路や出力バッファ回路が遅延を有しているため、単体の同期回路が扱える周波数は300MHz程度が限界であった。しかし、第4、第5の実施例に示す回路を使用すれば、理想的には周波数に関する制限がなくなる。
【0132】
(第6の実施例)
次に、遅延線を構成する単位遅延素子に供給される信号と、単位遅延素子から出力される信号のパルス幅を一定にする手段について説明する。
【0133】
一般に、NMOSトランジスタとPMOSトランジスタのサイズが同一である場合、NMOSトランジスタの方が電流駆動能力が大きい。CMOSインバータ回路を構成するNMOSトランジスタとPMOSトランジスタの電流駆動能力の比が2対1であり、これらトランジスタのチャネル長が同じとき、一般的にはチャネル幅を1対2とすることにより、論理閾値をあわせてパルス信号の立ち上がり時間と立ち下がり時間を一致させることができる。
【0134】
また、NMOSトランジスタとPMOSトランジスタの電流駆動能力の比が2対1のノア回路の場合も論理閾値を合わせると、チャネル幅の比は1対4になる。同様にナンド回路の場合は1対1になる。
【0135】
例えば、単位遅延素子が論理閾値を合わせたノア回路を含んで構成されており、ノア回路への2つの入力信号のパルス幅は同じであるが、一方のパルスが他方のパルスに比べてタイミングが遅れているとき、ノア回路の論理の特徴からパルス幅を変化させてしまう。
【0136】
図28は、クロックド・インバータ回路とノア回路で構成された単位遅延素子の一例を示している。直列接続された単位遅延素子14i、14i+1はそれぞれクロックド・インバータ回路201a、202a、ノア回路201b、202bにより構成されている。クロックド・インバータ回路201aはPMOSトランジスタMP1、MP2、NMOSトランジスタMN2、NM1により構成され、クロックド・インバータ回路202aはPMOSトランジスタMP4、MP3、NMOSトランジスタMN4、NM3により構成されている。各ノア回路201b、202bの入力端には、そのノア回路が設けられている単位遅延素子のクロックド・インバータ回路からの出力信号と前段の単位遅延素子のクロックド・インバータ回路から出力される信号が供給される。
【0137】
図29は、図28の各部の信号を示している。先ず、クロックド・インバータ回路201aの入力端にパルス幅Tのパルス信号Fi−1が供給された場合を考える。クロックド・インバータ回路201aのNMOSトランジスタによるパルス信号Fiの立ち下がりの遅延量とPMOSトランジスタによるパルス信号の立ち上がりの遅延量を共に“d”とする。このクロックド・インバータ回路201aは論理閾値をあわせているため、立ち上がり、立ち下がり両方の遅延量は等しい。クロックド・インバータ回路201aの出力端から出力されるパルス信号bFiは入力パルス信号Fi−1より遅延量“d”だけ遅延した反転パルスとなる。このときのパルス幅はTで変わらない。
【0138】
次に、ノア回路201bに入力される信号bFi−1は、単位遅延素子1段分前の信号である。このため、信号bFiのパルス幅は信号Fi−1のそれと同じパルス幅Tであるが、遅延時間“d+D”だけ遅延している。ここで、“D”はノア回路201bの立ち上がり、立ち下がり両方の遅延量である。このノア回路201bは論理閾値をあわせているため、立ち上がり、立ち下がり両方の遅延量は等しい。
【0139】
ノア回路201bから出力される信号Fiの立ち上がりは、信号bFi−1より遅れて立ち下がる信号bFiで規定され、信号bFiの立ち下がりから遅延量“D”遅れる。同様に信号Fiの立ち下がりは、先に立ち上がる信号bFi−1で規定され、信号bFi−1の立ち上がりから遅延量“D”遅れるため、Fi−1の立ち下がりと等しくなる。この信号Fiのパルス幅はT−(d+D)となる。
【0140】
上記信号Fiは、単位遅延素子14i+1のクロックド・インバータ回路202aに供給される。このため、このクロックド・インバータ回路202bの出力信号bFi+1の立ち下がり、立ち上がりは共に遅延量“d”遅れる。この信号bFi+1のパルス幅はT−(d+D)となる。
【0141】
この信号bFi+1と前記信号bFiが供給されるノア回路202bの出力信号Fi+1の立ち上がりは、信号bFi+1の立ち下がりで規定され、それより遅延量“D”遅れる。また、信号Fi+1の立ち下がりは、信号bFi+1と同じタイミングで立ち上がる信号bFiの立ち上がりから遅延量“D”遅れる。この信号Fi+1のパルス幅はT−(d+D)となる。
【0142】
上記のように、2つの単位遅延素子を通ることにより、ノア回路202bから出力される信号のパルス幅はTからT−(d+D)となる。つまり、2つの単位遅延素子を通ると、単位遅延素子の遅延量だけパルス幅が短くなる。複数の単位遅延素子からなる遅延線において、このようにパルス幅が狭くなると、最悪の場合、パルスを消失してしまうという問題があった。
【0143】
また、ノア回路201b、202bに代えてナンド回路を使用した場合、ナンド回路の論理の特徴により、単位遅延素子を通過した信号のパルス幅が広がる。このため、最悪の場合、隣接するパルス信号が連結してしまう問題を有している。
【0144】
また、この遅延線を用いたSAD方式の同期回路は、1番目のクロック信号と2番目のクロック信号の間の1サイクル間で遅延量を決定し、2番目のクロックを実際に遅延させ、3番目のクロック信号に同期させている。つまり、2周期後に同期をとるしくみになっている。このため、同期速度(Lock−in Time)が速いという長所を有しているが、1番目のクロック信号や2番目のクロック信号がジッター(クロック信号の位相ずれ)を持っていると、そのジッターを増幅してしまうという欠点がある。
【0145】
そこで、1番目のクロック信号と3番目のクロック信号の間の2サイクル間の平均を求めることにより、ジッターの増幅を抑制する方式が提案されている。具体的には状態保持部の制御信号をクロック信号の奇数番目と偶数番目に対応した2種類の信号とし、前進パルス信号用と後進パルス信号用の単位遅延素子を構成するインバータ回路をノア回路とすることにより、2サイクル間の信号の平均をとることにより、ジッターの増幅を抑制している。
【0146】
図30(a)はノア回路221を用いた前進パルス信号が供給される単位遅延素子を示し、図30(b)は奇数番目の信号bRo、Soと偶数番目の信号bRe、Seにより制御される状態保持回路を示し、奇数番目の状態保持回路は信号bRo、Soにより制御され、偶数番目の状態保持回路は信号bRe、Seにより制御される。信号bRo、Soは前記信号bpmの2倍の周期の信号であり、信号bRoはデューティ比は信号bpmと殆ど変わらないが、信号Soはデューティ比がほぼ半分になる。図31は上記ノア回路222を用いた後進パルス信号が供給される単位遅延素子を示している。従来の同期回路は最悪の場合、ジッター量δに対して3δに増幅されるが、図30、図31に示すように、2サイクルで信号を平均している同期回路はジッターの増幅を2δに抑制することができる。しかし、図30、図31に示す単位遅延素子はクロックド・インバータ回路とノア回路から構成されているため、前述したように信号が単位遅延素子を通る度にパルス幅が減少していくという欠点がある。つまり、周期の長いクロックやデューティ比が小さいクロック信号は単位遅延素子を通過する途中でクロック信号が消滅する可能性を有している。
【0147】
そこで、第6の実施例では、単位遅延素子をパルス幅を広げる回路と、パルス幅を狭める回路とにより構成し、単位遅延素子の入力信号と出力信号のパルス幅を一致させている。
【0148】
すなわち、図32に示す第6の実施例において、直列接続された単位遅延素子14i、14i+1は、それぞれ入力信号のパルス幅を広げるクロックド・インバータ回路231a、232aと、パルス幅を狭めるノア回路231b、232bとから構成されている。
【0149】
図33は、図32に示す単位遅延素子14i、14i+1の各部の信号を示している。クロックド・インバータ回路231aの入力端にパルス幅がTの信号Fi−1が供給された場合について考える。
【0150】
クロックド・インバータ回路231aを構成するNMOSトランジスタNM51、NM52によるパルス信号の立ち下がり時の遅延量を“d1”とし、PMOSトランジスタPM51、PM52によるパルス信号の立ち上がり時の遅延量を“d2”とする。この場合、クロックド・インバータ回路231aの出力信号bFiの立ち下がりと立ち上がりは、信号Fi−1に対してそれぞれ遅延量“d1”、“d2”遅れる。この信号bFiのパルス幅はT+d2−d1である。
【0151】
次に、ノア回路231bの入力信号bFi−1は、信号bFiと比較して単位遅延素子1段分前の信号であるため、パルス幅がTで、遅延量が“d1+D”である。ここで、遅延量が“D”はノア回路231bの立ち上がり、立ち下がり両方の遅延量である。このノア回路231bは論理閾値を合わせているため、立ち上がり、立ち下がり両方の遅延量は等しい。
【0152】
ノア回路231bの出力信号Fiの立ち上がりは、信号bFi−1より遅れて立ち下がる信号bFiにより規定され、信号bFiの立ち下がりから遅延量“D”遅れる。また、信号Fiの立ち下がりは、信号bFi−1により規定され、信号bFi−1の立ち上がりから遅延量“D”遅れ、信号Fi−1の立ち下がりと等しい。この信号Fiのパルス幅はT−(d1+D)となる。
【0153】
単位遅延素子14i+1において、クロックド・インバータ回路232aの入力端には信号Fiが供給されるため、このクロックド・インバータ回路232aの出力信号bFi+1の立ち下がりは遅延量“d1”遅れ、立ち上がりは遅延量“d2”遅れる。この信号bFi+1のパルス幅はT+d2−2d1−Dとなる。この信号bFi+1とクロックド・インバータ回路231aの出力信号bFiがノア回路232bに供給される。このため、ノア回路232bの出力信号Fi+1の立ち上がりは、信号bFiより遅れて立ち下がる信号bFi+1の立ち下がりで規定され、信号bFi+1より遅延量“D”遅れる。また、信号Fi+1の立ち下がりは、同じタイミングで立ち上がる信号bFi+1と信号bFiの立ち上がりから遅延量“D”遅れる。この信号Fi+1のパルス幅はT+d2−2d1−Dとなる。
【0154】
上記のように、2個の単位遅延素子14i、14i+1を通ると、パルス幅TがT+d2−2d1−Dとなることが分かる。ここで、d2=2d1+Dとなるようにクロックド・インバータ回路231a、231bの遅延量を設定することにより、信号が2個の単位遅延素子14i、14i+1を通過してもその信号のパルス幅はTとなり、パルス幅は変化しない。遅延量をd2=2d1+Dとするためには、以下のような方法がある。
【0155】
クロックド・インバータ回路231a、231bのNMOSトランジスタNM51、NM52、NM53、NM54のチャネル幅を大きくし、PMOSトランジスタPM51、PM52、PM53、PM54のチャネル幅を小さくする。このようにすることで、クロックド・インバータ回路231a、231bを通過した信号のパルス幅が広がる。つまり、NMOSトランジスタのチャネル幅を大きくすることによりNMOSトランジスタの電流駆動能力を大きくできるため、パルスの立ち下がり時間が速くなる。また、PMOSトランジスタのチャネル幅を小さくすることによりPMOSトランジスタの電流駆動能力を小さくできるため、パルスの立ち上がり時間が遅くなる。したがって、信号のパルス幅が広がることとなる。
【0156】
ここで、上記単位遅延素子を構成するクロックド・インバータ回路のチャネル幅の決定方法について説明する。
【0157】
図34(a)に示すように、単位遅延素子14iはクロックド・インバータ回路231aとノア回路231bとにより構成されている。このため、クロックド・インバータ回路231aとノア回路231bを構成する全てトランジスタのチャネル幅を変化させて最適化を図ることは困難である。このため、ノア回路231bを構成するトランジスタのチャネル幅はNMOSトランジスタやPMOSトランジスタの駆動能力を考え論理閾値を合わせたチャネル幅とする。ノア回路231bを構成するトランジスタのチャネル幅を決定した後、ゲート容量などを考慮し、ノア回路231bが駆動する容量とクロックド・インバータ回路231aが駆動する容量とをほぼ同じにすれば、クロックド・インバータ回路231aを構成するPMOSトランジスタのチャネル幅(Wp)とNMOSトランジスタのチャネル幅(Wn)の和は一意的に決まる。これらチャネル幅Wp、Wnの和を固定(Wp+Wn=一定)として、チャネル幅WpもしくはWnを変化させ、図34(b)に示すように、パルス信号の立ち上がりの遅延量“RD”とパルス信号の立ち下がりの遅延量“FD”をシミュレートし、立ち上がりの遅延量“RD”と立ち下がりの遅延量“FD”が等しくなるチャネル幅Wp、Wnを決定する。
【0158】
図35は、上記シミュレート結果を示している。縦軸は単位遅延素子1段当たりの立ち上がりの遅延量“RD”と立ち下がりの遅延量“FD”を示し、横軸はクロックド・インバータ回路を構成するPMOSトランジスタのチャネル幅Wpを示している。立ち上がりの遅延量と立ち下がりの遅延量が交わるディメンジョンのとき、単位遅延素子を通過した信号のパルス幅が一定に保たれることになる。立ち上がりの遅延量が立ち下がりの遅延量に比べて大きいとき、単位遅延素子を通過した信号のパルス幅は減少し、逆に立ち上がりの遅延量が立ち下がりの遅延量に比べて小さいとき、単位遅延素子を通過した信号のパルス幅は拡大していく。この例の場合、Wp+Wn=9μmとし、PMOSトランジスタのチャネル幅Wpを3.5μm、NMOSトランジスタのチャネル幅Wnを5.5μmとした場合を示している。
【0159】
また、上記とは逆に、先にクロックド・インバータ回路のチャネル幅を決定し、この後、ノア回路のPMOSトランジスタのチャネル幅とNMOSトランジスタのチャネル幅の和を一定とし、立ち上がりの遅延量と立ち下がりの遅延量が等しくなるノア回路のチャネル幅を決定することもできる。
【0160】
このどちらが最適かは遅延量の絶対値で決まる。同期回路の精度は単位遅延素子1段当たりの立ち上がりの遅延量で決まるため、その遅延量の絶対値が小さい方が最適である。
【0161】
信号のパルス幅を広げる方法は、上記のようにトランジスタのチャネル幅を変えるだけでなく、トランジスタのチャネル長、閾値電圧、トランジスタが形成される基板電圧を変えることでも可能である。
【0162】
トランジスタのチャネル長を変える場合、クロックド・インバータ回路を構成するNMOSトランジスタのチャネル長を短くし、PMOSトランジスタのチャネル長を長くする。
【0163】
トランジスタの閾値電圧を変える場合、クロックド・インバータ回路を構成するNMOSトランジスタの閾値電圧を低くし、PMOSトランジスタの閾値電圧を高くする。
【0164】
また、基板電圧を変える場合、クロックド・インバータ回路を構成するNMOSトランジスタの基板電圧を高くし、PMOSトランジスタの基板電圧を低くする。
【0165】
図35に示す方法は、チャネル幅の決定に限定されるものではなく、チャネル長、閾値電圧、基板電圧の決定にも適用できる。
【0166】
上記第6の実施例によれば、パルス幅を広げる回路と、パルス幅を狭める回路とにより単位遅延素子を構成しているため、単位遅延素子の入力信号と出力信号のパルス幅を一致させるこてができ、単位遅延素子にノア回路を含む場合においても、単位遅延素子から出力される信号のパルス幅が狭まることを防止できる。
【0167】
(第7の実施例)
図36は、本発明の第7の実施例を示すものであり、単位遅延素子をクロックド・インバータ回路とナンド回路により構成する場合について示している。単位遅延素子14i、14i+1、14i+2において、クロックド・インバータ回路241a、242a、243aはそれぞれ単位遅延素子を通過する信号のパルス幅を狭める回路であり、ナンド回路241b、242bはそれぞれ単位遅延素子を通過する信号のパルス幅を広げる回路である。
【0168】
図37は、図36の各部の信号を示している。先ず、クロックド・インバータ回路241aの入力端にパルス幅がTの信号Fi−1が入力される場合を考える。クロックド・インバータ回路241a、242a、243aを構成するNMOSトランジスタによるパルス信号の立ち下がりの遅延量を“d1”とし、PMOSトランジスタによるパルス信号の立ち上がりの遅延量を“d2”とすると、クロックド・インバータ回路241aの出力信号bFiの立ち下がりと立ち上がりの遅延量は、それぞれ“d1”、“d2”となり、この信号bFiのパルス幅はT+d2−d1となる。
【0169】
次に、ナンド回路241bの入力信号bFi−1は信号bFiに比べて単位遅延素子1段分前の信号であるため、パルス幅がTで遅延量“d1+D”遅延した信号である。ここで、遅延量“D”はナンド回路241b、242bの立ち上がり、立ち下がり両方の遅延量である。これらナンド回路241b、242bは論理閾値をあわせているため、立ち上がり、立ち下がり両方の遅延量は等しい。
【0170】
ナンド回路241bの出力信号Fiの立ち上がりは信号bFiより先に立ち下がる信号bFi−1によって規定され、信号bFi−1の立ち下がりから遅延量“D”遅れる。また、信号Fiの立ち下がりは信号bFi−1より遅れて立ち上がる信号bFiにより規定され、信号bFiの立ち上がりから遅延量“D”遅れる。この信号Fiのパルス幅はT+(d1+D)となる。
【0171】
次の単位遅延素子14i+1において、クロックド・インバータ回路242aの入力端には信号Fiが供給される。このため、クロックド・インバータ回路242aの出力信号bFi+1の立ち下がりは信号Fiより遅延量“d1”遅れ、立ち上がりは信号Fiより遅延量“d2”遅れる。この信号bFi+1のパルス幅はT+d2+Dとなる。この信号bFi+1と信号bFiはナンド回路242bに供給される。このナンド回路242bの出力信号Fi+1の立ち上がりは信号bFiより先に立ち下がる信号bFi+1の立ち下がりで規定され、信号bFi+1より遅延量“D”遅れている。また、信号Fi+1の立ち下がりはbFiより遅れて立ち上がる信号bFi+1の立ち上がりから遅延量“D”遅れている。この信号Fi+1のパルス幅はT+d2+Dとなる。
【0172】
次の単位遅延素子14i+2において、クロックド・インバータ回路243aの入力端には信号Fi+1が供給される。このため、このクロックド・インバータ回路243aの出力信号bFi+2の立ち下がりは、信号Fi+1より遅延量“d1”遅れ、立ち上がりは信号Fi+1より遅延量“d2”遅れる。この信号Fi+1のパルス幅はT−d1+2d2+Dとなる。
【0173】
上記のように、信号が2つの単位遅延素子14i、14i+1、及びクロックド・インバータ回路243aを通過すると、信号のパルス幅TがT−d1+2d2+Dとなることが分かる。ここで、遅延量d1=2d2+Dとなるような遅延を設定することにより、2つの単位遅延素子14i、14i+1、及びインバータ回路243aを通過してもパルス幅はTとなり、パルス幅は一定となる。d1=2d2+Dとなる遅延量を設定するには、以下のような手段がある。
【0174】
クロックド・インバータ回路241a、242a、243aのNMOSトランジスタNM61、NM62、NM63、NM64、NM65、NM66のチャネル幅を小さくし、PMOSトランジスタPM61、PM62、PM63、PM64、PM65、PM66のチャネル幅を広くする。このように設定することにより、クロックド・インバータ回路241a、242a、243aを通過した信号のパルス幅を狭めることができる。つまり、NMOSトランジスタのチャネル幅を小さくすることにより、これらトランジスタの電流駆動能力が低下し、パルスの立ち下がり時間が遅くなる。また、PMOSトランジスタのチャネル幅を広くすることにより、これらトランジスタの電流駆動能力が向上し、パルスの立ち上がり時間が速くなる。したがって、実効的なパルス幅を狭めることができる。
【0175】
このパルス幅を狭める手段はチャネル幅を変えるだけでなく、チャネル長、閾値電圧、基板電圧の少なくとも1つを変えることによっても、同様の効果を得ることができる。
【0176】
上記チャネル長を変える場合、クロックド・インバータ回路241a、242a、243aを構成するNMOSトランジスタのチャネル長を長くし、PMOSトランジスタのチャネル長を短くすればよい。
【0177】
上記閾値電圧を変える場合、クロックド・インバータ回路241a、242a、243aを構成するNMOSトランジスタの閾値電圧を高くし、PMOSトランジスタの閾値電圧を低くすればよい。
【0178】
また、基板電圧を変える場合、クロックド・インバータ回路241a、242a、243aを構成するNMOSトランジスタが形成される基板電圧を低くし、PMOSトランジスタが形成される基板電圧を高くすればよい。
【0179】
上記第7の実施例によれば、単位遅延素子をクロックド・インバータ回路とナンド回路とにより構成し、ナンド回路により信号のパルス幅が広がる分、クロックド・インバータ回路により信号のパルス幅を狭めている。したがって、単位遅延素子を通過した信号のパルス幅が広がることを防止できる。
【0180】
また、上記第6、第7の実施例に示す方法は、新たな回路を単位遅延素子に組み込む必要がないため、回路の占有面積が増大することがないという利点を有している。
【0181】
尚、上記第6、第7の実施例では、同期回路を構成する前進パルス信号用の第1の遅延線にいて説明したが、後進パルス信号用の第2の遅延線についても同様の構成とすることにより、後進パルス信号についても、単位遅延素子の前後でパルス幅を一定に保持することができる。
【0182】
さらに、第6、第7の実施例に示す単位遅延素子を用いて前進パルス信号を伝搬する第1の遅延線、後進パルス信号を遅延する第2の遅延線を構成することにより、同期回路を構成できる。
【0183】
その他、本発明の要旨を変えない範囲において種々変形実施可能なことは勿論である。
【0184】
【発明の効果】
以上、詳述したように本発明によれば、クロック信号の周波数が高くなった場合においても同期精度を向上することができ、しかも、単位遅延素子を通過した信号のパルス幅を一定に保持することが可能な同期回路を提供できる。
【図面の簡単な説明】
【図1】図1は、第1の実施例に適用されるSAD方式の同期回路を示す回路構成図。
【図2】図2(a)(b)(c)は図1に示す第1、第2の遅延線、状態保持部の一部を示す回路図。
【図3】図2に示す単位遅延素子を具体的に示す回路図。
【図4】図2に示す単位遅延素子を具体的に示す回路図。
【図5】図1乃至図4の各部の信号を示す波形図。
【図6】本発明の第2の実施例に係る同期回路を示す構成図。
【図7】図7(a)(b)は、図6に示す状態保持部の概略的な動作を示す図。
【図8】図8(a)(b)(c)は、図6に示す状態保持部の概略的な動作を示す図。
【図9】図6を具体的に示す構成図。
【図10】図9の一部を示す回路図。
【図11】図10に示す単位遅延素子を具体的に示す回路図。
【図12】図10に示す単位遅延素子を具体的に示す回路図。
【図13】図9乃至図12の動作を示す波形図。
【図14】中間状態“M”を説明するために示す図。
【図15】第2の実施例の変形例を示すものであり、同期回路を示す構成図。
【図16】図15の一部を示す回路図。
【図17】図16の一部を示す回路図。
【図18】本発明の第3の実施例を示す構成図。
【図19】図18の動作を示す波形図。
【図20】本発明の第4の実施例に係る状態保持部を説明するために示す構成図。
【図21】本発明の第4の実施例に係る同期回路の一部を示す構成図。
【図22】図21の一部を示す回路図。
【図23】図21の一部を示す回路図。
【図24】図21の一部を示す回路図。
【図25】図21の一部を示す回路図。
【図26】本発明の第5の実施例に係る同期回路を示す構成図。
【図27】図26の動作を示す波形図。
【図28】クロックド・インバータ回路と論理回路を含む単位遅延素子を示す回路図。
【図29】図28の動作を示す波形図。
【図30】図30(a)はノア回路を用いた単位遅延素子を示す回路図、図30(b)は状態保持回路を示す回路図。
【図31】ノア回路を用いた単位遅延素子を示す回路図。
【図32】本発明の第6の実施例を示す回路図。
【図33】図32の動作を示す波形図。
【図34】図34(a)は、単位遅延素子の最適化を説明するための回路図、図34(b)は図34(a)の動作を示す波形図。
【図35】図34(a)に示す単位遅延素子を最適化するためのシミュレート結果を示す図。
【図36】本発明の第7の実施例を示す回路図。
【図37】図36の動作を示す波形図。
【符号の説明】
11…同期回路、
12、12a、12b、12c、12d…入力バッファ回路、
13、31…ディレイモニタ、
14…第1の遅延線、
14i−3〜14i〜14i+3…単位遅延素子、
15…状態保持部、
16…第2の遅延線、
16i−3〜16i〜16i+3…単位遅延素子、
17…出力バッファ回路、
18、30…第1の信号発生回路、
19…第2の信号発生回路、
20…第3の信号発生回路、
51a、51b、103、104、111、112…倍周期信号生成回路、
62a、62b…ハーフSTBD、
115a、115b、115c、115d…クウォータSTBD。

Claims (20)

  1. 複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、
    複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、
    前記第1の遅延線を伝搬される前進パルス信号の伝搬位置を検出し、前記第2の遅延線を伝搬する後進パルス信号を制御する状態保持部とを具備し、
    前記第1、第2の遅延線を構成する前記単位遅延素子は、制御信号に応じて前記前進パルス信号又は前記後進パルス信号を伝搬する直列接続された複数のクロックドインバータ回路を有し、各クロックドインバータ回路は、前記単位遅延素子に入力する信号が第1のレベルからそれより高い第2のレベルに変化するときに応答する複数の第1のトランジスタ、前記単位遅延素子に入力する信号が前記第2のレベルから第1のレベルに変化するときに応答する複数の第2のトランジスタとを含み、複数の前記第1、第2のトランジスタのうち、前記単位遅延素子に入力する信号の立ち上がりに応答する前記第1、第2のトランジスタの電流駆動能力は、他の前記第1、第2のトランジスタの電流駆動能力より大きく設定されていることを特徴とする同期回路。
  2. 前記第1のトランジスタのチャネル幅は、前記第2のトランジスタのチャネル幅より大きく設定されることを特徴とする請求項1記載の同期回路。
  3. 前記第1のトランジスタのチャネル長は、前記第2のトランジスタのチャネル長より短く設定されることを特徴とする請求項1記載の同期回路。
  4. 前記第1のトランジスタの閾値電圧は、前記第2のトランジスタの閾値電圧より小さく設定されることを特徴とする請求項1記載の同期回路。
  5. 前記第1のトランジスタが形成される基板の電圧は、前記第2のトランジスタが形成される基板の電圧より高く設定されることを特徴とする請求項1記載の同期回路。
  6. 複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、
    複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、
    前記第1の遅延線を構成する単位遅延素子に対応して配置され、第1の遅延線伝搬される前進パルス信号を検出してセットされ、前記第2の遅延線に伝搬される後進パルス信号に応じてリセットされる複数の状態保持回路を有し、隣接する一対の前記状態保持回路が共にセットされたセット状態、隣接する一対の前記状態保持回路が共にリセットされたリセット状態、隣接する一対の前記状態保持回路がセット、リセットされた中間状態を有し、前記第2の遅延線を制御する状態保持部と
    を具備することを特徴とする同期回路。
  7. 前記第2の遅延線は、前記状態保持部がセット状態の場合、前段の単位遅延素子からのパルス信号を通過し、前記状態保持部がリセット状態の場合、前段の単位遅延素子からのパルス信号に代えて前記単位遅延素子に供給されるクロック信号を通過し、前記状態保持部が中間状態の場合、前段の単位遅延素子からのパルス信号に代えて前記クロック信号を単位遅延素子が有する遅延量の1.5倍だけ遅延して通過することを特徴とする請求項6記載の同期回路。
  8. 前記第2の遅延線を構成する単位遅延素子は、前記クロック信号を通過するクロックド・インバータ回路を有し、前記状態保持部が前記中間状態であるとき、前記クロックドインバータの制御電圧を前記リセット状態の制御電圧とセット状態の制御電圧の中間に設定することを特徴とする請求項6記載の同期回路。
  9. 前記第2の遅延線を構成する単位遅延素子は、前記クロック信号を通過するクロックド・インバータ回路を有し、前記状態保持部が前記中間状態であるとき導通されるクロックド・インバータ回路を構成するトランジスタのチャネル幅、チャネル長、閾値電圧、基板電圧のうちの少なくとも一つを変化させ、前記クロックド・インバータ回路を通過するクロック信号を単位遅延素子の遅延量の1.5倍分だけ遅延させることを特徴とする請求項6記載の同期回路。
  10. 前記第2の遅延線を構成する単位遅延素子は、前記状態保持部がリセット状態のとき前記クロック信号を通過する第1のクロックド・インバータ回路と、前記状態保持部が前記中間状態であるとき前記クロック信号を通過する第2のクロックド・インバータ回路を有し、この第2のクロックド・インバータ回路の遅延量を前記第1のクロックド・インバータ回路の1.5倍に設定することを特徴とする請求項6記載の同期回路。
  11. 前記第1、第2の遅延線を構成する単位遅延素子は、前段の単位遅延素子から供給されるパルス信号を後段の単位遅延素子に伝送するクロックド・インバータ回路をそれぞれ有し、これらクロックド・インバータ回路は外部クロック信号に同期した信号により制御されることを特徴とする請求項1記載の同期回路。
  12. 第1のクロック信号を2倍の周期の第1、第2の信号に分割する分割回路と、
    前記分割回路により分割された第1の信号の同期をとる第1の同期回路と、
    前記分割回路により分割された第2の信号の同期をとる第2の同期回路と、
    前記第1、第2の同期回路の出力信号を合成し、前記第1のクロック信号に同期し、前記クロック信号と同一周期の第2のクロック信号を生成する生成回路と
    を具備することを特徴とする同期回路。
  13. 複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、
    複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、
    前記第1の遅延線を構成する単位遅延素子に対応して配置され、第1の遅延線伝搬される前進パルス信号を検出してセットされ、前記第2の遅延線に伝搬される後進パルス信号に応じてリセットされる複数の状態保持回路を有し、隣接するn個(nは2以上の整数)の前記状態保持回路が共にセットされたセット状態、前記隣接するn個の前記状態保持回路が全てリセットされたリセット状態、前記隣接するn個の前記状態保持回路がセット、リセットのいずれかとされたn−1個の中間状態を有し、前記第2の遅延線を制御する状態保持部と
    を具備することを特徴とする同期回路。
  14. 前記第2の遅延線を構成する単位遅延素子は、前記状態保持部がリセット状態のとき前記クロック信号を通過する第1のクロックド・インバータ回路と、前記状態保持部が前記中間状態であるとき前記クロック信号を通過するn−1個の第2のクロックド・インバータ回路を有し、これら第2のクロックド・インバータ回路の遅延量は、n=4のとき、前記第1のクロックド・インバータ回路の1+m/4倍(m=1、2…n−1)に設定されることを特徴とする請求項13記載の同期回路。
  15. 第1のクロック信号をn倍(nは2以上の整数)の周期のn個の信号に分割するn個の分割回路と、
    前記n個の分割回路により分割された各信号の同期をそれぞれとるn個の同期回路と、
    前記n個の同期回路の出力信号を合成し、前記第1のクロック信号に同期し、前記第1のクロック信号と同一周期の第2のクロック信号を生成する生成回路と
    を具備することを特徴とする同期回路。
  16. 入力パルス信号が供給されるクロックド・インバータ回路と、
    前記クロックド・インバータ回路から出力されるパルス信号と反転された前記入力パルス信号が供給される論理回路とを具備し、
    前記クロックド・インバータ回路は前記論理回路から出力されるパルス信号のパルス幅の変化方向と反対方向に前記入力パルス信号のパルス幅を変化させることを特徴とする遅延回路。
  17. 前記論理回路はノア回路であり、前記クロックド・インバータ回路はパルス信号の後端を遅延することを特徴とする請求項16記載の遅延回路。
  18. 前記論理回路はナンド回路であり、前記クロックド・インバータ回路はパルス信号の先端を遅延することを特徴とする請求項16記載の遅延回路。
  19. 前記クロックド・インバータ回路は、NMOSトランジスタとPMOSトランジスタにより構成され、これらNMOSトランジスタとPMOSトランジスタのチャネル幅、チャネル長、閾値電圧、基板電圧のうちの少なくとも1つを変えることにより、NMOSトランジスタの電流駆動能力に対するPMOSトランジスタの電流駆動能力の比を1以外に設定し、パルス信号の立ち上がり時間と立ち下がり時間を異ならせることを特徴とする請求項16、17、18のいずれかに記載の遅延回路。
  20. 複数の単位遅延素子を有し、前進パルス信号が伝搬される第1の遅延線と、
    複数の単位遅延素子を有し、後進パルス信号が伝搬される第2の遅延線と、
    前記第1の遅延線伝搬される前進パルス信号の伝搬位置に応じてセット状態、リセット状態が設定され、セット状態には前記後進パルス信号を前記第2の遅延線に伝搬させ、リセット状態にはクロック信号を前記第2の遅延線に伝搬させる状態保持部とを具備し、
    前記第1、第2の遅延線を構成する各単位遅延素子は、クロックド・インバータ回路と、このクロックド・インバータ回路から出力される前記前進又は後進パルス信号と前段の単位遅延素子から供給される反転された前記前進又は後進パルス信号が供給される論理回路とを有し、前記クロックド・インバータ回路は前記論理回路から出力されるパルス信号のパルス幅の変化方向と反対方向に前記前進又は後進パルス信号のパルス幅を変化させることを特徴とする同期回路。
JP03857499A 1999-02-17 1999-02-17 同期回路とその遅延回路 Expired - Fee Related JP3825573B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03857499A JP3825573B2 (ja) 1999-02-17 1999-02-17 同期回路とその遅延回路
US09/505,204 US6359480B1 (en) 1999-02-17 2000-02-16 Synchronizing circuit for generating a signal synchronizing with a clock signal
US10/003,312 US6731149B2 (en) 1999-02-17 2001-12-06 Synchronizing circuit for generating a signal synchronizing with a clock signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03857499A JP3825573B2 (ja) 1999-02-17 1999-02-17 同期回路とその遅延回路

Publications (2)

Publication Number Publication Date
JP2000235429A JP2000235429A (ja) 2000-08-29
JP3825573B2 true JP3825573B2 (ja) 2006-09-27

Family

ID=12529072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03857499A Expired - Fee Related JP3825573B2 (ja) 1999-02-17 1999-02-17 同期回路とその遅延回路

Country Status (2)

Country Link
US (2) US6359480B1 (ja)
JP (1) JP3825573B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338985A (ja) * 1999-09-20 2001-12-07 Matsushita Electric Ind Co Ltd クロック回路及びその設計方法
JP3776847B2 (ja) * 2002-07-24 2006-05-17 エルピーダメモリ株式会社 クロック同期回路及び半導体装置
US20060044016A1 (en) 2004-08-24 2006-03-02 Gasper Martin J Jr Integrated circuit with signal skew adjusting cell selected from cell library
US7084686B2 (en) * 2004-05-25 2006-08-01 Micron Technology, Inc. System and method for open-loop synthesis of output clock signals having a selected phase relative to an input clock signal
US8427205B1 (en) * 2011-12-16 2013-04-23 Motorola Solutions, Inc. Method and apparatus for fast frequency locking in a closed loop based frequency synthesizer
JP2022038403A (ja) * 2020-08-26 2022-03-10 キオクシア株式会社 デューティー調整回路、及び、半導体記憶装置、並びに、メモリシステム
JP2023040523A (ja) * 2021-09-10 2023-03-23 キオクシア株式会社 半導体集積回路、及び、半導体記憶装置、並びに、メモリシステム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581394B2 (ja) * 1974-03-09 1983-01-11 株式会社東芝 キカイヒヨウジシキトケイソウチ ノ ケイスウカイロ
US3920962A (en) * 1974-03-25 1975-11-18 Sun Oil Co Pennsylvania Pulse summing circuit
US4237422A (en) * 1978-08-31 1980-12-02 Mobil Oil Corporation Chromatograph signal generator
US4710648A (en) * 1984-05-09 1987-12-01 Hitachi, Ltd. Semiconductor including signal processor and transient detector for low temperature operation
JPH01117518A (ja) * 1987-10-30 1989-05-10 Toshiba Corp 半導体装置の出力回路
US5287025A (en) * 1991-04-23 1994-02-15 Matsushita Electric Industrial Co., Ltd. Timing control circuit
US5146110A (en) * 1991-05-22 1992-09-08 Samsung Electronics Co., Ltd. Semiconductor memory with substrate voltage generating circuit for removing unwanted substrate current during precharge cycle memory mode of operation
US5426633A (en) * 1992-06-02 1995-06-20 Nec Corporation System for processing synchronization signals with phase synchronization in a mobile communication network
KR950002724B1 (ko) * 1992-03-13 1995-03-24 삼성전자주식회사 데이타 리텐션(dr)모드 컨트롤 회로
KR950004855B1 (ko) * 1992-10-30 1995-05-15 현대전자산업 주식회사 반도체 메모리 소자의 어드레스 전이 검출 회로
US5498989A (en) * 1994-04-19 1996-03-12 Xilinx, Inc. Integrated circuit one shot with extended length output pulse
US5606270A (en) * 1994-12-16 1997-02-25 Sun Microsystems, Inc. Dynamic clocked inverter latch with reduced charge leakage
KR0164375B1 (ko) * 1995-06-12 1999-02-18 김광호 반도체 메모리 장치의 펄스 발생회로
US5682113A (en) * 1995-09-27 1997-10-28 Lg Semicon Co., Ltd. Pulse extending circuit
KR0179779B1 (ko) * 1995-12-18 1999-04-01 문정환 클럭신호 모델링 회로
JP3410922B2 (ja) 1996-04-23 2003-05-26 株式会社東芝 クロック制御回路
GB2314709B (en) * 1996-06-24 2000-06-28 Hyundai Electronics Ind Skew logic circuit device
JP3575920B2 (ja) * 1996-06-28 2004-10-13 沖電気工業株式会社 半導体集積回路
JP3309782B2 (ja) * 1997-06-10 2002-07-29 日本電気株式会社 半導体集積回路
US6141127A (en) * 1998-02-20 2000-10-31 Lucent Technologies Inc. High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US6078193A (en) * 1998-04-06 2000-06-20 Graychip, Inc. Apparatus and method for providing a static mode for dynamic logic circuits
JP3727778B2 (ja) 1998-05-07 2005-12-14 株式会社東芝 データ高速転送同期システム及びデータ高速転送同期方法
US6140855A (en) * 1999-03-30 2000-10-31 International Business Machines Corporation Dynamic-latch-receiver with self-reset pointer

Also Published As

Publication number Publication date
US6359480B1 (en) 2002-03-19
US6731149B2 (en) 2004-05-04
US20020036524A1 (en) 2002-03-28
JP2000235429A (ja) 2000-08-29

Similar Documents

Publication Publication Date Title
US6313676B1 (en) Synchronous type semiconductor integrated circuit having a delay monitor controlled by a delay control signal obtained in a delay measuring mode
US6738918B2 (en) High speed data transfer synchronizing system and method
US6259288B1 (en) Semiconductor integrated circuit having a DLL circuit and a special power supply circuit for the DLL circuit
JP3429977B2 (ja) スキュー低減回路及び半導体装置
CN106297866B (zh) 用于将命令提供到数据块的命令路径、设备及方法
US9000817B2 (en) Apparatuses and methods for altering a forward path delay of a signal path
KR100837822B1 (ko) Dll 회로 및 그 제어 방법
US7750699B2 (en) Delay locked loop circuit
JP2001339283A (ja) 遅延回路およびそのための半導体回路装置
JP3825573B2 (ja) 同期回路とその遅延回路
US6608514B1 (en) Clock signal generator circuit and semiconductor integrated circuit with the same circuit
JP3386031B2 (ja) 同期遅延回路及び半導体集積回路装置
KR100525096B1 (ko) Dll 회로
JP4890369B2 (ja) デューティ検知回路及びこれを用いたdll回路、半導体記憶装置、並びに、データ処理システム
JP4516979B2 (ja) 半導体装置
JP3435336B2 (ja) クロック同期遅延制御回路及びクロック同期遅延制御方法
JP4005779B2 (ja) クロック同期回路
JP3601884B2 (ja) タイミング制御回路
JP3819005B2 (ja) 半導体集積回路
JP3831142B2 (ja) 半導体集積回路
JPH11353268A (ja) デ―タ高速転送システム
JP3579277B2 (ja) クロック同期遅延制御回路
KR100408210B1 (ko) 입력회로및이입력회로를갖는반도체집적회로
JP4079974B2 (ja) 遅延回路
JP3853308B2 (ja) 遅延回路および電子回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees