JP3815155B2 - 画像形成装置、及び画像形成方法 - Google Patents

画像形成装置、及び画像形成方法 Download PDF

Info

Publication number
JP3815155B2
JP3815155B2 JP35577099A JP35577099A JP3815155B2 JP 3815155 B2 JP3815155 B2 JP 3815155B2 JP 35577099 A JP35577099 A JP 35577099A JP 35577099 A JP35577099 A JP 35577099A JP 3815155 B2 JP3815155 B2 JP 3815155B2
Authority
JP
Japan
Prior art keywords
image forming
resin
toner
particles
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35577099A
Other languages
English (en)
Other versions
JP2001175017A (ja
Inventor
真生 浅野
明彦 伊丹
弘 山崎
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP35577099A priority Critical patent/JP3815155B2/ja
Publication of JP2001175017A publication Critical patent/JP2001175017A/ja
Application granted granted Critical
Publication of JP3815155B2 publication Critical patent/JP3815155B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真技術を用いた画像形成装置、及び画像形成方法に関するものであり、特にオゾンやNOxの発生が少ない帯電手段を搭載した画像形成装置、及び画像形成方法に関するものである。
【0002】
【従来の技術】
現在市場で代表的に用いられている電子写真プロセスは少なくとも像保持層としての光導電層上に帯電、画像露光、現像、転写、クリーニング及び定着工程を有する。
【0003】
上記帯電工程の部材として従来代表的に用いられている帯電部材はコロナ放電器が最もよく知られている。コロナ帯電装置は安定した帯電を行えるという利点を有する。しかし、コロナ放電器は高電圧を印加しなければならないため、イオン化された酸素、オゾン、水分、酸化窒素化合物等の発生量が多いため、電子写真感光体(以後感光体とも云う)の劣化を招いたり、人体に悪影響を及ぼす等の問題点を有している。
【0004】
そこで、最近ではコロナ放電器を利用しない接触帯電方式を利用することが検討されている。具体的には帯電部材である磁気ブラシや導電性ローラーに電圧を印加して、被帯電体である感光体に接触させ、感光体表面を所定の電位に帯電させるものである。このような接触帯電方式を用いればコロナ放電器を用いた非接触帯電方式と比較して低電圧化がはかれ、オゾン発生量も減少する。
【0005】
そのためオゾン発生量の少ない接触帯電装置が採用されてきている。接触帯電方法の内、ローラー帯電方式は発生オゾン量は少ないが、帯電効率が悪く、低速機での使用に限られている。その他の接触帯電方法の内、磁気ブラシ帯電法ではコロナ帯電装置による帯電方式と比べてオゾン発生量は少なく、比較的高速機での使用が可能であるが、感光体表面を擦過するため、繰り返し画像形成する内に感光層の削れ量が大きくなり、感光体の表面が減耗しやすい。また感光体中には一般に酸化に対して弱い電荷輸送性化合物を含むので、前記と同様に該化合物が熱やコロナ放電による劣化等があり、今いっそうの改善が求められている。特に高湿下での劣化が大きく、上記減耗、フィルミング、画像ボケ等の他に磁気粒子が感光体表面に付着しやすく、画像劣化が顕著である。この問題を解決する為、これまで種々の事が検討されてきた。感光層の削れという問題に対しては、例えば、有機感光体の表面層にビスフェノールZ型(BPZ)ポリカーボネートをバインダー(結着樹脂)として用いることにより、表面の摩耗特性、トナーフィルミング特性が改善される事が報告されている。又、特開平6−118681号公報では感光体の表面層として、コロイダルシリカ含有硬化性シリコーン樹脂を用いることが報告されている。
【0006】
しかし、BPZポリカーボネートバインダーを用いた感光体では、尚耐摩耗特性が不足しており、十分な耐久性を有しているとは言い難い。一方、コロイダルシリカ含有硬化性シリコーン樹脂を感光体の表面層に用いた場合は、耐摩耗特性は改善されるが、繰り返し使用時の電子写真特性が不十分であり、カブリや画像ボケが発生しやすく、やはりこれも耐久性が不十分である。
【0007】
特に磁気ブラシを感光体に接触させて帯電を行う磁気ブラシ方式を採用した際には、特に高温高湿下での残留トナーの影響もあって、繰り返し使用により感光体の表面物性が変化し、クリーニングブレードと感光体間のトルク変動が発生したり、感光体表面に磁気粒子が付着したりする欠点がある。その結果、感光体フィルミングが発生し、筋、斑点、画像ボケ等の画像劣化が顕著である。又、このような硬化性有機ケイ素化合物膜は、耐摩耗性は高いものの、外的な衝撃に対して傷が付いたり剥がれやすくなっており強度や接着性が不十分である。
【0008】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的はオゾン等の発生が少ない接触帯電方式を利用して電子写真感光体表面を所定の電位に帯電させる系において、高温高湿下等の厳しい環境条件下に於いても、高耐久で、且つ安定で良好な画像が得られる画像形成装置、及び画像形成方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的は、以下の構成により達成される。
【0012】
.少なくとも帯電、露光、現像、転写及びクリーニングの各手段を有し、かつ電子写真感光体上にトナー像を作製後、転写材に転写する画像形成装置において、前記帯電手段が、感光体表面に接触配置された磁気粒子からなる磁気ブラシであり、該磁気粒子が該磁気粒子の個数平均粒径の1/2倍以下の粒径を有する磁気粒子を30個数%以下の割合で含有し、該現像手段に含有されるトナーの30℃、80RH%環境における飽和水分量が0.1以上2.0質量%以下であり、該電子写真感光体の表面層が下記一般式(1)で表される構造を有する架橋構造を有するシロキサン系樹脂を含有することを特徴とする画像形成装置。
【0013】
【化2】
Figure 0003815155
【0014】
式中、Xは炭素原子CによりYと連結した電荷輸送性能を有する構造単位、YはO、S又はNR(RはH又は一価の有機基)であり、Siはシリコン原子を表す。
【0019】
.前記表面層に酸化防止剤が含有されていることを特徴とする前記に記載の画像形成装置。
【0020】
.前記酸化防止剤がヒンダードフェノール系酸化防止剤又はヒンダードアミン系酸化防止剤であることを特徴とする前記2に記載の画像形成装置。
【0021】
.前記表面層に有機乃至無機粒子が含有されていることを特徴とする前記1〜のいずれか1項に記載の画像形成装置。
【0022】
.前記表面層にコロイダルシリカが含有されていることを特徴とする前記1〜のいずれか1項に記載の画像形成装置。
【0023】
.前記トナーの粒径をD(μm)とするとき、自然対数InDを横軸に取り、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムで、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次の頻度の高い階級に含まれるトナー粒子の相対度数(m2)との相対度数和(M)が70%以上であることを特徴とする前記1〜のいずれか1項に記載の画像形成装置。
【0024】
.前記磁気粒子が20〜100μmの体積平均粒径を有する前記1〜のいずれか1項に記載の画像形成装置。
【0025】
.前記磁気粒子が1×105〜1×1010Ωcmの体積抵抗値を有する前記1〜のいずれか1項に記載の画像形成装置。
【0026】
.前記1〜のいずれか1項に記載の画像形成装置を用いて電子写真画像を作製することを特徴とする画像形成方法。
【0027】
以下、本発明について詳細に説明する。
則ち、本発明者らは磁気ブラシにより悪影響を受ける感光体の表面層を改善するのに当たって、表面樹脂層を構成する素材に注目し、より強固で耐刷性能に優れたシロキサン系樹脂が電位特性の安定化も含めてその強さが顕著であることを見出し本発明を完成するに至ったものである。
【0028】
本発明の磁気ブラシ帯電について説明する。
本発明の磁気ブラシを用いた接触式の磁気ブラシ帯電装置を図1、及び図1の帯電装置による交流バイアス電圧と帯電電位との関係を示す図2を用いて説明する。
【0029】
まず、帯電用磁気ブラシを形成する磁気粒子について説明する。
一般に帯電用磁気ブラシを形成する磁気粒子の体積平均粒径が大きいと、(イ)帯電用磁気粒子搬送体(搬送担体)上に形成される磁気ブラシの穂の状態が粗いために、電界による振動を与えながら帯電しても、磁気ブラシにムラが現れ易く、帯電ムラの問題が起こる。この問題を解消するには、磁気粒子の体積平均粒径を小さくすればよく、実験の結果、体積平均粒径が200μm以下でその効果が現れ初め、特に150μm以下になると、実質的に磁気ブラシの穂の粗に伴う問題が生じなくなる。しかし、粒子が細か過ぎると帯電時に感光体ドラム10面に付着するようになったり、飛散し易くなったりする。これらの現象は、粒子に作用する磁界の強さ、それによる粒子の磁化の強さにも関係するが、一般的には、粒子の体積平均粒径が20μm以下に顕著に現れるようになる。
【0030】
以上から、磁気粒子の粒径は体積平均粒径が200μm以下、20μm以上であり、且つ該磁気粒子の個数平均粒径の1/2倍以下の粒径を有する磁気粒子を30個数%以下とすることが必要である。なお、磁化の強さは30〜100emu/gのものが好ましく用いられる。
【0031】
このような磁気粒子は、磁性体として前述した従来の二成分現像剤の磁性キャリヤ粒子におけると同様の、鉄、クロム、ニッケル、コバルト等の金属、あるいはそれらの化合物や合金、例えば四三酸化鉄、γ−酸化第二鉄、二酸化クロム、酸化マンガン、フェライト、マンガン−銅系合金、と云った強磁性体の粒子、又はそれら磁性体粒子の表面をスチレン系樹脂、ビニル系樹脂、エチレン系樹脂、ロジン変性樹脂、アクリル系樹脂、ポリアミド樹脂、エポキシ樹脂、ポリエステル樹脂等の樹脂で被覆するか、あるいは、磁性体微粒子を分散して含有した樹脂で作るかして得られた粒子を従来公知の平均粒径選別手段で粒径選別することによって得られる。
【0032】
なお、磁気粒子を球状に形成することは、搬送担体に形成される粒子層が均一となり、また搬送担体に高いバイアス電圧を均一に印加することが可能となると云う効果も与える。即ち、磁気粒子が球形化されていることは、(1)一般に、磁気粒子は長軸方向に磁化吸着され易いが、球形化によってその方向性がなくなり、従って、磁気粒子層が均一に形成され、局所的に抵抗の低い領域や層厚のムラの発生を防止する、(2)磁気粒子の高抵抗化と共に、従来の粒子に見られるようなエッジ部が無くなって、エッジ部への電界の集中が起こらなくなり、その結果、帯電用磁気粒子の搬送担体に高いバイアス電圧を印加しても、感光体ドラム10面に均一に放電して帯電ムラが起こらない、という効果を与える。
【0033】
以上のような効果を奏する球形粒子には磁気粒子の抵抗率が105〜1010Ωcmであるように導電性の磁気粒子を形成したものが好ましい。この抵抗率は、粒子を0.50cm2の断面積を有する容器に入れてタッピングした後、詰められた粒子上に1kg/cm2の荷重を掛け、荷重と底面電極との間に1000V/cmの電界が生ずる電圧を印加したときの電流値を読み取ることで得られる値であり、この抵抗率が低いと、搬送担体にバイアス電圧を印加した場合に、磁気粒子に電荷が注入されて、感光体ドラム10面に磁気粒子が付着し易くなったり、あるいはバイアス電圧による感光体ドラム10の絶縁破壊が起こり易くなったりする。また、抵抗率が高いと電荷注入が行われず帯電が行われない。
【0034】
さらに、接触式の磁気ブラシ帯電装置120に用いられる磁気粒子は、それにより構成される磁気ブラシが振動電界により軽快に動き、しかも外部飛散が起きないように、比重が小さく、かつ適度の最大磁化を有するものが望ましい。具体的には真比重が6以下で最大磁化が30〜100emu/gのもの、特に40〜80emu/gを用いると好結果が得られることが判明した。
【0035】
以上を総合して、磁気粒子は、少なくとも長軸と短軸の比が3倍以下であるように球形化されており、針状部やエッジ部等の突起が無く、抵抗率は好ましくは105〜1010Ωcmの範囲にあることが望まれる。そして、このような球状の磁気粒子は、磁性体粒子にできるだけ球形のものを選ぶこと、磁性体微粒子分散系の粒子では、できるだけ磁性体の微粒子を用いて、分散樹脂粒子形成後に球形化処理を施すこと、あるいはスプレードライの方法によって分散樹脂粒子を形成すること等によって製造される。
【0036】
図1又は図2によれば、帯電装置としての磁気ブラシ帯電装置120は回転する感光体ドラム10と対向し、感光体ドラム10との近接部(帯電部T)において同方向(反時計方向)に回転される帯電用磁気粒子搬送体としての、例えばアルミ材やステンレス材を用いた円筒状の帯電スリーブ120aと、該帯電スリーブ120aの内部に設けられるN、S極よりなる磁石体121と、該磁石体121により帯電スリーブ120aの外周面上に形成され感光体ドラム10を帯電する磁気粒子からなる磁気ブラシと、磁石体121のN−N磁極部において該帯電スリーブ120a上の磁気ブラシを掻取るスクレーパ123と、磁気ブラシ帯電装置120内の磁気粒子を撹拌或いは磁気粒子供給時に使用済み磁気粒子を磁気ブラシ帯電装置120の排出口125より溢れさせて排出する撹拌スクリュウ124と、磁気ブラシの穂立ち規制板126とにより構成される。帯電スリーブ120aは磁石体121に対し回動可能になっていて、感光体ドラム10との対向位置で感光体ドラム10の移動方向と同方向(反時計方向)に0.1〜1.0倍の周速度で回転させられるのが好ましい。また帯電スリーブ120aは、帯電バイアス電圧を印加し得る導電性の搬送担体が用いられるが、特に、表面に粒子層が形成される導電性の帯電スリーブ120aの内部に複数の磁極を有する磁石体121が設けられている構造のものが好ましく用いられる。このような搬送担体においては、磁石体121との相対的な回転によって、導電性の帯電スリーブ120aの表面に形成される磁気粒子層が波状に起伏して移動するようになるから、新しい磁気粒子が次々と供給され、帯電スリーブ120a表面の磁気粒子層に多少の層厚の不均一があっても、その影響は上記波状の起伏によって実際上問題とならないように十分カバーされる。帯電スリーブ120aの表面は磁気粒子の安定な均一搬送のために表面の平均粗さを5.0〜30μmとすることが好ましい、平滑であると搬送は十分に行えなく、粗すぎると表面の凸部から過電流が流れ、どちらにしても帯電ムラが生じ易い。上記の表面粗さとするにはサンドブラスト処理が好ましく用いられる。また、帯電スリーブ120aの外径は5.0〜20mmが好ましい。これにより、帯電に必要な接触領域を確保する。接触領域が必要以上に大きいと帯電電流が過大となるし、小さいと帯電ムラが生じ易い。また上記のように小径とした場合、遠心力により磁気粒子が飛散あるいは感光体ドラム10に付着し易いために、帯電スリーブ120aの線速度は感光体ドラム10の移動速度と殆ど同じか、それよりも遅いことが好ましい。
【0037】
また、帯電スリーブ120a上に形成する磁気粒子層の厚さは、規制手段によって十分に掻き落されて均一な層となる厚さであることが好ましい。帯電領域において帯電スリーブ120aの表面上の磁気粒子の存在量が多すぎると磁気粒子の振動が十分に行われず感光体の摩耗や帯電ムラを起こすとともに過電流が流れ易く、帯電スリーブ120aの駆動トルクが大きくなるという欠点がある。反対に磁気粒子の帯電領域における帯電スリーブ120a上の存在量が少な過ぎると感光体ドラム10への接触に不完全な部分を生じ磁気粒子の感光体ドラム10上への付着や帯電ムラを起こすことになる。実験を重ねた結果、帯電領域における磁気粒子の好ましい付着量は100〜400mg/cm2であり、特に好ましくは200〜300mg/cm2であることが判明している。なお、この付着量は、磁気ブラシの帯電領域における平均値である。
【0038】
帯電装置としての磁気ブラシ帯電装置120には、直流(DC)バイアスE3に必要により交流(AC)バイアスAC3が重畳される帯電バイアス、例えば直流バイアスE3としてトナーと同極性(本実施形態においてはマイナス極性)の−100〜−500Vが、また交流バイアスAC3として周波数1〜5kHz、電圧300〜500VP-Pの帯電バイアスが印加される帯電スリーブ120aにより、感光体ドラム10の周面が接触、摺擦されて感光体ドラム10が帯電される。帯電スリーブ120aと感光体ドラム10との間には前記交流バイアスAC3の電圧印加による振動電界が形成されているので、磁気ブラシを経て感光体層10a上への電荷の注入が円滑に行われて一様に高速な帯電が行われる。
【0039】
感光体ドラム10を帯電した帯電スリーブ120a上の磁気ブラシは、磁石体121に設けられるN−N磁極部において、スクレーパ123により帯電スリーブ120a上より落下され帯電スリーブ120aとの近接部において帯電スリーブ120aと逆方向(反時計方向)に回転する撹拌スクリュウ124により撹拌された後、再度磁気ブラシ形成され帯電部Tに搬送される。
【0040】
図2に示すように、帯電バイアスの交流バイアスAC3のピーク・ピーク電圧(VP-P)と帯電電位との関係は、ピーク・ピーク電圧VP-Pが大きくなるに従い帯電電位が大きくなり、帯電電位はピーク・ピーク電圧が一定のV1で帯電バイアスの直流バイアスE3の値VSとほぼ等しい値で飽和し、それ以上ピーク・ピーク電圧VP-Pを大きくしても帯電電位は殆ど変化しないという特性がある。磁気粒子の電気抵抗は環境条件によっても変化するが、また使用するに従い磁気粒子の表面にトナーが融着するなどして電気抵抗は高くなる。このため、特性曲線は使用初期の新しい磁気粒子の場合は実線で示す(a)のように左側に、長期間使用した磁気粒子の場合は前記特性曲線は点線で示す(b)のように右側に位置することになる。
【0041】
本発明の画像形成装置の接触方式による帯電装置では、装着電源のon時或いはプリント開始前に帯電電位に相当する直流バイアスE3の電圧値を所定値とし、交流バイアスAC3のピーク・ピーク電圧(VP-P)を低い値から次第に大きくした帯電バイアスを印加してその時変化する感光体ドラム10の帯電電位を電位計ESによって検出する。検出される帯電電位はA/D変換器によってディジタル値に変換されたのち制御部(CPU)に入力される。制御部ではこの帯電電位が所定値VSの飽和点に達した時のVP-Pの値を適正バイアス値V1と規定してプリント動作とする。
【0042】
即ち、プリントが行われる時交流バイアスAC3を低い値から次第に大きくして(スイープして)交流バイアスAC3のVP-Pの値V1を求め、制御部からバイアス信号が出力される。この制御信号はD/A変換器によってアナログ値に変換された後交流バイアスAC3に送出され、交流バイアスAC3は決定されたピーク・ピーク電圧V1を出力する。その際のピーク・ピーク電圧V1の値とメモリに格納された磁気粒子の劣化により交換すべき規定値V2を読み出しこれと比較する。磁気粒子はトナーの混入により抵抗が増加するので、プリントの使用に従い適正バイアス値V1が増加する。これに伴い印加するVP-Pが増加し帯電不能な状態が生じることになる。測定した電圧値が帯電不能を示す規定値V2より小さい間は画像形成を続けるが、規定値V2より大きくなると、制御部より画像形成動作停止信号が送出され画像形成動作を停止し、不図示の操作部の表示部に帯電装置異常の表示を行う。この表示に基づき、帯電用の磁気粒子の供給ボトル220を磁気ブラシ帯電装置120にセットし、供給ボトル220底面の不図示の開閉蓋を開口して磁気粒子を磁気ブラシ帯電装置120に落下、供給する。上記において感光体ドラム10の電位の測定に電位計ESを用いたが、バイアス電源に直流電流計を繋いで用いて交流バイアスVP-Pを変化させ、この電流値が飽和点に達した時のVP-Pを適正バイアス値V1と設定し、規定値V2との比較を行いV1を越えた時磁気粒子の供給を行うようにしてもよい。
【0043】
またメンテナンス時或いは例えば5万プリント等の定期時に、帯電用の磁気粒子の交換が行われる。メモリに記憶されたメンテナンスプリント毎や例えば5万プリント毎の定期時に、制御部を通して交換信号が出され、不図示の駆動モータの駆動により予めセットされた帯電用の磁気粒子の供給ボトル220の供給ローラー221が回転され、供給ボトル220内の磁気粒子が磁気ブラシ帯電装置120内に全量が1回で落下される。供給後空の供給ボトル220を外し、新たな供給ボトル220をセットすることにより画像形成装置が作動状態となるように制御することも可能である。また、定期時に制御部より不図示の操作部に例えばランプの点滅等による供給信号を表示し、供給ボトル220を磁気ブラシ帯電装置120にセットし、供給ボトル220底面の不図示の開閉蓋を開口して磁気粒子を供給するようにしてもよい。
【0044】
落下された磁気粒子は回転される帯電スリーブ120aにより搬送され、スクレーパ123により帯電スリーブ120a表面より掻落とされて磁気ブラシ帯電装置120の底部に補給される。これに伴い、反時計方向に回転される撹拌スクリュウ124により磁気ブラシ帯電装置120内部に収納されている使用済みの磁気粒子が排出口125より溢れ出され、ダクトDBを通して共通の磁気粒子回収容器300に回収される。この際、供給ボトル220より磁気ブラシ帯電装置120内に供給される1回の磁気粒子供給量は磁気ブラシ帯電装置120内に収納される全磁気粒子に対して、20〜50質量%が好ましい。20質量%未満では新規に供給される磁気粒子量が少な過ぎ交換効果がなく良好な帯電が行われず、50質量%を越えると新規の磁気粒子が溢れ出てしまう。
【0045】
上記により、帯電装置内の磁気粒子が劣化されることなく良好な帯電性能が長期に維持される。
【0046】
次に本発明に用いるトナー及び現像剤について説明する。
《本発明に使用されるトナー》
本発明に用いられるトナーは30℃、80RH%環境における飽和水分量が0.1以上2.0質量%以下である。本発明に用いられる電子写真感光体の表面層はシロキサン系樹脂を含有しており、摩耗しにくい特徴を有する反面、表面が比較的親水性になるため、トナーが吸湿性の特性を有していると感光体表面にフィルミングの発生の原因となり、画像ボケや画像欠陥の原因となる。即ち、本発明に用いられるトナーは30℃、80RH%環境における飽和水分量が0.1以上2.0質量%以下の範囲を外れると、特に2.0質量%を越えると該フィルミングの発生が多くなり、画像形成装置としての品質を保てなくなる。一方飽和水分量が0.1未満にするためにはトナーに用いるすべての素材に吸湿性を抑止する材料を必要とし、トナー自体のコストが高くなり過ぎ製品価格を実現しえなくなる。
【0047】
又、本発明に用いられるトナーはその粒径をD(μm)とするとき、自然対数InDを横軸に取り、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムで、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次の頻度の高い階級に含まれるトナー粒子の相対度数(m2)との相対度数和(M)が70%以上であることをが好ましい。このような粒度分布のシャープなトナーを用いることにより、本発明に用いられる摩耗量の小さい感光体に対して、トナーフィルミングの発生を抑制することができる。
【0048】
本発明において、トナーの30℃/80%RH環境における飽和水分量が0.1〜2.0質量%に押さえる必要があるが、具体的な水分量調整方法としては、例えば次のようなものがある。
【0049】
第一にはトナー特にそのバインダー樹脂の疎水成分を増量する。バインダー樹脂の構成成分中、疎水性の強いスチレン成分を全モノマー中50質量%以上占めるようにする。特に好ましくは60%以上、さらに好ましくは70%以上がよい。
【0050】
或いはトナーの外添剤の含水率を下げる。それには後記するように外添剤の疎水化度を高くするのが効果的である。外添剤の疎水化度が60以上のものを使用するのが望ましい。
【0051】
又、表面に存在する非極性の離型剤量を多くするのも有効な方法である。それには特にポリオレフィン系ワックスを使用すると好適であり、表面に存在するポリオレフィンの量を増加させるためには、機械式粉砕機を使用し、破砕時に摩擦熱を付与しトナー表面にブリードアウトさせる方法がある。
【0052】
本発明に使用されるトナーの製造方法は、最も一般的に用いられている粉砕法、即ちバインダー樹脂と着色剤、その他必要により添加される種種の添加剤を混練粉砕後分級して作製しても良いし、離型剤、着色剤を含有したトナー樹脂粒子を媒体中で合成作製して製造してもよい。
【0053】
前記トナー樹脂粒子を媒体中で合成作製に関しては水系媒体中で融着させる方法として、例えば特開昭63−186253号公報、同63−282749号公報、特開平7−146583号公報等に記載されている方法や、樹脂粒子を塩析/融着させて形成する方法等をあげることができる。ここで用いられる樹脂粒子は重量平均粒径50〜2000nmが好ましく、これらの樹脂粒子は乳化重合、懸濁重合、シード重合等のいずれの造粒重合法によっても良いが、好ましく用いられるのは乳化重合法である。
【0054】
以下、樹脂の製造に用いられる単量体について記述する。前記混練粉砕後分級によるトナーの製造方法においても、トナー樹脂粒子を媒体中で合成作製する方法においても、いずれの場合も従来公知の重合性単量体を用いることができる。また、要求される特性を満たすように、1種または2種以上のものを組み合わせて用いることができる。バインダー樹脂としては特に限定されるものではなく、スチレン系樹脂、アクリル系樹脂、スチレン−アクリル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、エポキシ樹脂等、一般的に知られているバインダー樹脂を使用することができる。
【0055】
スチレン系樹脂、アクリル系樹脂、スチレン−アクリル樹脂を構成する単量体としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、p−クロロスチレン、3,4−ジクロロスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレンの様なスチレンあるいはスチレン誘導体、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸イソプロピル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−オクチル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸ラウリル、メタクリル酸フェニル、メタクリル酸ジエチルアミノエチル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル誘導体、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸ラウリル、アクリル酸フェニル、アクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル等のアクリル酸エステル誘導体等が挙げられ、これらは単独あるいは組み合わせて使用することができる。
【0056】
その他のビニル系重合体に用いられる単量体としては、エチレン、プロピレン、イソブチレン等のオレフィン類、塩化ビニル、塩化ビニリデン、臭化ビニル、弗化ビニル、弗化ビニリデン等のハロゲン系ビニル類、プロピオン酸ビニル、酢酸ビニル、ベンゾエ酸ビニル等のビニルエステル類、ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルエチルケトン、ビニルヘキシルケトン等のビニルケトン類、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物、ビニルナフタレン、ビニルピリジン等のビニル化合物類、アクリロニトリル、メタクリロニトリル、アクリルアミド、N−ブチルアクリルアミド、N,N−ジブチルアクリルアミド、メタクリルアミド、N−ブチルメタクリルアミド、N−オクタデシルアクリルアミド等のアクリル酸あるいはメタクリル酸誘導体がある。これらビニル系単量体は単独あるいは組み合わせて使用することができる。
【0057】
さらに、スチレン−アクリル系樹脂(ビニル系樹脂)で含カルボン酸重合体を得るための単量体例としては、アクリル酸、メタクリル酸、α−エチルアクリル酸、フマル酸、マレイン酸、イタコン酸、ケイ皮酸、マレイン酸モノブチルエステル、マレイン酸モノオクチルエステル、ケイ皮酸無水物、アルケニルコハク酸メチルハーフエステル等が挙げられる。
【0058】
さらに、ジビニルベンゼン、エチレングルコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート等の架橋剤を添加してもよい。
【0059】
また、ポリエステル樹脂としては、2価以上のカルボン酸と2価以上のアルコール成分を縮合重合させて得られる樹脂である。2価のカルボン酸の例としてはマレイン酸、フマール酸、シトラコ酸、イタコン酸、グルタコ酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、マロン酸、n−ドデシルコハク酸、n−ドデセニルコハク酸、イソドデシルコハク酸、イソドデセニルコハク酸、n−オクチルコハク酸、n−オクテニルコハク酸等が挙げられ、これらの酸無水物も使用することができる。
【0060】
また、ポリエステル樹脂を構成する2価のアルコール成分の例としては、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等のエーテル化ビスフェノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,4,ブテンジオール、ネオペンチルグリコール、1,5−ペンタングリコール、1,6−ヘキサングリコール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールA、ビスフェノールZ、水素添加ビスフェノールA等をあげることができる。
【0061】
また、ポリエステル樹脂として架橋構造を有するものとしては、下記3価のカルボン酸、例えば1,2,4−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン、1,2,4−シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8−オクタンテトラカルボン酸、ピロメリット酸、エンポール三量体酸等があげられ、これらの酸無水物、あるいは多価アルコール成分、具体的にはソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等を添加することで架橋ポリエステル樹脂とすることもできる。
【0062】
着色剤としては無機顔料、有機顔料を挙げることができる。
無機顔料としては、従来公知のものを用いることができる。具体的な無機顔料を以下に例示する。
【0063】
黒色の顔料としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラック等のカーボンブラック、更にマグネタイト、フェライト等の磁性粉も用いられる。
【0064】
これらの無機顔料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
【0065】
磁性トナーとして使用する際には、前述のマグネタイトを添加することができる。この場合には所定の磁気特性を付与する観点から、トナー中に20〜60質量%添加することが好ましい。
【0066】
有機顔料としても従来公知のものを用いることができる。具体的な有機顔料を以下に例示する。
【0067】
マゼンタまたはレッド用の顔料としては、C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントレッド15、C.I.ピグメントレッド16、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド139、C.I.ピグメントレッド144、C.I.ピグメントレッド149、C.I.ピグメントレッド166、C.I.ピグメントレッド177、C.I.ピグメントレッド178、C.I.ピグメントレッド222等が挙げられる。
【0068】
オレンジまたはイエロー用の顔料としては、C.I.ピグメントオレンジ31、C.I.ピグメントオレンジ43、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー138等が挙げられる。
【0069】
グリーンまたはシアン用の顔料としては、C.I.ピグメントブルー15、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー16、C.I.ピグメントブルー60、C.I.ピグメントグリーン7等が挙げられる。
【0070】
これらの有機顔料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
【0071】
着色剤は表面改質して使用することもできる。その表面改質剤としては、従来公知のものを使用することができ、具体的にはシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等が好ましく用いることができる。
【0072】
本発明で得られたトナーには、流動性の改良やクリーニング性の向上などの目的で、いわゆる外添剤を添加して使用することができる。これら外添剤としては特に限定されるものでは無く、種々の無機微粒子、有機微粒子及び滑剤を使用することができる。
【0073】
無機微粒子としては、従来公知のものを使用することができる。具体的には、シリカ、チタン、アルミナ微粒子等が好ましく用いることができる。これら無機微粒子としては疎水性のものが好ましい。具体的には、シリカ微粒子として、例えば日本アエロジル社製の市販品R−805、R−976、R−974、R−972、R−812、R−809、ヘキスト社製のHVK−2150、H−200、キャボット社製の市販品TS−720、TS−530、TS−610、H−5、MS−5等が挙げられる。
【0074】
チタン微粒子としては、例えば、日本アエロジル社製の市販品T−805、T−604、テイカ社製の市販品MT−100S、MT−100B、MT−500BS、MT−600、MT−600SS、JA−1、富士チタン社製の市販品TA−300SI、TA−500、TAF−130、TAF−510、TAF−510T、出光興産社製の市販品IT−S、IT−OA、IT−OB、IT−OC等が挙げられる。
【0075】
アルミナ微粒子としては、例えば、日本アエロジル社製の市販品RFY−C、C−604、石原産業社製の市販品TTO−55等が挙げられる。
【0076】
また、有機微粒子としては数平均一次粒子径が10〜2000nm程度の球形の有機微粒子を使用することができる。このものとしては、スチレンやメチルメタクリレートなどの単独重合体やこれらの共重合体を使用することができる。
【0077】
滑剤には、例えばステアリン酸の亜鉛、アルミニウム、銅、マグネシウム、カルシウム等の塩、オレイン酸の亜鉛、マンガン、鉄、銅、マグネシウム等の塩、パルミチン酸の亜鉛、銅、マグネシウム、カルシウム等の塩、リノール酸の亜鉛、カルシウム等の塩、リシノール酸の亜鉛、カルシウムなどの塩等の高級脂肪酸の金属塩が挙げられる。
【0078】
これら外添剤の添加量は、トナーに対して0.1〜5質量%程度が好ましい。トナー化工程は上記で得られたトナー粒子を、例えば流動性、帯電性、クリーニング性の改良を行うことを目的として、前述の外添剤を添加してもよい。外添剤の添加方法としては、タービュラーミキサー、ヘンシェルミキサー、ナウターミキサー、V型混合機などの種々の公知の混合装置を使用することができる。
【0079】
トナーは、バインダー樹脂、着色剤以外にトナー用添加剤として種々の機能を付与することのできる材料を加えてもよい。具体的には離型剤、荷電制御剤等が挙げられる。
【0080】
尚、離型剤としては、種々の公知のもので、具体的には、ポリプロピレン、ポリエチレン等のオレフィン系ワックスや、これらの変性物、カルナウバワックスやライスワックス等の天然ワックス、脂肪酸ビスアミドなどのアミド系ワックスなどをあげることができる。これらは離型剤粒子として加えられ、樹脂や着色剤と共に塩析/融着させることが好ましいことはすでに述べた。
【0081】
荷電制御剤も同様に種々の公知のもので、且つ水中に分散することができるものを使用することができる。具体的には、ニグロシン系染料、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、第4級アンモニウム塩化合物、アゾ系金属錯体、サリチル酸金属塩あるいはその金属錯体等が挙げられる。
【0082】
《現像剤》
本発明に用いられるトナーは、一成分現像剤でも二成分現像剤として用いてもよいが、好ましくは二成分現像剤としてである。
【0083】
一成分現像剤として用いる場合は、非磁性一成分現像剤として前記トナーをそのまま用いる方法もあるが、通常はトナー粒子中に0.1〜5μm程度の磁気粒子を含有させ磁性一成分現像剤として用いる。その含有方法としては、着色剤と同様にして非球形粒子中に含有させるのが普通である。
【0084】
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁気粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いる。特にフェライト粒子が好ましい。上記磁気粒子は、その体積平均粒径としては15〜100μm、より好ましくは25〜60μmのものがよい。
【0085】
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
【0086】
キャリアは、磁気粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁気粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン−アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレンアクリル樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
【0087】
本発明においては一成分現像剤及び二成分現像剤のいずれを用いても像担持体上の静電潜像を現像することができる。
【0088】
一成分現像剤は、少なくとも磁性粉末及びバインダー樹脂よりなる磁性トナーからなり、これらには着色剤を含むこともできる。
【0089】
二成分現像剤はトナー粒子(トナー)とキャリア粒子(キャリア)とで構成される。現像は現像剤搬送体としての現像スリーブと感光体ドラムとの間にトナーと同極性、或いは逆極性の直流電圧と該直流電圧に交流電圧とが重畳された現像バイアスが印加され、接触或いは非接触のにて行われる。
【0090】
現像剤に用いられるトナー粒子(トナー)について説明する。
トナーの平均粒径が大きくなると、画像の荒れが目立つようになる。通常、10本/mm程度のピッチで並んだ細線の解像力がある現像には、平均粒径20μm程度のトナーでも問題ないが、しかし、平均粒径2〜9μmの微粒子化したトナーを用いると、解像力は格段に向上して、濃淡差も忠実に再現した鮮明な高画質画像を与えるようになる。
【0091】
上記の如きトナーは、従来の球形や不定形の非磁性又は磁性のトナーを用いることができる。トナーには、必要に応じて粒子の流動滑りを良くするための流動化剤や像担持体面の清浄化に役立つクリーニング助剤等が混合される。流動化剤としては、コロイダルシリカ、シリコーンワニス、金属石鹸あるいは非イオン表面活性剤等を用いることができ、クリーニング助剤としては、脂肪酸金属塩、有機基置換シリコーンあるいはフッ素等表面活性剤等を用いることができる。
【0092】
次に、本発明に用いられる電子写真感光体について詳細に説明する。
本発明において、電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂に於けるシロキサン系樹脂は公知の方法により、即ち水酸基或いは加水分解性基を有する有機ケイ素化合物を用いて製造される。前記有機ケイ素化合物は下記一般式(A)〜(D)の化学式で示される。
【0093】
【化3】
Figure 0003815155
【0094】
式中、R1〜R6は式中のケイ素に炭素が直接結合した形の有機基を表し、Y1〜Y4は水酸基又は加水分解性基を表す。
【0095】
上記一般式中のY1〜Y4が加水分解性基の場合は、加水分解性基としてメトキシ基、エトキシ基、メチルエチルケトオキシム基、ジエチルアミノ基、アセトキシ基、プロペノキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基等が挙げられる。R1〜R6に示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ−グリシドキシプロピル、β−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル、γ−メタアクリロキシプロピルの含(メタ)アクリロイル基、γ−ヒドロキシプロピル、2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ−メルカプトプロピル等の含メルカプト基、γ−アミノプロピル、N−β(アミノエチル)−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他ニトロ、シアノ置換アルキル基等を挙げることができる。又、R1〜R6はそれぞれの有機基が同一でも良く、異なっていてもよい。
【0096】
前記シロキサン系樹脂の原料として用いられる前記有機ケイ素化合物は、一般にはケイ素原子に結合している水酸基又は加水分解性基の数nが1のとき、有機ケイ素化合物の高分子化反応は抑制される。nが2、3又は4のときは高分子化反応が起こりやすく、特に3或いは4では高度に架橋反応を進めることが可能である。従って、これらをコントロールすることにより得られる塗布層液の保存性や塗布層の硬度等を制御することが出来る。
【0097】
又、前記シロキサン系樹脂の原料としては前記有機ケイ素化合物を酸性条件下又は塩基性条件下で加水分解してオリゴマー化或いはポリマー化した加水分解縮合物を用いることもできる。
【0098】
尚、本発明のシロキサン系樹脂とは前記の如く、予め化学構造単位にシロキサン結合を有するモノマー、オリゴマー、ポリマーを反応させて(加水分解反応、触媒や架橋剤を加えた反応等を含む)3次元網目構造を形成し、硬化させた樹脂を意味する。即ち、シロキサン結合を有する有機ケイ素化合物を加水分解反応とその後の脱水縮合によりシロキサン結合を促進させ3次元網目構造を形成させ、その結果生成した架橋構造を有するシロキサン系樹脂を意味する。
【0099】
又、前記シロキサン系樹脂は水酸基或いは加水分解性基を有するコロイダルシリカを含ませて、架橋構造の一部にシリカ粒子を取り込んだ樹脂としてもよい。
【0100】
本発明における電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂とは電子或いは正孔のドリフト移動度を示す特性を有する化学構造(=電荷輸送性能を有する構造単位)をシロキサン系樹脂中に部分構造として組み込んだものである。具体的には本発明の電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂は一般的に電荷輸送物質として用いられる化合物(以後電荷輸送性化合物又はCTMとも云う)を該シロキサン系樹脂中に部分構造として有している。
【0101】
尚、前記の電荷輸送性能を有する構造単位とは電子或いは正孔のドリフト移動度を有する性質を示す構造単位、或いは電荷輸送性化合物残基であり、又別の定義としてはTime−Of−Flight法などの電荷輸送性能を検知できる公知の方法により電荷輸送に起因する検出電流が得られる構造単位、或いは電荷輸送性化合物残基として表現することもできる。
【0102】
以下にシロキサン系樹脂中に有機ケイ素化合物との反応により電荷輸送性能を有する構造単位を形成することのできる電荷輸送性化合物について説明する。
【0103】
例えば正孔輸送型CTM:キサゾール、オキサジアゾール、チアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾリン、ビスイミダゾリジン、スチリル、ヒドラゾン、ベンジジン、ピラゾリン、スチルベン化合物、アミン、オキサゾロン、ベンゾチアゾール、ベンズイミダゾール、キナゾリン、ベンゾフラン、アクリジン、フェナジン、アミノスチルベン、ポリ−N−ビニルカルバゾール、ポリ−1−ビニルピレン、ポリ−9−ビニルアントラセンなどの化学構造を前記シロキサン系樹脂の部分構造として含有する。
【0104】
一方、電子輸送型CTMとしては無水コハク酸、無水マレイン酸、無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、ニトロベンゼン、ジニトロベンゼン、トリニトロベンゼン、テトラニトロベンゼン、ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、ナフトキノン、ジフェノキノン、トロポキノン、アントラキノン、1−クロロアントラキノン、ジニトロアントラキノン、4−ニトロベンゾフェノン、4,4′−ジニトロベンゾフェノン、4−ニトロベンザルマロンジニトリル、α−シアノ−β−(p−シアノフェニル)−2−(p−クロロフェニル)エチレン、2,7−ジニトロフルオレン、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロフルオレノン、9−フルオレニリデンジシアノメチレンマロノニトリル、ポリニトロ−9−フルオロニリデンジシアノメチレンマロノジニトリル、ピクリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、3,5−ジニトロ安息香酸、ペンタフルオロ安息香酸、5−ニトロサリチル酸、3,5−ジニトロサリチル酸、フタル酸、メリット酸などの化学構造を前記シロキサン系樹脂の部分構造として含有する。
【0105】
本発明において、好ましい電荷輸送性能を有する構造単位は、前記の如き通常用いられる電荷輸送性化合物の残基であり、該電荷輸送性化合物を構成する炭素原子又はケイ素原子を介して下記式中のYで示される連結原子又は連結基に結合し、Yを介してシロキサン系樹脂中に含有される。
【0106】
【化4】
Figure 0003815155
【0107】
式中、Xは電荷輸送性能を有する構造単位、Yは2価以上の任意の連結基を表す。
【0108】
好ましくは前記一般式(1)のYが、隣接する結合原子(ケイ素原子Siと前記電荷輸送性能を有する構造単位の一部を構成する炭素原子C)を除いた2価以上の原子又は基である。
【0109】
但し、Yが3価以上の原子の時は式中のSiとC以外のYの結合手は結合が可能な前記硬化性樹脂中のいずれかの構成原子と結合しているか又は他の原子、分子基と連結した構造(基)を有する。
【0110】
又、前記一般式の中で、Y原子として、特に酸素原子(O)、硫黄原子(S)、窒素原子(N)が好ましい。
【0111】
ここで、Yが窒素原子(N)の場合、前記連結基は−NR−で表される(Rは水素原子又は一価の有機基である)。
【0112】
電荷輸送性能を有する構造単位Xは式中では一価の基として示されているが、シロキサン系樹脂と反応させる電荷輸送性化合物が2つ以上の反応性官能基を有している場合は硬化性樹脂中で2価以上のクロスリンク基として接合してもよく、単にペンダント基として接合していてもよい。
【0113】
前記原子、即ちO、S、Nの原子はそれぞれ電荷輸送能を有する化合物中に導入された水酸基、メルカプト基、アミン基と水酸基或いは加水分解性基を有する有機珪素化合物との反応によって形成され、シロキサン系樹脂中に電荷輸送性能を有する構造単位を部分構造として取り込む連結基である。
【0114】
次に本発明中の水酸基、メルカプト基、アミン基、有機珪素含有基を有する電荷輸送性化合物について説明する。
【0115】
前記水酸基を有する電荷輸送性化合物は、通常用いられる構造の電荷輸送物質で、且つ水酸基を有している化合物である。即ち、代表的には硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る下記一般式で示される電荷輸送性化合物を挙げることができるが、下記構造に限定されるものではなく、電荷輸送能を有し、且つ水酸基を有している化合物であればよい。
【0116】
X−(R7−OH)m
ここにおいて、
X:電荷輸送性能を有する構造単位
7:単結合、置換又は無置換のアルキレン基、アリーレン基
m:1〜5の整数である
その中でも代表的なものを挙げれば下記のごときものがある。
【0117】
【化5】
Figure 0003815155
【0118】
【化6】
Figure 0003815155
【0119】
【化7】
Figure 0003815155
【0120】
【化8】
Figure 0003815155
【0121】
【化9】
Figure 0003815155
【0122】
【化10】
Figure 0003815155
【0123】
次に、水酸基を有する電荷輸送性化合物の合成例について述べる。
例示化合物T−1の合成
【0124】
【化11】
Figure 0003815155
【0125】
ステップA
温度計、冷却管、撹拌装置、滴下ロートの付いた四頭コルベンに、化合物(1)49gとオキシ塩化リン184gを入れ加熱溶解した。滴下ロートよりジメチルホルムアミド117gを徐々に滴下し、その後反応液温を85〜95℃に保ち、約15時間撹拌を行った。次に反応液を大過剰の温水に徐々に注いだ後、撹拌しながらゆっくり冷却した。
【0126】
析出した結晶を濾過及び乾燥した後、シリカゲル等により不純物吸着及びアセトニトリルでの再結晶により精製を行って化合物(2)を得た。収量は30gであった。
【0127】
ステップB
化合物(2)30gとエタノール100mlをコルベンに投入し撹拌した。水素化ホウ素ナトリウム1.9gを徐々に添加した後、液温を40〜60℃に保ち、約2時間撹拌を行った。次に反応液を約300mlの水に徐々にあけ、撹拌して結晶を析出させた。濾過後充分水洗して、乾燥し化合物(3)を得た。収量は30gであった。
【0128】
例示化合物S−1の合成
【0129】
【化12】
Figure 0003815155
【0130】
ステップA
温度計及び撹拌装置を付けた300mlコルベンに、Cuを30g、K2CO3を60g、化合物(1)8g、化合物(2)100gを投入し、約180℃まで昇温して20時間撹拌した。冷却後濾過し、カラム精製により化合物(3)7gを得た。
【0131】
ステップB
温度計、滴下ロート、アルゴンガス導入装置及び撹拌装置を付けた100mlコルベンをアルゴンガス雰囲気にし、これに化合物(3)7g、トルエン50ml、塩化ホスホリル3gを投入した。室温下で撹拌しながら、DMF2gをゆっくりと滴下し、その後約80℃に昇温して16時間撹拌した。約70℃の温水にあけてから冷却した。これをトルエンにて抽出し、抽出液を水のpHが7になるまで水洗した。硫酸ナトリウムにて乾燥した後に濃縮し、カラム精製により化合物(4)5gを得た。
【0132】
ステップC
アルゴンガス導入装置及び撹拌装置を付けた100mlコルベンにt−BuOK1.0g、DMF60mlを投入し、アルゴンガス雰囲気にした。これに化合物(4)2.0g、化合物(5)2.2gを加え、室温で1時間撹拌した。これを大過剰の水にあけ、トルエンにて抽出し、抽出液を水洗した後、硫酸ナトリウムにて乾燥後、濃縮してからカラム精製を行い化合物(6)2.44gを得た。
【0133】
ステップD
温度計、滴下ロート、アルゴンガス導入装置及び撹拌装置を付けた100mlコルベンにトルエンを投入し、アルゴンガス雰囲気にした。これにn−BuLiのヘキサン溶液(1.72M)15mlを加え、50℃に加温した。これに化合物(6)2.44gをトルエン30ml溶解させた液を滴下し、50℃に保って3時間撹拌した。これを−40℃に冷却した後、エチレンオキサイド8mlを加え、−15℃まで昇温して1時間撹拌した。その後室温まで昇温し、水5mlを加えて、エーテル200mlにて抽出後、抽出液を飽和食塩水で洗浄した。洗浄液がpHになるまで洗浄した後、硫酸ナトリウムにて乾燥、濃縮、カラム精製して化合物(7)1.0gを得た。
【0134】
次に、メルカプト基を有する電荷輸送性化合物の具体例を下記に例示する。
メルカプト基を有する電荷輸送性化合物とは、通常用いられる構造の電荷輸送物質で、且つメルカプト基を有している化合物である。即ち、代表的には硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る下記一般式で示される電荷輸送性化合物を挙げることができるが、下記構造に限定されるものではなく、電荷輸送能を有し、且つメルカプト基を有している化合物であればよい。
【0135】
X−(R8−SH)m
ここにおいて、
X:電荷輸送性能を有する構造単位
8:単結合、置換又は無置換のアルキレン、アリーレン基
m:1〜5の整数である
その中でも代表的なものを挙げれば下記のごときものがある。
【0136】
【化13】
Figure 0003815155
【0137】
更に、アミノ基を有する電荷輸送性化合物について説明する。
アミノ基を有する電荷輸送性化合物は、通常用いられる構造の電荷輸送物質で、且つアミノ基を有している化合物である。即ち、代表的には硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る下記一般式で示される電荷輸送性化合物を挙げることができるが、下記構造に限定されるものではなく、電荷輸送能を有し、且つアミノ基を有している化合物であればよい。
【0138】
X−(R9−NR10H)m
ここにおいて、
X:電荷輸送性能を有する構造単位
9:単結合、置換、無置換のアルキレン、置換、無置換のアリーレン基
10:水素原子、置換、非置換のアルキル基、置換、非置換のアリール基
m:1〜5の整数である
その中でも代表的なものを挙げれば下記のごときものがある。
【0139】
【化14】
Figure 0003815155
【0140】
アミノ基を有する電荷輸送性化合物の中で、第一級アミン化合物(−NH2)の場合は2個の水素原子が有機珪素化合物と反応し、シロキサン構造に連結しても良い。第2級アミン化合物(−NHR10)の場合は1個の水素原子が有機珪素化合物と反応し、R10はブランチとして残存する基でも良く、架橋反応を起こす基でも良く、電荷輸送物質を含む化合物残基でもよい。
【0141】
更に、ケイ素原子含有基を有する電荷輸送性化合物について説明する。
ケイ素原子含有基を有する電荷輸送性化合物は、以下のような構造の電荷輸送物質である。この化合物も硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る。
【0142】
X−(−Z−Si(R113-a(R12an
式中、Xは電荷輸送性能を有する構造単位を含む基であり、R11は水素原子、置換若しくは未置換のアルキル基、アリール基を示し、R12は加水分解性基又は水酸基を示し、Zは置換若しくは未置換のアルキレン基、アリーレン基を示す。aは1〜3の整数を示し、nは整数を示す。
【0143】
前記シロキサン系樹脂の形成原料:前記一般式(A)から(D)(以下(A)〜(D)という)組成比としては、有機珪素化合物:(A)+(B)成分1モルに対し、(C)+(D)成分0.05〜1モルを用いることが好ましい。
【0144】
またコロイダルシリカ(E)を添加する場合は前記(A)+(B)+(C)+(D)成分の総質量100部に対し(E)を1〜30質量部を用いることが好ましい。
【0145】
また前記有機ケイ素化合物やコロイダルシリカと反応して樹脂層を形成することができる反応性電荷輸送性化合物(F)の添加量は、前記(A)+(B)+(C)+(D)成分の総質量100部に対し(F)を1〜500質量部を用いることが好ましい。前記(A)+(B)成分が前記の範囲を超えて使用されると、(A)+(B)成分が少ない場合はシロキサン樹脂層は架橋密度が小さすぎ硬度が不足する。又、(A)+(B)成分が多すぎると架橋密度が大きすぎ硬度は十分だが、脆い樹脂層となる。(E)成分のコロイダルシリカ成分の過不足も、(A)+(B)成分と同様の傾向がみられる。一方、(F)成分が少ない場合はシロキサン樹脂層の電荷輸送能が小さく、感度の低下、残電の上昇を生じ、(F)成分が多い場合はシロキサン樹脂層の膜強度が弱くなる傾向がみられる。
【0146】
本発明の電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂は予め構造単位にシロキサン結合を有するモノマー、オリゴマー、ポリマーに触媒や架橋剤を加えて新たな化学結合を形成させ3次元網目構造を形成する事もあり、又加水分解反応とその後の脱水縮合によりシロキサン結合を促進させモノマー、オロゴマー、ポリマーから3次元網目構造を形成する事もできる。
【0147】
一般的には、アルコキシシランを有する組成物又はアルコキシシランとコロイダルシリカを有する組成物の縮合反応により3次元網目構造を形成することができる。
【0148】
また前記の3次元網目構造を形成させる触媒としては有機カルボン酸、亜硝酸、亜硫酸、アルミン酸、炭酸及びチオシアン酸の各アルカリ金属塩、有機アミン塩(水酸化テトラメチルアンモニウム、テトラメチルアンモニウムアセテート)、スズ有機酸塩(スタンナスオクトエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンメルカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマリエート等)、アルミニウム、亜鉛のオクテン酸、ナフテン酸塩、アセチルアセトン錯化合物等が挙げられる。
【0149】
次に、本発明の酸化防止剤とは、その代表的なものは電子写真感光体中ないしは感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。詳しくは下記の化合物群が挙げられる。
【0150】
(1)ラジカル連鎖禁止剤
・フェノール系酸化防止剤
ヒンダードフェノール系
・アミン系酸化防止剤
ヒンダードアミン系
ジアリルジアミン系
ジアリルアミン系
・ハイドロキノン系酸化防止剤
(2)過酸化物分解剤
・硫黄系酸化防止剤(チオエーテル類)
・燐酸系酸化防止剤(亜燐酸エステル類)
上記酸化防止剤のうちでは、(1)のラジカル連鎖禁止剤が良く、特にヒンダードフェノール系或いはヒンダードアミン系酸化防止剤が好ましい。又、2種以上のものを併用してもよく、例えば(1)のヒンダードフェノール系酸化防止剤と(2)のチオエーテル類の酸化防止剤との併用も良い。更に、分子中に上記構造単位、例えばヒンダードフェノール構造単位とヒンダードアミン構造単位を含んでいるものでも良い。
【0151】
前記酸化防止剤の中でも特にヒンダードフェノール系、ヒンダードアミン系酸化防止剤が高温高湿時のカブリの発生や画像ボケ防止に特に効果がある。
【0152】
ヒンダードフェノール系或いはヒンダードアミン系酸化防止剤の樹脂層中の含有量は0.01〜20質量%が好ましい。0.01質量%未満だと高温高湿時のカブリや画像ボケに効果がなく、20質量%より多い含有量では樹脂層中の電荷輸送能の低下がおこり、残留電位が増加しやすくなり、又膜強度の低下が発生する。
【0153】
又、前記酸化防止剤は下層の電荷発生層或いは電荷輸送層、中間層等にも必要により含有させて良い。これらの層への前記酸化防止剤の添加量は各層に対して0.01〜20質量%が好ましい。
【0154】
ここでヒンダードフェノールとはフェノール化合物の水酸基に対しオルト位置に分岐アルキル基を有する化合物類及びその誘導体を云う(但し、水酸基がアルコキシに変成されていても良い)。
【0155】
ヒンダードアミン系とはN原子近傍にかさ高い有機基を有する化合物である。かさ高い有機基としては分岐状アルキル基があり、例えばt−ブチル基が好ましい。例えば下記構造式で示される有機基を有する化合物類が好ましい。
【0156】
【化15】
Figure 0003815155
【0157】
式中のR13は水素原子又は1価の有機基、R14、R15、R16、R17はアルキル基、R18は水素原子、水酸基又は1価の有機基を示す。
【0158】
ヒンダードフェノール部分構造を持つ酸化防止剤としては、例えば特開平1−118137号(P7〜P14)記載の化合物が挙げられるが本発明はこれに限定されるものではない。
【0159】
ヒンダードアミン部分構造を持つ酸化防止剤としては、例えば特開平1−118138号(P7〜P9)記載の化合物も挙げられるが本発明はこれに限定されるものではない。
【0160】
有機リン化合物としては、例えば、一般式RO−P(OR)−ORで表される化合物で代表的なものとして下記のものがある。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
【0161】
有機硫黄系化合物としては、例えば、一般式R−S−Rで表される化合物で代表的なものとして下記のものがある。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
【0162】
以下に代表的な酸化防止剤の化合物例を挙げる。
【0163】
【化16】
Figure 0003815155
【0164】
【化17】
Figure 0003815155
【0165】
【化18】
Figure 0003815155
【0166】
【化19】
Figure 0003815155
【0167】
【化20】
Figure 0003815155
【0168】
又、製品化されている酸化防止剤としては以下のような化合物、例えば「イルガノックス1076」、「イルガノックス1010」、「イルガノックス1098」、「イルガノックス245」、「イルガノックス1330」、「イルガノックス3114」、「イルガノックス1076」、「3,5−ジ−t−ブチル−4−ヒドロキシビフェニル」以上ヒンダードフェノール系、「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」以上ヒンダードアミン系が挙げられる。
【0169】
本発明の感光層に含有される電荷発生物質(CGM)は単独で又は適当なバインダー樹脂と共に層形成が行われる。電荷発生物質の代表的なものの例としては、ピリリウム系染料、チオピリリウム系染料、フタロシアニン系顔料、アントアントロン系顔料、ジベンズピレンキノン系顔料、ピラントロン系顔料、アゾ系顔料、トリスアゾ系顔料、ジスアゾ系顔料、インジゴ系顔料、キナクリドン系顔料、シアニン系顔料等がある。
【0170】
前記感光層に含有される電荷輸送物質(CTM)としては、例えばオキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、イミダゾロン誘導体、イミダゾリン誘導体、ビスイミダゾリジン誘導体、スチリル化合物、ヒドラゾン化合物、ベンジジン化合物、ピラゾリン誘導体、スチルベン化合物、アミン誘導体、オキサゾロン誘導体、ベンゾチアゾール誘導体、ベンズイミダゾール誘導体、キナゾリン誘導体、ベンゾフラン誘導体、アクリジン誘導体、フェナジン誘導体、アミノスチルベン誘導体、ポリ−N−ビニルカルバゾール、ポリ−1−ビニルピレン、ポリ−9−ビニルアントラセン等が挙げられこれらの電荷輸送物質(CTM)は通常バインダーと共に層形成が行われる。
【0171】
単層構成の感光層、及び積層構成の場合の電荷発生層(CGL)、電荷輸送層(CTL)に含有されるバインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルブチラール樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン樹脂、塩化ビニリデン−アクリロニトリル共重合体樹脂、塩化ビニル−無水マレイン酸共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、シリコン−アルキッド樹脂、フェノール樹脂、ポリシラン樹脂、ポリビニルカルバゾール等が挙げられる。
【0172】
さらに本発明の感光体の層構成につき説明する。
本発明の電子写真感光体の層構成は、特に限定はないが、電荷発生層、電荷輸送層、或いは電荷発生・電荷輸送層等の感光層とその上に本発明の樹脂層を塗設した構成をとるのが好ましいことはすでに述べた。
【0173】
本発明に於いて電荷発生層中の電荷発生物質とバインダー樹脂との割合は質量比で1:5〜5:1が好ましい。また電荷発生層の膜厚は5μm以下が好ましく、特には0.05〜2μmが好ましい。
【0174】
又、電荷輸送層は前記の電荷輸送物質とバインダー樹脂を適当な溶剤に溶解し、その溶液を塗布乾燥することによって形成される。電荷輸送物質とバインダー樹脂との混合割合は質量比で3:1〜1:3が好ましい。
【0175】
電荷輸送層の膜厚は5〜50μm、特には10〜40μmが好ましい。また、電荷輸送層が複数設けられている場合は、電荷輸送層の上層の膜厚は10μm以下が好ましく、かつ、電荷輸送層の上層の下に設けられた電荷輸送層の全膜厚より小さいことが好ましい。
【0176】
本発明に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
【0177】
次に本発明の電子写真感光体の導電性支持体としては、
1)アルミニウム板、ステンレス板などの金属板
2)紙或いはプラスチックフィルムなどの支持体上に、アルミニウム、パラジウム、金などの金属薄層をラミネート若しくは蒸着によって設けたもの
3)紙或いはプラスチックフィルムなどの支持体上に、導電性ポリマー、酸化インジウム、酸化錫などの導電性化合物の層を塗布若しくは蒸着によって設けたもの等が挙げられる。
【0178】
本発明で用いられる導電性支持体の材料としては、主としてアルミニウム、銅、真鍮、スチール、ステンレス等の金属材料、その他プラスチック材料をベルト状またはドラム状に成形加工したものが用いられる。中でもコスト及び加工性等に優れたアルミニウムが好ましく用いられ、通常押出成型または引抜成型された薄肉円筒状のアルミニウム素管が多く用いられる。
【0179】
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/l、アルミニウムイオン濃度は1〜10g/l、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
【0180】
次に本発明の電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお前記スプレー塗布については例えば特開平3−90250号及び特開平3−269238号公報に詳細に記載され、前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
【0181】
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
【0182】
中間層用の材料としては、カゼイン、ポリビニルアルコール、ニトロセルロース、エチレン−アクリル酸共重合体、ポリビニルブチラール、フェノール樹脂ポリアミド類(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン、アルコキシメチル化ナイロン等)、ポリウレタン、ゼラチン及び酸化アルミニウムを用いた中間層、或いは特開平9−68870号公報の如く金属アルコキシド、有機金属キレート、シランカップリング剤による硬化型中間層等が挙げられる。中間層の膜厚は、0.1〜10μmが好ましく、特には0.1〜5μmが好ましい。
【0183】
又、支持体の形状はドラム状でもシート状でもベルト状でもよく、適用する電子写真装置に適した形状であればよい。
【0184】
本発明の電子写真感光体は、複写機、レーザープリンター、LEDプリンター、液晶シャッター式プリンター等の電子写真装置一般に適用し得るものであるが、更には電子写真技術を応用したディスプレイ、記録、軽印刷、製版、ファクシミリ等の装置にも広く適用し得るものである。
【0185】
次に本発明の画像形成装置について述べる。
図3は本発明の磁気ブラシ帯電装置、及び電子写真感光体を有する画像形成装置の1例を示す断面図である。
【0186】
図3に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布し、その上に本発明の樹脂層を塗設した感光体で、接地されて時計方向に駆動回転される。52は磁気ブラシ帯電器で、感光体ドラム50周面に対し一様な帯電を与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた露光部51による露光を行って感光体周面の除電をしてもよい。
【0187】
感光体への一様帯電ののち像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザーダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。
【0188】
その静電潜像は次いで現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と本発明の低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は図示していない層形成手段によって現像スリーブ541上に100〜600μmの層厚に規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。
【0189】
転写材(記録紙とも云う)Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。
【0190】
転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写ローラー(転写器)58が圧接され、給紙された転写材Pを挟着して転写される。
【0191】
次いで転写材Pは転写ローラーとほぼ同時に圧接状態とされた分離ブラシ(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写ローラー58及び分離ブラシ59は転写材Pの通過後感光体ドラム50の周面より退避離間して次なるトナー像の形成に備える。
【0192】
一方転写材Pを分離した後の感光体ドラム50は、クリーニング器62のクリーニングブレード621の圧接により残留トナーを除去・清掃し、再び露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。
【0193】
尚、70は感光体、帯電器、転写器・分離器及びクリーニング器を一体化されている着脱可能なプロセスカートリッジである。
【0194】
画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。
【0195】
像露光は、画像形成装置を複写機やプリンターとして使用する場合には、原稿からの反射光や透過光を感光体に照射すること、或いはセンサーで原稿を読み取り信号化し、この信号に従ってレーザービームの走査、LEDアレイの駆動、又は液晶シャッターアレイの駆動を行い感光体に光を照射することなどにより行われる。
【0196】
尚、ファクシミリのプリンターとして使用する場合には、像露光器13は受信データをプリントするための露光を行うことになる。
【0197】
本発明の画像形成装置は、複写機、レーザープリンター、LEDプリンター、液晶シャッター式プリンター等の電子写真装置一般に適用し得るものであるが、更には電子写真技術を応用したディスプレイ、記録、軽印刷、製版、ファクシミリ等の装置にも広く適用し得るものである。
【0198】
【実施例】
下記のごとくして感光体を作製した。
【0199】
感光体1の作製
下記中間層塗布液を調製し、洗浄済み円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥膜厚0.3μmの中間層を形成した。
【0200】
〈中間層(UCL)塗布液〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60g
メタノール 1600ml
下記塗布液を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、膜厚0.2μmの電荷発生層を形成した。
【0201】
〈電荷発生層(CGL)塗布液〉
Y型チタニルフタロシアニン(Cu−Kα特性X線によるX線回折の
最大ピーク角度が2θで27.3) 60g
シリコーン樹脂溶液(KR5240、15%キシレン−ブタノール溶液:
信越化学社製) 700g
2−ブタノン 2000ml
下記塗布液を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、膜厚20μmの電荷輸送層を形成した。
【0202】
〈電荷輸送層(CTL)塗布液〉
電荷輸送物質(4−メトキシ−4′−(4−メチル−α−フェニルスチリル)
トリフェニルアミン) 200g
ビスフェノールZ型ポリカーボネート(ユーピロンZ300:
三菱ガス化学社製) 300g
1,2−ジクロロエタン 2000ml
下記塗布液を混合し、溶解して保護層塗布組成物を調製した。
【0203】
〈表面層(OCL)塗布液〉
メチルシロキサン単位80モル%、メチル−フェニルシロキサン単位20モル%からなるポリシロキサン樹脂10質量部にモレキュラーシーブ4Aを添加し、15時間静置し脱水処理した。この樹脂をトルエン10質量部に溶解し、これにメチルトリメトキシシラン5質量部、ジブチル錫アセテート0.2質量部を加え均一な溶液にした。これにジヒドロキシメチルトリフェニルアミン(例示化合物T−1)6質量部を加えて混合し、この溶液を乾燥膜厚2μmの表面層として塗布して、120℃、1時間の加熱硬化を行い、感光体1を作製した。
【0204】
感光体2の作製
感光体1の作製において、表面層中にヒンダードアミン(例示化合物2−1)0.3質量部を加えた以外は全く同様にして感光体2を作製した。
【0205】
感光体3の作製(参考例)
感光体1の作製において、表面層中のジヒドロキシメチルトリフェニルアミンを4−[2−(トリエトキシシリル)エチル]トリフェニルアミンに代えた以外は全く同様にして参考例の感光体3を作製した。
【0206】
感光体4の作製
感光体2の作製において、表面層中のヒンダードアミンをヒンダードフェノール(例示化合物1−3)に代えた以外は全く同様にして感光体4を作製した。
【0207】
感光体5の作製
感光体1の作製において、下記中間層に変えた以外は同様にして感光体5を作製した。
【0208】
〈中間層(UCL)塗布液〉
ジルコニウムキレート化合物 ZC−540(松本製薬(株))200g
シランカップリング剤 KBM−903(信越化学(株)) 100g
メタノール 700ml
エタノール 300ml
上記塗布液を浸漬塗布し、150℃30分間乾燥し、乾燥膜厚1.0μmの中間層を形成した。
【0209】
感光体6の作製
引き抜き加工より得られた円筒状アルミニウム基体上に、下記分散物を作製、塗布し、乾燥膜厚15μmの導電層を形成した。
【0210】
〈導電層(PCL)塗布液〉
フェノール樹脂 160g
導電性酸化チタン 200g
メチルセロソルブ 100ml
下記中間層塗布液を調製した。この塗布液を上記導電層上に浸漬塗布法で塗布し、乾燥膜厚1.0μmの中間層を形成した。
【0211】
〈中間層(UCL)塗布液〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60g
メタノール 1600ml
1−ブタノール 400ml
下記塗布液を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥膜厚0.2μmの電荷発生層を形成した。
【0212】
〈電荷発生層(CGL)塗布液〉
Y型チタニルフタロシアニン 60g
シリコーン樹脂溶液(KR5240、15%キシレン−ブタノール溶液:
信越化学社製) 700g
2−ブタノン 2000ml
下記塗布液を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、膜厚20μmの電荷輸送層を形成した。
【0213】
〈電荷輸送層(CTL)塗布液〉
電荷輸送物質(4−メトキシ−4′−(4−メチル−α−フェニルスチリル)
トリフェニルアミン) 200g
ビスフェノールZ型ポリカーボネート(ユーピロンZ300:
三菱ガス化学社製) 300g
1,2−ジクロロエタン 2000ml
〈表面層(OCL)塗布液〉
上記CTL上にメチルシロキサン単位80モル%、メチル−フェニルシロキサン単位20モル%からなるポリシロキサン樹脂10質量部にモレキュラーシーブ4Aを添加し、15時間静置し脱水処理した。この樹脂をトルエン10質量部に溶解し、これにメチルトリメトキシシラン5質量部、ジブチル錫アセテート0.2質量部を加え均一な溶液にした。これにジヒドロキシメチルトリフェニルアミン(例示化合物T−1)6質量部を加えて混合し、この溶液を乾燥膜厚2μmの表面層として塗布して、120℃、1時間の加熱硬化を行い、感光体6を作製した。
【0214】
感光体7の作製(参考例)
感光体6の作製において、表面層中のジヒドロキシメチルトリフェニルアミンを4−[2−(トリエトキシシリル)エチル]トリフェニルアミンに代え更に、ヒンダードアミン(例示化合物2−1)0.3質量部を加えた以外は全く同様にして参考例の感光体7を作製した。
【0215】
感光体8の作製(参考例)
感光体7の作製において、表面層中のヒンダードアミンをヒンダードフェノール(例示化合物1−3)に代えた以外は全く同様にして参考例の感光体8を作製した。
【0216】
感光体9の作製(参考例)
感光体1の作製において、CTLまで塗布した感光体上に、メチルシロキサン単位80モル%、ジメチルシロキサン単位20モル%からなる1質量%のシラノール基を含有のメチルポリシロキサン樹脂10質量部にトルエン10質量部に溶解し、モレキュラーシーブ4Aを添加し、15時間静置し脱水処理した。これにメチルトリメトキシシラン5質量部、ジブチル錫アセテート0.2質量部を加え均一な溶液にした。この組成物100質量部にトルエン200質量部と4−〔N,N−ビス(3,4−ジメチルフェニル)アミノ〕−〔2−(トリエトキシシリル)エチル〕ベンゼン40質量部とヒンダードアミン(例示化合物2−7)0.3質量部を加えて混合し、この溶液を乾燥膜厚2μmの表面層として塗布して、140℃、4時間の加熱硬化を行い、参考例の感光体9を作製した。
【0217】
感光体10の作製(参考例)
感光体6の作製において、CTLまで塗布した感光体上に、メチルシロキサン単位80モル%、ジメチルシロキサン単位20モル%からなる1質量%のシラノール基を含有のメチルポリシロキサン樹脂10質量部にトルエン10質量部に溶解し、モレキュラーシーブ4Aを添加し、15時間静置し脱水処理した。これにメチルトリメトキシシラン5質量部、ジブチル錫アセテート0.2質量部を加え均一な溶液にした。この組成物100質量部にトルエン200質量部と4−〔N,N−ビス(3,4−ジメチルフェニル)アミノ〕−〔2−(トリエトキシシリル)エチル〕ベンゼン40質量部とヒンダードアミン(例示化合物2−7)0.3質量部を加えて混合し、この溶液を乾燥膜厚2μmの表面層として塗布して、140℃、4時間の加熱硬化を行い、参考例の感光体10を作製した。
【0218】
感光体11の作製
感光体の作製6において、導電層を下記組成物に代えた以外は全く同様にして感光体11を作製した。
【0219】
〈導電層(PCL)組成物〉
フェノール樹脂 160g
導電性硫酸バリウム 200g
メチルセロソルブ 100ml
シリコーン樹脂粒子(平均粒径2μm) 3g
感光体12の作製
感光体1の作製において、円筒状アルミニウム基体をアルマイト封孔処理した円筒状アルミニウム基体に代えた以外は全く同様にして感光体12を作製した。
【0220】
感光体13の作製
感光体1の作製において円筒状アルミニウム基体をアルマイト封孔処理した円筒状アルミニウム基体に代え、表面層塗布液のポリシロキサン樹脂を、メチルシロキサン単位30モル%、エチルシロキサン単位40モル%、ジメチルシロキサン単位20モル%、ジエチルシロキサン単位10モル%から成るポリシロキサン樹脂(2質量%のシラノール基を含む)に代えた以外は全く同様にして感光体13を作製した。
【0221】
感光体14の作製
感光体1の作製において、ポリシロキサン樹脂を、メチルシロキサン単位30モル%、フェニルシロキサン単位30モル%、ジメチルシロキサン単位20モル%、ジエチルシロキサン単位20モル%から成るポリシロキサン樹脂(2質量%のシラノール基を含む)に代えた以外は全く同様にして感光体14を作製した。
【0222】
感光体15の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、ヒドラゾン型の例示化合物H−1に代えた以外は全く同じにして感光体15を作製した。
【0223】
感光体16の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、スチルベン型の例示化合物S−1に代えた以外は全く同じにして感光体16を作製した。
【0224】
感光体17の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、ベンジジン型の例示化合物Be−1に代えた以外は全く同じにして感光体17を作製した。
【0225】
感光体18の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、ブタジエン型の例示化合物Bu−1に代えた以外は全く同じにして感光体18を作製した。
【0226】
感光体19の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、例示化合物So−1に代えた以外は全く同じにして感光体19を作製した。
【0227】
感光体20の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、例示化合物V−1に代えた以外は全く同じにして感光体20を作製した。
【0228】
感光体21の作製
感光体1の作製において、ジヒドロキシメチルトリフェニルアミン(例示化合物T−1)を、例示化合物W−1に代えた以外は全く同じにして感光体21を作製した。
【0229】
感光体22の作製
感光体1の作製において、中間層塗布液を感光体5の中間層塗布液に代え、更に表面層塗布液中にコロイダルシリカを5質量部加えた以外は全く同じにして感光体22を作製した。
【0230】
感光体23の作製
感光体1の作製において、表面層にコロイダルシリカを12質量部加えた以外は全く同じにして感光体23を作製した。
【0231】
感光体24の作製
感光体1の作製において、CTLまで作製した。その上に、市販の硬化性シロキサン樹脂KP−854(信越化学工業社製)60質量部、イソプロパノール60質量部を加えて、均一に溶解し、これにジヒドロキシメチルトリフェニルアミン(例示化合物T−1)6質量部を加えて混合し、この溶液を乾燥膜厚1μmの表面層となるように塗布し、120℃・1時間の乾燥を行い感光体24を作製した。
【0232】
感光体25の作製
感光体24の作製において、シロキサン樹脂KP−854の代わりにX−40−2239(信越化学工業社製)を用いた以外は全く同様にして感光体25を作製した。
【0233】
感光体26の作製
感光体24の作製において、シロキサン樹脂KP−854の代わりにX−40−2269(信越化学工業社製)を用いた以外は全く同様にして感光体26を作製した。
【0234】
感光体27の作製
感光体2の作製において、表面層中のヒンダードアミンを、酸化防止剤(例示化合物1−1)及び酸化防止剤(例示化合物4−1)混合物(混合比1/1)に代えた以外は全く同様にして感光体27を作製した。
【0235】
感光体28の作製
感光体1の作製において、表面層中に0.25質量部の平均粒径1μmのシリコーン樹脂粒子を加えた以外は全く同様にして感光体28を作製した。
【0236】
感光体29の作製
感光体28の作製において、表面層中のシリコーン樹脂粒子を平均粒径0.5μmのシリカ粒子、3質量部に代えた以外は全く同様にして感光体29を作製した。
【0237】
感光体30の作製
感光体1の作製において、電荷発生層までは同様に塗布した。
【0238】
〈電荷輸送層CTL〉
電荷輸送物質(例示化合物T−1) 200g
メチルトリメトキシシラン 300g
ヒンダードフェノール化合物(例示化合物1−4) 1g
コロイダルシリカ(30%メタノール溶液) 8g
1−ブタノール 50g
1%酢酸 50g
アルミニウムテトラアセチルアセテート 2g
フッ素樹脂粒子(平均粒径1μm) 10g
を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、110℃、2時間の加熱硬化を行い乾燥膜厚12μmの電荷輸送層を形成し、感光体30を作製した。
【0239】
感光体31の作製
感光体1の作製において、電荷輸送層までは同様に形成した。更にこの上に下記化合物を混合し、溶解して表面層塗布液を調製した。
【0240】
〈表面層(OCL)塗布液〉
電荷輸送物質(例示化合物T−1) 200g
メチルトリメトキシシラン 300g
ヒンダードフェノール化合物(例示化合物1−3) 1g
コロイダルシリカ(30%メタノール溶液) 8g
エタノール/t−ブタノール(1/1質量比) 50g
1%酢酸 50g
アルミニウムテトラアセチルアセテート 2g
シリコーンオイル(KF−54)(信越化学(株)) 1g
を混合し、溶解して乾燥膜厚2μmの表面層として塗布し、110℃、1時間の加熱硬化を行い、感光体31を作製した。
【0241】
感光体32の作製
感光体31の作製において、表面層中のメチルトリメトキシシランをメチルトリメトキシシランとジメチルジメトキシシラン(6/4質量比)に代え、シリコーンオイルKF−54をX−22−160ASに代えた以外は全く同様にして感光体32を作製した。
【0242】
感光体33の作製
感光体30の作製において、電荷輸送層中のヒンダードフェノール化合物を酸化防止剤(例示化合物2−3)に代え、フッ素樹脂粒子をシリカ粒子(平均粒径2μm)に代えた以外は全く同様にして感光体33を作製した。
【0243】
感光体34の作製
感光体1の作製において、CTL上に市販のプライマーPC−7J(信越化学社製)をトルエンで2倍に希釈し、塗布後100℃・30分間乾燥させ、乾燥膜厚0.3μmの接着層を形成した。更にこの上にメチルシロキサン単位80モル%、メチル−フェニルシロキサン単位20モル%から成るポリシロキサン樹脂(1質量%のシラノール基を含む)10質量部にモレキュラーシーブ4Aを添加し、15時間静置し脱水処理した。この樹脂をトルエン10質量部に溶解し、これにメチルトリメトキシシラン5質量部、ジブチル錫アセテート0.2質量部を加え均一な溶液にした。これにジヒドロキシメチルトリフェニルアミン(例示化合物T−1)6質量部を加えて混合し、この溶液を乾燥膜厚1μmの表面層として塗布して、120℃・1時間の乾燥を行い感光体34を作製した。
【0244】
感光体35(比較例)の作製
感光体1の作製において、OCLからジヒドロキシメチルトリフェニルアミン(例示化合物T−1)6質量部を除いた以外は同様にして感光体35(比較例感光体1)を作製した。
【0245】
感光体36(比較例)の作製
感光体1の作製において、OCLを除いた以外は全く同じにして感光体36(比較例感光体2)を作製した。
【0246】
次に、下記のごとくしてトナーを作製した。
トナー1の作製
スチレン:ブチルアクリレート:ブチルメタクリレート=75:20:5の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により分級して体積平均粒径が6.3μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー1」とする。
【0247】
トナー2の作製
スチレン:ブチルアクリレート:ブチルメタクリレート:アクリル酸=75:18:5:2の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、風力分級機により微粉砕を行い、分級して体積平均粒径が6.3μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー2」とする。
【0248】
トナー3の作製
スチレン:ブチルアクリレート:メタクリル酸=70:20:10の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により分級して体積平均粒径が6.9μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー3」とする。
【0249】
トナー4の作製
n−ドデシル硫酸ナトリウム=0.90kgと純水10.0Lを入れ撹拌溶解する。この液に、撹拌下、リーガル330R(キャボット社製カーボンブラック)1.20kgを徐々に加え、ついで、サンドグラインダー(媒体型分散機)を用いて、20時間連続分散した。分散後、大塚電子社製・電気泳動光散乱光度計ELS−800を用いて、上記分散液の粒径を測定した結果、重量平均粒径で122nmであった。また、静置乾燥による質量法で測定した上記分散液の固形分濃度は16.6質量%であった。この分散液を「着色剤分散液1」とする。
【0250】
ドデシルベンゼンスルホン酸ナトリウム0.055kgをイオン交換水4.0Lに室温下撹拌溶解する。これを、アニオン界面活性剤溶液Aとする。
【0251】
ノニルフェノールアルキルエーテル0.014kgをイオン交換水4.0Lに室温下撹拌溶解する。これを、ノニオン界面活性剤溶液Aとする。
【0252】
過硫酸カリウム=223.8gをイオン交換水12.0Lに室温下撹拌溶解する。これを、開始剤溶液Aと呼ぶ。
【0253】
温度センサー、冷却管、窒素導入装置を付けた100Lの反応釜に、数平均分子量(Mn)が3500のポリプロピレンエマルジョン3.41kgとアニオン界面活性剤溶液Aとノニオン界面活性剤溶液Aとを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを加える。
【0254】
加熱を開始し、液温度が75℃になったところで、開始剤溶液Aを全量添加する。その後、液温度を75℃±1℃に制御しながら、スチレン12.1kgとアクリル酸n−ブチル2.88kgとメタクリル酸1.04kgとt−ドデシルメルカプタン548gとを投入する。
【0255】
さらに、液温度を80℃±1℃に上げて、6時間加熱撹拌を行った。
液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、これをラテックスA1とした。
【0256】
なお、ラテックスA1中の樹脂粒子のガラス転移温度は57℃、軟化点は121℃、分子量分布は、重量平均分子量=1.27万、重量平均粒径は120nmであった。
【0257】
過硫酸カリウム=200.7gをイオン交換水12.0Lに室温下撹拌溶解する。これを、開始剤溶液Bとする。
【0258】
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100Lの反応釜に、ノニオン界面活性剤溶液Aを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを投入する。
【0259】
加熱を開始し、液温度が70℃になったところで、開始剤溶液Bを添加する。この時、スチレン11.0kgとアクリル酸n−ブチル4.00kgとメタクリル酸1.04kgとt−ドデシルメルカプタン9.02gとをあらかじめ混合した溶液を投入する。
【0260】
その後、液温度を72℃±2℃に制御して、6時間加熱撹拌を行った。さらに、液温度を80℃±2℃に上げて、12時間加熱撹拌を行った。
【0261】
液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、この濾液をラテックスB1とした。
【0262】
なお、ラテックスB1中の樹脂粒子のガラス転移温度は58℃、軟化点は132℃、分子量分布は、重量平均分子量=24.5万、重量平均粒径は110nmであった。
【0263】
塩析剤としての塩化ナトリウム=5.36kgとイオン交換水20.0Lを入れ、撹拌溶解する。これを、塩化ナトリウム溶液Aとする。
【0264】
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100LのSUS反応釜(撹拌翼はアンカー翼)に、上記で作製したラテックスA1=20.0kgとラテックスB1=5.2kgと着色剤分散液1=0.4kgとイオン交換水20.0kgとを入れ撹拌する。ついで、35℃に加温し、塩化ナトリウム溶液Aを添加する。その後、5分間放置した後に、昇温を開始し、液温度85℃まで5分で昇温する(昇温速度=10℃/分)。液温度85℃±2℃にて、6時間加熱撹拌し、塩析/融着させる。その後、30℃以下に冷却し撹拌を停止する。目開き45μmの篩いで濾過し、この濾液を会合液▲1▼とする。ついで、遠心分離機を使用し、会合液▲1▼よりウェットケーキ状の非球形状粒子を濾取した。その後、イオン交換水により洗浄した。
【0265】
上記で洗浄を完了したウェットケーキ状の着色粒子を、40℃の温風で乾燥し、着色粒子を得た。この着色粒子の体積平均粒径は4.3μmであった。さらに、この着色粒子に疎水性シリカ(疎水化度=65、数平均一次粒子径=12nm)を1.0質量%添加し、トナー4を得た。
【0266】
トナー5の作製
トナー4の融着条件を変更して粒径を変化させた着色粒子を調整し、この着色粒子に疎水性シリカ(疎水化度=65、数平均一次粒径=12nm)を1.0質量%添加し、トナー5を得た。
【0267】
トナー6の作製
酸価=45のポリエステル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により分級して体積平均粒径が6.9μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー6」とする。
【0268】
上記トナーの30℃、80RH%環境における飽和水分量(質量%)の測定結果を表1に示す。
【0269】
【表1】
Figure 0003815155
【0270】
トナーの体積平均粒径の測定方法:コールターマルチサイザーにより測定。
トナー粒子の個数分布相対度数の和の測定方法:コールターマルチサイザーにより測定された各トナーの粒径データをI/Oユニットを介してコンピューターに転送し、該コンピューターにおいて相対度数m1とm2の和Mを求めた。
【0271】
トナーの30℃、80RH%環境における飽和水分量の測定方法:トナーを30℃、80RH%環境下に3日間放置し、カールフィッシャー法により測定する。例えば平沼式自動微量水分測定器AQS−724を使用して測定することができる。本発明における測定条件は、気化温度を110℃、気化時間を25秒とした。
【0272】
現像剤の作製
上記の各トナー、即ちトナー1〜6に、シリコーン樹脂を被覆した体積平均粒径が45μmのフェライトキャリアを混合し、トナー濃度6%の現像剤をそれぞれ調整し、評価に供した。これらの現像剤をトナーに対応してそれぞれ現像剤1〜6とする。
【0273】
磁気粒子の作製
帯電用磁気ブラシを形成する磁気粒子の製造方法について以下説明する。
【0274】
磁気粒子1の作製
Fe23:50モル%
CuO:24モル%
ZnO:24モル%
以上を粉砕、混合し分散剤およびバインダーと水を加えスラーリーとした後、スプレードライヤーで造粒操作を行い、分級した後1125℃にて焼成を行った。得られた磁気粒子を解砕処理の後、分級を行い、体積平均粒径が27μmである磁気粒子1を得た。磁気粒子の抵抗値は2×107Ωcmであった。
【0275】
磁気粒子2の作製
上記磁気粒子1を100質量部に対して0.05質量部のチタンカップリング剤(イソプロポキシトリイソステアロイルチタネート)及びメチルエチルケトンを加え、撹拌して磁気粒子表面に有機質の被膜を形成後、磁気粒子を分離し、180℃で加熱乾燥を行った。体積平均粒径が37μmである磁気粒子2を得た。磁気粒子の抵抗値は2×107Ωcmであった。
【0276】
磁気粒子3の作製
体積平均粒径35μmのマグネタイト(FeO・Fe23)磁気粒子3を用いた。磁気粒子の抵抗値は2×106Ωcmであった。
【0277】
磁気粒子4の作製
Fe23:50モル%
MnO:30モル%
MgO:20モル%
以上を粉砕、混合し分散剤およびバインダーと水を加えスラーリーとした後、スプレードライヤーで造粒操作を行い、分級した後に抵抗調整の為に酸素濃度を調整した雰囲気中、1130℃にて焼成を行った。得られた磁気粒子を解砕処理の後、分級を行い、体積平均粒径が70μmである磁気粒子4を得た。磁気粒子の抵抗値は9×105Ωcmであった。
【0278】
磁気粒子5の作製
上記磁気粒子1を100質量部に対して、熱架橋性シリコーン樹脂の2%キシレン溶液を加え、撹拌して磁気粒子表面に有機質の被膜を形成後、磁気粒子を分離し、180℃で加熱乾燥を行った。体積平均粒径が90μmである磁気粒子5を得た。磁気粒子の抵抗値は2×108Ωcmであった。
【0279】
磁気粒子6の作製
磁気粒子1の作製で、1/2倍以下の粒径を有する粒子を35%になるよう分級、調整し、体積平均粒径が33μmである磁気粒子6を得た。磁気粒子の抵抗値は2×107Ωcmであった。
【0280】
【表2】
Figure 0003815155
【0281】
磁気粒子の体積平均粒径の測定方法
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
【0282】
磁気粒子の個数平均粒径の1/2倍以下の粒径の割合の測定方法
前記湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」を用いて体積粒度分布を測定し、これを個数粒度分布に換算し、次に個数平均粒径の1/2倍以下の粒径の割合を求める。
【0283】
抵抗率(Ωcm)の測定法
磁気粒子を0.50cm2の断面積を有する容器に入れてタッピングした後、詰められた粒子上に1kg/cm2の荷重を掛け、荷重と底面電極との間に1000V/cmの電界が生ずる電圧を印加したときの電流値を読み取ることで得られる値。
【0284】
〈評価〉
表3〜表6に示すトナー(現像剤)及び感光体の組み合わせについて、図3記載の画像形成装置に搭載し、常温常湿(20℃60%RH)下(表3、表4)および高温高湿(30℃、80RH%)下(表5、表6)で、5万枚の画像出しを行った。結果を表3〜表6に示す。どちらの環境条件でも本発明の構成を有する実施例1〜34は初期及び5万枚ともカブリも発生せず、且つ黒ベタ部の濃度は反射濃度で1.3以上の濃度が得られ、しかも画像ボケ、クリーニング不良、磁気粒子付着による画像欠陥、黒ポチ等がない、解像度の高い、高画質な画像が得られた。又、5万枚終了時点の感光体の減耗量も0.3μm以下と非常に少なかった。更に感光体表面のキズが殆ど見られず、ハーフトーン画像上にもスリ傷による画像欠陥は見られなかった。
【0285】
(1)画像評価
画像濃度、カブリの測定は、初期、25000、5万枚目について濃度計「RD−918」(マクベス社製)を使用し、画像濃度については絶対濃度で、カブリについては紙をゼロとした相対濃度で測定した。画像流れは有無を目視で評価した。
【0286】
a.画像濃度
◎・・・5万枚の画像だしを通して1.3以上/良好
○・・・5万枚の画像だしを通して0.8以上/実用上問題ないレベル
×・・・5万枚の画像だしで一部に0.8未満のものあり/実用上問題あり
b.カブリ
◎・・・5万枚の画像だしを通して0.01未満/良好
○・・・5万枚の画像だしを通して0.03未満/実用上問題がないレベル
×・・・5万枚の画像だしで一部に0.03以上のものあり/実用上問題あり
c.画像ボケ
◎・・・5万枚中5枚以下の発生/良好
○・・・5万枚中6枚〜20枚の発生/実用上問題がないレベル
×・・・5万枚中21枚以上の発生/実用上問題あり
d.細線再現性
2ドットラインの画像信号に対応するライン画像のライン幅を印字評価システム「RT2000」(ヤーマン(株)製)によって測した。
【0287】
◎・・・1枚目の形成画像のライン幅(L1)および2000枚目の形成画像のライン幅(L2000)の何れもが200μm以下であり、かつ、ライン幅の変化(L1−L2000)が10μm以下/良好
×・・・上記以外の場合/実用上問題あり
e.画像欠陥評価
黒ポチの評価は、画像解析装置「オムニコン3000形」(島津製作所社製)を用いて黒ポチの粒径と個数を測定し、黒ポチの粒径と個数を測定し、0.1mm以上の黒ポチが100cm2当たり何個あるかで判定した。その他切り傷等の大きなものは目視判定した。黒ポチ評価の判定基準は、下記に示す通りである。
【0288】
黒ポチ(5万枚の画像だしを通して)
◎・・・0.1mm以上の黒ポチが1個/100cm2以下/良好
○・・・3個/100cm2以下/実用上問題がないレベル
×・・・4個/100cm2以上のものあり/実用上問題あり
g.各感光体の膜厚減耗量差;
5万枚の絵だし終了後各感光体の膜厚摩耗を測定した。
【0289】
5万枚目の感光体膜厚−1枚目の感光体膜厚=摩耗量Δd(μm)
感光体膜厚測定法
感光層の膜厚は均一膜厚部分をランダムに10ケ所測定し、その平均値を感光層の膜厚とする。膜厚測定器は渦電流方式の膜厚測定器EDDY560C(HELMUT FISCHER GMBTE CO社製)を用いて行った。
【0290】
【表3】
Figure 0003815155
【0291】
【表4】
Figure 0003815155
【0292】
【表5】
Figure 0003815155
【0293】
【表6】
Figure 0003815155
【0294】
【発明の効果】
本発明を用いることにより、磁気粒子により形成された磁気ブラシ帯電を用いて従来実現できなかった高耐久、高画質の画像形成装置、画像形成方法を達成する事が可能となり、オゾンやNOxの発生が少ない、高温高湿、或いは低温低湿条件下の厳しい環境条件でも良好な画像が得られる画像形成装置、及び画像形成方法を達成できた。
【図面の簡単な説明】
【図1】接触式の磁気ブラシ帯電装置図。
【図2】図1の帯電装置による交流バイアス電圧と帯電電位との関係を示す図。
【図3】本発明の磁気ブラシ帯電装置、及び電子写真感光体を有する画像形成装置の1例を示す断面図。
【符号の説明】
10 感光体ドラム
120 磁気ブラシ帯電装置
120a 帯電スリーブ
220 供給ボトル
300 磁気粒子回収容器
ES 電位計
50 感光体ドラム(又は感光体)
51 発光ダイオード等を用いた露光部
52 磁気ブラシ帯電器
53 像露光器
54 現像器
57 給紙ローラー
58 転写ローラー(転写器)
59 分離ブラシ(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ

Claims (9)

  1. 少なくとも帯電、露光、現像、転写及びクリーニングの各手段を有し、かつ電子写真感光体上にトナー像を作製後、転写材に転写する画像形成装置において、前記帯電手段が、感光体表面に接触配置された磁気粒子からなる磁気ブラシであり、該磁気粒子が該磁気粒子の個数平均粒径の1/2倍以下の粒径を有する磁気粒子を30個数%以下の割合で含有し、該現像手段に含有されるトナーの30℃、80RH%環境における飽和水分量が0.1以上2.0質量%以下であり、該電子写真感光体の表面層が下記一般式(1)で表される構造を有する架橋構造を有するシロキサン系樹脂を含有することを特徴とする画像形成装置。
    Figure 0003815155
    (式中、Xは炭素原子CによりYと連結した電荷輸送性能を有する構造単位、YはO、S又はNR(RはH又は一価の有機基)であり、Siはシリコン原子を表す。)
  2. 前記表面層に酸化防止剤が含有されていることを特徴とする請求項に記載の画像形成装置。
  3. 前記酸化防止剤がヒンダードフェノール系酸化防止剤又はヒンダードアミン系酸化防止剤であることを特徴とする請求項に記載の画像形成装置。
  4. 前記表面層に有機乃至無機粒子が含有されていることを特徴とする請求項1〜のいずれか1項に記載の画像形成装置。
  5. 前記表面層にコロイダルシリカが含有されていることを特徴とする請求項1〜のいずれか1項に記載の画像形成装置。
  6. 前記トナーの粒径をD(μm)とするとき、自然対数InDを横軸に取り、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムで、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次の頻度の高い階級に含まれるトナー粒子の相対度数(m2)との相対度数和(M)が70%以上であることを特徴とする請求項1〜のいずれか1項に記載の画像形成装置。
  7. 前記磁気粒子が20〜100μmの体積平均粒径を有する請求項1〜のいずれか1項に記載の画像形成装置。
  8. 前記磁気粒子が1×105〜1×1010Ωcmの体積抵抗値を有する請求項1〜のいずれか1項に記載の画像形成装置。
  9. 請求項1〜のいずれか1項に記載の画像形成装置を用いて電子写真画像を作製することを特徴とする画像形成方法。
JP35577099A 1999-12-15 1999-12-15 画像形成装置、及び画像形成方法 Expired - Fee Related JP3815155B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35577099A JP3815155B2 (ja) 1999-12-15 1999-12-15 画像形成装置、及び画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35577099A JP3815155B2 (ja) 1999-12-15 1999-12-15 画像形成装置、及び画像形成方法

Publications (2)

Publication Number Publication Date
JP2001175017A JP2001175017A (ja) 2001-06-29
JP3815155B2 true JP3815155B2 (ja) 2006-08-30

Family

ID=18445671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35577099A Expired - Fee Related JP3815155B2 (ja) 1999-12-15 1999-12-15 画像形成装置、及び画像形成方法

Country Status (1)

Country Link
JP (1) JP3815155B2 (ja)

Also Published As

Publication number Publication date
JP2001175017A (ja) 2001-06-29

Similar Documents

Publication Publication Date Title
JP4000742B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
US7078138B2 (en) Apparatus and method for forming image forming
JP3873558B2 (ja) 画像形成装置、及び画像形成方法
JP4006923B2 (ja) 画像形成方法、及び画像形成装置
JP2001272809A (ja) 画像形成方法、及び画像形成装置
JP2001242756A (ja) 画像形成方法、及び画像形成装置
JP3815155B2 (ja) 画像形成装置、及び画像形成方法
US6383700B1 (en) Image forming method, image forming apparatus, and developer material used in said apparatus
JP3755367B2 (ja) カラー画像形成装置、及び画像形成ユニット
JP4048683B2 (ja) クリーニングレス電子写真画像形成装置、それを用いる電子写真画像形成方法及びプロセスカートリッジ
JP2001235989A (ja) 画像形成方法、及び画像形成装置
JP4023060B2 (ja) 画像形成装置、及び画像形成方法
JP3807185B2 (ja) 画像形成方法、及び画像形成装置
JP2001042556A (ja) 画像形成方法と画像形成装置及びそれに用いる現像剤
JP2001296683A (ja) 電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP4172894B2 (ja) カラー画像形成装置、及び画像形成ユニット
JP4023064B2 (ja) 電子写真画像形成方法、電子写真画像形成装置、及びプロセスカートリッジ
JP4110702B2 (ja) 画像形成装置、及び画像形成方法
JP2001228641A (ja) 画像形成装置
JP2001222130A (ja) 画像形成装置、及び画像形成方法
JP2001235880A (ja) 画像形成装置、及び画像形成方法
JP4020181B2 (ja) 画像形成方法及び画像形成装置とそれに用いる現像剤
JP2001242682A (ja) 画像形成装置、及び画像形成方法
JP2002116580A (ja) カラー画像形成装置、カラー画像形成方法及び画像形成ユニット
JP3731398B2 (ja) 画像形成方法、及び画像形成装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees