JP3767656B2 - 給湯器の故障診断システム - Google Patents

給湯器の故障診断システム Download PDF

Info

Publication number
JP3767656B2
JP3767656B2 JP30933497A JP30933497A JP3767656B2 JP 3767656 B2 JP3767656 B2 JP 3767656B2 JP 30933497 A JP30933497 A JP 30933497A JP 30933497 A JP30933497 A JP 30933497A JP 3767656 B2 JP3767656 B2 JP 3767656B2
Authority
JP
Japan
Prior art keywords
failure diagnosis
diagnosis
failure
water heater
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30933497A
Other languages
English (en)
Other versions
JPH11125463A (ja
Inventor
忠彦 大塩
洋二 畠
豊彦 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Noritz Corp
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Noritz Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Noritz Corp, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP30933497A priority Critical patent/JP3767656B2/ja
Publication of JPH11125463A publication Critical patent/JPH11125463A/ja
Application granted granted Critical
Publication of JP3767656B2 publication Critical patent/JP3767656B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は給湯器の故障診断システムに関し、より詳細には、給湯器の故障診断にあたり、装置点検者は専用の装置の指令に従って指示された動作を行なうとともに必要に応じて簡単な状況観察を行なうことにより、故障の概略診断から詳細な故障部位の特定までの一連の故障診断を効率良く行い得るようにする技術に関する。
【0002】
【従来の技術】
従来、給湯器の定期点検や故障発生時の修理においては、装置点検者が予め定められた整備マニュアル等に示された点検手順に従って適宜ガスの元栓や給湯カランを操作しながら給湯器を動作させるとともに、所定の計測ポイントの実測等を行うことによって故障部位の特定を行なっていた。また、最近では給湯器自体の制御部にエラー表示機能を備えたものが提供されており、装置点検者はこのエラー表示に従って予めある程度故障部位の絞り込みを行うことができ、かかる絞り込みにより限定された範囲で上記の点検手順を行なうことで作業効率の向上と作業時間の短縮が図られていた。
【0003】
【発明が解決しようとする課題】
しかしながら、近時の給湯器においては自動制御の適用範囲が広がり、たとえば風呂給湯の自動運転のように、風呂の湯張りや水位の設定から給湯温度の調節に至るまで給湯器内部でかなり精密な制御が行なわれているため、このような従来のやり方では以下のような問題があった。
【0004】
(1) すなわち、そのような複雑かつ高度な技術が投入された給湯器の故障診断にあたっては、装置点検者に高度かつ幅広い技術知識が要求される一方、現実に日常行なわれる定期点検や修理の担当者としてそのような幅広い技術知識を備えた技術者を確保することは困難であり、またその養成も容易ではない。
(2) また、一旦故障が発生した場合、たとえ詳細な内容の整備マニュアル等を用意してもその故障部位の特定は容易ではなく、故障部位の特定までには不要な点検事項等も含まれるため、かりに故障部位の特定を行い得たとしてもそれまでには相当の時間を要することとなる。
(3) しかも、実際に定期点検等にあたる装置点検者が携行する計測器等は、比較的簡単な点検作業に用いられるもの、たとえばテスター(回路計)やガス圧計などが中心となるため、給湯器各部を個別に動作させて点検を行うといった複雑かつ詳細な点検作業を行なうことは困難であった。
【0005】
本発明はかかる従来の問題点に鑑みてなされたものであって、その目的とするところは、高度な技術知識を必要とせず、比較的簡単な機器の操作と状況観察により給湯器の概略診断から詳細な故障診断まで行い得る給湯器の故障診断方法および故障診断システムを提供することを主たる目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1に記載された給湯器の故障診断システムは、機器各部の動作状況を検出するセンサ類と、機器各部に設けられる実測用の計測ポイントと、上記センサ類の検出結果に基づいて機器各部の動作状況を監視して機器各部の動作制御を行う制御部と、この制御部で処理されるデータを外部と通信可能とするデータ通信部とを備えた給湯器と、上記計測ポイントでの実測を行うための各種計測器を内装してなる計測器部と、この計測器部で得られた上記計測ポイントの実測結果を故障診断装置に供給するデータ通信部とを備えた計測装置と、上記給湯器および計測装置のデータ通信部とデータ通信可能に構成され、故障診断に必要な手順を記憶するとともに、この手順に従って上記制御部に対して給湯器各部を動作させる機器動作指令を発する一方、入力されるデータに基づいて給湯器各部の動作異常を診断する故障診断部と、該故障診断部での故障診断状況ならびに診断結果を表示する表示部と、装置点検者からの指令を入力するための指令入力部とを備えた故障診断装置とで構成される給湯器の故障診断システムであって、上記故障診断装置が、上記故障診断手順に従って故障診断部位に対して予め設定された所定の動作を指示する機器動作指令を発し、その際に装置点検者が五感の作用によって取得した感覚的な診断結果を入力させ、この入力結果に基づいて当該故障診断部位の動作異常を検出する第1の故障診断動作と、この第1の故障診断動作により動作異常と判定された場合に、上記故障診断部位に対応する上記計測ポイントの実測を要求し、この要求に応じて入力される実測結果に基づいて上記動作異常のあった故障診断部位の故障原因を判定する第2の故障診断動作とを行う制御構成を備えたことを特徴とする。
【0010】
すなわち、この請求項1のシステムでは、故障診断にあたり、上記故障診断装置が第1の故障診断動作(概要診断)と第2の故障診断動作(詳細診断)の2種類の故障診断を行う。第1の故障診断動作では、故障診断装置から機器動作指令を発して給湯器を実際に動作させ、その際に、装置点検者の五感(たとえば、動作音や排気臭など)により感覚的または経験的に取得される給湯器の動作状況から、該給湯器の故障の有無についての概要診断が行なわれる。したがって、ここでの概要診断とは、装置点検者が給湯器の計測ポイントに実際に回路計や圧力計などの計測器を当てることなく、簡単な給湯器の操作ならびに状況観察により行なわれる故障診断を意味する。
【0011】
具体的には、この第1の故障診断動作では、まず、故障診断装置が故障診断を行なう部位に対する所定の動作(弁機構の開閉やバーナへの点火停止など)を適宜機器動作指令として給湯器の制御部に与える一方、出湯栓の開閉や浴槽への水張りなど、故障診断に際して装置点検者の手作業が必要な事項を、その都度故障診断装置の表示部上に要操作事項ないしは確認事項として表示させる。装置点検者は、上記表示部上の表示を見ながら給湯器が上記表示部に示された状況に設定されているかを確認する。そして、このような要操作事項等の設定が指令入力部への入力操作により確認されると、装置点検者の感覚的な診断結果に基づいて診断の対象となった部位の動作異常の有無が故障診断装置内で判定され、適宜上記表示部等に表示される。
【0012】
一方、上記第2の故障診断動作は、上記第1の故障診断動作において動作異常が発見された場合に、上記第1の故障診断よりも詳細に、たとえば具体的な故障原因(故障部品等)の特定を行なうことを目的として行なわれるもので、第2の故障診断動作では、装置点検者に対して上記第1の故障診断で絞り込まれた故障部位に関連する計測ポイントを、実際に上記計測装置に内装された各種の計測器を用いて計測(実測)させ、この実測結果を故障診断装置内に取り込むことにより、上記動作異常のあった部位における具体的な故障原因を上記実測結果から特定するものである。
【0013】
このように本発明によれば、故障診断装置が故障診断を行なうに際し、装置点検者において比較的簡単な操作ないし状況観察だけで行ない得る第1の故障診断から詳細かつ具体的な第2の故障診断へと移行する制御構成を採用し、しかも第2の故障診断動作として行なわれる計測ポイントの実測についても、故障診断装置側から指示を行なうこととしたため、ある程度の技術知識をもった者であれば極めて容易に無駄な点検を行なうことなく、しかも迅速に給湯器の故障診断を行なうことが可能となる。
【0014】
なお、本発明に係る給湯器の故障診断システムにおいて複数の故障診断部位の診断を行なう場合、たとえば請求項2に記載されるように、上記故障診断装置が、予め設定された所定の手順に従って各故障診断部位に対応する機器動作指令を順次発して上記第1の故障診断動作を順次行い、この第1の故障診断動作により動作異常の部位が発見された場合には、上記手順を中断して当該動作異常部位に対する上記第2の故障診断動作を行なう制御構成を備えることが好ましく、またさらに、定期点検など日常行なう診断などにおいては、たとえば請求項3に記載されるように、上記故障診断装置が、予め設定された所定の手順に従って各故障診断部位に対応する機器動作指令を順次発して上記第1の故障診断動作を順次行い、この第1の故障診断動作により動作異常の部位が発見されなかった場合においても、上記第1の故障診断動作終了後に改めて上記所定の手順に従った上記第2の故障診断動作を行う制御構成を備えることが好ましい。
【0015】
すなわち、請求項2の発明は、診断開始当初には別段異常が発見されていないような場合に、上記第1の故障診断動作を予め定められた手順に従って順次行なわせるように構成したものである。これにより、第1の故障診断動作で特に動作異常が発見されなかった場合には、第2の故障診断動作を行なわないため、定期点検などを迅速に行なうことができる。またその際、第1の故障診断手順を、たとえば給湯栓を開いた状態で行なうものなどをまとめて行なわせるなど、手順自体を工夫することにより診断に係る時間を大幅に短縮することができる。さらに、請求項3の発明では、一連の診断動作が終了した時点で、異常動作検出の有無(故障検出の有無)にかかわらず詳細な診断である第2の故障診断動作に移行するため、たとえば、部品の劣化など将来故障を引き起こす原因となるものを早期に発見できる。
【0016】
また、請求項4に記載の発明は、上記第1の故障診断動作において動作異常が検出された場合に、上記故障診断装置が、上記表示部に対して動作異常を知らせる表示を行うとともに、この表示において上記第2の故障診断動作への移行の要否を要求し、移行不要の指令があった場合には上記第2の故障診断動作へ移行しない制御構成を備えたことを特徴とする。
【0017】
すなわち、この発明では、第2の故障診断動作への移行に際し、予め装置点検者に対して移行の要否を確認するように構成されていることから、装置点検者が詳細な点検は不要と考える場合に、無駄な診断を行なわず、速やかに故障部品の交換等の修理作業に移行することができる。つまり、給湯器の故障診断においては、たとえば装置点検者の経験や知識などにより故障箇所を容易に特定できる場合が多く存在し、そのような場合には装置点検者の選択によって第2の故障診断動作に移行しないで直ちに必要な修理を行なうことを可能とした。そのため、この請求項4に係る発明によれは、無駄な点検を行なうことなく短時間で給湯器の修理に取りかかることが可能となる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0019】
まず、本発明に係る給湯器の故障診断システムの概略構成を図1に示し、この故障診断システムは、高度な技術知識を必要とせず、比較的簡単な機器の操作と状況観察により給湯器の概略診断から詳細な故障診断まで行い得る給湯器の故障診断システムであって、給湯器1と計測装置2と故障診断装置3とを主要部として構成される。
【0020】
このシステムで故障診断の対象となる給湯器1は、後述する図2および図3に示すように、少なくとも、機器各部の動作状況を検出するセンサ類と、機器各部に設けられる各種計測器による実測用の計測ポイントと、前記センサ類の検出結果に基づいて機器各部の動作状況を監視して機器各部の動作制御を行う制御部4と、この制御部4で処理される各種データを外部と通信可能とするデータ通信部(図示せず)とを備えなり、このデータ通信部を介して上記故障診断装置3からの器動作指令を受信するとともに、制御部4から給湯器各部の動作状況(センサ類の検出結果やセンサ類の設定情報等)を上記故障診断装置3に伝達可能に構成されている。なお、上記データ通信部としては、たとえば、本実施形態では特に示していないが、給湯器1を遠隔操作するためのリモートコントローラ(図示せず)との間でデータ通信を行なうためのデータ通信部を共用して用いることも可能である。
【0021】
図2は、この給湯器1の実施形態の一例を示しており、この給湯器1は瞬間式給湯器5aと風呂追い焚き用の給湯器5bとが併設されてなるものである。これら両給湯器5a,5bは、それぞれ熱交換器6a,6bを備えるとともに、この熱交換器6を加熱するバーナ7a,7bを備えている。熱交換器6aには、入水管8と出湯管9とが接続されており、入水管8は市水道に連結されるとともに、出湯管9は後述する給湯カラン等に接続される。そして、この入水管8と出湯管9との間にはバイパス管10が配設されている。このバイパス管10は給湯温度の微調整などに用いられるもので、該バイパス管10に設けられるバイパス流量調整弁11の開き具合によって入水管8から出湯管9への通水量の調節が行なわれる。バイパス流量調整弁11は、上記制御部4からの指令に基づいて、弁駆動機構を構成するサーボモータ11aを駆動することにより弁の開度調節を行なうよう構成されている。
【0022】
また、入水管8には、図に示すように市水道から熱交換器6aに供給される通水の流量を検出する入水流量センサ12が設けられるとともに、入水温度を検出する入水温度センサ(流水温度センサ)13が配されている。なお、入水流量センサ12として図示例ではいわゆるタービン式のセンサが用いられており、したがって入水流量センサ12の内部には通水を検知するためのロータ12aが配されている。また、入水温度センサ13としてはたとえばサーミスタ式のセンサが好適に用いられる(他の流水温度センサにおいても同様)。
【0023】
一方、出湯管9には、熱交換器6bで加熱された湯水の温度検出用に缶体温度センサ14(流水温度センサ)が設けられるとともに、その先端付近に、出湯管9からの出湯流量を調節するための出湯流量調整弁15が設けられる。また、この出湯流量調整弁15の下流側には、上記バイパス管11によって温度調節された後の出湯温度を検出する出湯温度センサ16(流水温度センサ)が設けられる。そして、この出湯管9は上記出湯流量調整弁15の下流側で分岐され、一方は給湯カラン17へ、またもう一方は風呂追い焚き用の追い焚き循環路18へとそれぞれ接続される。
【0024】
追い焚き循環路18は、図外の浴槽Bの湯水を追い焚きするために、該浴槽Bと上記熱交換器6bとの間に形成された循環路であって、浴槽Bから湯水を吸い込んで熱交換器6bへ供給する戻り管19と、該熱交換器6bで加熱された湯水を再び浴槽へと循環させる往き管20とを主要部として構成される。上記戻り管19には、浴槽B内の湯水を強制的に循環させる循環ポンプ21が設けられ、その下流側には追い焚き循環路18内の通水を検出する水流スイッチ22が設けられるとともに、この水流スイッチ22の下流側には更に浴槽B内の湯水の温度を検出する風呂温度センサ23(流水温度センサ)が設けられている。
【0025】
また、この追い焚き循環路18には、上述したように出湯管9が接続されている。具体的には、上記出湯管9は、上記戻り管19上の風呂温度センサ23の下流側に接続されている。この接続にあたっては、上記出湯管9の先端に、該出湯管9からの戻り管19への注湯流量を制御する注湯流量調整弁24、およびその下流側に上記注湯流量調整弁24を介して戻り管19に流れ込む湯水の流量を検出する注湯流量センサ25が設けられている。なお、注湯流量センサ25は上記入水流量センサ12と同様にタービン式の流量センサが用いられ、25aはそのロータを示している。また、26は逆止弁を示しており、上記注湯流量調整弁24の開閉制御は上記給湯器1の制御部4の指令により行なわれる。
【0026】
また、上記熱交換器6a,6bを加熱するバーナ7a,7bは、図示例ではガスを燃料とするガスバーナであり、燃料となるガスはガス管27を介してそれぞれ供給される。ガス管27には、ガス供給を遮断可能な元ガス電磁弁(ガス供給用弁機構)28が設けられ、この元ガス電磁弁28の下流側でガス管27はバーナ7a側27aとバーナ7b側27bに分岐される。分岐されたガス管27a,27bには、それぞれバーナ7a,7bに供給するガス圧を調整するためのガス比例弁29,30が設けられている。また、バーナ7a,7bは、いずれも複数の燃焼管が配され、この燃焼管の燃焼本数を目標燃焼量に応じて適宜段階的(図示例のバーナ7aでは4段階、バーナ7bでは2段階)に切り替えて運転可能なように電磁弁で構成された能力切替弁31(図示例のバーナ7aでは3個、バーナ7bでは1個)が設けられている。しかして、この能力切替弁31と上記ガス比例弁29,30の動作制御によって、バーナ7での燃焼が上記制御部4で指令される目標号数となるように制御される。なお、図に示す32a,32bは、給湯器5a,5bの缶体33a,33bに設けられた燃焼用空気の送風ファンを示しており、また、34は点火プラグを、35は立消え安全装置を、36はバーナ温度センサを示している。さらに、39は一次ガス圧を検出するためのガス圧計測部(計測ポイント)を示している。
【0027】
また、図3は給湯器1の他の実施形態の一例を示している。この給湯器1′では、特に、追い焚き循環路18内に風呂Bの水位を検出する水位センサ37が設けられている。その他の点については、上記図2の給湯器1と、瞬間式給湯器5aと風呂追い焚き用の給湯器5bとが一つの缶体33内に装置されている点と、バイパス管10にバイパス流量調整弁11は設けられていない点で大きく相違するが、それ以外の部分については上記図2の場合とほぼ構成が一致するため、内容が共通する事項については同一の符号をとって説明を省略する。なお、瞬間式給湯器5aと風呂追い焚き用の給湯器5bとが一つの缶体33内に装置されたことにより、送風ファン32は一つとされ、また、バイパス管10での流量調整が行なわれないので缶体温度センサ14は装備されていない。また、38は追い焚き循環路18に接続された循環金具である。
【0028】
そしてこの給湯器1′に設けられる水位センサ37は、上記追い焚き循環路18を構成する戻り管19内の、上記循環ポンプ21の上流側に配設される。この水位センサ37としては戻り管19内の水圧を検出する圧力センサが用いられ、検出された水圧に応じて浴槽Bの水位が演算される。より具体的には、この水位センサ37で検出される水圧は、浴槽Bを同じ水位とした場合でも当該浴槽Bが設置される高さ位置によって変化するため、実際に水位の検出においては、給湯制御部4においてこの浴槽Bの高さ位置による変化分を予め考慮して水位センサ36からの検出値を補正して水位の演算が行なわれている。
【0029】
一方、計測装置2は、上記給湯器1の各部に設けられた計測ポイントでの実測を可能にする各種計測器を内装してなる計測器部210と、この計測器部210で得られた上記計測ポイントでの実測結果を上記故障診断装置3に供給するデータ通信部220とを備えてなる。計測貴部210には、特に給湯器1の具体的な故障診断に必要な計測器(たとえば回路計やガス圧計など)が内装され、これらの計測器によって実測された実測結果はデジタルデータに変換され、上記データ通信部220を介して故障診断装置3に送信される。なお、図1における211は回路計のテスト棒およびそのコードを、また212はガス圧計のガス配管を示している。
【0030】
また、故障診断装置3は、上記制御部4に対して給湯器各部の具体的な動作を指令する機器動作指令を発するとともに、上記給湯器1および計測装置2から供給される給湯器各部の動作状況および上記計測器部210での実測結果を取り込んで給湯器各部の動作異常を診断する故障診断部310と、該故障診断部310における診断状況ならびに診断結果を表示する表示部320と、装置点検者からの指令を入力するための指令入力部330とを備える他、上記給湯器1および計測装置2と同様にデータ通信部340を備えている。具体的には、この故障診断装置3としては、汎用のパーソナルコンピュータが好適に使用される。すなわち、上記故障診断部310における各機能は、パーソナルコンピュータの記憶装置(図示せず)に記憶された故障診断プログラムによって実現されるとともに、上記表示部320はパーソナルコンピュータの画面によって実現される。また、指令入力部330は、パーソナルコンピュータのキーボードやあるいは上記表示部320へのペン入力により実現される。さらに、データ通信部340は、パーソナルコンピュータに設けられるデータ入出力用の端子(たとえばRS232C)により実現される。
【0031】
しかして、これら給湯器1、計測装置2および故障診断装置3とが図1に示すようにデータ通信可能に、かつデータ通信用の伝送線が着脱可能に接続されて本発明にかかるシステムが構築される。なお、図示例では故障診断装置3として汎用のパーソナルコンピュータを使用していることから、故障診断装置3と計測装置2は別体として構成されるが、これらは専用の装置として一体に構成することも可能である。
【0032】
次に、このようにして構成される給湯器の故障診断システムの動作について説明する。
【0033】
本システムが故障診断の対象とするのは、上述したような制御部4によって給湯器各部の動作が監視・制御される給湯器1である一方、具体的に故障診断装置3から制御部4になされる各種の機器動作指令は、全て故障診断装置3内で所定の故障診断プログラムに従って生成されることから、上記の機能を備えた給湯器であれば、たとえば製造メーカが異なる給湯器においても、上記故障診断プログラム上で十分に対応可能である。したがって、まず、この点について簡単に説明する。
【0034】
本システムでは、このような事情から、まずシステム立ち上げ時に、上記表示部310上に診断対象となる給湯器1の形式選択を行なわせる表示がなされる。そこでは、製造メーカの選択ならびに具体的な型番の選択を行なわせ、この選択に基づいて以下の故障診断動作を規律する故障診断プログラムが選択される。このようにして診断対象となる給湯器1の形式が決定されると、故障診断装置3から給湯器1の制御部4に対して、以後故障診断動作が開始される旨、つまり、給湯器1を所定の故障診断モードに切り替える旨の機器動作指令が発せられる。なお、この故障診断モードは給湯器の製造メーカや形式毎に相違するが、このモードが選択されることにより、たとえば通常の使用状態中に設定されている安全措置等が解除され、故障診断に必要な機器各部の動作が可能な状態(たとえば、給湯器の制御部でソフト的に設定されている安全措置の解除)に移行される。
【0035】
また、これと並行して、上記診断対象となる給湯器1が自己診断機能を備える場合、システム立ち上げ時の上記形式選択終了後に、この自己診断機能での診断結果(多くの給湯器の場合、エラーコードで表示される)を故障診断装置3内に取り込んで、かかる自己診断情報も上記表示部320上に表示するように構成される。なお、給湯器1が過去の故障状況(障害履歴)を記憶している場合、この障害履歴も取り込み表示を行なわせる。
【0036】
このようにして、本システムの立ち上げが完了すると、表示部310上には故障診断の具体的なメニューが表示される。本実施形態では、たとえば給湯器1の診断対象部位を特定して診断を行なう(個別診断)か、あるいはかかる特定を行なわずに給湯器各部の全てについて故障診断を行なう(自動診断)かを選択する画面が表示される。そこで、次に上記個別診断と自動診断とに場合を分けて説明する。
【0037】
A.個別診断
個別診断が選択された場合、まず、個別診断を行なう給湯器の部位の特定を要求する画面が表示される。装置点検者は、この画面の指示に従って上記指令入力部330を操作して故障診断部位を指定する。この指定により、上記故障診断装置3において第1の故障診断動作(図4のステップS1)が開始される。具体的には、上記故障診断部310から上記制御部4に対して、当該故障診断部位に応じて予め設定された所定の動作ないしは不動作を指令する機器動作指令が発せられ、上記故障診断部位に関連する各部が動作を行い、その際における上記センサ類での検出結果が上記制御部4を経由して故障診断部310に入力される。センサ類での検出結果を受信した故障診断部310では、上記故障診断プログラムに従って故障診断部位の不具合(動作異常)の判定が行なわれる(図4ステップS2)。
【0038】
なお、この第1の故障診断にあたっては、故障診断のための資料として上記センサ類から得られる検出結果が用いられるが、その際の資料として上記センサ類での検出結果に代えて、またはこれと併用して、装置点検者が上記故障診断部位について五感の作用で取得した感覚的な診断結果を上記指令入力部330から直接入力させることも可能である。すなわち、上記故障診断部位の診断においては、センサ類を用いることなく装置点検者自身の五感で直接確認することが適しているもの(たとえば、動作音の確認など)も含まれるため、そのような場合には、装置点検者の診断結果を直接得ることが迅速かつ的確な故障診断に奉仕するからである。
【0039】
そして、個別診断の場合、このような第1の故障診断動作で動作異常が検出されなかった場合には図4ステップS9まで移行して故障診断を終了する。一方、動作異常が検出された場合には、図4のステップS3に移行して、表示部320上に上記第1の故障診断で診断された故障内容の表示が行なわれる。
【0040】
この第1の故障診断により動作異常が検出されると、通常の場合であれば当該故障診断部位に対する第2の故障診断動作の開始を要求する表示を行ない第2の故障診断動作に移行するが(図4ステップS6)、本実施形態では、その前に画面上に上記第2の故障診断動作への移行の要否についての指令を要求する画面を表示させる(図4ステップS4)。これは、上記第1の故障診断で発見された故障発生部位またはその発生状況などによっては、後述する第2の故障診断動作を行なうまでもなく、装置点検者の経験や知識によって故障原因を特定できる場合があるのを考慮したもので、そのような場合に、装置点検者は第2の故障診断動作へ移行することなく、故障診断動作を終了し得るようにしたものである(図4ステップS5)。
【0041】
そして、図4のステップS4において第2の故障診断動作を行なう旨の選択がなされると、図4ステップS6に移行して、上記第2の故障診断動作が開始される。この第2の故障診断動作では、上記計測装置2の計測器部210を用いた上記計測ポイントの実測が要求される。そのため、装置点検者は具体的に故障診断部位に対応する実測ポイントに回路計やガス圧計などを接続して各部品単位での動作状況の確認を行なう。その際、画面上には、装置点検者が実測すべき計測ポイントの指示が表示される。したがって、装置点検者はこの画面上の指示に従って順次計測ポイントの実測を行なうだけでよく、また、実測された結果は、適宜デジタルデータとして故障診断部310に送信される。故障診断部310では、受信したデータが各部品毎に適正値の範囲内であるかを判定し、適正値を超える部品が発見された場合にその部品を故障と判定し、画面上に故障部分の表示を行なう。
【0042】
このように、本発明においては、装置点検者は表示部320に表示される指示に従って第1の故障診断動作から第2の故障診断動作へと進むことによって、特別な技術知識を要することなく、簡単な操作と状況観察のみで容易かつ迅速に故障原因の特定を行なうことができる。
【0043】
B.自動診断
一方、自動診断が選択された場合、上記故障診断部310では自動診断を行なう手順として予め設定された所定の手順に従って、順次異なる故障診断部位に対して連続して上記第1の故障診断動作が行なわれる(図4ステップS1′,S2′参照)。すなわち、この自動診断が選択された場合には、上記故障診断部310では上記所定の手順に従って、各故障診断部位に対応して予め設定された機器動作指令を順次発し、その都度上記第1の故障診断動作が行なわれ、動作異常が発見されない場合は図4のステップS9に移行して故障診断を終了する。一方、その過程で動作異常が発見された場合に、図4ステップS3に移行して第2の故障診断動作が行なわれ、故障原因の特定が行なわれることは、上記個別診断の場合と同様である。
【0044】
なお、自動診断の場合、上記第1の故障診断動作の繰り返しによって動作異常が全く発見されない場合においても、直ちに故障診断を終了せず、各故障診断部位に対して改めて上記所定の手順に従って前記第2の故障診断動作を行なわせる構成を採用することも可能である。すなわち、上述した自動診断では、動作異常が全く発見されない場合には故障診断が終了するが、たとえば経年変化による部品の劣化のように、故障発生には至らないまでも品質が低下している場合も考えられることから、全ての故障診断部位に対して改めて第2の故障診断動作を行なわせることにより、そのような部品の早期発見を行なうことも有用と考えられる。
【0045】
しかして、本発明では以上のような自動診断を選択することにより、個別診断の場合と同様の効果が見込まれる他、さらに、定期点検などにおいても迅速かつ精密な点検を行なうことが可能となる。
【0046】
次に、上記第1の故障診断動作の実施形態のいくつかをフローチャートに示しながら説明する。
【0047】
実施形態1
第1の実施形態を図5に示し、このフローチャートは、給湯器1がリレー回路のオン/オフ制御により駆動される弁機構を備える場合の当該弁機構に対する第1の故障診断動作を示している。より具体的には、図5に示す電磁弁の故障診断は、元ガス電磁弁28などの電磁弁の故障診断に際して、装置点検者の聴覚により電磁弁の動作音を確認を第1の故障診断動作として行うものである。この場合、元ガス電磁弁28などは、図外のリレー回路により開閉動作が制御されるため、通常動作と同様に電磁弁を開閉させたのでは、装置点検者がリレー接点の動作音と電磁弁の動作音とを誤認するおそれがある。そのため、本実施形態では、予めリレー接点の動作音のみを装置点検者に聞かせておくことにより、その後に行う通常動作と同様の電磁弁の開閉に際して電磁弁の動作音とリレー接点の動作音の判別を容易にしたものである。
【0048】
(1) すなわち、まず上記故障診断部310から元ガス電磁弁28を駆動するリレーのみをオン/オフさせる機器動作指令を発して、当該リレーのみのオン/オフ動作を行わせる(図5ステップS1)。より詳細には、たとえば上記元ガス電磁弁28を駆動するリレー接点などは、通常、誤動作防止のために複数のリレー接点を直列に配置して構成されることから、図5ステップS1では、この直列に配置されたリレー接点のうちの一部のみを動作させる機器動作指令を発するものとされる。またその際には、当該リレー接点のオン/オフ動作は、装置点検者がリレー接点の動作音を記憶するのに十分なだけ一定時間繰り返し行われることが好ましい。
【0049】
(2) そして、一定時間リレー接点のオン/オフ動作を行わせた後は、続いて通常動作と同様の指令、すなわち、電磁弁を動作させるのに必要な全てのリレー接点を動作させる機器動作指令が発せられる(図5ステップS2)。この場合にも上記と同様に、装置点検者が電磁弁の開閉による動作音を確認するのに十分なだけ一定時間回繰り返し行われるが、たとえば元ガス電磁弁28のように、開閉させると直ちに燃料ガスの流出を伴うようなものは、開弁状態があまり長時間にわたらない範囲で繰り返し行われることが安全上好ましい。
【0050】
(3) そして、この図5のステップS2が行われている際に、装置点検者に上記電磁弁の動作音が聴取できたかを診断させ(図5ステップS3)、聴取できていれば上記指令入力部330からその旨を入力させる。これにより、上記故障診断部310では、この装置点検者からの入力指令に基づいて電磁弁が正常に動作していると判断して故障診断動作を終了する(図5ステップS4)。一方、上記図5ステップS3において電磁弁の動作音が聴取されない場合にも、装置点検者にその旨の入力を行わせ、この入力に基づいて電磁弁が故障であるとの診断を行う(図5ステップS5)。このようにして診断された第1の故障診断の結果は、全て上記表示部320上に表示を行う(以下の実施形態でも同様)。
【0051】
しかして、このようにして第1の故障診断動作が終了すると、上記第2の故障診断動作が装置点検者の選択等に基づいて適宜開始される(なお、この点についても以下の実施形態でも同様である)。なお、図5のフローチャートでは、電磁弁の動作音の確認の前提として、リレー接点の動作音を聞かせるステップが設けられたが、このステップは上述したように電磁弁の動作音の聴取を容易するために設けられるものであるため、適宜省略することも可能である。また、診断の対象となる弁機構も上記元ガス電磁弁28に限定されず、他の電磁弁の故障診断に適用することも可能である。
【0052】
実施形態2
第2の実施形態を図6に示し、このフローチャートは、給湯器1が、バーナ7への燃料ガス供給用の弁機構を備える場合における当該弁機構に対する第1の故障診断動作を示している。図6には、この弁機構として上記元ガス電磁弁28およびガス比例弁29の診断動作が示されており、この場合両弁機構28,29の故障診断は、装置点検者の嗅覚によるガス臭の確認により行われる。
【0053】
(1) 具体的には、まず故障診断部310からガス供給用の弁機構(元ガス電磁弁28)に対してガスの供給を遮断するとともに、送風ファン32に対してファンの回転を指令する機器動作指令が発せられる(図6ステップS1)。これは、装置点検者がガスの供給がない状態での排気臭を確認可能とするためである。すなわち、給湯器内部には腐食臭やパッキン等の部品に特有なゴム臭など様々な臭いが混在するため、図6の故障診断では、装置点検者がこれらの臭い(排気臭)とガス臭とを誤認しないように、予め装置点検者に当該給湯器に特有の臭いを記憶させる。
【0054】
(2) そして、上記送風ファン32の運転が開始されてから一定時間経過後に、送風ファン32の回転はそのままで上記元ガス電磁弁28およびガス比例弁設29の開閉動作を繰り返し行わせる機器動作指令が発せられ(図6ステップS2)、装置点検者にこの状態で再び排気臭の確認を行わせる。ここで、一定時間経過後に元ガス電磁弁28等の開閉動作を行わせるとしたのは、装置点検者がガス供給遮断時の排気臭を記憶するのに必要な時間を確保するためであり、したがって、ここでの「一定時間」は適宜設定変更可能であることは勿論である。また、元ガス電磁弁28とガス比例弁設29とを断続的に開閉動作させるのは、ガス流出による危険防止のためである。
【0055】
(3) このようにして、ガス供給遮断時とガス供給時の双方の排気臭を装置点検者に嗅がせることによりガス臭の有無を確認させる(図6ステップS3)。その際ガス臭がしていれば上記指令入力部330からその旨を入力させ、上記故障診断部310ではこの結果に基づいて元ガス電磁弁28およびガス比例弁設29の双方とも正常であると判断して故障診断動作を終了する(図6ステップS4)。一方、図6ステップS3においてガス臭が確認されない場合は、装置点検者からの入力操作により、上記元ガス電磁弁28およびガス比例弁設29のいずれか一方または双方の故障と診断される(図6ステップS5)。なおこの場合、予め上記実施形態1の故障診断動作を行っておれば、元ガス電磁弁28は正常と考えられるので、その場合はガス比例弁29の動作異常と判断することが可能である。
【0056】
なお、本実施形態では、給湯器1の状態を予め故障診断モードに設定しておくことにより、通常モードではガス供給に伴って行われるバーナ7の点火を行わせないで故障診断を行うことができる。、しかも、予め点火プラグ34への通電を遮断する機器動作指令を発しておくことにより、プラグ34の放電による爆発着火を回避でき装置点検者は安全な状態で故障診断を行うことができる。また、元ガス電磁弁28等には、殆どの場合、バーナ無点火時に弁が閉じるようにインターロック機構が組み込まれるが、このインターロック機構を利用して上記弁機構の開閉を断続的に行わせることも可能である。その場合、たとえば3秒程度弁が開かれるとインターロック機構が動作してガス供給が停止されるので、ガス供給が停止された時点で再び弁を開く機器動作指令を発することにより断続的な弁の開閉を行わせることができる。さらに、図6のフローチャートでは、ガス臭を確認させる前提として、予め燃料ガスの供給を停止した状態で送風ファン32の回転を行わせているが(図6ステップS1)、このステップは上述したように給湯器固有の排気臭とガス臭との判別を容易するために設けられているに過ぎないため、ガス臭の嗅ぎ分けが可能であれば省略することもできる。
【0057】
実施形態3
第3の実施形態を図7に示す。このフローチャートは、給湯器1が、上記バイパス流量調整弁11と入水流量センサ12とを備える場合の当該バイパス流量調整弁に対する第1の故障診断動作を示している。
【0058】
すなわち、この実施形態では、給湯栓からの出湯量を一定に保ちつつバイパス流量調整弁11を開閉させ、その変化の前後における熱交換器6への入水量の変化からバイパス流量調整弁11の故障を診断するものである。つまり、バイパス流量調整弁11の動作が正常であれば、この弁の開度を変化させることによりバイパス管10へ流入する水の流量も変化するので、入水流量センサ12での検出結果もこの変化分に対応して変化することとなる。そのため、本実施形態はこの入水流量センサ12の検出結果を比較することによって上記バイパス流量調整弁11の故障診断を行うものである。
【0059】
(1) 具体的には、まず、給湯カラン(給湯栓)17を開きその状態を維持する旨の画面表示を行う(図7ステップS1)。そして、この状態でバイパス流量調整弁11を全閉とする機器動作指令を発し、その際の入水流量センサ12の計測結果をQ0 として故障診断部310に記憶させる(図7ステップS2)。
【0060】
(2) 次に、バイパス流量調整弁11を全開とする機器動作指令を発し、その際の入水流量センサ12の検出結果をQ1 として記憶させる(図7ステップS3)。
【0061】
(3) そして、この上記入水流量センサ12の検出結果Q0 とQ1 とを比較して、その差が所定値αの範囲内か否かを判断する。すなわち、バイパス流量調整弁11が全閉状態の時の検出結果Q0 からバイパス流量調整弁11が全開状態の時の検出結果Q1 を減算することにより、バイパス管10への流入した水の量を求め、この値がバイパス管を全開とした場合に当該バイパス管10に流れ込むと予測される流量α(本実施形態ではこの値は予測されるものより少なめとされる)より大きいか否かを判断する(図7ステップS4)。
【0062】
(4) そして、この判定の結果、上記演算の結果が所定範囲αより大きければ、バイパス流量調整弁11の動作を正常と判断して故障診断動作を終了し(図7ステップS5)、上記所定範囲αより小さければバイパス流量調整弁11の故障と診断される(図7ステップS6)。
【0063】
このように、本実施形態では、給湯栓からの出湯量を一定に保ちつつバイパス流量調整弁11の開度を変化させて、その際における入水流量の変化からバイパス流量調整弁11の故障が診断されるため、バイパス流量調整弁11の故障を容易に診断できる。また、上記例では図7ステップS1において給湯栓として給湯カラン17を開くこととしたが、上記注湯流量調整弁24を開く機器動作指令を発するように構成することも可能である。また、バイパス流量調整弁11の変化状態も、上記のように「全閉」「全開」とすることなく、任意の二段階で変化させることも可能である。ただし、その場合、上記所定範囲αの値もそれに応じて設定変更する必要があることは勿論である。
【0064】
実施形態4
第4の実施形態を図8に示す。このフローチャートは、給湯器1が、追い焚き循環路18への給湯を可能に構成されるとともに、上記バイパス流量調整弁11,入水流量センサ12および注湯流量センサ25を備える場合のバイパス流量調整弁に対する第1の故障診断動作を示している。
【0065】
すなわち、この実施形態では、注湯流量制御弁24のみを開くことにより(他の給湯栓を全て閉じて)、市水道からの流水経路を、入水管8から出湯管9を経由して追い焚き循環路18へと向かうように設定した状態で、バイパス流量調整弁11を全閉とし、この状態での注湯流量センサ25と入水流量センサ12の流量を比較することにより、バイパス流量調整弁11が確実に閉じられているか否かを診断するものである。すなわち、この状態でバイパス流量調整弁11が確実に閉じられていれば、バイパス管10への通水はないため、注湯流量センサ25と入水流量センサ12の検出結果は同じとなるはずであるので、この点を診断することによりバイパス流量調整弁11の故障診断を行うものである。
【0066】
(1) 具体的には、まず、故障診断部310から、装置点検者に対して、上記注湯流量制御弁24以外の全ての給湯栓を閉じる旨の指令を上記表示部320の画面上に表示させる(図8ステップS1)。これは、上述した流水経路を確保するための動作である。
【0067】
(2) 次に、注湯流量調整弁24の弁を開く旨の機器動作指令を発して(図8ステップS2)、上記流水経路への通水を行わせる。
【0068】
(3) そして、この状態でバイパス流量調整弁11を全閉とする機器動作指令を発し(図8ステップS3)、その際の注湯流量センサ25と入水流量センサ12の検出結果を比較する(図8ステップS4)。その結果、両検出結果の差が許容誤差αの範囲内であれば、続く図8ステップS6へ移行し、許容誤差αを越えていればバイパス流量調整弁11の故障との診断を行う(図8ステップS5)。なお、ここでの許容誤差αは機器のバラツキを特に考慮して適宜設定される。また、図8のステップS5では、バイパス流量調整弁11を駆動するサーボモータ11aの故障と診断されるように構成されるが、これはバイパス流量調整弁11の故障としてサーボモータ11aの最も多く発生し易いと考えられるためで、実際にサーボモータ11aが故障しているか否かは上記第2の故障診断により特定される。
【0069】
(4) 一方、本実施形態では、図8のステップS6以降において、バイパス流量調整弁11のサーボモータ11aが脱調していないか否かの診断も行われる。すなわち、バイパス流量調整弁11が全閉状態で正常と判断された場合でも、バイパス流量調整弁11を駆動するサーボモータ11aが脱調していれば、弁を開いた際に正確な流量制御を行うことができない。そのため、図8ステップS6以降ではこの点の診断が行われる。具体的には、まず、バイパス流量調整弁11を全開とする機器動作指令が発せられる(図8ステップS6)。
【0070】
(5) ここで、バイパス流量調整弁11が脱調なく正常に動作していれば、注湯流量と入水流量との間には、理論上、「注湯流量=入水流量×K」の関係が成立する(ただし、Kはバイパス流量調整弁11を全開とした場合の出湯流量と入水流量の比として予め求められる値)。したがって、続く図8ステップS7では、実際にバイパス流量調整弁11を全開とした場合にこの関係が成立しているかを判断し、成立していれば正常として診断動作を終了し(図8ステップS8)、また成立していなければバイパス流量調整弁11が脱調していると判断する(図8ステップS9)。なお、βはこの判断にあたっての許容誤差を示している。また、上記実施形態では図8ステップS6においてバイパス流量調整弁11を全開としているが、これについても特に限定されるものではない。すなわち、この場合、入水流量とバイパス流量調整弁11の開度情報とから出湯管9からの総出湯量を演算により求めることができるので、上記診断にあたり、この演算により求められた値を用いることも可能である。
【0071】
実施形態5
第5の実施形態を図9に示す。この実施形態は、給湯器1の給湯経路上に直列に配置された複数の流量センサの故障診断動作であって、具体的には、給湯経路上を流れる湯水の流量を一定に保った状態で、この給湯経路上に設けられた2以上の流量センサの計測結果を比較することにより動作異常を生じている流量センサを判別するものである。図9の例では、この給湯経路上の流量センサとして入水流量センサ12と注湯流量センサ25の故障診断を行う場合を示している。
【0072】
(1) まず、上記表示部320の画面上に、装置点検者に対する表示として、手動で開閉を行う全ての給湯栓を閉じる旨の表示を行う(図9ステップS1)。これは、本例の故障診断対象となる入水流量センサ12と注湯流量センサ25との間に一定流量の通水を確保するためであって、給湯カラン17など他の給湯栓への漏水を予め停止させるためである。
【0073】
(2) そして、上記入水流量センサ(出湯流量センサ)12と注湯流量センサ25との間に漏水がない状態を確保すると、次に、注湯流量調整弁24を開く旨の機器動作指令を発する(図9ステップS2)。ここで開く注湯流量調整弁24は、給湯経路上の通水流量を一定に保つ必要から弁の開度を変化させないようにする。
【0074】
(3) そして、この状態で入水流量センサ12と注湯流量センサ25で測定される測定結果を、上記故障診断部310において比較し、両者の差が規定範囲(許容誤差の範囲)内にあるか否かを判定する(図9ステップS3)。そして、この判定結果が許容誤差の範囲内であれば、両センサ12,25ともに正常に動作していると判断して故障診断動作を終了する(図9ステップS4)。
【0075】
(4) 一方、上記判定結果が許容誤差の範囲を越えている場合には、続く図9ステップS5において、注湯流量より入水流量が多いか否かが判定され、その結果、注湯流量より入水流量が多いと判定されると、注湯流量センサ25側の故障との判定を行う(図9ステップS6)。また、注湯流量の方が多いと判定された場合には、入水流量センサ12側の故障と判定される(図9ステップS7)。なお、図示のフローチャートでは、具体的に流量センサのフローへのゴミ噛みと診断するようにしているが、たとえば給湯経路の目詰まり等においても図9ステップS6と同様の結果を生じる。しかし、本発明では、上述したように第1の故障診断動作に続いて詳細な第2の故障診断を行うことが前提であるため、給湯経路の目詰の診断は、第2の故障診断で両センサ12,25がいずれも正常であると診断された場合に行うものとされている。したがって、予め給湯経路上の目詰まり等が予想される場合などにおいては、流量センサの故障判定と同時にその旨の表示を行わせることも可能である。
【0076】
なお、図9の例では入水流量センサ12と注湯流量センサ25の故障診断を示したが、もちろん他の流量センサの故障診断にも応用可能である。また、図2に示すように、入水流量センサ12の上流側にバイパス管11が形成されている場合には、バイパス流量調整弁11を全閉状態とするか、もしくはバイパス管11への通水流量を予め考慮して上記出湯流量調整弁15からの総出湯流量を演算し、この総出湯流量を用いて上記図9ステップS3,S5を行わせる必要がある。さらに、故障診断を簡略化して、図9ステップS3での判定の結果、許容誤差の範囲を越えている場合には、直ちに両水量センサ12,25の故障と判定させてよい。
【0077】
実施形態6
第6の実施形態を図10に示す。この実施形態は、給湯器1の注湯流量調整弁25の故障診断動作であって、具体的には、注湯流量調整弁24を開いた時に浴槽Bへの通水がない場合の故障診断動作である。なお、図10の例では、定期点検などの一般的な故障診断動作も含めており、したがって、最初に注湯流量調整弁24を開いた時に浴槽Bへの通水があるか否かの判断も行うように構成している(図10ステップS1,S2参照)。
【0078】
(1) まず、故障診断部310から注湯流量調整弁24に対して弁を開く旨の機器動作指令が発せられる(図10ステップS1)。そして、この状態で注湯流量センサ25が通水を確認した否かを判断し(図10ステップS2)、通水が確認されると、上記注湯流量調整弁24の動作は正常であると判断して故障診断を終了する(図10ステップS3)。
【0079】
(2) 一方、注湯流量センサ25で通水が確認されない場合には、続く図10ステップS4において、装置点検者に対して給湯栓を開く旨の指示を上記表示部320上に表示させる(図10ステップS4)。装置点検者は、この表示に従って給湯カラン17などを開栓して給湯経路上に通水を行わせる。
【0080】
(3) そして、この状態で入水流量センサ12で通水が検出されたか否かを判断し(図10ステップS5)、通水が確認されると注湯流量調整弁24の動作異常と判断される(図10ステップS7)。その一方、図10ステップS5で通水が確認されない場合には、入水管8への通水がないと判断できるため、この場合は入水管8の水の供給を司る元水栓(図示せず)が閉じていると診断される(図10ステップS6)。
【0081】
実施形態7
第7の実施形態を図11に示す。この実施形態は、給湯器1の給湯経路上に配置された流水温度センサの故障診断動作であって、具体的には、給湯経路上に配置された入水温度センサ13,缶体温度センサ14、出湯温度センサ16、風呂温度センサ23の故障診断動作を示している。なお、図11に示す風呂温度センサ23は、本来、浴槽Bに水が満たされていない場合には給湯経路を構成しないが、図2,図3に示す場合には、水流スイッチ22を基端として給湯経路の一部を構成するため、ここでは風呂温度センサ23も診断対象としている。
【0082】
(1) まず、故障診断部310からバーナ7での燃焼を停止する旨の機器動作指令が発せられる(図11ステップS1)。そして、この状態で注湯流量調整弁24を開く機器動作指令が発せられる(図11ステップS2)。つまり、バーナ7の燃焼を停止させた状態で注湯流量調整弁24を開くことにより、給湯経路内に通水を行わせる。
【0083】
(2) 次に、通水状態とされた給湯経路上に設けられた上記各流水温度センサ13,14,16,23での検出結果を比較して、検出温度にずれがないかを判定する(図11ステップS3,S4)。この場合、給湯経路内には非加熱の水(つまり市水道からの水)が流れるため、各流水温度センサでの検出値はほぼ一定となる。ただし、この場合にも一定の許容誤差が認められるので、ここでの比較判定も許容誤差を考慮して行われる。
【0084】
(3) そして、上記図11ステップS4での判定の結果、各流水温度センサでの検出温度ずれがなければ、各流水温度センサの動作は正常であると判断して診断動作を終了する(図11ステップS5)。一方、ずれが検出された場合には、検出値のずれを生じたものが一つであるか否かを判定し(図11ステップS6)、一つであれば当該検出値のずれた流水温度センサの故障と判定する(図11ステップS7)。また、ずれを生じた流水温度センサが複数の場合には、図11ステップS8に進み、第2の故障診断動作によって検出値のずれた流水温度センサの特定を行う。
【0085】
なお、この場合の第2の故障診断動作の一例を挙げると、センサを構成するサーミスタや該サーミスタから制御部4への伝送経路を上記試験装置2の回路計で個別に測定診断することが考えられる。
【0086】
実施形態8
第8の実施形態を図12および図13に示す。この実施形態は、給湯器1のバーナ7の故障診断動作であって、具体的には、たとえば図2のバーナ7aは、ガス比例弁29と三つの能力切替弁31a〜31cの動作を制御することにより燃焼号数を適宜変更可能に構成されているが、本実施形態ではこの能力切替弁31a〜31cの故障診断動作を示している。
【0087】
すなわち、燃焼号数(号数とは1リットルの水を1分間で25℃上昇させる熱量)の設定は、ガス比例弁29での二次ガス圧の調節と、バーナ7の燃焼本数(能力切替弁31が開かれている数)により決定されるが、これらの関係は図13に示すように給湯器1の初期設定として予め制御部4内に記憶されている(たとえば、目標燃焼号数がaであれば図のポイントIでの燃焼)。したがって、この実施形態では、この図13の関係が正常に保たれているか否かを判定することにより、能力切替弁31の故障診断を行うものである。
【0088】
(1) まず、故障診断部310から、給湯栓(給湯カラン17)を開く旨の指示が上記表示部320上に表示される(図12ステップS1)。これは、以後の故障診断動作において、実際にバーナ7への点火が行われるためであり、上述したように本発明では、故障診断に際して給湯器1が故障診断モードに移行されているため、この動作が必要とされる。したがって、故障診断モードに移行していない場合にはこの動作は特に必要ではない。
【0089】
(2) そして、この状態で故障診断部310から、ポイントIでの燃焼、つまり、二次ガス圧xで能力切替弁31を一本開く旨の機器動作指令がなされ(図12ステップS2)、この状態での実際の号数aが測定され記憶される(図12ステップS3)。
【0090】
(3) 続いて、バーナ7をポイントIIで燃焼させる旨、つまり、二次ガス圧xで能力切替弁31を二本開く旨の機器動作指令がなされ(図12ステップS4)、上記同様にこの際の号数bが測定され記憶される。
【0091】
(4) そして、上記図12ステップS3で記憶された号数aと図12ステップS4で測定された号数bとの比較が行われる(図12ステップS5)。この比較にあたっては、上記号数aには固定値として予め定められた補正定数αが加算される。すなわち、上述したようにバーナ7の燃焼状態(二次ガス圧と燃焼本数)と燃焼号数との関係は予め決定されているので、上記のように同一ガス圧xの下で燃焼本数が一本増加した場合には、それにともなって増加するはずの号数も予測可能である。したがって、ここでは一本で燃焼た場合の号数aに予測される上昇号数分(図示例ではこれより僅かに少ない)を補正定数αとして加算した状態で比較を行い、ポイントIIで燃焼した場合の号数bがこの(a+α)より大きい場合は追加燃焼させた分の能力切替弁31は正常と判定され、続く図12ステップS7に移行する。一方、逆に小さいと判断された場合は、この追加燃焼させた分の能力切替弁31は故障と判断される(図12ステップS6)。
【0092】
(5) そして、図12ステップS7では、これまでと同様にガス圧xで能力切替弁31を三本開いた状態での号数cを求め、この値と上記bに補正定数αを加算した値とを比較して号数cが大きければ三本目の能力切替弁31を正常と判断し(図12ステップS10)、小さければ故障と判断する(図12ステップS9)。
【0093】
実施形態9
第9の実施形態を図14および図15に示す。この実施形態は、上記実施形態8を更に具体化した診断動作であって、具体的には、ガス比例弁29に供給される一次ガス圧の診断動作を示している。
【0094】
(1) すなわち、この実施形態では、まず上記実施形態8と同様に故障診断部310から、給湯栓(給湯カラン17)を開く旨の指示が上記表示部320上に表示される(図14ステップS1)。
【0095】
(2) そして、図15のポイントII、すなわち、能力切替弁31を一本開いた状態で二次ガス圧最大となるように能力切替弁31およびガス比例弁29に対して機器動作指令が発し(図14ステップS2)、その際の燃焼号数aが記憶される(図14ステップS3)。
【0096】
(3) 次に、図15のポイントIII、すなわち、能力切替弁31を二本開いた状態で二次ガス圧が最小となるように機器動作指令が発せられ(図14ステップS4)、その際の燃焼号数bが記憶される。
【0097】
(4) そして、続く図14ステップS5において、上記号数aとbとが比較される。その際、予め予測される補正定数αで上記号数bが補正されるのは上記実施形態8と同様である。そして、ここでの比較結果として上記号数aが(b+α)より大きい場合は現時点(能力切替弁31を二本開いた状態)までは正常動作をしていると判断されるため、続く図14ステップS10に移行し、以後同様の診断を繰り返し、全て正常であれば図14ステップS11で診断動作を終了する。その一方、上記図14ステップS5での結果、上記号数aが(b+α)より小さいと判断された場合は初期の予定通りの号数が得られていないこととなるため、取り敢えず一次ガス圧の以上と診断して、続く図14ステップS6に移行する。
【0098】
(5) 図14ステップS6では、装置点検者に対し一次ガス圧が正常であるか否かを実測により確認すべき旨の指示を上記表示部320上に表示させる。つまり、ここでは装置点検者に対して上記第2の故障診断を行う旨の表示がなされる。これは、上記号数aが(b+α)より小さくなる場合の原因として、たとえば一次ガス圧の低下やバーナ7の吸気フィルタ(図示せず)の目詰まり、さらにはガス比例弁29の動作異常などが予想されるところ、フィルタの目詰まりは装置点検者の目視による確認(つまり感覚的な判断)が必要となり装置点検者の主観が入る余地がある一方、ガス比例弁29の故障と判断するには一次ガス圧の確認が不可欠であるといったトラブルシューティング上の要請から、より客観的かつ効率的なトラブルシューティングを行うために一次ガス圧の実測を求めたものである。
【0099】
(6) そして、装置点検者は画面上の指示に従って上記計測装置2のガス圧計を用いて上記一次ガス圧検出部39のガスを検出して、その結果を上記指令入力部330から入力する(図14ステップS7)。その結果、一次ガス圧が低い場合には、続く図14ステップS8として一次ガス圧の異常と判断し、一次ガス圧が正常であれば、上記他の原因として考えられたフィルタの目詰まりないしはガス比例弁29の故障と判断する(図14ステップS9)。なお、図14ステップS9に移行した場合は、どちらが原因かを特定するためのその後に第2の故障診断が行われる。
【0100】
実施形態10
第10の実施形態を図16および図17に示す。この実施形態は、浴槽Bの水位を検出する水位センサ37の故障診断動作であって、この水位センサ37による水位の測定にあたっては、上述したように浴槽Bが設置される高さ位置が予め初期設定値として上記制御部4内に保持されているが、この初期設定値と実際の浴槽Bの高さ位置とがずれていると正確な水位の測定ができない。そのため、この実施形態では、この制御部4に保持された高さ位置に関する情報と実際に浴槽Bが設置されている高さとを比較することにより、水位センサ37の動作異常を判定するものである。
【0101】
(1) すなわち、まず、故障診断部310が上記制御部4に対して浴槽Bの高さ位置に関する設定情報(上記初期設定情報)の供給を要求し、この要求に従って送信された上記設定情報の読み込みを行う(図16ステップS1)。
【0102】
(2) 次に、この設定情報から浴槽Bの高さ位置に関する情報を抽出し(図16ステップS2)、この抽出された情報を浴槽Bの高さ位置を具体的に示す情報に換算し(図16ステップS3)、上記表示部320の画面上に表示させる(図16ステップS4)。なお、上記換算にあたっては、上記故障診断プログラム内に給湯器の形式に応じた換算用のプログラムを用意しておくことにより、異なる形式の給湯器にも対応可能とすることが望ましい。
【0103】
(3) 装置点検者は、この画面上の表示に従って制御部4内に記憶された高さ位置情報と、実際に浴槽Bが設置されている高さ位置とを目視確認することにより比較してその結果を指令入力部330から入力する(図16ステップS5)。
【0104】
(4) その結果、両方の数値が合致していれば水位センサ37の動作は正常であるとして故障診断動作を終了し(図16ステップS6)、また、合致していなければ水位センサ37の動作は異常であるとして故障と判定する(図16ステップS7)。つまり、本実施形態では、水位センサ37の初期設定値を装置点検者の目視確認により容易に確認できるので、水位センサ37の故障を極めて簡単に診断することができる。
【0105】
実施形態11
第11の実施形態を図18に示す。この実施形態は、上記実施形態10で水位センサ37が初期設定と合致している場合に、より具体的なセンサ37の動作を診断するものであって、浴槽Bの水位を実際に変化させて、その際に水位センサ37が水位の変化を正確に検出した否かを診断するものである。
【0106】
(1) まず、故障診断部310から、浴槽Bの循環金具38を越える高さまで水を張るように装置点検者に対する指示を上記表示部320上に表示させる(図18ステップS1)。なお、この場合、もちろん上記注湯流量調整弁24を開いて浴槽Bに水張りを行うことを選択することも可能である。
【0107】
(2) 次に、上記循環ポンプ21を駆動する機器動作指令を発し、追い焚き循環路18内の空気抜きを行う(図18ステップS2)。そして、この状態での水位センサ37の検出値L1 (図3参照)を故障診断部310に記憶させる(図18ステップS3)。
【0108】
(3) そして、浴槽Bの水位を現在水位(L1 )から所定量L3 だけ上昇させる(図示例では10cm上昇)ように、装置点検者に対する指示を表示部320に表示させる。装置点検者は、この表示に従って給湯カラン17を開き、浴槽Bの水位を上昇させる。
【0109】
(4) 故障診断部310では、装置点検者の上記給湯カラン17を操作終了を待って、上昇した水位を水位センサ37に検出させ、この検出値をL2 として記憶し(図18ステップS5)、先に検出した水位L1 と上昇後の水位L2 とを比較し、正確に上昇させた分を検出しているか否かを判断する(図18ステップS6)。なお、ここでの判断においても、水位センサ37の許容誤差αを考慮して、両検出値の比較が行われる。
【0110】
(5) そして、正確に水位上昇分L3 が検出されている場合には水位センサ37の動作を正常と判断して故障診断を終了し(図18ステップS7)、検出されていない場合には水位センサ37の故障と診断する(図18ステップS8)。このように、本実施形態においても、上記実施形態10の場合と同様に、水位センサ37の誤動作を装置点検者の目視確認により容易に確認することができる。
【0111】
なお、本発明をこれまで詳述したが、本発明は上述した実施形態に限定されるものではなく、適宜発明の範囲内で設計変更可能である。すなわち、上記実施形態1乃至11に示した第1の故障診断動作は、いずれも給湯器1の故障診断動作の単なる例示に過ぎず、制御部4により動作を監視・制御可能な部位であれば他の構成部分についても本発明は適用可能である。また、かかる第1の故障診断動作として示したフローチャートについても、最終的には第2の故障診断動作によって故障原因の特定を行うことが前提となるため、ある程度故障範囲の絞り込みを行うことができるであれば、画面表示の仕方などは自由に変更可能である。さらに、各診断動作おいては画面表示だけでなく、たとえば故障診断装置がパーソナルコンピュータとされる場合には、当該パーソナルコンピュータのブザー機能と連携させて音による動作確認等を行うことも可能である。
【0112】
【発明の効果】
以上詳述したように、本発明によれば、給湯器の故障診断に際し、故障診断装置が故障の概要判断たる第1の故障診断動作からより詳細な故障原因の特定を行う第2の故障診断動作に移行することから、故障原因の究明を従来より迅速・確実に行うことができる。また、その際の第1の故障診断動作は、装置点検者に簡単な機器操作と状況観察を要求するだけであるので、高度な技術知識を持たない者でも容易に故障診断を行うことができる。しかも、給湯器を動作させるにあたり、故障診断装置から制御部に対して機器動作指令を発する構成を採用したことにより、従来の故障診断では行われていなかったような詳細な動作指令を発することができ、複雑な点検を簡単に行うこともできる。
【図面の簡単な説明】
【図1】本発明に係る給湯器の故障診断システムの構成を示す説明図である。
【図2】同故障診断システムに使用される給湯器の構成の一例を示す概略構成図である。
【図3】同故障診断システムに使用される給湯器の他の構成の一例を示す概略構成図である。
【図4】同故障診断システムにおける故障診断手順を示すフローチャートである。
【図5】同故障診断システムにおける第1の故障診断手順の一例(電磁弁の故障診断)を示すフローチャートである。
【図6】同故障診断システムにおける第1の故障診断手順の一例(元ガス電磁弁,ガス比例弁の故障診断)を示すフローチャートである。
【図7】同故障診断システムにおける第1の故障診断手順の一例(バイパス流量調整弁の故障診断)を示すフローチャートである。
【図8】同故障診断システムにおける第1の故障診断手順の一例(バイパス流量調整弁の故障診断)を示すフローチャートである。
【図9】同故障診断システムにおける第1の故障診断手順の一例(流量センサの故障診断)を示すフローチャートである。
【図10】同故障診断システムにおける第1の故障診断手順の一例(注湯流量調整弁の故障診断)を示すフローチャートである。
【図11】同故障診断システムにおける第1の故障診断手順の一例(温度センサの故障診断)を示すフローチャートである。
【図12】同故障診断システムにおける第1の故障診断手順の一例(能力切替弁の故障診断)を示すフローチャートである。
【図13】図12に示す故障診断における能力切替弁およびガス比例弁の動作状況を説明する説明図である。
【図14】本発明に係る給湯器の故障診断システムにおける第1の故障診断手順の一例(一次ガス圧の故障診断)を示すフローチャートである。
【図15】図14に示す故障診断における能力切替弁およびガス比例弁の動作状況を説明する説明図である。
【図16】本発明に係る給湯器の故障診断システムにおける第1の故障診断手順の一例(水位センサの故障診断)を示すフローチャートである。
【図17】図16に示す故障診断における水位センサの位置関係を示す説明図である。
【図18】本発明に係る給湯器の故障診断システムにおける第1の故障診断手順の一例(水位センサの故障診断)を示すフローチャートである。
【符号の説明】
1,1′ 給湯器
2 計測装置
3 故障診断装置
4 制御部
6 熱交換器
7 バーナ
8 入水管
9 出湯管
10 バイパス管
11 バイパス流量調整弁
11a サーボモータ
12 入水流量センサ(流量センサ)
13 入水温度センサ(流水温度センサ)
14 缶体温度センサ(流水温度センサ)
15 出湯流量調整弁
16 出湯温度センサ(流水温度センサ)
17 給湯カラン
18 風呂追い焚き循環路
21 循環ポンプ
23 風呂温度センサ(流水温度センサ)
24 注湯流量制御弁
25 注湯流量センサ(流量センサ)
28 元ガス電磁弁(ガス供給用弁機構)
29,30 ガス比例弁設(ガス供給用弁機構)
31 能力切替弁
32 送風ファン
37 水位センサ
39 一次ガス圧検出部(計測ポイント)
210 計測器部
220 データ通信部
310 故障診断部
320 表示部
330 指令入力部
340 データ通信部
B 浴槽

Claims (4)

  1. 機器各部の動作状況を検出するセンサ類と、機器各部に設けられる実測用の計測ポイントと、前記センサ類の検出結果に基づいて機器各部の動作状況を監視して機器各部の動作制御を行う制御部と、この制御部で処理されるデータを外部と通信可能とするデータ通信部とを備えた給湯器と、
    前記計測ポイントでの実測を行うための各種計測器を内装してなる計測器部と、この計測器部で得られた前記計測ポイントの実測結果を故障診断装置に供給するデータ通信部とを備えた計測装置と、
    前記給湯器および計測装置のデータ通信部とデータ通信可能に構成され、故障診断に必要な手順を記憶するとともに、この手順に従って前記制御部に対して給湯器各部を動作させる機器動作指令を発する一方、入力されるデータに基づいて給湯器各部の動作異常を診断する故障診断部と、該故障診断部での故障診断状況ならびに診断結果を表示する表示部と、装置点検者からの指令を入力するための指令入力部とを備えた故障診断装置とで構成される給湯器の故障診断システムであって、
    前記故障診断装置が、前記故障診断手順に従って故障診断部位に対して予め設定された所定の動作を指示する機器動作指令を発し、その際に装置点検者が五感の作用によって取得した感覚的な診断結果を入力させ、この入力結果に基づいて当該故障診断部位の動作異常を検出する第1の故障診断動作と、この第1の故障診断動作により動作異常と判定された場合に、前記故障診断部位に対応する前記計測ポイントの実測を要求し、この要求に応じて入力される実測結果に基づいて前記動作異常のあった故障診断部位の故障原因を判定する第2の故障診断動作とを行う制御構成を備えた
    ことを特徴とする給湯器の故障診断システム。
  2. 前記故障診断装置において複数の故障診断部位の診断を行うに際し、前記故障診断装置が、予め設定された所定の手順に従って各故障診断部位に対応する機器動作指令を順次発して前記第1の故障診断動作を順次行い、この第1の故障診断動作により動作異常の部位が発見された場合には、上記手順を中断して当該動作異常部位に対する前記第2の故障診断動作を行なう制御構成を備えた
    ことを特徴とする請求項1に記載の給湯器の故障診断システム。
  3. 前記故障診断装置において複数の故障診断部位の診断を行うに際し、前記故障診断装置が、予め設定された所定の手順に従って各故障診断部位に対応する機器動作指令を順次発して前記第1の故障診断動作を順次行い、この第1の故障診断動作により動作異常の部位が発見されなかった場合においても、前記第1の故障診断動作終了後に改めて前記所定の手順に従った前記第2の故障診断動作を行う制御構成を備えた
    ことを特徴とする請求項1に記載の給湯器の故障診断システム。
  4. 前記第1の故障診断動作において動作異常が検出された場合に、前記故障診断装置が、前記表示部に対して動作異常を知らせる表示を行うとともに、この表示において前記第2の故障診断動作への移行の要否を要求し、移行不要の指令があった場合には前記第2の故障診断動作へ移行しない制御構成を備えた
    ことを特徴とする請求項1から請求項3のいずれか一つに記載の給湯器の故障診断システム。
JP30933497A 1997-10-22 1997-10-22 給湯器の故障診断システム Expired - Fee Related JP3767656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30933497A JP3767656B2 (ja) 1997-10-22 1997-10-22 給湯器の故障診断システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30933497A JP3767656B2 (ja) 1997-10-22 1997-10-22 給湯器の故障診断システム

Publications (2)

Publication Number Publication Date
JPH11125463A JPH11125463A (ja) 1999-05-11
JP3767656B2 true JP3767656B2 (ja) 2006-04-19

Family

ID=17991772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30933497A Expired - Fee Related JP3767656B2 (ja) 1997-10-22 1997-10-22 給湯器の故障診断システム

Country Status (1)

Country Link
JP (1) JP3767656B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531242B2 (ja) * 2000-11-15 2010-08-25 東京瓦斯株式会社 故障診断システムにおける課金方法
CN114440438B (zh) * 2022-02-15 2023-04-07 佛山市顺德区美的饮水机制造有限公司 即热装置及其工作状态诊断方法和装置、水处理装置

Also Published As

Publication number Publication date
JPH11125463A (ja) 1999-05-11

Similar Documents

Publication Publication Date Title
JP4780181B2 (ja) 給湯装置の故障診断支援装置
JP3876245B2 (ja) 連結給湯システム
JP3767656B2 (ja) 給湯器の故障診断システム
JP4254010B2 (ja) 給湯装置の故障診断支援装置
JP3777763B2 (ja) 給湯器の故障診断装置
JP3655154B2 (ja) 給湯装置の故障診断支援装置
JP3765173B2 (ja) 給湯器の故障診断方法および故障診断装置
JPH0972610A (ja) 給湯装置および給湯装置の温度検出手段の故障検知方法
JP3736088B2 (ja) 給湯器の故障診断方法および故障診断装置
JP3455583B2 (ja) 燃焼器具の運転検査方法およびその装置
JP3846015B2 (ja) 給湯器のガス比例弁調整装置
JPH11148662A (ja) 給湯器の二次ガス圧調整装置
JP4377831B2 (ja) 給湯システムの故障診断方法、給湯システム、その故障診断装置および故障診断プログラム
JP3566807B2 (ja) 燃焼装置
JP3623494B2 (ja) 燃焼器具の運転検査方法およびその装置
JP3300161B2 (ja) 燃焼器具の異常診断装置
JP3234400B2 (ja) 燃焼器具およびその異常診断装置
JP2001221448A (ja) 温水暖房装置及びその故障診断方法並びに給湯装置の故障診断支援装置。
JPH11132562A (ja) 給湯器の故障診断システム
JP3315251B2 (ja) 燃焼器具の検査装置
JP3692864B2 (ja) 給湯装置の故障診断支援装置
JP3551513B2 (ja) 風呂設備の自動試運転装置
JPH05288345A (ja) 設備器具の制御装置
JPH11133086A (ja) 回路計の出力データ処理システムおよび給湯器の故障診断システム
JP3643391B2 (ja) 風呂釜の追い焚き流水検出センサのオフ動作要因判別方法およびその装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees