JP3765901B2 - プラズマディスプレイ及びプラズマ液晶ディスプレイ - Google Patents

プラズマディスプレイ及びプラズマ液晶ディスプレイ Download PDF

Info

Publication number
JP3765901B2
JP3765901B2 JP03636297A JP3636297A JP3765901B2 JP 3765901 B2 JP3765901 B2 JP 3765901B2 JP 03636297 A JP03636297 A JP 03636297A JP 3636297 A JP3636297 A JP 3636297A JP 3765901 B2 JP3765901 B2 JP 3765901B2
Authority
JP
Japan
Prior art keywords
discharge
plasma
electrode
emitter
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03636297A
Other languages
English (en)
Other versions
JPH09306367A (ja
Inventor
正幸 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03636297A priority Critical patent/JP3765901B2/ja
Priority to US08/806,652 priority patent/US5808408A/en
Publication of JPH09306367A publication Critical patent/JPH09306367A/ja
Application granted granted Critical
Publication of JP3765901B2 publication Critical patent/JP3765901B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/485Plasma addressed liquid crystal displays [PALC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • H01J17/06Cathodes
    • H01J17/066Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマディスプレイ及びプラズマ液晶ディスプレイに関する。
【0002】
【従来の技術】
希ガス放電で発生するプラズマから放射される可視光、またはプラズマから放射される紫外線を蛍光体に照射し、蛍光体の励起発光を用いたプラズマディスプレイの開発が近年活発に行なわれている。プラズマディスプレイは、視野角が広い、自発光で視認性が良い、応答速度が速い、大型化可能であるという利点を有する。
【0003】
従来のプラズマディスプレイは、互いに対向した平行平板の陰極と陽極とを持ち、放電ガスとしてHe−Ne、Ne−Xe、He−Xe(1〜数%)混合ガスがセル内に封入される。両電極間には電界が印加され、通常はグロー放電によりプラズマを発生させて可視光を発光させるか、或いはXeの波長147nmの紫外線を放射するHe−Xe(1〜数%)混合ガスによるプラズマを発生させ、放電セル内に塗布された蛍光体を励起発光させる。このようにして発光された可視光や蛍光体発光は、画面外部へ拡散放射されるため、視野角も広がり、液晶ディスプレイに比較すれば応答速度も速い、自発光平面ディスプレイが得られる。
【0004】
しかし、従来のプラズマディスプレイ及びその製造方法においては以下に述べる重要な問題点がある。
まず、第1には、前述の従来例では、平行平板の電極を用い、電極材料として仕事関数の大きいNi(仕事関数5.15eV)、Al(4.28eV)、Mo(4.6eV)を使用していたため、放電を発生させるための電圧が150〜400V、通常、250〜400Vと高い。そのため、駆動回路が複雑になり、高価になると同時に、消費電力が大きい。また、通常グロー放電プラズマを用いているが、入力電力に対する紫外線変換効率が低いことも併せ、大きな消費電力に起因する熱の発生の問題があり、一層の薄型化の障害になっている。
【0005】
また、プラズマの発生に平行平板電極を用いているために、プラズマが放電セル或いは平行平板全面に広がる。更に、放電セルの製造法としてスクリーン印刷法を用いるために、画素サイズが650〜1000μmと大きい。しかも、平行平板の電極を用いているため、パッションの法則により、電極間の距離を近付けて高精細に使用とすると、駆動電圧が上昇してしまう。また、駆動電圧を上昇させないようにすると、封入放電ガス圧を大幅に上昇させる必要があり、封止するのが困難となる。
【0006】
また、高精細の画素が作製できないため、例えば、ビデオカメラのビューファインダーや車載用動画ディスプレイ用として、近年需要が急増している小型で高精細な自発光平面ディスプレイを作製することができない。
【0007】
一方、情報化社会の進展と共に、低消費電力であるという利点を有する液晶ディスプレイ(LCD)の開発及び実用化が近年活発に行われている。特に、表示品質を向上させるため、各画素ごとにアクティブ素子(スイッチング素子)、例えば薄膜トランジスタ(TFT)を付加したアクティブマトリックス型の液晶ディスプレイ(AMLCD)が主流の技術と成りつつある。しかし、TFTを用いたLCDにおいては、TFTの製造が難しいため、歩留まりが低下して製品コストが上昇するばかりでなく、大画面の作製が困難である。
【0008】
これらの問題点を解決するものとして、TFTに代わるスイッチング素子としてプラズマ放電を利用するプラズマアドレッシングLCDが提案されている(日経エレクトロニクス、1995年7月17日、P13)。図17は同LCDの概略断面構造を示す。
【0009】
図17図示の構造におけるプラズマ放電セル181は安価な厚膜印刷法で作製される。まず、ガラス基板182上にNiペーストを印刷して平坦な膜からなる放電電極183a、183bを形成する。次に、ガラスペーストを印刷して放電セル181間の隔壁184を形成する。次に、誘電体絶縁膜として厚さ50μmのガラス基板185を隔壁184上に載せると共に、放電セル181内に放電ガスを充填する。
【0010】
次に、ガラス基板185上にスペーサーを散布してから、ストライプ状の透明電極187、カラーフィルター188を配設したガラス基板186を載せる。次に、ガラス基板185、186間の空隙に液晶を注入して液晶層189を形成する。
【0011】
この様な構造の、プラズマ放電セルをアクティブ素子として用いた液晶ディスプレイにおいては、厚膜印刷を利用して製造できるため、歩留まりが向上すると共に大型画面を形成することが可能となる。
【0012】
しかし、従来のプラズマ液晶ディスプレイ及びその製造方法においては以下に述べる重要な問題点がある。
まず、第1には、前述の従来例では、平板電極を用い、電極材料として仕事関数の大きいNi(仕事関数5.15eV)を使用しているため、放電を発生させるための電圧が300Vと高い。そのため、駆動回路が複雑になり、高価になると同時に、消費電力が100Wと大きい。また、通常グロー放電プラズマを用いているが、入力電力に対する紫外線変換効率が低いことも併せ、大きな消費電力に起因する熱の発生の問題があり、一層の薄型化の障害になっている。電極材料をプラズマディスプレイで試みられたことのあるAl(4.28eV)やMo(4.6eV)に変更したとしても、放電を発生させるための電圧は150〜400V、通常、250〜400Vと非常に高くなる。
【0013】
また、プラズマの発生に平板電極を用いているために、プラズマが放電セル或いは平板電極全面に広がる。更に、放電セルの製造法としてスクリーン印刷法を用いるために、画素サイズが650〜1000μmと大きい。しかも、平行平板の電極を用いているため、パッションの法則により、電極間の距離を近付けて高精細に使用とすると、駆動電圧が上昇してしまう。また、駆動電圧を上昇させないようにすると、封入放電ガス圧を大幅に上昇させる必要があり、封止するのが困難となる。
【0014】
また、高精細の画素が作製できないため、高品位テレビ用として用いられる走査線1125本のディスプレイを作製するには、画面サイズを40インチ以上と大きくする必要がある。この点に関し、TFTカラー液晶によれば、10インチで800×600画素のディスプレイを作製することができる。更に、例えば、ビデオカメラのビューファインダーや車載用動画ディスプレイ用として、近年需要が急増している小型で高精細な自発光平面ディスプレイを作製することができない。従って、前述の従来例では、ディスプレイとしての用途が極めて限定される。
【0015】
【発明が解決しようとする課題】
本発明は、駆動電圧が低く、蛍光体輝度が高く、駆動回路が簡単で、放熱の問題がなく、また、微細な画素形成が可能なプラズマディスプレイを提供することを目的とする。
【0016】
また、本発明は、駆動電圧が低く、駆動回路が簡単で、放熱の問題がなく、また、微細な画素形成が可能なプラズマ液晶ディスプレイ、特にマイクロプラズマ液晶ディスプレイを提供することを目的とする。
【0017】
本発明の第1の視点は、プラズマディスプレイにおいて、第1基板と透明な第2基板との間に形成された気密な封入空間と、前記封入空間内に収納された放電ガスと、画像を表示するためのマトリックス状に配列された複数の画素に対応するように前記封入空間内に配置され且つ互いの間に実質的な隔壁がない状態で隣り合う複数の放電セルと、前記第1基板に支持され且つ各放電セル内に配設された電子を放出する放電電極であって、曲率半径が約1〜100μmの先鋭な先端部を有する突起状の放電電極と、各放電セル内で前記放電電極上に第1絶縁膜を介して配設され、且つ前記放電電極の前記先端部に対応して開口部を有する第1導電層の一部からなる対向電極と、各放電セル内に配設され且つ前記放電ガスをプラズマ化することにより得られる放射線により励起されて発光する蛍光体層と、を具備することを特徴とする。
【0018】
本発明の第2の視点は、第1の視点のプラズマディスプレイにおいて、前記放電電極と前記対向電極との間に印加される電圧によって前記放電電極の先端に形成される電界により、前記放電電極の先端から電子が放出されることを特徴とする。本発明の第3の視点は、第1または第2の視点のプラズマディスプレイにおいて、前記放電電極に接続されたカソード電極の複数のラインと、前記対向電極を含む前記第1導電層の複数のラインとが互いに直交して配置され、それらの交点に前記放電セルが配置されることを特徴とする。
【0019】
本発明の第4の視点は、第1乃至3の視点のいずれかのプラズマディスプレイにおいて、前記放電ガスとの接触を断つように前記第1導電層を被覆する第2絶縁層を具備することを特徴とする。
【0020】
本発明の第5の視点は、第1乃至4の視点のいずれかのプラズマディスプレイにおいて、前記放電
電極の前記先端部が、ダイヤモンドまたは強誘電体からなることを特徴とする。
【0021】
本発明の第6の視点は、第1乃至5の視点のいずれかのプラズマディスプレイにおいて、前記蛍光体層が前記第2基板に支持されることを特徴とする。
【0022】
本発明の第7の視点は、プラズマ液晶ディスプレイにおいて、第1基板と誘電体からなる第2基板との間に形成された気密な封入空間と、前記封入空間内に収納された放電ガスと、画像を表示するためのマトリックス状に配列された複数の画素に対応するように前記封入空間内に配置され且つ互いの間に実質的な隔壁がない状態で隣り合う複数の放電セルと、前記第1基板に支持され且つ各放電セル内に配設された電子を放出する放電電極であって、曲率半径が約1〜100μmの先鋭な先端部を有する突起状の放電電極と、各放電セル内で前記放電電極上に第1絶縁層を介して配設され、且つ前記放電電極の前記先端部に対応して開口部を有する第1導電層の一部からなる対向電極と、前記第2基板上に配設された、透光率が電圧により変化する液晶層と、前記液晶層を挟んで前記放電セルと対向する透明電極と、ここで、各放電セルは前記放電ガスをプラズマ化することにより、各画素に対応して前記液晶層の状態を切り替えるスイッチング素子として機能すること、を具備することを特徴とする
【0023】
本発明の第8の視点は、第7の視点のプラズマ液晶ディスプレイにおいて、前記放電電極の前記先端部がダイヤモンドまたは強誘電体からなることを特徴とする。
【0032】
従来のプラズマディスプレイにおいては、平行平板の電極を用いているため、パッションの法則により、電極間の距離を近付けて高精細に使用とすると、駆動電圧が上昇してしまう。また、駆動電圧を上昇させないようにすると、封入放電ガス圧を大幅に上昇させる必要があり、封止するのが困難となる。
【0033】
これに対して、本発明のプラズマディスプレイ或いはプラズマ液晶ディスプレイによれば、この様な問題が発生するのを回避し、封入放電ガス圧を上げずに、駆動電圧を下げることができる。この理由を以下に述べる。
【0034】
図6は、本発明において、封入放電ガス圧を一定にした場合の、放電電極の先端部の曲率半径と放電電圧との関係を示すグラフである。図6中の複数の曲線は、放電電極と対向電極との間の距離が夫々、200μm、180μm、150μm、130μm、100μm、50μmの場合を表す。
【0035】
図6図示の如く、電極間距離が200μmの場合には、曲率半径が約140μm以下、特に100μm以下になると、放電電圧は大幅に低下する。また、電極間距離が50μmの場合にも、曲率半径が約40μm以下になると、放電電圧は大幅に低下する。即ち、これらから、先鋭な放電電極を用いると、パッションの法則から外れて、封入放電ガス圧を上げなくとも、放電電圧即ち駆動電圧を下げることができることが分かる。
【0036】
しかし、曲率半径を1μm未満にすると、放電電圧が大幅に低下する一方、放電電極の先端部の劣化が激しいことが見出だされた。
以上の点を考慮し、本発明においては、先鋭な放電電極の曲率半径の好ましい範囲を、1μm〜100μmに設定している。
【0037】
また、本発明における「放電セル」という用語は、画像を表示するためのマトリックス状に配列された複数の画素に対応するように、気密空間内に配置された放電領域の単位を意味する。従って、画素に対応して放電領域が隔壁で区画されている場合だけでなく、放電領域間に隔壁が全く存在せず一部の或いは全ての放電領域が空間的に一体であるような場合も、画素に対応する放電領域は「放電セル」という単位で表現されることとなる。また、以下に述べる幾つかの実施の形態におけるように、放電セル間に隔壁が設けられている場合も、通常、隔壁は完全に各放電セルを空間的に独立させるものではなく、放電セル同士は互いに空間的に連通するように形成される。
【0038】
【発明の実施の形態】
図1は本発明の実施の形態に係るプラズマディスプレイを示す模式図である。図1に示すように、この実施の形態に係るプラズマディスプレイは、マトリックス状に配置された複数個の放電セル23を有する。放電セル23は、支持基板11、カソード電極17及び透明なガラス基板21により封止された気密空間からなり、内部にHe−Ne、Ne−Xe、He−Xe等の放電ガスを収納する。セル23の間の幅、即ち、基板11により形成される隔壁11wの幅は、約0.1〜300μm、望ましくは100μm以下に設定される。セル23内には、電子を放出するためのエミッタ15と、エミッタ15に対向して、ガラス基板21上に対向電極19が配設される。図において、1つのエミッタ15のみが示されるが、各セル23内に複数のエミッタを配設することもできる。また、蛍光体発光を利用する場合、セル23内には、更に蛍光体層22が例えばガラス基板21上に配設される。
【0039】
エミッタ15の先端部15aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、仕事関数の低い種々の材料を用いることができる。低仕事関数の材料の一例は、電子親和力が負(みかけの仕事関数が負)で電子放出しやすく、大電流もとれ、イオン衝撃にも強く、化学的にも安定で、ガス吸着の影響も殆ど無いダイヤモンドである。また、分極反転することにより大電流の放出が可能で、ダイヤモンドと同じ様にイオン衝撃にも強く、化学的にも安定で、ガス吸着の影響も殆ど無い強誘電体、例えば、PZT(チタン酸ジルコン酸鉛)やPLZT(チタン酸ジルコン酸鉛ランタン)等も用いることができる。
【0040】
図1図示のプラズマディスプレイにおいては、従来の、平行平板の電極を用い、電極材料として仕事関数の大きいNi(仕事関数5.15eV)、Al(4.28eV)、Mo(4.6eV)を使用していたプラズマディスプレイに比較して、電界が先鋭なエミッタ即ち突起状電極15の先端部15aに集中して容易に電子が放出され、放電プラズマを生じることができる。従って、放電電圧、即ち駆動電圧を従来の150〜400V、通常、250〜400Vから、25〜135Vに低下させることができる。そのため、駆動回路が簡単になると同時に、消費電力を大きく低下させることができ、熱の発生が少なくなり、放熱対策、薄型化に効果がある。
【0041】
また、低駆動電圧で高電界を突起状電極に印加することができるため、従来のグロー放電を利用したプラズマディスプレイに比較して、紫外線変換効率が高いタウンゼント放電の利用も可能となり、蛍光体の輝度が大幅に向上し、低消費電力化にも寄与する。また、過渡的放電であるタウンゼント放電を利用した場合には、高速応答も可能となる。
【0042】
また、突起状エミッタ即ち電極15を用いているため、平板電極の場合とは異なり、放電電圧の大きさ及びガス圧のコントロールにより、或は、突起状電極15の先端部15aの曲率半径を小さくすることにより、従来とは異なり、ガス圧をそれ程大きくすることなく、ほぼ一定の圧力に保ったまま電極間距離を狭くすることができる。従って、放電領域が直径1〜200μm程度の微小なマイクロプラズマを発生させることができる。その結果、放電セルを微細にすることができ、薄型化にも貢献する。また、両電極15、19を近接させることにより、プラズマが他の放電セルに広がらず、紫外線のクロストークの問題も少ないため、隔壁を不要にすることも可能である。
【0043】
図4(a)〜(f)は図1図示のプラズマディスプレイの製造方法の実施例を工程順に示す模式図である。なお、図4(a)〜(f)図示の製造方法においては、カソード電極とエミッタ15とを一体的に形成しており、エミッタ材料として、モリブデン、タングステン、Si、ダイヤモンド等を用いている。
【0044】
まず、単結晶基板の片側表面に底部を尖らせた第1の凹部を形成する。このような凹部を形成する方法としては、以下に記すようなSi単結晶基板の異方性エッチングを利用する方法がある。
【0045】
即ち、まず、p型で(100)結晶面方位のSi単結晶基板11上に厚さ0.1μmのSiO2 熱酸化層12をドライ酸化法により形成する。次に、熱酸化層12上にレジストをスピンコート法により塗布し、レジスト層13を形成する(図4(a))。
【0046】
次に、アライナ等を用いて、マトリックス状に配置された複数個の形開口部13a、例えば10μm角の正方形開口部が得られるように露光、現像等のレジスト層13のパターニングを行う。ここで、開口部13aの大きさは約2〜300μm角、開口部13a間は約0.1〜300μm、望ましくは100μm以下となるようにする。そして、レジスト層13をマスクとしてNH4 F・HF混合溶液により、SiO2 膜12のエッチングを行なう(図4(b))。
【0047】
レジスト層13の除去後、30wt%のKOH水溶液を用いて異方性エッチングを行い、深さ7.1μmの逆ピラミッド上の第1の凹部11aをSi単結晶基板11に形成する(図4(c))。
【0048】
次に、NH4 F・HF混合溶液を用いて、SiO2 酸化層12を一旦除去した後、Si単結晶基板11上に第1の凹部11a内を含めてSiO2 熱酸化絶縁層14を形成する(図4(d))。この実施例では、厚さ3μmとなるように、SiO2 熱酸化絶縁層14をWet酸化法により形成した。
【0049】
次に、第1の凹部11aとは反対側の単結晶基板11の表面にレジストを塗布してレジスト層を形成し、更に、該レジスト層の凹部11aに相対する部分に開口部を設けるようパターニングする。次に、リアクティブイオンエッチング(RIE)によりSi単結晶基板11をエッチングし、第2の凹部11bを設ける。この時、SiO2 熱酸化絶縁層14の底部、即ちピラミッド形状の先端凸部14aを露出させる。
【0050】
レジスト層を除去した後、SiO2 熱酸化絶縁層14上にエミッタ材料からなる導電層17として例えばタングステン層やモリブデン層を、第1の凹部11aが充填されるように形成する(図4(e))。この際、第1の凹部11aに対応してピラミッド形状のエミッタ15が形成される。エミッタ15の先端部15aは、熱酸化絶縁層14の凹部11a内への成長作用により、先端の曲率半径が約1〜100μmという尖鋭なものとなる。本実施例では、スパッタリング法によりモリブデン層を厚さ20μmとなるように形成した。なお、例えばエミッタ15をダイヤモンドから形成する場合は、第1の凹部11a内を含む領域上にCVDによりダイヤモンド層を形成する。
【0051】
また、図示の構造では、導電層17がエミッタ15及びカソード電極を兼ねているが、夫々を別の材料から形成してもよい。カソード電極をエミッタ15とは別に形成する場合、ITO、Ta、Al等からなる導電層を使用することができる。
【0052】
次に、NH4 F・HF混合液を用いて、SiO2 熱酸化層14を選択的に除去し、エミッタ15を露出させる。最後に、エミッタ15の先端部15aに対向するように、対向電極19及び蛍光体層22を配設したガラス基板21を単結晶基板11に貼り合わせ、He−Ne、Ne−Xe、He−Xe等の放電ガスを封入した複数個の放電セル23を形成する。ここで、複数個のセル23の間の幅、即ち、単結晶基板11により形成される隔壁11wの幅は、レジスト層13の間隔に倣い、約0.1〜300μm、望ましくは100μm以下となる。なお、蛍光体層22は、その面積を稼ぐため、各セル23の側部や底部(Si単結晶基板11の表面)、或いはエミッタ15の側面を覆うように形成してもよい。
【0053】
このように、図4図示の製造方法においては、異方性エッチングにより設けられた凹部11aを有するSi単結晶基板11上にSiO2 熱酸化絶縁層14を形成し、その後、エミッタとなる物質17をこの凹部内に充填して形成している。そのため、凹部11aの形状に応じたエミッタ15を再現性良く得ることができる。そして、凹部11aは異方性エッチングによる形状再現性及びSiO2 熱酸化絶縁層14の凹部11a内への成長作用により、底部を良好に尖らせた逆ピラミッド状とすることができる。従って、先端部15aが鋭く尖り、且つ高さの均一性に優れたピラミッド状のエミッタ15を安定して得ることが可能となる。
【0054】
また、スクリーン印刷法を用いていた従来の製造方法とは異なり、図4図示の製造方法においては、隔壁11wを厚さ0.1〜200μm程度に、電極15、19間距離を1〜200μm程度に小さくすることができる。従って、大きさが1〜200μm程度の微細な放電セル23を形成することでき、マイクロプラズマの利用と併せて、小型で高精細なプラズマディスプレイを実現することが可能となる。
【0055】
図2は本発明の別の実施の形態に係るプラズマディスプレイを示す模式図である。
図2に示すように、この実施の形態に係るプラズマディスプレイは、マトリックス状に配置された複数個の放電セル43を有する。放電セル43は、支持基板31、カソード電極37及び透明なガラス基板41により封止された気密空間からなり、内部にHe−Ne、Ne−Xe、He−Xe等の放電ガスを収納する。セル43の間の幅、即ち、基板31により形成される隔壁31wの幅は、約0.1〜300μm、望ましくは100μm以下に設定される。セル43内には、電子を放出するためのエミッタ35と、絶縁層34介してエミッタ35上に配設された対向電極39とが配設される。図において、1つのエミッタ35のみが示されるが、各セル43内に複数のエミッタを配設することもできる。また、蛍光体発光を利用する場合、セル43内には、更に蛍光体層42が例えばガラス基板41上に配設される。
【0056】
エミッタ35の先端部35aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。前述のように、エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、ダイヤモンドのような低仕事関数(負の電子親和力)の材料や、PZT、PLZTのような強誘電体の材料等を用いることができる。
【0057】
図2図示のプラズマディスプレイにおいては、図1図示のプラズマディスプレイと同様な効果を得ることができる。更に、エミッタ先端部35aと対向電極39とが絶縁層34を挟み形成されているため、対向電極−エミッタ間距離をこの絶縁層34の厚さにより精度良く制御することが可能である。また、エミッタ先端部35aと対向電極39とが近接しているため、図1図示の構造よりも微小なマイクロプラズマを発生させることができる。
【0058】
図5(a)〜(e)は図2図示のプラズマディスプレイの製造方法の実施例を工程順に示す模式図である。なお、図5(a)〜(e)図示の製造方法においては、カソード電極とエミッタ35とを一体的に形成している。
【0059】
この製造方法においては、まず、図4(a)〜(d)図示の工程を経て、図5(a)図示の構造を形成する。即ち、図5(a)図示の構造は、図4(d)図示の基板11、第1の凹部11a及び絶縁層14の夫々に相当するSi単結晶基板31、第1の凹部31a、SiO2 熱酸化絶縁層34を有する。
【0060】
次に、第1の凹部31aとは反対側の単結晶基板31の表面にレジストを塗布してレジスト層を形成し、更に、該レジスト層の凹部31aに相対する部分に開口部を設けるようパターニングする。次に、リアクティブイオンエッチング(RIE)によりSi単結晶基板31をエッチングし、第2の凹部31bを設ける(図5(b))。この時、SiO2 熱酸化絶縁層34の底部、即ちピラミッド形状の先端凸部34aを露出させる。
【0061】
レジスト層を除去した後、第2の凹部31b内面を含む単結晶基板31の表面に絶縁層36を形成する。本実施例ではSiO2 熱酸化絶縁層36を厚さ0.2μmとなるように形成した。なお、絶縁層36は省略することもできる。更に、前記SiO2 熱酸化絶縁層34上にエミッタ材料からなる導電層37として例えばタングステン層やモリブデン層を、第1の凹部31aが充填されるように形成する(図5(c))。この際、第1の凹部31aに対応してピラミッド形状のエミッタ35が形成される。エミッタ35の先端部35aは、熱酸化絶縁層34の凹部31a内への成長作用も加わり、先端の曲率半径が約1〜100μmという尖鋭なものとなる。本実施例では、スパッタリング法によりモリブデン層を厚さ2μmとなるように形成した。
【0062】
なお、例えばエミッタ35をダイヤモンドから形成する場合は、第1の凹部31a内を含む領域上にCVDによりダイヤモンド層を形成する。
また、図示の構造では、導電層37がエミッタ35及びカソード電極を兼ねているが、夫々を別の材料から形成してもよい。カソード電極をエミッタ35とは別に形成する場合、ITO、Ta、Al等からなる導電層を使用することができる。
【0063】
次に、対向電極用の導電層38として、例えばモリブデン層を、SiO2 熱酸化絶縁層34のピラミッド形状先端凸部34a、及び第2の凹部31b内面を含む絶縁層36上に形成する(図5(d))。本実施例では厚さ0.9μmとなるようにスパッタリング法によりモリブデン層を形成した。
【0064】
次に、導電層38上にレジストを塗布してレジスト層を形成し、更に、該レジスト層を酸素プラズマにより選択的にドライエッチングし、導電層38のピラミッド状凸部38aの先端部を0.7μmほど露出させる。その後、リアクティブイオンエッチング(RIE)により、ピラミッド状凸部34a上の導電層38を除去する。更に、残存するレジスト層或いは別のレジスト層をマスクとして、NH4 F・HF混合液を用いて、SiO2 熱酸化層34を選択的に除去する。これによって、開口部39aを有する対向電極39が形成されると共に、ピラミッド状エミッタ即ち冷陰極35の先端部35aが露出される。
【0065】
最後に、エミッタ35の先端部35aに対向するように、蛍光体層42を配設したガラス基板41を単結晶基板31に貼り合わせ、He−Ne等の放電ガスを封入した複数個の放電セル43を形成する(図5(e))。ここで、複数個のセル43の間の幅、即ち、単結晶基板31により形成される隔壁41wの幅は、レジスト層13(図4(a)、(b)参照)の間隔に倣い、約0.1〜300μm、望ましくは100μm以下となる。なお、蛍光体層42は、その面積を稼ぐため、セル43の側部や底部(導電層38及びエミッタ35の表面)を覆うように形成してもよい。
【0066】
このように、図5図示の製造方法においては、図4図示の製造方法と同様、先端部35aが鋭く尖り、且つ高さの均一性に優れたピラミッド状のエミッタ35を安定して得ることが可能となる。更に、エミッタ先端部35aと対向電極39とがSiO2 熱酸化絶縁層34を挟み形成されているため、対向電極−エミッタ間距離をこの絶縁層34の厚さにより精度良く制御することが可能である。
【0067】
図3は本発明の更に別の実施の形態に係るプラズマディスプレイを示す模式図である。
図3に示すように、この実施の形態に係るプラズマディスプレイは、マトリックス状に配置された複数個の放電セル63を有する。放電セル63は、支持基板51、カソード電極57及び透明なガラス基板61により封止された気密空間からなり、内部にHe−Ne、Ne−Xe、He−Xe等の放電ガスを収納する。セル63の間の幅、即ち、基板51により形成される隔壁51wの幅は、約0.1〜300μm、望ましくは100μm以下に設定される。セル63内には、電子を放出するためのエミッタ55と、絶縁層54介してエミッタ55上に配設された対向電極59とが配設される。エミッタ55は絶縁層54から露出せず、完全に覆われている。また、対向電極59を覆うように、SiO2 絶縁層60が配設される。図において、1つのエミッタ55のみが示されるが、各セル63内に複数のエミッタを配設することもできる。また、蛍光体発光を利用する場合、セル63内には、更に蛍光体層62が例えばガラス基板61上に配設される。
【0068】
エミッタ55の先端部55aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。前述のように、エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、ダイヤモンドのような低仕事関数(負の電子親和力)の材料や、PZT、PLZTのような強誘電体の材料等を用いることができる。
【0069】
図3図示のプラズマディスプレイにおいては、図2図示のプラズマディスプレイと同様な効果を得ることができる。更に、エミッタ55及び対向電極59が夫々絶縁層54、60で覆われているため、エミッタ55及び対向電極59はセル内のプラズマから保護される。このため長寿命のプラズマディスプレイを提供することができる。なお、この場合、交流を印加してプラズマを維持するようにしてもよい。
【0070】
図3図示のプラズマディスプレイの製造方法は、図5(a)〜(e)図示の製造方法と類似したものとなる。相違点としては、図5(d)図示の工程で、対向電極開口部を形成した後、更にSiO2 絶縁層60を形成する共に、次の工程において、絶縁層60及び対向電極55のエミッタ55上方の部分をエッチングする際に、絶縁層54を残すようにすることである。
【0071】
図7は本発明の更に別の実施の形態に係るプラズマディスプレイを示す模式図である。
図7に示すように、この実施の形態に係るプラズマディスプレイは、図2図示のプラズマディスプレイから、エミッタ35間を仕切る隔壁31wを除いた構造を有する。図7中、図2中の部材と対応する部分には同一符号を付してそれらの詳細な説明を省略する。なお、追加の符号45、46は夫々、支持用のガラス基板及びITO導電層を指示する。
【0072】
本発明のプラズマディスプレイにおいては、エミッタの先端部と対向電極との間の距離を小さくできるため、この両者間で局部的にプラズマを発生させることができ、しかも、場合によっては、紫外線発生効率の高いタウンゼント放電によりプラズマを発生させることができる。このため、放電セル間の隔壁がなくとも、互いに干渉し合うことなく、各放電セルごとに局部的にマイクロプラズマを発生させることができる。即ち、図1乃至図3図示の各プラズマディスプレイにおいては、隔壁11w、31w、51wを省略することができる。図7はその一例として、図2図示の構造を変更した実施の形態を示すものである。
【0073】
なお、前述の如く、本発明における「放電セル」という用語は、画像を表示するためのマトリックス状に配列された複数の画素に対応するように、気密空間内に配置された放電領域を意味する。従って、このように隔壁がない場合も、画素に対応する放電領域は「放電セル」という単位で表現されることとなる。
【0074】
図8(a)〜(h)は図7図示のプラズマディスプレイのエミッタの製造方法の実施例を工程順に示す模式図である。
この製造方法においては、まず、単結晶基板71の片側表面に、底部を尖らせた凹部72を形成する。このような凹部を形成する方法として、次のようなSi単結晶基板の異方性エッチングを利用する方法を用いることができる。
【0075】
まず、単結晶基板となるp型で(100)結晶面方位のSi単結晶基板71上に厚さ0.1μmのSiO2 熱酸化層をドライ酸化法により形成する。次に、熱酸化層上にレジストをスピンコート法により塗布し、レジスト層を形成する。
【0076】
次に、アライナ等を用いて、マトリックス状に配置された複数個の開口部、例えば10μm角の正方形開口部、が得られるように露光、現像等の処理を施し、レジスト層のパターニングを行う。ここで、開口部は約2〜300μm角となるようにする。そして、レジスト層をマスクとして、NH4 F・HF混合溶液により、SiO2 膜のエッチングを行なう。
【0077】
レジスト層の除去後、30wt%のKOH水溶液を用いて異方性エッチングを行い、深さ7.1μmの凹部72をSi単結晶基板71上に形成する(図8(a))。次に、NH4 F・HF混合溶液を用いて、SiO2 酸化層を除去する。KOH水溶液によりエッチングされることにより、凹部72は(111)面からなる4斜面により規定される逆ピラミッドの形状となる。
【0078】
次に、凹部72が形成されたSi単結晶基板71を、例えばWet酸化法により熱酸化し、凹部72を含む全面に、SiO2 熱酸化絶縁層73を、例えば厚さ0.5μmとなるように形成する。なお、絶縁層73はCVD法等により堆積して形成することもできるが、SiO2 熱酸化膜は、緻密で厚さの制御等が容易であることから好ましい。
【0079】
次に、凹部72内を埋めるように、単結晶基板即ちSi単結晶基板71上に、タングステン、モリブデン、ダイヤモンド等からなるエミッタ材料層74とITO等からなる導電層75とを形成する(図8(b))。エミッタ材料層74及び導電層75は、例えば、スパッタリング法により夫々厚さ2μm及び1μmとなるように形成する。
【0080】
エミッタ材料層74は、凹部72が十分に埋められると共に、凹部72以外の部分も一様の厚さとなるように形成する。なお、エミッタをダイヤモンドから形成する場合はエミッタ材料層74としてCVDによりダイヤモンド層を形成する。また、導電層75はミッタ材料層74の材質によっては省くことができ、その場合は、エミッタ材料層74がカソード電極を兼ねることとなる。
【0081】
一方、支持基板として、背面に例えば、厚さ0.3μmのAl層76をコートしたパイレックスガラス基板(厚さ1mm)77を用意する。次に、ガラス基板77とSi単結晶基板71とをエミッタ材料層74を間に挟むように接着する(図8(c))。この接着には、例えば静電接着法を適用することができ、静電接着法は、エミッタ構造の軽量化や薄型化に寄与する。
【0082】
次に、ガラス基板77背面のAl層76を、HNO3 ・CH3 COOH・HFの混酸溶液で除去する。また、エチレンジアミン・ピロカテコール・ピラジンから成る水溶液(エチレンジアミン:ピロカテコール:ピラジン:水=75cc:12g:3mg:10cc)でSi単結晶基板71をエッチング除去する。
この様にして、ピラミッド形状の導電性凸部78を覆うSiO2 熱酸化絶縁層73を露出させる(図8(d))。
【0083】
次に、絶縁層73上に、対向電極となるW等の導電性材料からなる導電性材料層79を、例えばスパッタリング法により厚さ約0.5μmとなるように形成する。その後、導電性材料層79上に、フォトレジスト層80を、ピラミッドの先端が隠れる程度の厚さに、例えばスピンコート法により厚さ約0.9μmとなるように塗布する(図8(e))。
【0084】
更に、酸素プラズマによるドライエッチングを行い、ピラミッド先端部が0.7μmほど現れるように、レジスト層80をエッチング除去する(図8(f))。その後、反応性イオンエッチングにより、ピラミッド先端部の導電性材料層79をエッチングし、開口部を形成する(図8(g))。
【0085】
レジスト層80を除去した後、NH4 F・HF混合溶液を用いて、絶縁層73を選択的に除去する。この様にして、対向電極となる導電性材料層79の開口部内で、導電性凸部78の先端部を露出させる(図8(h))。図8(h)図示の構造は、図7図示のプラズマディスプレイのエミッタ35側の構造に対応する。即ち、図8(h)中の導電性凸部78及び導電性材料層79が、図7中のエミッタ35及び対向電極39に夫々対応する。
【0086】
従って、最後に、図7に示すように、エミッタ35の先端部35aに対向するように、蛍光体層42を配設したガラス基板41をガラス基板45に貼り合わせ、He−Ne、Ne−Xe、He−Xe等の放電ガスを封入すれば、プラズマディスプレイを完成することができる。
【0087】
図9は本発明の更に別の実施の形態に係るプラズマディスプレイを示す展開斜視図である。
図9に示すように、この実施の形態に係るプラズマディスプレイは、図7図示の構造を応用したもので、マトリックス状に配置された複数個の放電セル43の夫々が4つのエミッタ35を有する。図9中、図7中の部材と対応する部分には同一符号を付しそれらの詳細な説明を省略する。
【0088】
図示の如く、エミッタ35に接続されたカソード電極37のラインと、対向電極39のラインとは直交し、それらの交点に放電セル43が配置される。従って、カソード電極37のラインと、対向電極39のラインとを介して各放電セル43における電極間の電圧を任意に設定することにより、画素の点灯及び点滅を選択することができる。即ち、画素の選択は、所謂マトリックス駆動により、例えば、対向電極39のラインを線順次に選択して所定の電位を付与するのに同期して、カソード電極37のラインに選択信号である所定の電位を付与することにより行うことができる。
【0089】
本実施の形態に限らず、図1乃至図3及び図7のプラズマディスプレイにおいては、いずれも、カソード電極のラインと対向電極のラインとを直交して配置することができる。これにより、図9図示の実施の形態と同様に、マトリックス駆動を行うことができる。
【0090】
図10は本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図である。
この実施の形態に係るプラズマ液晶ディスプレイは、マトリックス状に配置された複数個の放電セル123に区画された放電セルアレイブロック110を有する。図10に示すように、放電セル123は、透明な誘電体であるガラス基板121、122及びその間に配設されたスペーサー基板111とにより封止された気密空間からなり、内部にHe−Ne、He−Xe、Ne−Xe等の放電ガスを収納する。セル123の間の幅、即ち、基板111により形成される隔壁111wの幅は、約0.1〜100μmに設定される。
【0091】
放電セル123内には、カソード電極117に接続された電子を放出するためのエミッタ115と、エミッタ115に対向するようにガラス基板121上に形成された対向電極119とが配設される。図において、1つのエミッタ115のみが示されるが、各放電セル123内に複数のエミッタを配設することもできる。また、エミッタ115とカソード電極117とは、バックライトを使用しない場合、或いは透明電極を使用する場合は、同じ材料から形成することができる。
【0092】
上部のガラス基板121の上面に対向するように、ガラス基板101が配設される。ガラス基板101の内面上には、ストライプ状の透明電極102及びカラーフィルター103が支持される。ガラス基板121とガラス基板101との間にはスペーサーが散布されると共に液晶が注入され、透光率が電圧により変化する液晶層104が形成される。最上部のガラス基板101及び最下部のガラス基板122の外面上には、偏光板105、106が夫々配設される。更に、最下部のガラス基板122の裏面側にはバックライト107が配設される。これらの部材101乃至107は、一般的な液晶表示装置において使用されているものである。各放電セル123は放電ガスをプラズマ化することによりガラス基板121上に得られる電位により、各画素に対応して液晶層104の状態を切り替えるスイッチング素子として機能する。
【0093】
なお、放電ガスプラズマが発する光のみを利用する場合、或いは放電セル123内に蛍光体を配置し、その蛍光を利用する場合は、偏光板106をガラス基板121の上部に設置し、バックライト107を省略することも可能である。
【0094】
放電セル123内に配設されたエミッタ115の先端部115aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、仕事関数の低い種々の材料を用いることができる。低仕事関数の材料の一例は、電子親和力が負(みかけの仕事関数が負)で電子放出しやすく、大電流もとれ、イオン衝撃にも強く、化学的にも安定で、ガス吸着の影響も殆ど無いダイヤモンドである。また、分極反転することにより大電流の放出が可能で、ダイヤモンドと同じ様にイオン衝撃にも強く、化学的にも安定で、ガス吸着の影響も殆ど無い強誘電体、例えば、PZT(チタン酸ジルコン酸鉛)やPLZT(チタン酸ジルコン酸鉛ランタン)等も使用することができる。
【0095】
図10図示のプラズマ液晶ディスプレイにおいては、従来の、平板電極を用い、電極材料として仕事関数の大きいNi(仕事関数5.15eV)、Al(4.28eV)、Mo(4.6eV)を使用するプラズマ液晶ディスプレイに比較して、電界が先鋭なエミッタ即ち突起状電極115の先端部115aに集中して容易に電子が放出され、放電プラズマを生じることができる。従って、放電電圧、即ち駆動電圧を従来の150〜400V、通常、250〜400Vから、25〜135Vに低下させることができる。そのため、駆動回路が簡単になると同時に、消費電力を大きく低下させることができ、熱の発生が少なくなり、放熱対策、薄型化に効果がある。
【0096】
また、突起状エミッタ即ち電極115を用いているため、平板電極の場合とは異なり、放電電圧の大きさ及びガス圧のコントロールにより、或は、突起状電極115の先端部115aの曲率半径を小さくすることにより、従来とは異なり、ガス圧をそれ程大きくすることなく、ほぼ一定の圧力に保ったまま電極間距離を狭くすることができる。従って、放電領域が直径1〜200μm程度の微小なマイクロプラズマを発生させることができる。その結果、放電セルを微細にすることができ、薄型化にも貢献する。
【0097】
図13(a)〜(f)は図10図示のプラズマ液晶ディスプレイの放電セルアレイブロック110の製造方法の実施例を工程順に示す模式図である。
まず、単結晶基板の片側表面に底部を尖らせた第1の凹部を形成する。このような凹部を形成する方法としては、以下に記すようなSi単結晶基板の異方性エッチングを利用する方法がある。
【0098】
即ち、まず、p型で(100)結晶面方位のSi単結晶基板111上に厚さ0.1μmのSiO2 熱酸化層112をドライ酸化法により形成する。次に、熱酸化層112上にレジストをスピンコート法により塗布し、レジスト層113を形成する(図13(a))。
【0099】
次に、アライナ等を用いて、マトリックス状に配置された複数個の開口部113a、例えば10μm角の正方形開口部、が得られるよう露光、現像等のレジスト層113のパターニングを行う。ここで、開口部113aの大きさは約2〜300μm角、開口部113a間は約0.1〜100μmを有するようにする。そして、レジスト層113をマスクとしてNH4 F・HF混合溶液により、SiO2 膜112のエッチングを行なう(図13(b))。
【0100】
レジスト層113の除去後、30wt%のKOH水溶液を用いて異方性エッチングを行い、深さ7.1μmの逆ピラミッド上の第1の凹部111aをSi単結晶基板111に形成する(図13(c))。
【0101】
次に、NH4 F・HF混合溶液を用いて、SiO2 酸化層112を一旦除去した後、Si単結晶基板111上に第1の凹部111a内を含めてSiO2 熱酸化絶縁層114を形成する(図13(d))。この実施例では、厚さ3μmとなるように、SiO2 熱酸化絶縁層114をWet酸化法により形成した。絶縁層114はCVD法或いは陽極酸化法により形成することもできる。
【0102】
次に、第1の凹部111aとは反対側の単結晶基板111の表面にレジストを塗布してレジスト層を形成し、更に、該レジスト層の凹部111aに相対する部分に開口部を設けるようパターニングする。次に、リアクティブイオンエッチング(RIE)によりSi単結晶基板111をエッチングし、第2の凹部111bを設ける。この時、SiO2 熱酸化絶縁層114の底部、即ちピラミッド形状の先端凸部114aを露出させる。
【0103】
レジスト層を除去した後、SiO2 熱酸化絶縁層114上にエミッタ材料、例えばタングステン、モリブデン、望ましくはダイヤモンド等の低仕事関数(負の電子親和力)の材料、PZT、PLZT等の強誘電体の材料を、第1の凹部111aが充填されるように形成する。この際、第1の凹部111aに対応してピラミッド形状のエミッタ115が形成される。エミッタ115の先端部115aは、熱酸化絶縁層114の凹部111a内への成長作用により、先端の曲率半径が約1〜100μmという尖鋭なものとなる。本実施例では、CVD法によりダイヤモンド層を形成した。
【0104】
次に、ITO等の透明な導電材料からなる層をエミッタ115及びSiO2 熱酸化絶縁層114上に堆積し、カソード電極117を形成する(図13(e))。なお、図示の構造では、エミッタ115及びカソード電極117を別の材料から形成しているが、同じ導電材料から一体的に形成してもよい。
【0105】
次に、NH4 F・HF混合液を用いて、SiO2 熱酸化層114を選択的に除去し、エミッタ115を露出させる。次に、支持基板として、カソード電極117側にガラス基板122を貼り付ける。なお、カソード電極117自体が気密な放電セル123を形成するための支持体として機能するようにすれば、ガラス基板122を省略することもできる。
【0106】
次に、エミッタ115の先端部115aに対向するように、対向電極119を配設したガラス基板121を、単結晶基板111を介してガラス基板122に貼り合わせ、He−Ne、He−Xe、Ne−Xe等の放電ガスを封入した複数個の放電セル123を形成する(図13(f))。ここで、複数個のセル123の間の幅、即ち、単結晶基板111により形成される隔壁111wの幅は、レジスト層113の間隔に倣い、約0.1〜100μmとなる。
【0107】
最後に、図10図示の如く、内面上にストライプ状の透明電極102及びカラーフィルター103を支持するガラス基板101を、上部のガラス基板121の上面に対向配設する。次に、ガラス基板121とガラス基板101との間にスペーサーを散布すると共に液晶を注入し、透光率が電圧により変化する液晶層104を形成する。次に、最上部のガラス基板101及び最下部のガラス基板122の外面上に偏光板105、106を夫々配設する。更に、最下部のガラス基板122の裏面側にバックライト107を配設する。これらの部材101乃至107は、公知の種々方法で、放電セルアレイブロック110の上下に配設することができる。
【0108】
このように、図13図示の製造方法においては、異方性エッチングにより設けられた凹部111aを有するSi単結晶基板111上にSiO2 熱酸化絶縁層114を形成し、その後、エミッタ115となる物質をこの凹部内に充填して形成している。そのため、凹部111aの形状に応じたエミッタ115を再現性良く得ることができる。そして、凹部111aは異方性エッチングによる形状再現性及びSiO2 熱酸化絶縁層114の凹部111a内への成長作用により、底部を良好に尖らせた逆ピラミッド状とすることができる。従って、先端部115aが鋭く尖り、且つ高さの均一性に優れたピラミッド状のエミッタ115を安定して得ることが可能となる。なお、絶縁層114をCVD法或いは陽極酸化法により形成しても、同様な効果が得られる。
【0109】
また、スクリーン印刷法を用いていた従来の製造方法とは異なり、図13図示の製造方法においては、隔壁111wを厚さ0.1〜200μm程度に、電極115、119間距離を1〜200μm程度に小さくすることができる。従って、大きさが1〜200μm程度の微細な放電セル123を形成することでき、マイクロプラズマの利用と併せて、小型で高精細なプラズマ液晶ディスプレイを実現することが可能となる。
【0110】
図11は本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図である。図11は90度の角度をなす断面を中央で合わせた態様で示す。この実施の形態に係るプラズマ液晶ディスプレイは、マトリックス状に配置された複数個の放電セル143に区画された放電セルアレイブロック130を有する。図11に示すように、放電セル143は、透明な誘電体であるガラス基板141、142及びその間に配設されたスペーサー基板131とにより封止された気密空間からなり、内部にHe−Ne、He−Xe、Ne−Xe等の放電ガスを収納する。セル143の間の幅、即ち、基板131により形成される隔壁131wの幅は、約0.1〜100μmに設定される。
【0111】
放電セル143内には、カソード電極137に接続された電子を放出するためのエミッタ135と、絶縁層134介してエミッタ135上に形成された対向電極139とが配設される。図において、1つのエミッタ135のみが示されるが、各放電セル143内に複数のエミッタを配設することもできる。また、エミッタ135とカソード電極137とは、バックライトを使用しない場合、或いは透明電極を使用する場合は、同じ材料から形成することができる。
【0112】
放電セルアレイブロック130の上下には、図10図示のプラズマ液晶ディスプレイと同様に、対向ガラス基板101やバックライト107等の部材が配設される。
【0113】
放電セル143内に配設されたエミッタ135の先端部135aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。前述のように、エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、ダイヤモンド等の低仕事関数(負の電子親和力)の材料、PZT、PLZT等の強誘電体の材料を用いることができる。
【0114】
図11図示のプラズマ液晶ディスプレイにおいては、図10図示のプラズマ液晶ディスプレイと同様な効果を得ることができる。更に、エミッタ先端部135aと対向電極139とが絶縁層134を挟み形成されているため、対向電極−エミッタ間距離をこの絶縁層134の厚さにより精度良く制御することが可能である。また、エミッタ先端部135aと対向電極139とが近接しているため、図10図示の構造よりも、より微小なマイクロプラズマを発生させることができる。 図14(a)〜(e)は図11図示のプラズマ液晶ディスプレイの放電セルアレイブロック130の製造方法の実施例を工程順に示す模式図である。
【0115】
この製造方法においては、まず、図13(a)〜(d)図示の工程を経て、図14(a)図示の構造を形成する。即ち、図14(a)図示の構造は、図13(d)図示の基板111、第1の凹部111a及び絶縁層114の夫々に相当するSi単結晶基板131、第1の凹部131a、SiO2 熱酸化絶縁層134を有する。
【0116】
次に、第1の凹部131aとは反対側の単結晶基板131の表面にレジストを塗布してレジスト層を形成し、更に、該レジスト層の凹部131aに相対する部分に開口部を設けるようパターニングする。次に、リアクティブイオンエッチング(RIE)によりSi単結晶基板131をエッチングし、第2の凹部131bを設ける(図14(b))。この時、SiO2 熱酸化絶縁層134の底部、即ちピラミッド形状の先端凸部134aを露出させる。
【0117】
レジスト層を除去した後、第2の凹部131b内面を含む単結晶基板131の表面に絶縁層136を形成する。本実施例ではSiO2 熱酸化絶縁層136を厚さ0.2μmとなるように形成した。なお、絶縁層136は省略してもよい。更に、SiO2 熱酸化絶縁層114上にエミッタ材料、例えばタングステン、モリブデン、望ましくはダイヤモンド等の低仕事関数の材料、PZT、PLZT等の強誘電体の材料を、第1の凹部131aが充填されるように形成する。この際、第1の凹部131aに対応してピラミッド形状のエミッタ135が形成される。エミッタ135の先端部135aは、熱酸化絶縁層134の凹部131a内への成長作用により、先端の曲率半径が約1〜100μmという尖鋭なものとなる。本実施例では、CVD法によりダイヤモンド層を形成した。
【0118】
次に、ITO等の透明な導電材料からなる層をエミッタ135及びSiO2 熱酸化絶縁層134上に堆積し、カソード電極137を形成する(図14(c))。なお、図示の構造では、エミッタ135及びカソード電極137を別の材料から形成しているが、同じ導電材料から一体的に形成してもよい。
【0119】
次に、対向電極用の導電層138として、例えばモリブデン層を、SiO2 熱酸化絶縁層134のピラミッド形状先端凸部134a、及び第2の凹部131b内面を含む絶縁層136上に形成する(図14(d))。本実施例では厚さ0.9μmとなるようにスパッタリング法によりモリブデン層を形成した。
【0120】
次に、導電層138上にレジストを塗布してレジスト層を形成し、更に、該レジスト層を酸素プラズマにより選択的にドライエッチングし、導電層138のピラミッド状凸部138aの先端部を0.7μmほど露出させる。その後、リアクティブイオンエッチング(RIE)により、ピラミッド状凸部134a上の導電層138を除去する。更に、残存するレジスト層或いは別のレジスト層をマスクとして、NH4 F・HF混合液を用いて、SiO2 熱酸化層134を選択的に除去する。これによって、開口部139aを有する対向電極139が形成されると共に、ピラミッド状エミッタ即ち冷陰極135の先端部135aが露出される。
【0121】
次に、支持基板として、カソード電極137側にガラス基板142を貼り付ける。なお、カソード電極137自体が気密な放電セル143を形成するための支持体として機能するようにすれば、ガラス基板142を省略することもできる。
【0122】
次に、ガラス基板141を単結晶基板131を介してガラス基板142に貼り合わせ、He−Ne、He−Xe、Ne−Xe等の放電ガスを封入した複数個の放電セル143を形成する(図14(e))。ここで、複数個のセル143の間の幅、即ち、単結晶基板131により形成される隔壁131wの幅は、レジスト層113(図13(a)、(b)参照)の間隔に倣い、約0.1〜100μmとなる。
【0123】
最後に、図11図示の対向ガラス基板101やバックライト107等の部材を、種々の公知の方法で、放電セルアレイブロック130の上下に配設する。
このように、図14図示の製造方法においては、図13図示の製造方法と同様、先端部135aが鋭く尖り、且つ高さの均一性に優れたピラミッド状のエミッタ135を安定して得ることが可能となる。更に、エミッタ先端部135aと対向電極139とがSiO2 熱酸化絶縁層134を挟み形成されているため、対向電極−エミッタ間距離をこの絶縁層134の厚さにより精度良く制御することが可能である。なお、絶縁層134をCVD法或いは陽極酸化法により形成しても、同様な効果が得られる。
【0124】
図12は本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図である。図12は90度の角度をなす断面を中央で合わせた態様で示す。この実施の形態に係るプラズマ液晶ディスプレイは、マトリックス状に配置された複数個の放電セル163に区画された放電セルアレイブロック150を有する。図12に示すように、放電セル163は、透明な誘電体であるガラス基板161、162及びその間に配設されたスペーサー基板151とにより封止された気密空間からなり、内部にHe−Ne、He−Xe、Ne−Xe等の放電ガスを収納する。セル163の間の幅、即ち、基板151により形成される隔壁151wの幅は、約0.1〜100μmに設定される。
【0125】
放電セル163内には、カソード電極157に接続された電子を放出するためのエミッタ155と、絶縁層154介してエミッタ155上に形成された対向電極159とが配設される。エミッタ155は絶縁層154から露出せず、完全に覆われている。また、対向電極159を覆うように、SiO2 絶縁層160が配設される。エミッタ155からの電子は、トンネル現象で絶縁層154を通過する。図において、1つのエミッタ155のみが示されるが、各放電セル163内に複数のエミッタを配設することもできる。また、エミッタ155とカソード電極157とは、バックライトを使用しない場合、或いは透明電極を使用する場合は、同じ材料から形成することができる。
【0126】
放電セルアレイブロック150の上下には、図10図示のプラズマ液晶ディスプレイと同様に、対向ガラス基板101やバックライト107等の部材が配設される。
【0127】
エミッタ155の先端部155aは、先端の曲率半径が約1〜100μmという尖鋭な形状を有する。前述のように、エミッタ材料としては、モリブデン、タングステン、Si等の通常の電極材料を用いることができる。更に、エミッタ材料としては、ダイヤモンド等の低仕事関数(負の電子親和力)の材料、PZT、PLZT等の強誘電体の材料を用いることができる。
【0128】
図12図示のプラズマ液晶ディスプレイにおいては、図11図示のプラズマ液晶ディスプレイと同様な効果を得ることができる。更に、エミッタ155及び対向電極159が夫々絶縁層154、160で覆われているため、エミッタ155及び対向電極159はセル内のプラズマから保護される。このため長寿命のプラズマ液晶ディスプレイを提供することができる。なお、この場合には、交流を印加し、プラズマを維持してもよい。
【0129】
図12図示のプラズマ液晶ディスプレイの放電セルアレイブロック150の製造方法は、図14(a)〜(e)図示の製造方法と類似したものとなる。相違点としては、図14(d)図示の工程で、対向電極開口部を形成した後、更にSiO2 絶縁層160を形成する共に、次の工程において、絶縁層160及び対向電極155のエミッタ155上方の部分をエッチングする際に、絶縁層154を残すようにすることである。
【0130】
図15は本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図である。
図15に示すように、この実施の形態に係るプラズマ液晶ディスプレイは、図11図示のプラズマ液晶ディスプレイから、エミッタ35間を仕切る隔壁31wを除いた構造を有する。図15中、図11中の部材と対応する部分には同一符号を付してそれらの詳細な説明を省略する。
【0131】
本発明のプラズマ液晶ディスプレイにおいては、エミッタの先端部と対向電極との間の距離を小さくできるため、この両者間で局部的にプラズマを発生させることができ、しかも、場合によっては、紫外線発生効率の高いタウンゼント放電によりプラズマを発生させることができる。このため、放電セル間の隔壁がなくとも、互いに干渉し合うことなく、各放電セルごとに局部的にマイクロプラズマを発生させることができる。即ち、図10乃至図12図示の各プラズマ液晶ディスプレイにおいては、隔壁111w、131w、151wを省略することができる。図15はその一例として、図11図示の構造を変更した実施の形態を示すものである。
【0132】
なお、前述の如く、本発明における「放電セル」という用語は、画像を表示するためのマトリックス状に配列された複数の画素に対応するように、気密空間内に配置された放電領域を意味する。従って、このように隔壁がない場合も、画素に対応する放電領域は「放電セル」という単位で表現されることとなる。
【0133】
図15図示のプラズマ液晶ディスプレイのエミッタは、図8(a)〜(h)を参照して述べた製造方法により製造することができる。但し、図8(b)図示の工程において、エミッタ材料層74は、凹部72のみを埋めるような厚さに形成する。
【0134】
図16は本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイの放電セルアレイブロックを示す展開斜視図である。
図16に示すように、この実施の形態に係るプラズマ液晶ディスプレイは、図15図示の構造を応用したもので、マトリックス状に配置された複数個の放電セル143の夫々が4つのエミッタ135を有する。図16中、図15中の部材と対応する部分には同一符号を付しそれらの詳細な説明を省略する。
【0135】
図示の如く、エミッタ135に接続されたカソード電極137のラインと、対向電極139のラインとは直交し、それらの交点に放電セル143が配置される。従って、カソード電極137のラインと、対向電極139のラインとを介して各放電セル143における電極間の電圧を任意に設定することにより、画素の点灯及び点滅を選択することができる。即ち、画素の選択は、所謂マトリックス駆動により、例えば、対向電極139のラインを線順次に選択して所定の電位を付与するのに同期して、カソード電極137のラインに選択信号である所定の電位を付与することにより行うことができる。
【0136】
本実施の形態に限らず、図10乃至図12及び図15のプラズマ液晶ディスプレイにおいては、いずれも、カソード電極のラインと対向電極のラインとを直交して配置することができる。これにより、図16図示の実施の形態と同様に、マトリックス駆動を行うことができる。
【0137】
【発明の効果】
本発明によれば、駆動電圧が低く、蛍光体輝度が高く、駆動回路が簡単で、放熱の問題がなく、また、微細な画素形成が可能なプラズマディスプレイを提供することができる。
【0138】
また、本発明によれば、駆動電圧が低く、駆動回路が簡単で、放熱の問題がなく、また、微細な画素形成が可能なプラズマ液晶ディスプレイを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るプラズマディスプレイを示す模式図。
【図2】本発明の別の実施の形態に係るプラズマディスプレイを示す模式図。
【図3】本発明の更に別の実施の形態に係るプラズマディスプレイを示す模式図。
【図4】図1図示のプラズマディスプレイの製造方法の実施例を工程順に示す模式図。
【図5】図2図示のプラズマディスプレイの製造方法の実施例を工程順に示す模式図。
【図6】本発明において、封入放電ガス圧を一定にした場合の、放電電極の先端部の曲率半径と放電電圧との関係を示すグラフ。
【図7】本発明の更に別の実施の形態に係るプラズマディスプレイを示す模式図。
【図8】図7図示のプラズマディスプレイのエミッタの製造方法の実施例を工程順に示す模式図。
【図9】本発明の更に別の実施の形態に係るプラズマディスプレイを示す展開斜視図。
【図10】本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図。
【図11】本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図。
【図12】本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図。
【図13】図10図示のプラズマ液晶ディスプレイの放電セルアレイブロックの製造方法の実施例を工程順に示す模式図。
【図14】図11図示のプラズマ液晶ディスプレイの放電セルアレイブロックの製造方法の実施例を工程順に示す模式図。
【図15】本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイを示す模式図。
【図16】本発明の更に別の実施の形態に係るプラズマ液晶ディスプレイの放電セルアレイブロックを示す展開斜視図。
【図17】従来のプラズマ液晶ディスプレイを示す模式図。
【符号の説明】
11、31、51…Si単結晶基板、14、34、54、73…絶縁膜、15、35、55、78…エミッタ(放電電極)、17、37、57、75…導電層(カソード電極)、19、39、59、79…対向電極、21、41、61…ガラス基板、22、42、62…蛍光体層、23、43、63…放電セル、101…ガラス基板、102…透明電極、103…カラーフィルター、104…液晶層、105、106…偏光板、107…バックライト、110、130、150…放電セルアレイブロック、111、131、151…Si単結晶基板、114、134、154…絶縁膜、115、135、155…エミッタ(放電電極)、117、137、157…カソード電極、119、139、159…対向電極、121、141、161…ガラス基板、122、142、162…ガラス基板、123、143、163…放電セル。

Claims (8)

  1. 第1基板と透明な第2基板との間に形成された気密な封入空間と、
    前記封入空間内に収納された放電ガスと、
    画像を表示するためのマトリックス状に配列された複数の画素に対応するように前記封入空間内に配置され且つ互いの間に実質的な隔壁がない状態で隣り合う複数の放電セルと、
    前記第1基板に支持され且つ各放電セル内に配設された電子を放出する放電電極であって、曲率半径が約1〜100μmの先鋭な先端部を有する突起状の放電電極と、
    各放電セル内で前記放電電極上に第1絶縁層を介して配設され、且つ前記放電電極の前記先端部に対応して開口部を有する第1導電層の一部からなる対向電極と、
    各放電セル内に配設され且つ前記放電ガスをプラズマ化することにより得られる放射線により励起されて発光する蛍光体層と、
    を具備することを特徴とするプラズマディスプレイ。
  2. 前記放電電極と前記対向電極との間に印加される電圧によって前記放電電極の先端に形成される電界により、前記放電電極の先端から電子が放出されることを特徴とする請求項1に記載のプラズマディスプレイ。
  3. 前記放電電極に接続されたカソード電極の複数のラインと、前記対向電極を含む前記第1導電層の複数のラインとが互いに直交して配置され、それらの交点に前記放電セルが配置されることを特徴とする請求項1または2に記載のプラズマディスプレイ。
  4. 前記放電ガスとの接触を断つように前記第1導電層を被覆する第2絶縁層を具備することを特徴とする請求項1乃至3のいずれかに記載のプラズマディスプレイ。
  5. 前記放電電極の前記先端部がダイヤモンドまたは強誘電体からなることを特徴とする請求項1乃至4のいずれかに記載のプラズマディスプレイ。
  6. 前記蛍光体層が前記第2基板に支持されることを特徴とする請求項1乃至5のいずれかに記載のプラズマディスプレイ。
  7. 第1基板と誘電体からなる第2基板との間に形成された気密な封入空間と、
    前記封入空間内に収納された放電ガスと、
    画像を表示するためのマトリックス状に配列された複数の画素に対応するように前記封入空間内に配置され且つ互いの間に実質的な隔壁がない状態で隣り合う複数の放電セルと、
    前記第1基板に支持され且つ各放電セル内に配設された電子を放出する放電電極であって、曲率半径が約1〜100μmの先鋭な先端部を有する突起状の放電電極と、
    各放電セル内で前記放電電極上に第1絶縁層を介して配設され、且つ前記放電電極の前記先端部に対応して開口部を有する第1導電層の一部からなる対向電極と、
    前記第2基板上に配設された、透光率が電圧により変化する液晶層と、
    前記液晶層を挟んで前記放電セルと対向する透明電極と、
    ここで、各放電セルは前記放電ガスをプラズマ化することにより、各画素に対応して前記液晶層の状態を切り替えるスイッチング素子として機能すること、
    を具備することを特徴とするプラズマ液晶ディスプレイ。
  8. 前記放電電極の前記先端部がダイヤモンドまたは強誘電体からなることを特徴とする請求項に記載のプラズマ液晶ディスプレイ。
JP03636297A 1996-02-26 1997-02-20 プラズマディスプレイ及びプラズマ液晶ディスプレイ Expired - Fee Related JP3765901B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03636297A JP3765901B2 (ja) 1996-02-26 1997-02-20 プラズマディスプレイ及びプラズマ液晶ディスプレイ
US08/806,652 US5808408A (en) 1996-02-26 1997-02-26 Plasma display with projecting discharge electrodes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3811396 1996-02-26
JP8-53243 1996-03-11
JP5324396 1996-03-11
JP8-38113 1996-03-11
JP03636297A JP3765901B2 (ja) 1996-02-26 1997-02-20 プラズマディスプレイ及びプラズマ液晶ディスプレイ

Publications (2)

Publication Number Publication Date
JPH09306367A JPH09306367A (ja) 1997-11-28
JP3765901B2 true JP3765901B2 (ja) 2006-04-12

Family

ID=27289067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03636297A Expired - Fee Related JP3765901B2 (ja) 1996-02-26 1997-02-20 プラズマディスプレイ及びプラズマ液晶ディスプレイ

Country Status (2)

Country Link
US (1) US5808408A (ja)
JP (1) JP3765901B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW368671B (en) * 1995-08-30 1999-09-01 Tektronix Inc Sputter-resistant, low-work-function, conductive coatings for cathode electrodes in DC plasma addressing structure
US6103133A (en) * 1997-03-19 2000-08-15 Kabushiki Kaisha Toshiba Manufacturing method of a diamond emitter vacuum micro device
CN1165938C (zh) 1997-08-19 2004-09-08 松下电器产业株式会社 气体放电板
US6171164B1 (en) 1998-02-19 2001-01-09 Micron Technology, Inc. Method for forming uniform sharp tips for use in a field emission array
KR100375848B1 (ko) * 1999-03-19 2003-03-15 가부시끼가이샤 도시바 전계방출소자의 제조방법 및 디스플레이 장치
JP3547360B2 (ja) 1999-03-30 2004-07-28 株式会社東芝 フィールドエミッション型表示装置及びその駆動方法
GB9922570D0 (en) * 1999-09-24 1999-11-24 Koninkl Philips Electronics Nv Capacitive sensing array devices
JP3730476B2 (ja) * 2000-03-31 2006-01-05 株式会社東芝 電界放出型冷陰極及びその製造方法
KR100430573B1 (ko) * 2000-04-22 2004-05-10 삼지전자 주식회사 이차전자 방출 마이크로 플라즈마를 이용한 액정표시소자의 백라이트 설치구조
JP3737696B2 (ja) * 2000-11-17 2006-01-18 株式会社東芝 横型の電界放出型冷陰極装置の製造方法
JP4177969B2 (ja) * 2001-04-09 2008-11-05 株式会社日立製作所 プラズマディスプレイパネル
US6897564B2 (en) * 2002-01-14 2005-05-24 Plasmion Displays, Llc. Plasma display panel having trench discharge cells with one or more electrodes formed therein and extended to outside of the trench
JP5435868B2 (ja) * 2004-10-04 2014-03-05 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ マイクロ放電装置、マイクロ放電装置アレイ、誘電体で覆われた電極を製造する方法
CN1929070B (zh) * 2005-09-09 2010-08-11 鸿富锦精密工业(深圳)有限公司 电子源及采用该电子源的面光源装置
JP2006004954A (ja) * 2005-09-12 2006-01-05 Matsushita Electric Works Ltd 電子エミッタ付発光装置
KR100659100B1 (ko) * 2005-10-12 2006-12-21 삼성에스디아이 주식회사 디스플레이 장치와 이의 제조 방법
TW201103360A (en) * 2009-07-09 2011-01-16 Chunghwa Picture Tubes Ltd Flat light source and manufacturing method thereof
TWI510142B (zh) * 2013-06-06 2015-11-21 Univ Tamkang Micro plasma device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743879A (en) * 1970-12-31 1973-07-03 Burroughs Corp Cold cathode display panel having a multiplicity of gas cells
FR2568394B1 (fr) * 1984-07-27 1988-02-12 Commissariat Energie Atomique Dispositif de visualisation par cathodoluminescence excitee par emission de champ
US5235244A (en) * 1990-01-29 1993-08-10 Innovative Display Development Partners Automatically collimating electron beam producing arrangement
JPH05216415A (ja) * 1992-02-04 1993-08-27 Sony Corp プラズマアドレス電気光学装置
US5499938A (en) * 1992-07-14 1996-03-19 Kabushiki Kaisha Toshiba Field emission cathode structure, method for production thereof, and flat panel display device using same
JP3226238B2 (ja) * 1993-03-15 2001-11-05 株式会社東芝 電界放出型冷陰極およびその製造方法
US5561340A (en) * 1995-01-31 1996-10-01 Lucent Technologies Inc. Field emission display having corrugated support pillars and method for manufacturing
GB9502435D0 (en) * 1995-02-08 1995-03-29 Smiths Industries Plc Displays

Also Published As

Publication number Publication date
JPH09306367A (ja) 1997-11-28
US5808408A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
JP3765901B2 (ja) プラズマディスプレイ及びプラズマ液晶ディスプレイ
US5214521A (en) Plasma addressed liquid crystal display with grooves in middle plate
US6593693B1 (en) Plasma display panel with reduced parasitic capacitance
JP2005340193A (ja) 電界放出表示素子及びその製造方法
US5509839A (en) Soft luminescence of field emission display
KR100263310B1 (ko) 전계 방출용 음극을 갖는 평판 디스플레이와 이의제조방법
JP2552989B2 (ja) プラズマアドレス方式の液晶表示素子
EP0835502B1 (en) Hollow cathodes for plasma-containing display devices and method of producing same
JPH10501077A (ja) エッチングによるプラズマチャネルを有するプラズマアドレス液晶ディスプレイ
JP2969081B2 (ja) 水平電界効果を有する電子放出素子及びその製造方法
TW200415665A (en) Flat panel display and method of manufacturing the same
US6400423B1 (en) Channel plates and flat display devices incorporating such
KR100533912B1 (ko) 저전압 구동 플라즈마 표시 패널 장치 및 그 제조 방법
KR100528965B1 (ko) 저전압 구동 플라즈마 표시 패널 장치 및 그 제조 방법
KR100312587B1 (ko) 평면표시소자
JP3405519B2 (ja) 液晶表示装置
JPH08264108A (ja) 電界電子放出素子、この電界電子放出素子を用いた電子放出源および平面ディスプレイ装置、電界電子放出素子の製造方法
KR940004288B1 (ko) 플라즈마 어드레스 방식의 액정표시소자와 그 제조방법
JP4299922B2 (ja) 放電式表示パネル及び表示装置
JP3570535B2 (ja) 液晶表示装置
KR100260261B1 (ko) 전계방출소자의 캐소드 어레이 형성방법
JPH05297361A (ja) プラズマアドレス電気光学装置
JPH0862588A (ja) プラズマ表示装置
JP2003215548A (ja) 液晶表示装置
JPH09251158A (ja) プラズマアドレス型液晶表示装置の製造方法およびプラズマアドレス型液晶表示装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees