JP3727191B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP3727191B2
JP3727191B2 JP03992399A JP3992399A JP3727191B2 JP 3727191 B2 JP3727191 B2 JP 3727191B2 JP 03992399 A JP03992399 A JP 03992399A JP 3992399 A JP3992399 A JP 3992399A JP 3727191 B2 JP3727191 B2 JP 3727191B2
Authority
JP
Japan
Prior art keywords
potential
sense amplifier
dsg
circuit
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03992399A
Other languages
English (en)
Other versions
JP2000243084A (ja
Inventor
恭弘 青山
一彦 島川
清人 大田
雅庸 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03992399A priority Critical patent/JP3727191B2/ja
Priority to US09/506,102 priority patent/US6198671B1/en
Publication of JP2000243084A publication Critical patent/JP2000243084A/ja
Application granted granted Critical
Publication of JP3727191B2 publication Critical patent/JP3727191B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、ダイナミックランダムアクセスメモリ(DRAM)を有する半導体記憶装置に関し、特に、メモリセルアレイ、ビット線及びセンスアンプに印加される低レベル電位をメモリの内部動作に応じて切り替える半導体記憶装置に関する。
【0002】
【従来の技術】
近年、DRAMをメモリセルとする半導体装置は、高集積化と動作速度の向上とを目的とするトランジスタの微細化及び動作電源電圧の低電圧下が進められている。一般に、DRAMは、その動作電源電圧を下げると、メモリセルキャパシタに蓄積される蓄積電荷量が減少するため、これによる電荷保持特性の劣化が問題となる。また、トランジスタの微細化に伴ってゲート酸化膜の耐圧が低下するため、ワード線を昇圧することによってメモリセルの読み出し電位を確保するという従来の方式ではメモリセルトランジスタの信頼性を確保することが困難となってきている。さらに、近年、DRAM等の大容量のメモリとCPU又はASIC等のカスタムロジックをワンチップに集積した半導体装置、いわゆるカスタムLSIが実用化されつつあり、内部昇圧電位を用いない設計及びそれに伴うプロセスの簡素化の要望が高まっている。
【0003】
しかしながら、ワード線の昇圧を行なわない場合には、メモリセルの読み出し電荷量をワード線の昇圧を行なう場合と同等に保つにはメモリセルトランジスタの閾値電位を低く設定する必要があり、一方、閾値電位を低くすると、メモリセルトランジスタのサブスレショルドリーク電流が増加するため、やはり電荷保持特性の劣化が問題となる。この問題を解決する従来の方法として、特開平7−240093号公報に開示された、いわゆる昇圧センスグランド(boosted
sense ground:BSG)方式が知られている。
【0004】
以下、従来の昇圧センスグランド方式の回路構成及び動作について図面を参照しながら説明する。
【0005】
図16はDRAMの非選択状態のメモリセルと活性化されたセンスアンプとの接続関係を示す部分的な回路構成を表わしている。図16に示すように、メモリセル500は、ゲートがワード線WLと接続され、ドレインがビット相補線/BLと接続され、ソースがメモリセルキャパシタ501の一方の電極と接続されたメモリセルトランジスタ502とを有している。メモリセルキャパシタ501の他方の電極には、内部で生成されるセルプレート電位VCPが印加され、メモリセルトランジスタ502には内部で生成される基板電位VBBが印加されている。
【0006】
センスアンプ回路510は、第1のn型トランジスタ511n及び第1のp型トランジスタ511pからなる第1のインバータ511と第2のn型トランジスタ512n及び第2のp型トランジスタ512pからなる第2のインバータ512とがクロスカップルされて構成されている。第1のn型トランジスタ511n及び第1のp型トランジスタ511pの共通のドレインである出力部は、ビット相補線/BLと接続され、第2のn型トランジスタ512n及び第2のp型トランジスタ512pの共通のドレインである出力部はビット線BLと接続されている。また、第1のn型トランジスタ511n及び第2のn型トランジスタ512nの各ソースはセンスアンプ用グランド電源線SANと接続され、第1のp型トランジスタ511p及び第2のp型トランジスタ512pの各ソースはセンスアンプ用電源線SAPと接続されている。
【0007】
図17は昇圧センスグランド方式の回路構成を示し、センスアンプ及びメモリセルを含むDRAMの内部回路550のグランド電位はBSG電位配線560と接続されている。BSG電位配線560はBSGドライバ回路570と接続され、BSGドライバ回路570は、互いのドレインを共有し、ゲートがダイオード接続され、ソースが接地された第1のnMOSトランジスタ571及びゲートが制御信号φを受け、ソースが接地された第2のnMOSトランジスタ572を有している。BSG電位配線560には、BSG電位補償回路580が接続されており、BSG電位補償回路580は、BSG電位が所定値よりも低下した場合にBSG電位配線560に対して電流を供給する。
【0008】
以下、前記のように構成されたDRAMにおける昇圧センスグランド方式の動作を説明する
図18(a)及び(b)はセンスアンプによる読み出し動作時におけるビット線対、センスアンプ用グランド電位SAN及びセンスアンプ用電源電位SAPの電位波形であって、図18(a)は昇圧センスグランド方式を用いない場合の各電位波形を表わし、図18(b)は昇圧センスグランド方式を用いた場合の各電位波形を表わしている。図18(a)及び(b)において、時刻tcはワード線WLの駆動タイミングを表わし、時刻tdはセンスアンプの駆動タイミングを表わしている。
【0009】
図18(b)に示すように、昇圧センスグランド方式を用いた場合には、センスアンプ用のグランド電位BSGは、センスアンプが活性化される時刻tdまでは、図17に示すBSGドライバ回路570における第1のnMOSトランジスタ571のクランプ作用により、その閾値電圧以上に保たれている。
【0010】
時刻tdにおいて、図17に示す第2のnMOSトランジスタ572は制御信号φを受けて時刻tdから時刻tnまでの期間で導通状態となることにより、センスアンプから流入する電流によるBSG電位の上昇を抑制する。
【0011】
このように、昇圧センスグランド方式によると、低電位側のビット相補線/BLの電位が接地電位VSSよりも高くなるため、図16に示すメモリセルトランジスタ502のゲートドレイン間電圧である第1のバイアス電圧値VGS1が図18(a)に示す昇圧センスグランド方式を用いない方式と比べて大きくなる。これにより、非選択状態にあるメモリセルトランジスタ502のチャネル方向に流れるサブスレショルドリーク電流は、第1のバイアス電圧値VGS1が大きくなるにつれて指数関数的に小さくなる。このサブスレショルドリーク電流は、図16に示すメモリセルキャパシタ501の保持データを破壊する方向に流れるが、BSG電位を接地電位VSSよりも高くすることにより、第1のバイアス電圧値VGS1を大きく確保できるようになる。その結果、サブスレショルドリーク電流が低減するので、DRAMの電荷保持特性の向上を図ることができる。
【0012】
【発明が解決しようとする課題】
前記従来の昇圧センスグランド方式を用いた半導体記憶装置は、図16に示すセンスアンプ回路510のセンスアンプ用グランド電位SANを接地電位VSSに対して図17に示す第1のnMOSトランジスタ571の閾値電位分だけ高くなるように保持するため、図16に示す、第1のn型トランジスタ511nのソースゲート間電圧である第2のバイアス電圧値VGS2が、図18(a)に示すセンスアンプ用グランド電位SANを昇圧しない方式と比べて小さくなる。
【0013】
この第2のバイアス電圧値VGS2は、センスアンプ回路510の第1のn型トランジスタ511nのソースからゲート方向のゲートソース間バイアス電圧値を示しており、この値が小さい場合には、第1のn型トランジスタ511nの電流駆動能力が小さくなるため、ビット相補線/BLをセンスアンプ用グランド電位SANに近づける能力が低下するので、ビット線対BL,/BLの間に十分な電位差が生ずるまでのスピード、いわゆるセンススピードが低下するという問題がある。
【0014】
低電圧化を図るために電源電圧を低くすると、第2のバイアス電圧値VGS2も小さくなるため、このセンススピードが劣化するという問題は、特にDRAMにおいて顕著となる。電源電圧値が極端に低い場合には、センスアンプ活性タイミングであっても第2のバイアス電圧値VGS2がセンスアンプ回路510の第1のn型トランジスタ511nの閾値を超えなくなるので、センスアンプ回路510が所望の動作を行なえなくなる。
【0015】
換言すれば、ビット線対BL,/BLのプリチャージ電位VBPが、BSG電位と第1のn型トランジスタ511nの閾値電位VTNの合計値以上であることがセンスアンプ回路510の動作条件となる。例えば、図18(b)において、BSG電位が0.5Vで、閾値電位VTNが0.6Vである場合には、プリチャージ電位VBPの下限電圧は1.1Vとなり、該プリチャージ電位VBPが電源電位VDDの半分の電位とするなら、DRAMとしての動作下限電圧は2.2V以上となる。
【0016】
一方、図18(a)の場合は、センスアンプ用の低電位SGが接地電位VSSと短絡されていているため、プリチャージ電位VBPの下限電圧は0.6Vとなり、DRAMとしての動作下限電圧は1.2V以上となる。従って、図18(b)に示す昇圧センスグランド方式を用いた場合のDRAMの動作下限電圧は、図18(a)に示す昇圧センスグランド方式を用いない場合のDRAMの動作下限電圧よりも高くなるため、低電源電圧化を実質的に行なえないという問題がある。
【0017】
また、図17に示すように、BSG電位は、BSGドライバ回路570における第1のnMOSトランジスタ571及び第2のnMOSトランジスタ572を介したリーク電流等の影響から、定常的にその電位が低下する傾向にあり、BSG電位を接地電位VSSよりも常に高い電位に保つには、BSG電位補償回路580により絶えず電流を供給しなければならず、このためDRAMの消費電力が増大するという問題がある。
【0018】
本発明は、かかる問題に鑑みてなされたものであり、動作下限電圧を低減しながらも、センススピードが低下せず且つメモリセルの電荷保持特性を高度に維持できるようにすることを目的とする。
【0019】
【課題を解決するための手段】
前記の目的を達成するため、本発明は、DRAM型の半導体記憶装置におけるセンスアンプ用グランド電位をセンスアンプの駆動タイミングに応じて切り替える構成とする。
【0020】
具体的に、本発明に係る半導体記憶装置は、半導体基板上に形成されており、複数のワード線と複数のビット線対との各交差部に設けられた複数のメモリセルを有するメモリセルアレイと、複数のビット線対ごとに設けられ、各ビット線対に読み出された電位差を増幅して出力する複数のセンスアンプ回路と、メモリセル、ビット線対及びセンスアンプ回路に印加される高レベル電位及び低レベル電位のうちの低レベル電位を生成して出力する低レベル電位生成手段とを備え、低レベル電位生成手段は、低レベル電位として接地電位とほぼ等しい第1の電位を生成する接地電位生成用半導体素子を有する接地電位生成部と、閾値電位を超える電位が印加されたときに動作し、低レベル電位として閾値電位とほぼ等しい第2の電位を生成する閾値電位生成用半導体素子を有する閾値電位生成部と、接地電位生成用半導体素子の動作を制御する接地電位制御部とを有している。
【0021】
本発明の半導体記憶装置によると、低レベル電位生成手段が、メモリセル、ビット線対及びセンスアンプ回路に印加される高レベル電位及び低レベル電位のうち、低レベル電位として接地電位とほぼ等しい第1の電位を生成する接地電位生成用半導体素子を有する接地電位生成部と、低レベル電位として閾値電位とほぼ等しい第2の電位を生成する閾値電位生成用半導体素子を有する閾値電位生成部と、接地電位生成用半導体素子の動作を制御する接地電位制御部とを有している。このため、メモリセルがデータ保持用のキャパシタ及び該キャパシタとビット線とのアクセスがワード線により制御されるスイッチトランジスタを有する場合には、非選択のワード線と接続されるメモリセルにおいて、低レベル電位が接地電位よりも高い第2の電位である閾値電位生成用半導体素子の閾値電位とほぼ等しくなるので、スイッチトランジスタのオフ時のゲートドレイン間電圧値が大きくなる。また、センスアンプ回路がトランジスタを含む場合には、センスアンプの低レベル電位が第1の電位である接地電位とほぼ等しくなるので、該トランジスタのオン時のゲートソース間電圧値が大きくなる。
【0022】
本発明の半導体記憶装置において、接地電位生成用半導体素子が、接地電位制御部からの制御信号を受け、複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定期間にわたって活性化されることにより第1の電位を生成し、閾値電位生成用半導体素子が、接地電位生成用半導体素子が活性化されていない期間に第2の電位を生成することが好ましい。このようにすると、外部から選択されたセンスアンプの動作の立ち上がり時に低レベル電位が第1の電位である接地電位とほぼ等しくなるため、センスアンプにおけるトランジスタのオン時のゲートソース間電圧値が大きくなる。
【0023】
本発明の半導体記憶装置において、接地電位生成用半導体素子が、接地電位制御部からの制御信号を受け、複数のセンスアンプ回路が非活性状態である期間中及び複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定の期間中に活性化されていることにより第1の電位を生成し、閾値電位生成用半導体素子が、接地電位生成用半導体素子が活性化されていない期間に第2の電位を生成することが好ましい。このようにすると、センスアンプが非活性状態のときにも低レベル電位がほぼ第1の電位である接地電位となるため、メモリのスタンバイ期間に接地電位を発生させて該接地電位を保持する手段が必要でなくなる。
【0024】
本発明の半導体記憶装置において、低レベル電位生成手段が、閾値電位とほぼ同電位である基準電位を生成する基準電位生成部と、低レベル電位が基準電位よりも高い電位となるように電流を供給することにより低レベル電位を補償する電位補償部とをさらに有し、基準電位生成部及び電位補償部が、接地電位生成部が活性化されていない期間に動作することが好ましい。このようにすると、低レベル電位が接地電位とされている期間は、基準電位生成部及び電位補償部を非活性状態とすることができる。
【0025】
この場合に、複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されているビット線対のうちのより低電位のビット線の電位が低レベル電位よりも高い状態にあるときに接地電位生成部が活性状態から非活性状態に遷移することが好ましい。このようにすると、通常、センスアンプが非活性状態であるときには、該センスアンプに接続されているビット線対は電源電位の2分の1程度にプリチャージされており、活性状態のセンスアンプ回路に接続されているビット線対のうちのより低電位のビット線の電位が低レベル電位よりも高い時点で接地電位生成部が活性状態から非活性状態に遷移するため、低レベル電位の配線には、活性化された低電位側のビット線から電流が流入するので、低レベル電位を閾値電位にまで昇圧するための電位補償部からの電流量を減らすことができる。
【0026】
この場合に、電位補償部がメモリセルアレイのメモリ容量に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることが好ましい。
【0027】
この場合に、電位補償部が複数のセンスアンプ回路のうち、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることが好ましい。
【0028】
本発明の半導体記憶装置において、低レベル電位生成手段が、閾値電位のほぼ2倍の電位の基準電位を生成する基準電位生成部と、低レベル電位が閾値電位とほぼ等しくなるように電流を供給することにより低レベル電位を補償する電位補償部とをさらに有し、電位補償部が、ゲートが基準電位を受け、ドレインが電位補償部からの電流を受け、ソースが低レベル電位を出力する電界効果トランジスタを含むことが好ましい。このようにすると、低レベル電位を補償する電位補償部が、基準電位をゲートに受け、電位補償部からの電流をドレインに受け、低レベル電位をソースに出力する電界効果トランジスタを含むため、低レベル電位の検値動作と低レベル電位を昇圧する電流の電流供給量の調整動作とが一のトランジスタによって行なわれる。その結果、検値動作から電流供給動作までの伝達遅延が発生しない。
【0029】
この場合に、複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されているビット線対のうちのより低電位のビット線の電位が低レベル電位よりも高い状態にあるときに接地電位生成部が活性状態から非活性状態に遷移することが好ましい。
【0030】
この場合に、電位補償部がメモリセルアレイのメモリ容量に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることが好ましい。
【0031】
この場合に、電位補償部が、複数のセンスアンプ回路のうち、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることが好ましい。
【0032】
本発明の半導体記憶装置において、閾値電位生成用半導体素子が第1の半導体素子と第2の半導体素子とからなり、低レベル電位生成手段が、低レベル電位が接地電位よりも高い電位となるように電流を供給することにより低レベル電位を補償する電位補償部と、接地電位制御部からの制御信号を受け、第1の半導体素子又は第2の半導体素子を選択する閾値電位生成用半導体素子選択手段とをさらに有していることが好ましい。このようにすると、閾値電位生成用半導体素子が、第1の半導体素子と第2の半導体素子とを含むため、センスアンプに大電流が流れる期間と大電流が流れない期間とによって接地電位よりも高い低レベル電位を第1の半導体素子又は第2の半導体素子のいずれかを選択できる。
【0033】
この場合に、第2の半導体素子のサイズが、第1の半導体素子のサイズよりも小さく、閾値電位生成用半導体素子選択手段が、複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定期間の間は第1の半導体素子からの出力を選択し、所定期間が経過した後に第2の半導体素子からの出力を選択することが好ましい。このようにすると、低レベル電位が、センスアンプに大電流が流れる期間及び接地電位とされる期間に、サイズが大きい第1の半導体素子によって生成されるため、低レベル電位の過剰な増加が抑えられる。また、複数のセンスアンプ回路の一部が活性状態であって且つ大電流を流さない期間には、サイズが小さい第2の半導体素子を用いるため、リーク電流による低レベル電位が減少しにくくなる。
【0034】
本発明の半導体記憶装置において、メモリセルアレイを複数備え、複数のメモリセルアレイごとにおけるワード線が延びる方向に対して平行な側部に複数のセンスアンプ回路がそれぞれ隣接するように設けられてなる複数のセンスアンプ列と、複数のメモリセルアレイと複数のセンスアンプ列とからなるメモリコアブロックとを有し、低レベル電位生成手段は、メモリコアブロックにおける複数のセンスアンプ列が延びる方向に対して平行な両側部と隣接するように設けられていることが好ましい。このようにすると、低レベル電位生成手段が、いずれか一方にのみ設けられる場合と比較して、センスアンプ列までの平均距離がほぼ半分となると共に、センスアンプ回路から流れ出す電流が両方の低レベル電位生成手段に分散して流れるため、低レベル電位生成手段と各センスアンプ回路との実効的な抵抗値を下げることができる。これにより、配線抵抗の電圧降下に起因するセンススピードの劣化が緩和されると共に、同時に活性化されるセンスアンプ回路ごとの動作特性にばらつきが生じにくくなる。
【0035】
この場合に、低レベル電位生成手段の接地電位生成用半導体素子、閾値電位生成用半導体素子及びセンスアンプ列が有する半導体素子が、それぞれ半導体基板に連続して設けられた共有ウェルに形成されていることが好ましい。
【0036】
【発明の実施の形態】
まず、本発明に係る半導体記憶装置の概要を図面に基づいて説明する。
【0037】
図1は本発明に係る半導体記憶装置であるDRAMにおける動的センスグランド(dynamic sense ground:DSG)方式を実現する機能構成を表わしている。図1に示すように、本発明に係るDRAMは、センスアンプ回路及びメモリセル等を含むDRAMの内部回路1と低レベル電位生成手段2とを有している。低レベル電位生成手段2は、接地電位生成部及び閾値電位生成部としてのDSGドライバ回路3と、接地電位制御部としての制御信号発生回路4と、電位補償部としてのDSG電位補償回路5とから構成されている。
【0038】
内部回路1のグランド電位配線はDSG電位配線6と接続され、DSG電位配線6は、DSGドライバ回路3及びDSG電位補償回路5と接続されている。
【0039】
DSGドライバ回路3は、互いのドレインを共有し、ゲートがダイオード接続され、ソースが接地された第1のnMOSトランジスタ31及びゲートが接地電位制御部としての制御信号発生回路4からの内部制御信号NSGを受け、ソースが接地された第2のnMOSトランジスタ32を有している。
【0040】
制御信号発生回路4は、センスアンプ駆動信号SEを受け、該センスアンプ駆動信号SEに所定の遅延を付与した内部制御信号NSGを出力する。
【0041】
本発明に係るDSGドライバ回路3は、DRAMにおけるプリチャージ動作の間、及びセンスアンプ駆動信号SEが活性化された直後からの所定期間中にDSG電位を接地電位とし、その後に、DSG電位補償回路5から供給される電流及びセンスアンプ回路から放出される電流によってDSG電位を上昇させることにより、センスアンプの活性期間中のDSG電位を第1のnMOSトランジスタ31の閾値電位VTNの近傍にクランプする。
【0042】
このように、本発明に係るDSG方式によると、センスアンプ回路が動作を開始した時点から所定期間の間の低レベル電位を接地電位としているため、図16に示したセンスアンプ回路510のオン時の第2のバイアス電圧値VGS2が十分に確保されるので、センススピードを向上できる。
【0043】
また、センスアンプ駆動信号SEが活性化されてからの所定期間経過後に、DSG電位補償回路5から供給される電流及びセンスアンプ回路から放出される電流によってDSG電位を上昇させるため、図16に示したメモリセル500のオフ時の第1のバイアス電圧値VGS1が大きくなるので、電荷保持特性の向上が図れる。さらに、この所定期間を短く、すなわち、センスアンプ駆動信号SEと内部制御信号NSGとのタイミング差を小さくしているため、センスアンプ回路の活性期間中にビット線の低レベル電位が閾値電位VTNの近傍を大きく下回らないので、従来の昇圧センスグランド方式と同様に電荷保持特性が向上する。
【0044】
また、DSG電位補償回路5は、センスアンプ回路が活性期間中の場合にはDSG電位を所定電位となるように随時電流を供給する一方、センスアンプ回路が非活性期間中の場合にはDSG電位を接地電位として動作を停止することにより電流供給動作を行なわない。これにより、DSG電位の駆動に伴う消費電力は、従来の昇圧センスグランド方式の場合と比べて大幅に削減できる。
【0045】
以下、本発明に係るDSG方式を用いたDRAM型半導体記憶装置を具体的に説明する。
(第1の実施形態)
本発明の第1の実施形態について図面を参照しながら説明する。
【0046】
図2は本発明の第1の実施形態に係る半導体記憶装置であって、DRAMチップのブロック構成を示している。図2に示すように、本実施形態に係るDRAMチップには、それぞれがデータとなる電荷を保持する複数のメモリセルを有する複数のメモリセルアレイブロック10と、該複数のメモリセルアレイブロック10同士におけるワード線WLが延びる方向に対して平行な側部の間に設けられた複数のセンスアンプブロック20及び該センスアンプブロック20に含まれるセンスアンプ回路を駆動する複数のセンスアンプドライバ回路21が設けられている。
【0047】
センスアンプブロック20及びセンスアンプドライバ回路21に対するメモリセルアレイブロック10と反対側の領域には、これらに隣接してカラムデコーダ等からなるカラム系の制御回路ブロック22及び低レベル電位生成手段としてのセンスアンプグランド回路23が選択的に設けられている。
【0048】
センスアンプグランド回路23は、各センスアンプドライバ回路21に対してダイナミックセンスアンプグランド電位DSGを供給し、センスアンプドライバ回路21は隣接するセンスアンプブロック20に対して、センスアンプ用電源電位SAP及びセンスアンプ用グランド電位SANを供給する。
【0049】
メモリセルアレイブロック10におけるワード線WLが延びる方向の一方の周辺部には、外部からのロウアドレスをデコードするロウデコーダ40が設けられている。メモリセルアレイ10とロウデコーダ40との間には、それぞれが、ロウデコーダ40からのデコード信号を受け、受けたデコード信号をワード線WLn(n=1,2,3,…)に出力する複数のワード線ドライバ41と、ロウデコーダ40からのデコード信号を受け、センスアンプブロック20及びセンスアンプドライバ回路21とを制御する複数のセンスアンプ制御ブロック42とが設けられている。
【0050】
メモリセルアレイブロック10には、マトリクス状の複数のメモリセルが設けられ、例えば、そのうちのメモリセル51は、ワード線ドライバ41により駆動されるワード線WL1と、センスアンプブロック20と接続されるビット相補線/BLとが交差する交差部に設けられている。
【0051】
図3は図2に示す領域100におけるメモリセルアレイブロック10、センスアンプブロック20及びセンスアンプドライバ回路21の具体的な回路構成を示している。図3に示すように、メモリセルアレイブロック10を構成するメモリセルアレイ101は、メモリセル51とビット線対BL,/BLとワード線WLn、WLn+1とからなる。
【0052】
メモリセル51は、ドレインがビット線BL又はビット相補線/BLと接続され、ゲートがワード線WLnと接続されたnMOSトランジスタからなるメモリセルトランジスタ51aと、一方の電極がセルプレート電源VCPと接続され、他方の電極がメモリセルトランジスタ51aのソースと接続されたメモリセルキャパシタ51bとからなる。
【0053】
センスアンプブロック20を構成するセンスアンプ回路201は、2組のnMOSトランジスタ202n及びpMOSトランジスタ202pからなるクロスカップル型のセンスアンプであって、各nMOSトランジスタ202nのソースからセンスアンプ用グランド電位SANが供給され、各pMOSトランジスタ202pのソースからセンスアンプ用電源電位SAPが供給される。
【0054】
さらに、センスアンプ回路201は、互いに共有するドレインがプリチャージ電源VBPと接続され、ソースがそれぞれ第1の内部配線205及び第2の内部配線206と接続された2つのプリチャージ用nMOSトランジスタ203と、ゲートがイコライズ信号EQを受け、ビット線対BL,/BLの電位を互いに等電位(イコライズ)とするイコライズ用nMOSトランジスタ204とを含む。センスアンプ回路201において、ビット線BLと接続される第1の内部配線205及びビット相補線/BLと接続される第2の内部配線206は、それぞれ、トランスファーゲートをなす第1のトランスファートランジスタ207及び第2のトランスファートランジスタ208を介して接続されている。第1のトランスファートランジスタ207はそのゲートに第1のシェアードゲート信号SS1を受け、第2のトランスファートランジスタ208はそのゲートに第2のシェアードゲート信号SS2を受け、第1のシェアードゲート信号SS1又は第2のシェアードゲート信号SS2を選択的に活性化することにより、メモリセルアレイ101におけるワード線WL1側のビット線対BL,/BL又はWL3側のビット線対BL,/BLのいずれかを選択する。
【0055】
第1の内部配線205は、ゲートがYGT信号を受ける第3のトランスファートランジスタ209を介して第1のデータ線60と接続され、第2の内部配線206は、ゲートがYGT信号を受ける第3のトランスファートランジスタ209を介して第2のデータ線61と接続されている。ここで、第1のデータ線60及び第2のデータ線61は図示されない読み出し又は書き込み回路に接続されている。
【0056】
センスアンプドライバ回路21は、ゲートがセンスアンプ駆動信号SEを受け、センスアンプ用グランド電位SANをダイナミックセンスアンプグランド電位DSGとするnMOSスイッチトランジスタ211と、インバータ回路212により反転されたセンスアンプ駆動信号SEを受け、センスアンプ用電源電位SAPを装置の電源電位VDDとするpMOSスイッチトランジスタ213と、互いに共有するドレインがプリチャージ電源VBPと接続され、ソースがSAP用配線及びSAN用配線とそれぞれ接続された2つのプリチャージ用nMOSトランジスタ214と、ゲートがイコライズ信号EQを受け、SAP用配線及びSAN用配線との互いの電位をイコライズするイコライズ用nMOSトランジスタ215とから構成されている。
【0057】
ここで、センスアンプ回路201及びセンスアンプドライバ回路21に入力される第1のシェアードゲート信号SS1、第2のシェアードゲート信号SS2、イコライズ信号EQ、YGT信号及びセンスアンプ駆動信号SEはいずれも、図2に示すセンスアンプ制御ブロック42から供給される。また、図3に示す各nMOSトランジスタの基板には、サブスレショルドリーク電流の低減を図るための、電位が約−1.0Vであるバックゲート電位VBBが印加されている。
【0058】
図4は図2示すセンスアンプグランド回路23の具体的な回路構成を示している。図4に示すセンスアンプグランド回路23は、ダイナミックセンスアンプグランド電位DSGを駆動し、接地電位生成部及び閾値電位生成部としてのDSGドライバ回路231と、接地電位制御部としての制御信号発生回路232と、電位補償部としてのDSG電位補償回路233とからなる。
【0059】
DSG電位補償回路233は、基準電位VREFを生成する基準電位生成部としてのリファレンス電位生成回路234、DSG電位と基準電位VREFとの電位差を検出するDSGレベル検出回路235、DSG電位を昇圧する際の制御信号にヒステリシス特性を持たせるシュミットトリガー回路236、及びDSGドライバ回路231に昇圧用の電流をその電流供給能力を切替可能に供給する電流供給能力切替手段としてのDSGプリチャージ回路237からなる。
【0060】
DSGドライバ回路231は、ゲート及びドレインがDSG電位の出力端子(DSGノード)に共通接続された閾値電位生成用半導体素子としての第1のnMOSトランジスタ231aと、該第1のnMOSトランジスタ231aと並列接続され、制御信号発生回路232からの接地電位制御信号NSGを受けてDSG電位を接地電位とする接地電位生成用半導体素子としての第2のnMOSトランジスタ231bとからなる。
【0061】
制御信号発生回路232は、センスアンプ駆動信号SEを受け、該センスアンプ駆動信号SEに対して所定の遅延時間、例えば1nsの遅延時間を持つ遅延信号を出力する遅延回路232aと、該遅延回路232aからの遅延信号及びセンスアンプ駆動信号SEを受け、DSGレベル検出回路235を活性化する検出回路制御信号NAMPを出力するNAND回路232bと、遅延回路232aからの出力信号を受け、受けた信号を反転させてなる接地電位制御信号NSGを出力するインバータ回路232cとからなる。
【0062】
リファレンス電位生成回路234は、電流源であって、ゲートが接地され、ソースが電源電位VDDを受け、ドレインが出力端子となるpMOSトランジスタ234aと、ゲート及びドレインがpMOSトランジスタ234aのドレインと共通接続され、基準電位VREFを生成して出力する第1のnMOSトランジスタ234bと、ドレインが第1のnMOSトランジスタ234bのソースと接続され、ゲートがセンスアンプ駆動信号SEを受け、ソースが接地され、基準電位VREFの生成を制御する第2のnMOSトランジスタ234cとからなる。ここで、pMOSトランジスタ234aのトランジスタサイズは、第1及び第2のnMOSトランジスタ234b,234cのトランジスタサイズよりも小さい。
【0063】
DSGレベル検出回路235は、ゲートが制御信号発生回路232からの検出回路制御信号NAMPを受け、電流源となる第1のpMOSトランジスタ235aと、ソースが第1のpMOSトランジスタ235aのドレインと接続され、ゲートが基準電位VREFを受けるpMOSトランジスタからなる第1の駆動トランジスタ235bと、ソースが第1のpMOSトランジスタ235aのドレインと接続され、ゲートがDSG電位を受けるpMOSトランジスタからなる第2の駆動トランジスタ235cと、ゲート及びドレインが第1の駆動トランジスタのドレインと共通接続され、ソースが接地された第1のnMOSトランジスタ235dと、ゲートが第1のnMOSトランジスタ235dと共有され、ドレインが第2の駆動トランジスタ235cのドレインと共通接続され、ソースが接地された第2のnMOSトランジスタ235eとからなる差動増幅回路を有している。ここで、第1のnMOSトランジスタ235d及び第2のnMOSトランジスタ235eは、いわゆるカレントミラー回路を構成しており、第2の駆動トランジスタ235c及び第2のnMOSトランジスタ235eの共通ドレインからは出力信号AMPOが出力される。さらに、DSGレベル検出回路235は、ゲートが検出回路制御信号NAMPを受け、受けた検出回路制御信号NAMPがハイレベルのとき、すなわち差動増幅器が非活性状態のときに、出力信号AMPOをローレベルに固定する第3のnMOSトランジスタ235fを有している。
【0064】
このように構成された差動増幅器は、ローレベルの検出回路制御信号NAMPを受けて活性化されると、基準電位VREFとDSG電位との電位差を検出する比較回路として機能し、比較した結果である出力電位が出力信号AMPOとして出力される。
【0065】
シュミットトリガー回路236は、入力端子がDSGレベル検出回路235からの出力信号AMPOを受け、該出力信号AMPOの極性が反転されてなる検出信号DETを出力する第1のpMOSトランジスタ236a及び第1のnMOSトランジスタ236bからなる第1のインバータ回路と、入力端子が検出信号DETを受け、該検出信号DETの極性が反転されてなるトリガー出力信号PSGを出力する第2のpMOSトランジスタ236c及び第2のnMOSトランジスタ236dからなる第2のインバータ回路と、ソースが電源電位VDDと接続され、ドレインが第1のインバータ回路の出力端子及び第2のインバータ回路の入力端子の間に接続され、ゲートが第2のインバータ回路の出力端子に接続された第3のpMOSトランジスタ236eとを有している。この第3のpMOSトランジスタ236eによる帰還作用により、検出信号DETとトリガー出力信号PSGとの反転動作が遅れるため、トリガー出力信号PSGにはヒステリシス特性が付与される。
【0066】
通常の動作時においては、DSGレベル検出回路235からの出力信号AMPOのハイレベルの電位が電源電位VDDにまで達しないため、第1のインバータ回路の貫通電流を低減する必要があるので、第1のpMOSトランジスタ236aのトランジスタサイズは、第1のnMOSトランジスタ236bのトランジスタサイズよりも小さい。
【0067】
DSGプリチャージ回路237は、それぞれが、一方の入力端子にトリガー出力信号PSGを受け、他方の入力端子に外部から入力される第1のメモリ容量指定信号MEM0、第2のメモリ容量指定信号MEM1及び第3のメモリ容量指定信号MEM2をこの順に受ける第1のNAND回路237a、第2のNAND回路237b及び第3のNAND回路237cを有している。さらに、それぞれ、ソースが電源電位VDDを受け、ドレインがDSG電位を出力し、ゲートが第1〜第3のNAND回路237a〜237cの出力をこの順に対応して受けることにより選択的に活性化される、第1のpMOSトランジスタ237d、第2のpMOSトランジスタ237e及び第3のpMOSトランジスタ237fを有している。
【0068】
本実施形態においては、DSGドライバ回路231における第1のnMOSトランジスタ231a及び第2のnMOSトランジスタ231bの基板には、サブスレショルドリーク電流の低減を図るため、電位が約−1.0Vであるバックゲート電位VBBが印加されており、これにより、サブスレショルドリーク電流に起因するDSG電位の低下を抑制している。
【0069】
また、リファレンス電位生成回路234において、基準電位VREFがDSG電位とほぼ同等の電位となるように、第1のnMOSトランジスタ234bの基板にも同等のバックゲート電位VBBが印加されている。
【0070】
ここで、DSGレベル検出回路235、シュミットトリガー回路236及びDSGプリチャージ回路237の各回路の動作について図5に示す特性曲線を参照しながら説明する。
【0071】
まず、DSGレベル検出回路235は、DSG電位と基準電位VREFとの電位差を検出して比較する比較回路であって、DSG電位が基準電位VREFと比べて、低いときにはハイレベルの出力信号AMPOを出力し、高いときにはローレベルの出力信号AMPOを出力する。DSG電位が基準電位VREFと近い電位で推移する場合には、出力信号AMPOは電源電位VDDと接地電位VSSとの中間電位となる。
【0072】
次に、シュミットトリガー回路236は、第3のpMOSトランジスタ236eを介した帰還作用によるヒステリシス特性を有し、DSGレベル検出回路235からの出力信号AMPOを受け、該出力信号AMPOの立ち上がりと立ち下がりとに対してそれぞれ異なる閾値を有するトリガー出力信号PSGを出力する。
【0073】
次に、DSGプリチャージ回路237は、トリガー出力信号PSGを受け、受けたトリガー出力信号PSGにより複数の電流源となる第1〜第3のpMOSトランジスタ237d〜237fのうちの少なくとも1つを活性化させてDSG電位を補償(プリチャージ)する。
【0074】
図5に示すように、これらの回路により、例えばDSG電位が接地電位VSSであった場合に、DSGレベル検出回路235の出力信号AMPOとシュミットトリガー回路236のトリガー出力信号PSGとがハイレベルとなるためDSG電位が上昇する。このDSG電位がDSGドライバ回路231の第1のnMOSトランジスタ231aの閾値電位とほぼ等しい電位である第1の閾値電位VTN1にまで上昇すると、DSGプリチャージ回路237のプリチャージ動作は停止する。
【0075】
逆に、リーク電流等により、DSG電位が第1の閾値電位VTN1よりも高い状態から低下する場合には、DSG電位が第1の閾値電位VTN1よりも低い第2の閾値電位VTN2まで下がった時点で、DSGプリチャージ回路237によりプリチャージ動作が開始され、DSG電位を第1の閾値電位VTN1にまで上昇させる。
【0076】
以下、前記のように構成された半導体記憶装置の動作について図面を参照しながら説明する。
【0077】
図6は本実施形態に係る半導体記憶装置であるDRAMのタイミングチャートを示している。ここでは、図3に示すメモリセル51のうち、ローレベルが書き込まれたメモリセルAのデータを読み出す場合のセンスアンプ回路201及びセンスアンプグランド回路23の動作について説明する。本実施形態に係るDRAMは、外部から入力されるRAS(ロウアドレスストローブ)信号に同期した内部ストローブ信号/RASを図2に示すロウデコーダ40及びセンスアンプ制御ブロック42の起動信号として用いる。
【0078】
まず、図6に示す第1の期間T1において、内部ストローブ信号/RASがハイレベル状態であって、DRAMのプリチャージ期間に相当する。このプリチャージ期間中は第1のシェアードゲート信号SS1及び第2のシェアード信号SS2が共にハイレベルであるため、図3に示す第1のトランスファートランジスタ207及び第2のトランスファートランジスタ208が共にオン状態となるので、センスアンプ201の両側部から外側に延びるビット線対BL,/BL同士が電気的に接続される。
【0079】
また、イコライズ信号EQもハイレベルであるため、センスアンプ回路201のプリチャージ用nMOSトランジスタ203及びイコライズ用nMOSトランジスタ204がオン状態となるので、各ビット線対BL,/BLはプリチャージ電位VBPにプリチャージされる。同様に、センスアンプドライバ回路21においても、プリチャージ用nMOSトランジスタ214及びイコライズ用nMOSトランジスタ215がオン状態であり、且つ、センスアンプ駆動信号SEがローレベルの非活性状態であるため、nMOSスイッチトランジスタ211及びpMOSスイッチトランジスタ213は共にオフ状態であり、センスアンプ用電源電位SAP及びセンスアンプ用グランド電位SANは共にプリチャージ電位VBPにプリチャージされる。
【0080】
一方、図4に示すセンスアンプグランド回路23において、センスアンプ駆動信号SEがローレベル状態であるため、制御信号発生回路232からの接地電位制御信号NSGがハイレベルとなり、ダイナミックセンスアンプグランド電位DSGは、オン状態にある第2のnMOSトランジスタ231bによって第1の電位である接地電位と短絡される。
【0081】
リファレンス電位生成回路234において、第2のnMOSトランジスタ234cはセンスアンプ駆動信号SEのローレベルによりオフ状態であるため、基準電位VREFは、ほぼ電源電位VDDとなる。
【0082】
また、制御信号発生回路232からの検出回路制御信号NAMPがハイレベルであるため、DSGレベル検出回路235の差動増幅器は非活性状態となり、さらに、オン状態の第3のnMOSトランジスタ235fにより、出力信号AMPOがローレベルに固定される。このローレベルの出力信号AMPOによりトリガー出力信号PSGもローレベルとなるので、第1〜第3のpMOSトランジスタ237d〜237fはすべてオフ状態となる。
【0083】
このように、第1の期間T1に示すプリチャージ期間において、センスアンプグランド回路23は、ダイナミックセンスアンプグランド電位DSGを接地電位とし、その上、制御信号発生回路232、リファレンス電位生成回路234、DSGレベル検出回路235、シュミットトリガー回路236及びDSGプリチャージ回路237のいずれにも定常的な電流が流れないため、電流の消費が行なわれない。
【0084】
次に、第2の期間T2の動作について説明する。
【0085】
図6に示すように、時刻taにおいて内部ストローブ信号/RASがハイレベルからローレベルに遷移し、所定時間後の時刻tbにおいて、例えば第2のシェアードゲート信号SS2がハイレベルからローレベルに遷移することにより、図3に示す第2のトランスファートランジスタ208がオフ状態となる。このように、第1又は第2のシェアードゲート信号SS1,SS2は、プリチャージ期間以外のタイミングで、センスアンプ回路201に対して該センスアンプ回路201の両側部から延びるビット線対BL,/BLのうちのいずれか一方の接続を開放する制御を行なう。
【0086】
さらに、時刻tbにおいて、イコライズ信号EQがハイレベルからローレベルに遷移するため、ビット線対BL,/BL同士のプリチャージ動作、及びセンスアンプ用電源電位SAPとセンスアンプ用グランド電位SANとの間のプリチャージ動作が停止する。
【0087】
次に、時刻tbから所定時間後の時刻tcにおいて、図3に示す複数のワード線WLnのうち、図2に示すロウデコーダ40によりワード線WL1が選択されて該ワード線WL1の電位がローレベルからハイレベルに遷移すると、メモリセルAのメモリセルトランジスタ51aがオン状態となって、ビット相補線/BLとメモリセルキャパシタ51bとの間で蓄積電荷量の電荷再配分が行なわれる。
【0088】
本実施形態においては、メモリセルAにローレベルを保持している場合を想定しているため、このビット相補線/BLの電位はワード線WL1が選択された後に、プリチャージ電位VBPよりも若干低い電位で安定する。また、図2に示すワード線駆動用のワード線ドライバ41はワード線WLnの昇圧を行なわないため、ワード線WL1のハイレベルは電源電位VDDと等しい。時刻tcにおいては、センスアンプ駆動信号SEがローレベルであるため、DSG電位は接地電位VSSと短絡されたままである。
【0089】
次に、第3の期間T3の動作について説明する。
【0090】
時刻tcから所定時間後の時刻tdにおいて、センスアンプ駆動信号SEがローレベルからハイレベルに遷移すると、図3に示すセンスアンプドライバ回路21のnMOSスイッチトランジスタ211及びpMOSスイッチトランジスタ213が共にオン状態となる。その結果、センスアンプドライバ回路21の2本の駆動線のうち、SAP用配線にはpMOSスイッチトランジスタ213を介して電源電位VDDが供給されると共に、SAN用配線にはnMOSスイッチトランジスタ211を介してDSG電位が供給されるため、2組のpMOSトランジスタ202p及びnMOSトランジスタ202nにより構成されるセンスアンプ回路201が活性化され、これにより、ビット線対BL,/BL間に生じている微小な初期電位差が増幅される。
【0091】
また、図4に示すリファレンス電位生成回路234の第2のnMOSトランジスタ234cは、センスアンプ駆動信号SEの活性化によってオン状態となる。これにより、第2のnMOSトランジスタ234cと比べて電流駆動能力が小さいpMOSトランジスタ234aによってハイレベルに固定されていた基準電位VREFは、第2のnMOSトランジスタ234cの閾値電位(=VTN3)にまで低下する。このとき、図6に示すように、DSG電位は、複数のセンスアンプ回路201が同時に活性化されることにより瞬間的にDSGノードに対して大きな電流が流れ込むため、接地電位VSSから若干の電圧上昇を示す。
【0092】
次に、時刻tdから、図4に示す制御信号発生回路232の遅延回路232aが持つ遅延時間の1ns経過した後の時刻teにおいて、内部制御信号NSGがハイレベルからローレベルに遷移するため、DSGドライバ回路231の第2のnMOSトランジスタ231bがオフ状態となる。このとき、NAND回路232bから出力される検出回路制御信号NAMPがハイレベルからローレベルに遷移することにより、DSGレベル検出回路235における第3のnMOSトランジスタ235fがオフ状態となる一方、第1のpMOSトランジスタ235aがオン状態となるため、DSGレベル検出回路235が活性化される。
【0093】
次に、第3の期間T3における時刻teから時刻tfの間の期間において、活性化されたDSGレベル検出回路235が、基準電位VREFとDSG電位とを比較する。時刻teの直後は、DSG電位がVREF電位よりも低いため、DSGレベル検出回路235の出力信号AMPOがハイレベルとなると共に、シュミットトリガー回路236を介してトリガー出力信号PSGがハイレベルとなるため、DSGプリチャージ回路237は、DSGノードに対してプリチャージ電流の供給し始める。その結果、このプリチャージ電流とセンスアンプ回路201から流れ込む電流とによって、DSG電位は速やかに上昇する。このとき、第1〜第3のメモリ容量指定信号MEM0〜MEM2のうちの少なくとも1つはオン状態にある。
【0094】
次に、第4の期間T4の動作について説明する。
【0095】
時刻tfにおいて、DSG電位が第1の閾値電位VTN1を超えて上昇すると、トリガー出力信号PSGがローレベルとなるため、DSGプリチャージ回路237からの電流供給が停止する。また、この時点でビット相補線/BLの電位がDSG電位とほぼ同程度に下がっているため、センスアンプ回路201からDSGノードに流れ込む電流量が少なくなるので、DSG電位の上昇は第2の電位である第1の閾値電位VTN1の近傍で停止する。
【0096】
ここで、第1の閾値電位VTN1の値は、シュミットトリガー回路236において、DSGドライバ回路231の第1のnMOSトランジスタ231aの閾値とほぼ同一となるように設定されており、時刻tf以後のDSG電位は、この第1のnMOSトランジスタ231aのクランプ作用によって第1の閾値電位VTN1付近の電位に保持される。
【0097】
さらに、第4の期間T4において、いったん第1の閾値電位VTN1にまで上昇したDSG電位は、その後、第1のnMOSトランジスタ231aのサブスレショルドリーク電流によって徐々にその電位が低下する。従って、DSG電位が第2の閾値電位VTN2よりも低くなると、DSGレベル検出回路235がこの低下したDSG電位を検出し、再度、DSGプリチャージ回路237を活性化させてDSG電位を第1の閾値電位VTN1にまで昇圧する動作を行なう。この昇圧動作は第4の期間T4に間欠的に繰り返されるため、DSG電位は第2の閾値電位VTN2と第1の閾値電位VTN1との間の電位に保たれる。
【0098】
また、センスアンプ回路201がビット線対BL,/BL間の電位差を増幅する増幅動作を完了することにより、低電位側のビット相補線/BLの電位は、センスアンプ用グランド電位SAN、すなわちDSG電位と同等となり、第2の閾値電位VTN2と第1の閾値電位VTN1との間の電位となる。一方、高電位側のビット線BLの電位は、SAP用配線から供給されるVDD電位に対して、第1のトランスファートランジスタ207の閾値電位分だけ降下した電位となる。
【0099】
次に、第5の期間T5の動作について説明する。
【0100】
第4の期間T4の終了間際において、内部ストローブ信号/RASがローレベルからハイレベルに遷移し、その後の時刻tgにおいて、ワード線信号WL1がハイレベルからローレベルに遷移し、メモリセルトランジスタ51aがオフ状態となると、該メモリセルトランジスタ51aを介して電気的に接続状態であったビット相補線/BLとメモリセルキャパシタ51bとの間の電気的な接続関係が絶たれるため、時刻tgにおけるビット相補線/BLの電位がメモリセルAの記憶電位として保持される。
【0101】
本実施形態のように、ビット相補線/BLがビット線対BL,/BLの低電圧側であると、メモリセルAの記憶電位は時刻tgにおけるDSG電位と等しくなり、従って、第2の閾値電位VTN2と第1の閾値電位VTN1との間の電位となる。
【0102】
次に、時刻tgから所定時間後の時刻thにおいて、センスアンプ駆動信号SEがハイレベルからローレベルに遷移する。これにより、図4に示すリファレンス電位生成回路234の第2のnMOSトランジスタ234cがオフ状態となり、基準電位VREFはpMOSトランジスタ234aを介して流れ込む電流によって電源電位VDDに昇圧される。
【0103】
同時に、制御信号発生回路232からの検出回路制御信号NAMPがローレベルからハイレベルに遷移するため、DSGレベル検出回路235が非活性状態となる。
【0104】
次に、時刻thから所定時間後の時刻tiにおいて、第2のシェアードゲート信号SS2がローレベルからハイレベルに遷移するため、図3に示す第2のトランスファートランジスタ208がオン状態となる。このとき、イコライズ信号EQもローレベルからハイレベルに遷移するため、ビット線対BL,/BLはプリチャージ電位VBPにプリチャージされると共に、SAN用配線及びSAP用配線もプリチャージ電位VBPにプリチャージされる。
【0105】
次に、第6の期間T6の動作について説明する。
【0106】
時刻thから1nsの経過後の時刻tjにおいて、図4に示す接地電位制御信号NSGがローレベルからハイレベルに遷移する。これにより、DSGドライバ回路231の第2のnMOSトランジスタ231bがオン状態となり、DSG電位が接地電位VSSとなるため、これまでDSG電位配線に蓄積されていた電荷は接地電位側に引き抜かれる。この後の第6の期間T6における回路の動作状態は、前述した第1の期間T1における動作状態と同様である。
【0107】
以下、本実施形態に係る半導体記憶装置の動作状態に合わせて、動的に変化するDSG電位の効果を説明する。
【0108】
図7(a)及び(b)は本実施形態に係るダイナミックセンスアンプグランド(DSG)電位の変化の様子を表わすグラフであって、(a)は比較用にDSG電位を接地電位に固定した場合を表わし、(b)は本実施形態に係るセンスアンプグランド回路を用いた場合のDSG電位を表わしている。図7(a)及び(b)は、それぞれ、センスアンプ回路の駆動時のビット線対BL,/BL、センスアンプ用グランド電位SAN及びセンスアンプ用電源電位SAPの電位波形を比較している。ここで、図7(a)及び(b)に示す時刻tc,td,teの各タイミングは図6に示した時刻と同一である。
【0109】
図7(b)に示すように、センスアンプ回路201の駆動タイミングである時刻tdからセンスアンプグランド回路23のDSGレベル検出回路235の活性化時刻である時刻teまでの間が1nsと極めて短時間であるため、ビット線対BL,/BLのうちのローレベルの電位がnMOSトランジスタの閾値電位VTNの電位を大きく下回ることがない。これにより、例えば、図16に示すメモリセル500におけるメモリセルトランジスタ502の第1のバイアス電圧値VGS1はおよそVTN以上に常時保たれることとなる。
【0110】
前述したように、図16に示す第1のバイアス電圧値VGS1は、ワード線WLがローレベルであって、非選択状態にあるメモリセルトランジスタ502のゲートからドレイン方向のバイアス電圧値を示しており、チャネル方向を流れるサブスレショルドリーク電流は、この第1のバイアス電圧値VGS1が大きいほど、指数関数的に小さくなる。サブスレショルドリーク電流は、メモリセルキャパシタ501の保持データを破壊する方向に流れるため、本実施形態に係るセンスアンプグランド回路23を用いることによって第1のバイアス電圧値VGS1を大きく確保でき、サブスレショルドリーク電流を低減できる。その結果、DRAMの電荷保持特性の向上を図れる。
【0111】
また、図16に示す第2のバイアス電圧値VGS2は、前述したように、センスアンプ回路510の第1のn型トランジスタ511nのソースからゲート方向のバイアス値を示しており、一般的なクロスカップル型のセンスアンプ回路510においては、該センスアンプ回路510の動作開始時点における第2のバイアス電圧値VGS2が小さいほどセンスアンプ回路510の動作スピードは低下する。
【0112】
さらに、第2のバイアス電圧値VGS2の値が第1のn型トランジスタ511nの閾値よりも大きいことがセンスアンプ回路510の動作条件であるが、電源電圧値が小さいほど第2のバイアス電圧値VGS2が小さくなり、通常動作時の第2のバイアス電圧値VGS2が小さくなるほどDRAMの低電圧動作が困難となる。
【0113】
しかしながら、本実施形態に係るセンスアンプグランド回路23を用いた場合には、センスアンプ回路201が活性化された直後の時刻tdから時刻teまでの期間に、DSG電位、ビット相補線/BLの電位及びセンスアンプ用グランド電位SANがそれぞれ変化する様子は、図7(a)に示すDSG電位を接地電位に固定する方法と同一であり、従って、センスアンプ回路201の動作開始直後における第2のバイアス電圧値VGS2は互いに等しい。
【0114】
これにより、本実施形態に係るセンスアンプグランド回路23は、センスアンプ回路201の動作スピードを低下させることがなく、また、第2のバイアス電圧値VGS2が十分に大きいため、動作下限電圧を確実に小さくできる。
【0115】
その上、センスアンプグランド回路23は、センスアンプ回路201が非活性状態のときにDSG電位を接地電位VSSと短絡することにより、制御信号発生回路232、リファレンス電位生成回路234、DSGレベル検出回路235、シュミットトリガー回路236及びDSGプリチャージ回路237の回路群をすべて非活性状態とするため、定常的な電流消費が行なわれない。これにより、本実施形態に係るセンスアンプグランド回路23は、DRAMのスタンバイ状態におけるDSG電位の生成に関わる消費電流を大幅に削減できる。
【0116】
また、図7(b)に示すように、時刻teにおいてDSGプリチャージ回路237を活性化させることにより、DSG電位の昇圧を開始するが、時刻teにおいてはビット相補線/BLの電位がDSG電位まで下がっておらず、センスアンプ回路201からDSGノードに電流が流れ込んでいる状態である。このように、センスアンプ回路201からDSGノードに電流が流れ込んでいる状態のまま、DSGドライバ回路231の第2のnMOSトランジスタ231bをオフ状態とするため、続いてセンスアンプ回路201から流れ込む電荷はDSG電位配線に蓄積されて、DSG電位のプリチャージ動作に寄与することとなる。
【0117】
実際のDRAMにおいては、センスアンプ回路201から流れ込む電流量は非常に大きいため、DSG電位のプリチャージに寄与する電荷の大部分はセンスアンプ回路201から供給される。センスアンプ回路201から流れ込む電流は、プリチャージ期間にビット線対BL,/BLに蓄積されていた電荷の放出により生じ、時刻teにおいてDSG電位の昇圧に必要な大部分の電流をこの放出電荷を用いて行なうことにより、DSG電位の切り替えに伴う新たな電力消費を極力抑えることができる。
【0118】
以上説明したように、本実施形態に係る半導体記憶装置によると、メモリセル51、ビット線対BL,/BL及びセンスアンプ回路201に印加される低レベル電位、すなわちセンスアンプ用グランド電位SANを動的に且つ積極的に変化させるダイナミックセンスアンプグランド電位DSGを生成して出力するセンスアンプグランド回路23を備えており、該センスアンプグランド回路23は、センスアンプ回路201が活性化された直後の所定期間(時刻tdからteまでの1ns間)は、DSG電位をほぼ接地電位VSSに保持し、所定期間経過後に、センスアンプ回路201からの放出電荷を取り込みながら、ビット線対BL,/BLのローレベル側の電位を昇圧する。従って、センスアンプ回路201の活性化直後に必要な前述の第2のバイアス電圧値VGS2を十分に大きくできるため、センススピード及び動作下限電圧が犠牲とならず、且つ、非選択のメモリセル51に対しても前述の第1のバイアス電圧値VGS1を十分に大きくできるため、メモリセル51の電荷保持特性が劣化しない。
【0119】
また、ビット線対BL,/BLのプリチャージ期間には、センスアンプグランド回路23はDSG電位を接地する以外に電流を消費しないため、従来の昇圧センスアンプグランド方式と比べてDRAM全体の消費電流が少なくなる。
【0120】
以下、図4に示すDSGプリチャージ回路237に対して外部から入力される第1のメモリ容量指定信号MEM0、第2のメモリ容量指定信号MEM1及び第3のメモリ容量指定信号MEM02の使用方法及びその効果について図面を参照しながら説明する。
【0121】
本実施形態に係るDRAMは、メモリセルアレイブロック10の物理的なメモリ容量値が変更可能なDRAMを想定している。従って、これら第1〜第3のメモリ容量指定信号MEM0〜MEM2はメモリ容量値を変更する制御信号として用いられる。
【0122】
図8は本実施形態に係るDSGプリチャージ回路237に対する各MEM信号の設定方法の一例を示し、3つのMEM信号の7通りの組み合わせを示している。例えば、第1のメモリ容量指定信号MEM0のみがハイレベルの場合には、メモリ容量を1Mビット又は2Mビットとして指定し、第2のメモリ容量指定信号MEM1のみがハイレベルの場合には、メモリ容量を3Mビットでとして指定する。また、pMOSTr.237d、pMOSTr.237e及びpMOSTr.237fは、図4に示す第1〜第3のpMOSトランジスタ237d〜237fとそれぞれ対応しており、それらのゲート幅は順に200μm、400μm及び800μmであって、第3のpMOSトランジスタ237fの電流供給能力が最も大きくなるように構成されている。ここで、トリガー出力信号PSGがハイレベルの際に活性化されるトランジスタには活性状態を示す○印を付し、活性化されないトランジスタには非活性状態を示す×印を付している。
【0123】
このように複数のメモリ容量指定信号MEM0〜MEM2が入力されるセンスアンプグランド回路23は、DRAMのメモリ容量ごとにDSGプリチャージ回路237の電流供給能力を変更できるため、メモリ容量によってDSG電位の配線容量値が変化する場合であっても、DSG電位のプリチャージ能力を最適化し、消費電力の増加を抑えることができる。
【0124】
次に、メモリ容量指定信号MEMの使用方法の一変形例を説明する。
【0125】
外部から入力されたカラムアドレスにより複数のセンスアンプ回路201が選択的に活性化される際のセンスアンプ回路201の個数に応じてDSGプリチャージ回路237の電流供給能力を切り替えることも可能であり且つ有効である。
【0126】
複数のセンスアンプ回路201のうち、通常読み出し動作又はリフレッシュ動作時に一のタイミングで活性化されるセンスアンプ回路201の個数が変更可能なDRAMにおいては、同時に活性化されるセンスアンプ回路201の個数が少ないほど、図7(b)に示す時刻te直後のDSG電位の上昇が遅くなるため、時刻tdから時刻teまでの間にビット線のローレベル側の電位が第1の閾値電位VTN1を下回る期間が相対的に長くなるので、ポーズタイムの向上効果が弱まるおそれがある。
【0127】
しかしながら、本変形例においては、第1〜第3のメモリ容量指定信号MEM0〜MEM2を適当に組み合わせることにより、同時に活性化されるセンスアンプ回路201の個数に応じてDSGプリチャージ回路237の電流供給能力を選択できるため、DSG電位の上昇速度を所定値に保つことができるので、より確実に電位保持特性の向上を図ることができる。
【0128】
なお、本実施形態においては、図3に示すようにクロスカップル型のセンスアンプ回路201を例に挙げたが、これに限らず、メモリセルとビット線との電位を決定し、ビット線に読み出された微小な電位差を増幅する回路であればよく、例えば、カレントミラー型や電流検値型の回路構成であってもよい。
【0129】
同様に、図3に示すビット線対BL,/BLのプリチャージ用nMOSトランジスタ203又はイコライズ用nMOSトランジスタ204の接続位置や、第1のデータ線60とビット線BLとの間又は第2のデータ線61とビット相補線/BLとの間の接続方法等も本実施形態の構成に限定するものではなく、その動作として本質を大きく逸脱しない限り他の信号とのレーシング関係が前後しても構わない。
【0130】
また、図4に示すセンスアンプグランド回路23における、リファレンス電位生成回路234又はシュミットトリガー回路236は、ブロックレベルでの構成と動作との説明に過ぎず、トランジスタレベルでの構成は限定されない。
【0131】
また、バックゲート電位VBBを約−1.0Vに設定したが、この電位と異なる場合、例えば、バックゲート電位VBBを接地電位としても本発明の本質を損なうものではなく、その電位は適当な値に設定可能である。
【0132】
以上、本発明に係る第1の実施形態について説明したが、本発明はこの実施形態に限定されることなく、本発明の精神を逸脱しない範囲において種々の設計変更をなし得ることはいうまでもない。
(第2の実施形態)
以下、本発明の第2の実施形態について図面を参照しながら説明する。
【0133】
図9は本発明の第2の実施形態に係る半導体記憶装置であるDRAMチップのレイアウト構成を示している。図9に示すように、DRAMチップ300の主面上には、外部とのデータの入出力を制御する回路群を含むインターフェイス回路ブロック301と、マトリクス状に設けられる複数のメモリセルのうちのカラム方向のメモリセルを制御する回路群を含むカラム制御ブロック302と、マトリクス状に設けられる複数のメモリセルのうちのロウ方向のメモリセルを制御する回路群を含むロウ制御ブロック303と、複数のメモリセルアレイブロック等を有するメモリコアブロック304と、センスアンプ回路等の低レベル電位であるダイナミックセンスアンプグランド電位DSGを生成するセンスアンプグランド回路305と、DSG電位をセンスアンプ回路等に供給するDSGドライバ回路306とが形成されている。
【0134】
メモリコアブロック304は、カラム制御ブロック302が延びる方向に互いに間隔をおいて設けられ、それぞれが複数のセンスアンプ回路及びセンスアンプドライバ回路を含む複数のセンスアンプブロック307と、各センスアンプブロック307同士の間に設けられ、それぞれがマトリクス状に設けられた複数のメモリセルを有する複数のメモリセルアレイブロック308とから構成されている。
【0135】
DSGドライバ回路306は、第1の実施形態の図4に示したDSGドライバ回路231に対応し、メモリコアブロック304とカラム制御ブロック302との間、及びメモリコアブロック304におけるカラム制御ブロック302と対向する側の側部に隣接するように設けられている。
【0136】
センスアンプグランド回路305は、第1の実施形態の図4に示した制御信号発生回路232及びDSG電位補償回路233に対応している。
【0137】
図9において、311はDRAMチップ300における配線層のロウ方向に互いに間隔おいて延び、例えばセンスアンプ回路の配置間隔と同程度から3倍程度までの比較的小さい間隔で複数本形成されたメタル配線からなる第1のDSG電位配線であり、312はDRAMチップ300における配線層のカラム方向に延びるように形成され、第1のDSG電位配線311との交差部において電気的に接続されたメタル配線からなる第2のDSG電位配線であり、313はセンスアンプグランド回路305及びDSGドライバ回路306の上層にカラム方向に延びるように形成され、第1のDSG電位配線311と電気的に接続された第3のDSG電位配線である。
【0138】
314はセンスアンプグランド回路305及びDSGドライバ回路306の上層にカラム方向に延びるように形成され、該センスアンプグランド回路305及びDSGドライバ回路306間の内部制御信号NSGを伝送するメタル配線からなる第1のNSG信号配線であり、315はメモリコアブロック308の上層にロウ方向に延びるように形成され、第1のNSG電位配線314と電気的に接続されたメタル配線からなる第2のNSG電位配線である。ここで、後述するように、第1のNSG電位配線314及び第2のNSG電位配線315はDRAMチップ300の第2層メタル配線として形成され、第1〜第3のDSG電位配線311〜313はDRAMチップ300の第3層メタル配線として形成されている。
【0139】
このように、本実施形態においては、DSGドライバ回路306をメモリコアブロック304の両側部に設けていることを特徴とする。
【0140】
本実施形態に係る第1〜第3のDSG電位配線311〜313は、図6に示した第1の実施形態と同様に、センスアンプ駆動タイミングである時刻tdと所定時間後の時刻teにおいて、DSGドライバ回路306により接地電位VSSに短絡されている。しかしながら、同時に活性化される多数のセンスアンプ回路から瞬時に流れ込む大電流が各DSG電位配線311〜313の配線抵抗により電位降下を生じさせるため、DSG電位は、とりわけ活性化されたセンスアンプ回路の近傍で若干の電位上昇を示す。この電位上昇は、DSGドライバ回路306からの距離が相対的に大きく、各DSG電位配線311〜313の配線抵抗成分が大きくなる箇所で顕著となる。その結果、電位上昇が過大となる場合には、センスアンプ回路が活性化された直後に、図16に示す第2のバイアス電圧値VGS2が低下するため、センスアンプ回路の駆動能力を劣化させる要因となる。
【0141】
この電位上昇を抑えるには、各DSG電位配線311〜313の配線抵抗成分をできる限り小さくする必要があり、本実施形態に係るDRAMチップ300においては、各DSG電位配線311〜313を網目状の構造として配線抵抗を下げると共に、DSGドライバ回路306をメモリコアブロック304の両側部に配置する構成としている。
【0142】
このように、DSGドライバ回路306をメモリコアブロック304の両側部に設けると、いずれか一方の側部にのみ設ける場合と比較して、DSGドライバ回路306からセンスアンプ回路までの平均距離が半分となると共に、センスアンプ回路から流れ出す電流が両方のDSGドライバ回路306に分散して流れるため、各DSG電位配線311〜313の抵抗成分を実効的に半分以下に抑えることができる。
【0143】
また、このようなレイアウト構成を採ると、例えば、複数のセンスアンプブロック307のうちのBに含まれるすべてのセンスアンプ回路が同時に活性化された場合には、いずれのセンスアンプ回路からも等距離となるようにDSGドライバ回路306が配置されているため、センスアンプ回路とDSGドライバ回路306との間の各DSG電位配線311〜313の抵抗値が実質的に等しくなる。その結果、同時に活性化されたセンスアンプ回路の動作特性にばらつきが生じにくくなるため、DRAMの読み出し動作又は書き込み動作が安定する。
【0144】
図10は本実施形態に係るDRAMチップの部分的な断面構成であって、図9に示すDRAMチップ300のC−C線におけるパッケージ封止後の半導体基板並びにその主面上に形成された素子及び配線構造を示している。図10において、領域D1はDSGドライバ回路306のトランジスタの断面構成を示し、領域D2はセンスアンプブロック307におけるセンスアンプドライバ回路のトランジスタの断面構成を示している。
【0145】
領域D1における領域E1及び領域E2は、第1の実施形態の図4に示したDSGドライバ回路231における第2のnMOSトランジスタ231b及び第1のnMOSトランジスタ231aとそれぞれ対応している。領域D2における領域E3、E4及びE5は、第1の実施形態の図3に示したセンスアンプドライバ回路21におけるnMOSスイッチトランジスタ211、イコライズ用nMOSトランジスタ215及びpMOSスイッチトランジスタ213とそれぞれ対応している。
【0146】
図10に示すように、例えば、シリコンからなる半導体基板350には、n型ウェル領域351が形成され、該n型ウェル領域351にはp型ウェル領域352が選択的に形成されている。
【0147】
半導体基板350の主面上には、絶縁膜等からなる素子分離領域353が選択的に形成されており、半導体基板350における領域E1,E2,E3及びE4の各上部には、それぞれ互いに間隔をおいてn型拡散領域354が形成されており、領域E5の上部には、互いに間隔をおいてp型拡散領域355が形成されている。
【0148】
また、半導体基板350の主面上における各拡散領域354及び355内の領域間を跨ぐように、領域E1から順にポリシリコンからなる絶縁ゲート電極356A,356B,356C,356D及び356Eがそれぞれ形成されている。
【0149】
半導体基板350の上に全面にわたって形成された第1の層間絶縁膜357の上面には、該第1の層間絶縁膜357に設けられたコンタクトと接続する第1層メタル配線358A〜358Eが形成されており、配線358A及び358Cは接地電位VSSを供給するVSS電位配線を示し、配線358BはDSG電位を供給するDSG電位配線を示し、358Dはイコライズ信号を供給するEQ信号配線を示し、358Eは電源電位VDDを供給するVDD電位配線を示している。
【0150】
第1層メタル配線358A〜358Eの上に全面にわたって形成された第2の層間絶縁膜359の上面には、該第2の層間絶縁膜359に設けられたビアを介して第1層メタル配線358A〜358Eと選択的に接続される第2層メタル配線360A〜360Eが形成されており、配線360AはDSGドライバ回路306の内部制御信号NSGを供給するNSG信号配線を示し、配線360Bはセンスアンプ駆動信号SEを供給するSE信号配線を示し、配線360Cはセンスアンプ用グランド電位SANを供給するSAN電位配線を示し、配線360Dはセンスアンプ用電源電位SAPを供給するSAP電位配線を示し、配線360Eはセンスアンプ駆動信号SEの相補信号/SEを供給する/SE信号配線を示している。
【0151】
第2層メタル配線360A〜360Eの上に全面にわたって形成された第3の層間絶縁膜361の上面には、該第3の層間絶縁膜361に設けられたビアを介して第2層メタル配線360A〜360Eと選択的に接続された第3層メタル配線からなり、DSG電位を供給するDSG電位配線362が形成されている。このDSG電位配線362は、図9に示す第2のDSG電位配線312と対応している。
【0152】
なお、NSG信号配線360Aは、図9に示す第1のNSG電位配線314と対応し、図示されていない箇所においてゲート電極356Aと並列接続されて、該ゲート電極356Aの実効的な配線抵抗を抑えている。
【0153】
また、n型ウェル領域351には基板電位であるVDD電位が印加され、p型ウェル領域352には接地電位VSSよりも低いバックゲート電位VBBが印加されている。
【0154】
通常のDRAMにおいては、スタンバイ(待機)状態の消費電力を低減する目的で、メモリセルアレイブロックの全面並びにセンスアンプ回路及びセンスアンプドライバ回路のnMOSトランジスタ形成領域とにバックゲート電位VBBを印加したp型ウェルを用いている。また、本実施形態に係るDRAMチップ300は、前述の通り、オフリーク電流によるDSG電位の低下を緩和する目的でDSGドライバ回路のp型ウェル領域の全面にVBB電位を印加している。
【0155】
図11は図9に示すDRAMチップ300におけるC−C線を囲む領域Fを拡大したレイアウト構成を示している。図11において、図9に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。図11において、320はセンスアンプブロック307を構成するセンスアンプ回路を表わし、321はセンスアンプドライバ回路を表わしている。
【0156】
また、図11に示すDSGドライバ回路306、センスアンプブロック307及びメモリセルアレイブロック308における斜線を付した領域は、バックゲート電位VBBが印加されたp型ウェル領域を示している。従って、図11に示すように、センスアンプブロック307のセンスアンプ320及びセンスアンプドライバ321において、nMOSトランジスタはバックゲート電位VBBが印加されたp型ウェル領域に形成されているのに対し、pMOSトランジスタはn型ウェル領域に形成されている。
【0157】
互いに異なる導電型のウェル領域に形成されたトランジスタ同士は、ラッチアップ等の不具合を回避するため、互いに所定の間隔をおいて形成する必要がある。
【0158】
本実施形態においては、図9に示すように、DSGドライバ回路306をメモリコアブロック304の両側部に配置しており、DSGドライバ回路306とセンスアンプ320及びセンスアンプドライバ321が隣接することになるが、互いに隣接する領域においても、共にバックゲート電位VBB電位が印加されたp型ウェルが形成されているため、該ウェルを共有できる。その結果、トランジスタ同士を互いに間隔をおいて形成する必要がなくなるので、チップの集積度を向上させることができる。
(第3の実施形態)
以下、本発明の第3の実施形態について図面を参照しながら説明する。
【0159】
図12は本発明の第3の実施形態に係る半導体記憶装置におけるセンスアンプグランド回路の回路構成を示している。図12に示すセンスアンプグランド回路24は、ダイナミックセンスアンプグランド電位DSGを駆動し、接地電位生成部及び閾値電位生成部としてのDSGドライバ回路241と、接地電位制御部としての制御信号発生回路242と、電位補償部としてのDSG電位補償回路243とからなる。
【0160】
DSG電位補償回路243は、基準電位VREF2を生成する基準電位生成部としてのリファレンス電位生成回路244と、DSGドライバ回路241にDSG電位昇圧用の電流を供給する電流供給能力切替手段としてのDSGプリチャージ回路245と、ゲートが基準電位VREF2(VREF2ノード)と接続され、ドレインがDSGプリチャージ回路245と接続され、ソースがDSGドライバ回路241と接続され、DSG電位を検出するnMOSトランジスタからなるDSGレベル検出トランジスタ246とから構成されている。
【0161】
DSGドライバ回路241は、ゲート及びドレインがDSG電位のDSGノードと共通接続された閾値電位生成用半導体素子としての第1のnMOSトランジスタ241aと、該第1のnMOSトランジスタ241aと並列接続され、制御信号発生回路242からの接地電位制御信号NSGを受けてDSG電位を接地電位とする接地電位生成用半導体素子としての第2のnMOSトランジスタ241bとからなる。
【0162】
制御信号発生回路242は、センスアンプ駆動信号SEを受け、受けたセンスアンプ駆動信号SEに対して所定の遅延時間、例えば1nsの遅延時間が与えられた遅延信号を出力する遅延回路242aと、該遅延回路242aの出力信号を受け、受けた出力信号を反転させてなる接地電位制御信号NSGを出力するインバータ回路242bとからなる。
【0163】
リファレンス電位生成回路244は、入力端子が制御信号発生回路242からの内部制御信号NSGを受けるインバータ回路を構成するpMOSトランジスタ244a及び第1のnMOSトランジスタ244bと、ゲートとドレインとが該インバータ回路の出力端子及びDSGレベル検出トランジスタ246のゲートと共通接続された第2のnMOSトランジスタ244cと、ゲートとドレインとが第2のnMOSトランジスタ244cのソースと共通接続され、ソースが接地された第3のnMOSトランジスタ244dとからなる。ここで、pMOSトランジスタ244aのサイズは、第2のnMOSトランジスタ244c及び第3のnMOSトランジスタ244dのサイズよりも小さい構成とする。
【0164】
DSGプリチャージ回路245は、入力端子が外部から入力される第1のメモリ容量指定信号MEM0を受ける第1のインバータ回路245aと、入力端子が外部から入力される第2のメモリ容量指定信号MEM1を受ける第2のインバータ回路245bと、入力端子が外部から入力される第3のメモリ容量指定信号MEM2を受ける第3のインバータ回路245cとを有している。さらに、それぞれ、ソースが電源電位VDDを受け、ドレインがDSG電位を出力し、ゲートが第1〜第3のインバータ回路245a〜245cの出力をこの順に対応して受けることにより、第1の実施形態と同様にDRAMのコア構成又は動作仕様に適合するように選択的に活性化される第1のpMOSトランジスタ245d、第2のpMOSトランジスタ245e及び第3のpMOSトランジスタ245fを有している。
【0165】
本実施形態に係るDSGドライバ回路241における第1のnMOSトランジスタ241a及び第2のnMOSトランジスタ241bの基板には、−1.0V程度のバックゲート電位VBBが印加されているため、サブスレショルドリーク電流によるDSG電位の低下が抑制される。同様に、リファレンス電位生成回路244における第2のnMOSトランジスタ244c及び第3のnMOSトランジスタ244d並びにDSGレベル検出トランジスタ246の基板にも同様のバックゲート電位VBBが印加されており、基板にバックゲート電位VBBが印加された各nMOSトランジスタは、いずれも同一の閾値電圧VTNを有する。
【0166】
以下、前記のように構成されたセンスアンプグランド回路24の動作について図面を参照しながら説明する。
【0167】
図13は本実施形態に係るセンスアンプグランド回路24のタイミングチャートを示している。ここでは、本実施形態に係るセンスアンプグランド回路24を除くDRAMの構成は第1の実施形態の図2に示した構成と同等とする。また、図13に示す、内部ストローブ信号/RAS、第1及び第2のシェアードゲート信号SS1,SS2、イコライズ信号EQ、ワード線信号WL1、センスアンプ駆動信号SEは、いずれも図6に示した、それぞれ対応する信号と同等のタイミングとし、各タイミング時刻ta〜tjも同等の時間軸とする。
【0168】
第1の実施形態との相違点のみを説明すると、まず、DRAMのプリチャージ期間から時刻tdまでの間の期間は、センスアンプ駆動信号SEはローレベルであり、制御信号発生回路242から出力される接地電位制御信号NSGがハイレベルとなるため、リファレンス電位生成回路244のpMOSトランジスタ244aがオフ状態となり且つ第1のnMOSトランジスタ244bがオン状態となるので、基準電位VREF2は接地電位となる。
【0169】
DSGプリチャージ回路245は、第1〜第3のメモリ容量指定信号MEM0〜MEM2により選択された第1〜第3のpMOSトランジスタ245d〜245fの少なくとも1つが常にオン状態であるが、VREF2ノードが接地された状態であり、DSGレベル検出トランジスタ246がオフ状態となるため、DSGプリチャージ回路245はDSGドライバ回路241に対して電流の供給を行なわない。このとき、DSGドライバ回路241の第2のnMOSトランジスタ241bはハイレベルの接地電位制御信号NSGを受けているため、DSG電位は接地電位VSSとなる。
【0170】
次に、時刻tdにおいて、センスアンプ駆動信号SEがローレベルからハイレベルに遷移する。その後、制御信号発生回路242の遅延回路242aが生成する所定時間、例えば1ns経過後の時刻teにおいて、接地電位制御信号NSGがハイレベルからローレベルに遷移する。これにより、DSG電位を接地電位VSSと短絡していたDSGドライバ回路241の第2のnMOSトランジスタ241bがオフ状態となる。
【0171】
一方、リファレンス電位生成回路244において、インバータ回路のpMOSトランジスタ244aがオン状態となり、第1のnMOSトランジスタ244bがオフ状態となる。このとき、基準電位VREF2は、pMOSトランジスタ244aと、第2のnMOSトランジスタ244c及び第3のnMOSトランジスタ244dの電流駆動能力の比で決まる電位に安定するが、pMOSトランジスタ244aは第2及び第3のnMOSトランジスタ244c,244dと比較して、そのトランジスタサイズが小さいため、基準電位VREF2の安定電位は、第2のnMOSトランジスタ244c及び第3のnMOSトランジスタ244dの閾値電位の合計値の2VTNとなる。
【0172】
このとき、DSGレベル検出トランジスタ246は、ソース電位であるDSG電位がセンスアンプ回路から流入する電流によって若干の上昇を示すのに対して、ゲート電位である基準電位VREF2が接地電位から2VTNに上昇するため、オン状態となる。これにより、DSGプリチャージ回路245からDSGノードに対して電流が供給され始める。
【0173】
このように、時刻teから時刻tfまでの間は、DSG電位が、同時に活性化された複数のセンスアンプ回路から流入する電流とDSGプリチャージ回路245から供給される電流とによって速やかに上昇する。
【0174】
次に、時刻tfにおいて、DSG電位が閾値電位VTNまで上昇すると、DSGレベル検出トランジスタ246のソースゲート間のバイアス電圧値がその閾値電位VTNまで低下するため、DSGプリチャージ回路245からのDSGノードへの電流供給が再び遮断される。
【0175】
さらに、DSG電位が閾値電位VTNよりも高くなった場合には、DSGドライバ回路241の第1のnMOSトランジスタ241aがオン状態となるため、DSG電位配線に対する余剰の蓄積電荷が接地電位に引く抜かれる第1の作用と、また、時刻tfから時刻tjまでの期間において、ビット相補線/BLの電位がDSG電位とほぼ同一の電位まで下がっているため、センスアンプ回路からDSGノードに流れ込む電流量が少なくなる第2の作用とにより、時刻tf以降のDSG電位は閾値電位VTN近傍で安定する。
【0176】
このように、時刻tfからtjまでの期間に、DSG電位は閾値電位VTNの近傍にクランプされるが、DSGドライバ回路241の第1のnMOSトランジスタ241a及び第2のnMOSトランジスタ241bのサブスレショルドリーク電流や外来ノイズ等の影響によってDSG電位が閾値電位VTNから下がるような場合には、DSGレベル検出トランジスタ246がオン状態となり、DSGプリチャージ回路245からDSGノードに対して電流を供給することによりDSG電位を閾値電位VTNまで上昇させる。
【0177】
次に、時刻thにおいて、センスアンプ駆動信号SEがハイレベルからローレベルに遷移し、その後、制御信号発生回路242の遅延回路242aが生成する所定時間後の時刻tjにおいて、接地電位制御信号NSGがローレベルからハイレベルへに遷移するため、DSGドライバ回路241の第2のnMOSトランジスタ241bがオン状態となって、DSG電位が接地電位VSSとなる。
【0178】
また、リファレンス電位生成回路244においても、pMOSトランジスタ244aがオフ状態となり、第1のnMOSトランジスタ244bがオン状態となるため、基準電位VREF2が接地電位VSSと短絡し、これにより、DSGレベル検出トランジスタ246がオフ状態となって、DSGプリチャージ回路245からのDSGノードに対する電流供給が停止する。
【0179】
以上説明したように、本実施形態に係るセンスアンプグランド回路24は、第1の実施形態に係るセンスアンプグランド回路23のDSGレベル検出回路235に代えてDSGレベル検出トランジスタ246を有している。これは、DSG電位が所定電位VTNに近くなるほど、DSGレベル検出トランジスタ246の電流駆動能力が小さくなる性質を用いている。
【0180】
また、DSGレベル検出トランジスタ246は、DSGプリチャージ回路245からDSGノードへと供給されるプリチャージ電流の電流量を制御し、このため、DSG電位の検出動作からプリチャージ動作までの伝搬遅延が発生せず、プリチャージ電流の余分な消費を極めて小さく抑えることができる。
【0181】
また、DSGノードに供給するプリチャージ電流がDSG電位と対応してアナログ的に変化するため、第1の実施形態に係るセンスアンプグランド回路23と比べてDSG電位の変動を抑えられるので、ローデータが書き込まれたDRAMのメモリセルの蓄積電荷量にばらつきが生じにくい。
【0182】
さらに、第1の実施形態に係るDSGレベル検出回路235とシュミットトリガー回路236とを設ける必要がなく、ダイナミックセンスグランド回路24本体の動作電流を低減できるため、回路のレイアウトサイズも小さくできるので、低消費電力で且つ高集積度のDRAMを実現できる。
(第4の実施形態)
以下、本発明の第4の実施形態について図面を参照しながら説明する。
【0183】
図14は本発明の第4の実施形態に係る半導体記憶装置におけるセンスアンプグランド回路の回路構成を示している。図14に示すセンスアンプグランド回路25は、ダイナミックセンスアンプグランド電位DSGを駆動し、接地電位生成部及び閾値電位生成部としてのDSGドライバ回路251及びDSGサブドライバ回路252と、接地電位制御部としての制御信号発生回路232と、電位補償部としてのDSG電位補償回路233と、制御信号発生回路232からの接地電位制御信号NSGを受け、DSGドライバ回路251又はDSGサブドライバ回路252を選択する閾値電位生成用半導体素子選択手段としてのDSGドライバ切替回路253とからなる。ここで、制御信号発生回路232及びDSG電位補償回路233は、それぞれ第1の実施形態と同様の回路構成とする。
【0184】
DSGドライバ回路251は、ゲート及びドレインがDSGドライバ切替回路253の一の入力端子と共通接続された第1の閾値電位生成用半導体素子としての第1のnMOSトランジスタ251aと、該第1のnMOSトランジスタ251aと並列接続され、制御信号発生回路232からの接地電位制御信号NSGを受けて出力電位を接地電位とする接地電位生成用半導体素子としての第2のnMOSトランジスタ251bとからなる。
【0185】
DSGサブドライバ回路252は、ゲート及びドレインがDSGドライバ切替回路253の他の入力端子と共通接続された第2の閾値電位生成用半導体素子としてのnMOSトランジスタ252aからなる。
【0186】
DSGドライバ切り替え回路253は、一方の入力端子に制御信号発生回路232からの接地電位制御信号NSGを受け、他方の入力端子に、接地電位制御信号NSGに所定の遅延時間を付与する遅延回路253aからの遅延信号を受け、内部選択信号DSELを出力するOR回路235bと、ゲートが内部選択信号DSELを受け、ソースがDSGドライバ回路251からの出力信号を受け、ドレインがDSGノードに接続された第1のnMOSトランジスタ253cと、ゲートがインバータ回路253dを介して反転された内部選択信号DSELを受け、ソースがDSGサブドライバ回路252からの出力信号を受け、ドレインがDSGノードに接続された第2のnMOSトランジスタ253eと構成されている。
【0187】
ここで、DSGドライバ回路251及びDSGサブドライバ回路252の基板には−1.0V程度のバックゲート電位が印加されている。また、DSGサブドライバ回路252のnMOSトランジスタ252aのサイズはDSGドライバ回路251の第1のnMOSトランジスタ251aのサイズよりも小さい。
【0188】
以下、前記のように構成されたセンスアンプグランド回路25の動作について図面を参照しながら説明する。
【0189】
図15は本実施形態に係るセンスアンプグランド回路25のタイミングチャートを示している。ここでは、本実施形態に係るセンスアンプグランド回路25を除くDRAMの構成は第1の実施形態の図2に示した構成と同等とする。
【0190】
まず、図15に示すDRAMのプリチャージ期間から時刻tkまでの間の期間において、DSGドライバ切替回路253の内部選択信号DSELは、図14に示す制御信号発生回路232からの接地電位制御信号NSGの立ち下がりのタイミングを遅延させた信号である。この期間においては、内部選択信号DSELはハイレベル状態にあるため、図14に示すDSGドライバ切替回路253の第1のnMOSトランジスタ253cがオン状態となり、第2のnMOSトランジスタ253eがオフ状態となる。このため、DSGノードは、第1のnMOSトランジスタ253cを介してDSGドライバ回路251と電気的に接続される。従って、この期間中は、DSGドライバ回路251によって、DRAMのプリチャージ期間から時刻teまでの間にDSG電位を接地電位VSSと短絡する動作と、時刻teから時刻tkまでの間にクランプ作用によってDSG電位を所定の閾値電位に上昇させる動作とが行なわれる。
【0191】
次に、接地電位制御信号NSGのローレベルへの遷移時刻である時刻teからDSGドライバ切替回路253の遅延回路253aにより生成される所定時間後のタイミングである時刻tkにおいて、内部選択信号DSELがハイレベルからローレベルに遷移する。これにより、図14に示すDSGドライバ切替回路253の第1のnMOSトランジスタ253cがオフ状態となり、第2のnMOSトランジスタ253eがオン状態となる。従って、DSGノードは、第2のnMOSトランジスタ253eを介してDSGサブドライバ回路252と電気的に接続される。時刻tk以降のDSG電位は、DSGドライバ回路251の第1のnMOSトランジスタ251aの閾値電位とほぼ同等の閾値電位VTNの近傍まで上昇しており、また、ビット相補線/BLのローレベル電位はDSG電位まで下がっている。
【0192】
これにより、DSG電位補償回路233又は活性状態にあるセンスアンプ回路からDSGサブドライバ回路252に対して流入する電流量が少なくなるため、DSGドライバ回路251の第1のnMOSトランジスタ251aと比較してそのサイズが小さいDSGサブドライバ回路252のnMOSトランジスタ252aであっても、DSG電位を安定して閾値電位VTNの近傍に保持することができる。
【0193】
次に、時刻tjにおいて、内部制御信号NSGと内部選択信号DSELが共にローレベルからハイレベルに遷移すると、DSGノードはDSGドライバ切替回路253の第1のnMOSトランジスタ253cを介してDSGドライバ回路251と電気的な接続状態となる。さらに、時刻tj以降のDSG電位は、DSGドライバ回路251の第2のnMOSトランジスタ251bを介して接地電位VSSと短絡する。
【0194】
以上説明したよう、本実施形態に係るセンスアンプグランド回路25は、互いに電流駆動能力が異なるDSGドライバ回路251、DSGドライバサブ回路252及びこれらを選択するDSGドライバ切替回路253を備えているため、センスアンプの駆動タイミングである時刻tdの直後又はDSG電位補償回路233が活性化してDSG電位を昇圧する時刻teの直後のDSGノードに大きな電流が流れ込む期間において、DSGドライバ回路251にサイズが相対的に大きいトランジスタを用いることによりDSG電位の過剰な上昇を抑えることができるため、DSG電位が確実に安定する。
【0195】
さらに、DSG電位補償回路233が活性化する時刻te以降のDSG電位とビット線対BL,/BLのうちのローレベル側の電位とが、DSGドライバ回路251の第1のnMOSトランジスタの閾値とほぼ同等の閾値電位VTNの近傍に安定した後は、ドライバ回路としてトランジスタサイズが小さいDSGサブドライバ回路252を選択して用いることにより、DSGドライバ回路251を介したリーク電流によるDSG電位の低下を抑制できる。
【0196】
このように、本実施形態に係るセンスアンプグランド回路25は、第1の実施形態に係るセンスアンプグランド回路23と比較して、図6に示す動作時刻tf〜tjの間の、リーク電流によるDSG電位の低下を抑制できるため、DSG電位を補償するためのプリチャージ電流の消費量を低減できるので、特にDRAMがページ動作を行なうような場合等、センスアンプ活性期間が比較的長い動作を行なう際の消費電力を低減できる。
【0197】
【発明の効果】
本発明に係る半導体記憶装置によると、メモリセルがデータ保持用のキャパシタ及び該キャパシタとビット線とのアクセスがワード線により制御されるスイッチトランジスタを有する場合には、非選択のワード線と接続されるメモリセルにおいて、低レベル電位が第2の電位である閾値電位生成用半導体素子の閾値電位とほぼ等しくなるため、スイッチトランジスタのオフ時のゲートドレイン間電圧値が大きくなるので、メモリセルのサブスレショルドリーク電流が低減し、その結果、メモリセルの電荷保持特性が向上する。また、センスアンプ回路がトランジスタを含む場合には、センスアンプの低レベル電位が第1の電位である接地電位とほぼ等しくなるため、該トランジスタのオン時のゲートソース間電圧値が大きくなるので、センスアンプのセンススピードが劣化せず且つメモリセルの動作下限電圧を小さくできる。
【0198】
本発明の半導体記憶装置において、接地電位生成用半導体素子が、接地電位制御部からの制御信号を受け、複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定期間にわたって活性化されることにより第1の電位を生成し、閾値電位生成用半導体素子が、接地電位生成用半導体素子が活性化されていない期間に第2の電位を生成すると、外部から選択されたセンスアンプの動作の立ち上がり時に低レベル電位が第1の電位である接地電位とほぼ等しくなるため、センスアンプにおけるトランジスタのオン時のゲートソース間電圧値が確実に大きくなる。
【0199】
本発明の半導体記憶装置において、接地電位生成用半導体素子が、接地電位制御部からの制御信号を受け、複数のセンスアンプ回路が非活性状態である期間中及び複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定の期間中に活性化されることにより第1の電位を生成し、閾値電位生成用半導体素子が、接地電位生成用半導体素子が活性化されていない期間に第2の電位を生成すると、センスアンプが非活性状態のときにも低レベル電位がほぼ第1の電位である接地電位となるため、メモリのスタンバイ期間に接地電位を発生させて該接地電位を保持する手段が必要でなくなると共に、低レベル電位生成手段の消費電流を抑制できるので、装置構成が簡単化され且つ装置全体の消費電流を低減できる。
【0200】
本発明の半導体記憶装置において、低レベル電位生成手段が、閾値電位とほぼ同電位である基準電位を生成する基準電位生成部と、低レベル電位が基準電位よりも高い電位となるように電流を供給することにより低レベル電位を補償する電位補償部とをさらに有し、基準電位生成部及び電位補償部が、接地電位生成部が活性化されていない期間に動作すると、低レベル電位が接地電位とされている期間は、基準電位生成部及び電位補償部を非活性状態とすることができるため、低レベル電位の駆動に伴う消費電力を極めて小さくできる。
【0201】
この場合に、複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されているビット線対のうちのより低電位のビット線の電位が低レベル電位よりも高い状態にあるときに接地電位生成部が活性状態から非活性状態に遷移すると、低レベル電位の配線には、活性化されたビット線から電流が流入するため、低レベル電位を閾値電位にまで昇圧するための電位補償部からの電流量を減らすことができるので、該電位補償部の消費電流を確実に低減できる。
【0202】
この場合に、電位補償部がメモリセルアレイのメモリ容量に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していると、記憶装置の記憶容量ごとに電位補償部の電流供給能力を変更できるため、メモリ容量によっ低レベル電位の配線容量値が変化する場合であっても、低レベル電位の補償(プリチャージ)能力が最適化されるので、消費電力の増加を抑えることができる。
【0203】
この場合に、電位補償部が、複数のセンスアンプ回路のうち、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していると、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて電位補償部の電流供給能力を選択できるため、一の動作タイミングで活性化されるセンスアンプの数が少ない場合であっても、低レベル電位の上昇速度が遅くならないようにできるので、メモリセルの電位保持特性をより確実に向上できる。
【0204】
発明の半導体記憶装置において、低レベル電位生成手段が、閾値電位のほぼ2倍の電位の基準電位を生成する基準電位生成部と、低レベル電位が閾値電位とほぼ等しくなるように電流を供給することにより低レベル電位を補償する電位補償部とをさらに有し、電位補償部が、ゲートが基準電位を受け、ドレインが電位補償部からの電流を受け、ソースが低レベル電位を出力する電界効果トランジスタを含むと、低レベル電位の検値動作と低レベル電位を昇圧する電流の電流供給量の調整動作とが一のトランジスタによって行なわれるため、検値動作から電流供給動作までの伝達遅延が発生しないので、補償電位にまでプリチャージするプリチャージ電流を低減できる。また、プリチャージ電流が低レベル電位と対応してアナログ的に変化するため、該低レベル電位の変動を抑えられるので、ローデータが書き込まれたメモリセルの蓄積電荷量にばらつきが生じにくい。
【0205】
この場合に、複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されているビット線対のうちのより低電位のビット線の電位が低レベル電位よりも高い状態にあるときに接地電位生成部が活性状態から非活性状態に遷移すると、低レベル電位の配線には、活性化されたビット線から電流が流入するため、低レベル電位を閾値電位にまで昇圧するための電位補償部からの電流量を減らすことができるので、該電位補償部の消費電流を確実に低減できる。
【0206】
本発明の半導体記憶装置において、閾値電位生成用半導体素子が第1の半導体素子と第2の半導体素子とからなり、低レベル電位生成手段が、低レベル電位が接地電位よりも高い電位となるように電流を供給することにより低レベル電位を補償する電位補償部と、接地電位制御部からの制御信号を受け、第1の半導体素子又は第2の半導体素子を選択する閾値電位生成用半導体素子選択手段とをさらに有していると、センスアンプに大電流が流れる期間と大電流が流れない期間とによって接地電位よりも高い低レベル電位を第1の半導体素子又は第2の半導体素子のいずれかを選択できるため、センスアンプに大電流が流れる期間に相対的にサイズが大きい半導体素子を用いれば、低レベル電位の過剰な上昇を抑制できる。また、大電流が流れない期間により相対的にサイズが小さい半導体素子を用いれば、該半導体素子のリーク電流による低レベル電位の低下を抑制できるので、電位補償部の消費電流を低減できる。
【0207】
本発明の半導体記憶装置において、メモリセルアレイを複数備え、複数のメモリセルアレイごとにおけるワード線が延びる方向に対して平行な側部に複数のセンスアンプ回路がそれぞれ隣接するように設けられてなる複数のセンスアンプ列と、複数のメモリセルアレイと複数のセンスアンプ列とからなるメモリコアブロックとを有し、低レベル電位生成手段が、メモリコアブロックにおける複数のセンスアンプ列が延びる方向に対して平行な両側部と隣接するように設けられていると、低レベル電位生成手段が、低レベル電位生成手段と各センスアンプ回路との実効的な抵抗値を下げられるため、配線抵抗の電圧降下に起因するセンススピードの劣化が生じにくくなる。さらに、同時に活性化される複数のセンスアンプ回路のそれぞれが低レベル電位生成手段と等距離に位置するため、同時に活性化されるセンスアンプ回路ごとの動作特性にばらつきが生じにくくなるので、記憶装置の読み出し動作及び書き込み動作が安定する。
【0208】
この場合に、低レベル電位生成手段の接地電位生成用半導体素子及び閾値電位生成用半導体素子並びにセンスアンプ列が有する半導体素子が、それぞれ半導体基板に連続して設けられた共有ウェルに形成されていると、互いに異なる導電型のウェルに形成された半導体素子(トランジスタ)同士の場合は、ラッチアップ等の不具合を回避するため、互いに所定の間隔をおいて形成する必要があるが、共有ウェル構造としているため、回路の集積度を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る半導体記憶装置における動的センスグランド方式を説明する機能構成図である。
【図2】本発明の第1の実施形態に係る半導体記憶装置を示す部分的なブロック構成図である。
【図3】本発明の第1の実施形態に係る半導体記憶装置におけるメモリセルアレイブロック、センスアンプブロック及びセンスアンプドライバ回路を示す回路図である。
【図4】本発明の第1の実施形態に係る半導体記憶装置におけるセンスアンプグランド回路を示す回路図である。
【図5】本発明の第1の実施形態に係る半導体記憶装置におけるDSG電位補償回路の動作特性を示す概念図である。
【図6】本発明の第1の実施形態に係る半導体記憶装置のタイミングチャート図である。
【図7】(a)及び(b)は本発明の第1の実施形態に係るダイナミックセンスアンプグランド(DSG)電位の電位変化を表わし、(a)は比較用であってDSG電位を接地電位に固定した場合の電位波形図であり、(b)は第1の実施形態に係るセンスアンプグランド回路を用いた場合の電位波形図である。
【図8】本発明の第1の実施形態に係るDSGプリチャージ回路に対する各MEM信号の設定方法を説明するための一覧表である。
【図9】本発明の第2の実施形態に係る半導体記憶装置のレイアウトを示す構成図である。
【図10】本発明の第2の実施形態に係る半導体記憶装置の断面構成であって、図9のC−C線におけるパッケージ封止後の半導体基板並びにその主面上に形成された素子及び配線を示す構成断面図である。
【図11】本発明の第2の実施形態に係る半導体記憶装置の平面構成であって、図9のC−C線を囲む領域Fの拡大図である。
【図12】本発明の第3の実施形態に係る半導体記憶装置におけるセンスアンプグランド回路を示す回路図である。
【図13】本発明の第3の実施形態に係るセンスアンプグランド回路のタイミングチャート図である。
【図14】本発明の第4の実施形態に係る半導体記憶装置におけるセンスアンプグランド回路を示す回路図である。
【図15】本発明の第4の実施形態に係るセンスアンプグランド回路のタイミングチャート図である。
【図16】一般的なDRAMの非選択状態のメモリセルと活性化されたセンスアンプとの接続関係を示す部分的な回路図である。
【図17】従来のDRAMにおける昇圧センスグランド方式を説明するための機能構成図である。
【図18】(a)及び(b)はセンスアンプによる読み出し動作時におけるビット線対、センスアンプ用グランド電位SAN及びセンスアンプ用電源電位SAPの電位変化を表わし、(a)は昇圧センスグランド方式を用いない場合の電位波形図であり、(b)は昇圧センスグランド方式を用いた場合の電位波形図である。
【符号の説明】
1 内部回路
2 低レベル電位生成手段
3 DSGドライバ回路(接地電位生成部及び閾値電位生成部)
31 第1のnMOSトランジスタ(閾値電位生成用半導体素子)
32 第2のnMOSトランジスタ(接地電位生成用半導体素子)
4 制御信号発生回路(接地電位制御部)
5 DSG電位補償回路(電位補償部)
6 DSG電位配線
10 メモリセルアレイブロック
20 センスアンプブロック
21 センスアンプドライバ回路
22 制御回路ブロック
23 センスアンプグランド回路(低レベル電位生成手段)
24 センスアンプグランド回路(低レベル電位生成手段)
25 センスアンプグランド回路(低レベル電位生成手段)
40 ロウデコーダ
41 ワード線ドライバ
42 センスアンプ制御ブロック
100 領域
101 メモリセルアレイ
51 メモリセル
51a メモリセルトランジスタ
51b メモリセルキャパシタ
A メモリセル
60 第1のデータ線
61 第2のデータ線
201 センスアンプ回路
202n nMOSトランジスタ
202p pMOSトランジスタ
203 プリチャージ用nMOSトランジスタ
204 イコライズ用nMOSトランジスタ
205 第1の内部配線
206 第2の内部配線
207 第1のトランスファートランジスタ
208 第2のトランスファートランジスタ
209 第3のトランスファートランジスタ
211 nMOSスイッチトランジスタ
212 インバータ回路
213 pMOSスイッチトランジスタ
214 プリチャージ用nMOSトランジスタ
215 イコライズ用nMOSトランジスタ
231 DSGドライバ回路(接地電位生成部及び閾値電位生成部)
231a 第1のnMOSトランジスタ(閾値電位生成用半導体素子)
231b 第2のnMOSトランジスタ(接地電位生成用半導体素子)
232 制御信号発生回路(接地電位制御部)
232a 遅延回路
232b NAND回路
232c インバータ回路
233 DSG電位補償回路(電位補償部)
234 リファレンス電位生成回路(基準電位生成部)
234a pMOSトランジスタ
234b 第1のnMOSトランジスタ
234c 第2のnMOSトランジスタ
235 DSGレベル検出回路
235a 第1のpMOSトランジスタ
235b 第1の駆動トランジスタ
235c 第2の駆動トランジスタ
235d 第1のnMOSトランジスタ
235e 第2のnMOSトランジスタ
235f 第3のnMOSトランジスタ
236 シュミットトリガー回路
236a 第1のpMOSトランジスタ
236b 第1のnMOSトランジスタ
236c 第2のpMOSトランジスタ
236d 第2のnMOSトランジスタ
236e 第3のpMOSトランジスタ
237 DSGプリチャージ回路(電流供給能力切替手段)
237a 第1のNAND回路
237b 第2のNAND回路
237c 第3のNAND回路
237d 第1のpMOSトランジスタ
237e 第2のpMOSトランジスタ
237f 第3のpMOSトランジスタ
241 DSGドライバ回路(接地電位生成部及び閾値電位生成部)
241a 第1のnMOSトランジスタ(閾値電位生成用半導体素子)
241b 第2のnMOSトランジスタ(接地電位生成用半導体素子)
242 制御信号発生回路(接地電位制御部)
242a 遅延回路
242b インバータ回路
243 DSG電位補償回路(電位補償部)
244 リファレンス電位生成回路(基準電位生成部)
244a pMOSトランジスタ
244b 第1のnMOSトランジスタ
244c 第2のnMOSトランジスタ
244d 第3のnMOSトランジスタ
245 DSGプリチャージ回路(電流供給能力切替手段)
245a 第1のインバータ回路
245b 第2のインバータ回路
245c 第3のインバータ回路
245d 第1のpMOSトランジスタ
245e 第2のpMOSトランジスタ
245f 第3のpMOSトランジスタ
246 DSGレベル検出トランジスタ
251 DSGドライバ回路(接地電位生成部及び閾値電位生成部)
251a 第1のnMOSトランジスタ(第1の閾値電位生成用半導体素子)
251b 第2のnMOSトランジスタ(接地電位生成用半導体素子)
252 DSGサブドライバ回路
252a nMOSトランジスタ(第2の閾値電位生成用半導体素子)
253 DSGドライバ切替回路(閾値電位生成用半導体素子選択手段)
253a 遅延回路
253b OR回路
253c 第1のnMOSトランジスタ
253d インバータ回路
253e 第2のnMOSトランジスタ
300 DRAMチップ
301 インターフェイス回路ブロック
302 カラム制御ブロック
303 ロウ制御ブロック
304 メモリコアブロック
305 センスアンプグランド回路
306 DSGドライバ回路
307 センスアンプブロック
308 メモリセルアレイブロック
311 第1のDSG電位配線
312 第2のDSG電位配線
313 第3のDSG電位配線
314 第1のNSG信号配線
315 第2のNSG電位配線
320 センスアンプ回路
321 センスアンプドライバ回路
350 半導体基板
351 n型ウェル領域
352 p型ウェル領域
353 素子分離領域
354 n型拡散領域
355 p型拡散領域
356A 絶縁ゲート電極
356B 絶縁ゲート電極
356C 絶縁ゲート電極
356D 絶縁ゲート電極
356E 絶縁ゲート電極
357 第1の層間絶縁膜
358A VSS電位配線
358B DSG電位配線
358C VSS電位配線
358D EQ信号配線
358E VDD電位配線
359 第2の層間絶縁膜
360A NSG信号配線
360B SE信号配線
360C SAN電位配線
360D SAP電位配線
360E /SE信号配線
361 第3の層間絶縁膜
362 DSG電位配線
DSG ダイナミックセンスアンプグランド電位(低レベル電位)
PSG トリガー出力信号
NSG 内部制御信号
VGS1 第1のバイアス電圧値
VGS2 第2のバイアス電圧値
WL ワード線又はワード線信号
BL ビット線
/BL ビット相補線
SE センスアンプ駆動信号
EQ イコライズ信号
SAP センスアンプ用電源電位
SAN センスアンプ用グランド電位
VDD 電源電位
VSS 接地電位
VBP プリチャージ電位
VCP セルプレート電位
VBB バックゲート電位(基板電位)
VTN1 第1の閾値電位
VTN2 第2の閾値電位

Claims (16)

  1. 半導体基板上に形成されており、
    複数のワード線と複数のビット線対との各交差部に設けられた複数のメモリセルを有するメモリセルアレイと、
    前記複数のビット線対ごとに設けられ、各ビット線対に読み出された電位差を増幅して出力する複数のセンスアンプ回路と、
    前記メモリセル、ビット線対及びセンスアンプ回路に印加される高レベル電位及び低レベル電位のうちの低レベル電位を生成して出力する低レベル電位生成手段とを備え、
    前記低レベル電位生成手段は、
    前記低レベル電位として接地電位とほぼ等しい第1の電位を生成する接地電位生成用半導体素子を有する接地電位生成部と、
    前記低レベル電位として前記閾値電位とほぼ等しい第2の電位を生成する閾値電位生成用半導体素子を有する閾値電位生成部と、
    前記接地電位生成用半導体素子の動作を制御する接地電位制御部とを有し、
    前記接地電位生成用半導体素子は、
    前記接地電位制御部からの制御信号を受け、プリチャージ期間中から、前記複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定期間(T3期間内のtdからte)後までに、わたって活性化されることにより、前記第1の電位を生成し、
    前記閾値電位生成用半導体素子は、前記接地電位生成用半導体素子が活性化されていない期間(T3期間内のteからtf、T4及びT5)に前記第2の電位を生成することを特徴とする半導体記憶装置。
  2. 半導体基板上に形成されており、
    複数のワード線と複数のビット線対との各交差部に設けられた複数のメモリセルを有するメモリセルアレイと、
    前記複数のビット線対ごとに設けられ、各ビット線対に読み出された電位差を増幅して出力する複数のセンスアンプ回路と、
    前記メモリセル、ビット線対及びセンスアンプ回路に印加される高レベル電位及び低レベル電位のうちの低レベル電位を生成して出力する低レベル電位生成手段とを備え、
    前記低レベル電位生成手段は、
    前記低レベル電位として接地電位とほぼ等しい第1の電位を生成する接地電位生成用半導体素子を有する接地電位生成部と、
    前記低レベル電位として前記閾値電位とほぼ等しい第2の電位を生成する閾値電位生成用半導体素子を有する閾値電位生成部と、
    前記接地電位生成用半導体素子の動作を制御する接地電位制御部とを有し、
    前記接地電位生成用半導体素子は、前記複数のセンスアンプ回路が非活性状態である期間中(T1、T2及びT6)及び前記複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から所定の期間中(T3期間内のtdからte)に活性化されていることにより、前記第1の電位を生成し、
    前記閾値電位生成用半導体素子は、前記接地電位生成用半導体素子が活性化されていない期間(T3期間内のteからtf、T4及びT5)に前記第2の電位を生成することを特徴とする半導体記憶装置。
  3. 前記低レベル電位生成手段は、
    前記閾値電位とほぼ同電位である基準電位を生成する基準電位生成部と、前記第2の電位が前記基準電位よりも高い電位となるように電流を供給することにより、前記第2の電位を補償する電位補償部とをさらに有し、
    前記基準電位生成部及び電位補償部は、前記接地電位生成部が活性化されていない(T3期間内のteからtf、T4及びT5)期間に動作することを特徴とする請求項1又は2に記載の半導体記憶装置。
  4. 前記複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されている前記ビット線対のうちのより低電位のビット線の電位は、前記第2の電位よりも高い状態にあるときに前記接地電位生成部が活性状態から非活性状態に遷移することを特徴とする請求項3に記載の半導体記憶装置。
  5. 前記電位補償部は、前記メモリセルアレイのメモリ容量に応じて前記電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることを特徴とする請求項3に記載の半導体記憶装置。
  6. 前記電位補償部は、前記複数のセンスアンプ回路のうち、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて前記電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることを特徴とする請求項3に記載の半導体記憶装置。
  7. 前記低レベル電位生成手段は、
    前記閾値電位のほぼ2倍の電位の基準電位を生成する基準電位生成部と、前記第2の電位が前記閾値電位とほぼ等しくなるように電流を供給することにより、前記低レベル電位を補償する電位補償部とをさらに有し、
    前記電位補償部は、ゲートが前記基準電位を受け、ドレインが前記電位補償部からの電流を受け、ソースが前記第2の電位を出力する電界効果トランジスタを含むことを特徴とする請求項1又は2に記載の半導体記憶装置。
  8. 前記複数のセンスアンプ回路のうちの活性状態のセンスアンプ回路に接続されている前記ビット線対のうちのより低電位のビット線の電位は、前記第2の電位よりも高い状態にあるときに前記接地電位生成部が活性状態から非活性状態に遷移することを特徴とする請求項7に記載の半導体記憶装置。
  9. 前記電位補償部は、前記メモリセルアレイのメモリ容量に応じて前記電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることを特徴とする請求項7に記載の半導体記憶装置。
  10. 前記電位補償部は、前記複数のセンスアンプ回路のうち、一の動作タイミングで活性化されるセンスアンプ回路の個数に応じて前記電位補償部の電流供給能力を切り替える電流供給能力切替手段を有していることを特徴とする請求項7に記載の半導体記憶装置。
  11. 前記閾値電位生成用半導体素子は、第1の半導体素子と第2の半導体素子とからなり、
    前記低レベル電位生成手段は、
    前記第2の電位閾値電位よりも高い電位となるように電流を供給することにより、前記第2の電位を補償する電位補償部と、
    前記接地電位制御部からの制御信号を受け、前記第1の半導体素子又は前記第2の半導体素子を選択する閾値電位生成用半導体素子選択手段とをさらに有していることを特徴とする請求項1又は2に記載の半導体記憶装置。
  12. 前記第2の半導体素子のサイズは前記第1の半導体素子のサイズよりも小さく、
    前記閾値電位生成用半導体素子選択手段は、前記複数のセンスアンプ回路のうちの一部のセンスアンプ回路が活性化された時点から前記所定期間中は前記第1の半導体素子からの出力を選択し、前記所定期間が経過した後に前記第2の半導体素子からの出力を選択することを特徴とする請求項11に記載の半導体記憶装
    置。
  13. 前記メモリセルアレイを複数備え、前記複数のメモリセルアレイごとにおける前記ワード線が延びる方向に対して平行な側部に前記複数のセンスアンプ回路がそれぞれ隣接するように設けられてなる複数のセンスアンプ列と、
    前記複数のメモリセルアレイと前記複数のセンスアンプ列とからなるメモリコアブロックとを有し、
    前記低レベル電位生成手段は、前記メモリコアブロックにおける前記複数のセンスアンプ列が延びる方向に対して平行な両側部と隣接するように設けられていることを特徴とする請求項1又は2に記載の半導体記憶装置。
  14. 前記接地電位生成用半導体素子、前記閾値電位生成用半導体素子及び前記センスアンプ列が有する半導体素子は、それぞれ前記半導体基板に連続して設けられた共有ウェルに形成されていることを特徴とする請求項13に記載の半導体記憶装置。
  15. 前記接地電位生成用半導体素子はnMOSトランジスタであり、ソースが接地電位に接続され、ドレインが前記低レベル電位に接続され、ゲートが前記接地電位制御部からの制御信号に接続され、
    前記閾値電位生成用半導体素子はnMOSトランジスタであり、ソースが接地電位に接続され、ドレインとゲートが前記低レベル電位に共通接続されたダイオード構成であることを特徴とする請求項1〜14いずれかに記載の半導体記憶装置。
  16. 前記接地電位生成用半導体素子および前記閾値電位生成用半導体素子の基板は、接地電位よりも低い電位に接続されていることを特徴とする請求項15に記載の半導体記憶装置。
JP03992399A 1999-02-18 1999-02-18 半導体記憶装置 Expired - Lifetime JP3727191B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03992399A JP3727191B2 (ja) 1999-02-18 1999-02-18 半導体記憶装置
US09/506,102 US6198671B1 (en) 1999-02-18 2000-02-17 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03992399A JP3727191B2 (ja) 1999-02-18 1999-02-18 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2000243084A JP2000243084A (ja) 2000-09-08
JP3727191B2 true JP3727191B2 (ja) 2005-12-14

Family

ID=12566466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03992399A Expired - Lifetime JP3727191B2 (ja) 1999-02-18 1999-02-18 半導体記憶装置

Country Status (2)

Country Link
US (1) US6198671B1 (ja)
JP (1) JP3727191B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095273B2 (en) * 2001-04-05 2006-08-22 Fujitsu Limited Voltage generator circuit and method for controlling thereof
JP2003243538A (ja) * 2002-02-12 2003-08-29 Hitachi Ltd 半導体集積回路装置
US6611451B1 (en) * 2002-06-28 2003-08-26 Texas Instruments Incorporated Memory array and wordline driver supply voltage differential in standby
KR100541816B1 (ko) * 2003-09-19 2006-01-10 삼성전자주식회사 반도체 메모리에서의 데이터 리드 회로 및 데이터 리드 방법
KR100738959B1 (ko) * 2006-02-09 2007-07-12 주식회사 하이닉스반도체 반도체 메모리 장치의 센스 앰프 전원 공급 회로 및 방법
US7957213B2 (en) * 2006-02-09 2011-06-07 Hynix Semiconductor, Inc. Semiconductor memory apparatus
US7977736B2 (en) * 2006-02-23 2011-07-12 Samsung Electronics Co., Ltd. Vertical channel transistors and memory devices including vertical channel transistors
KR20210008195A (ko) 2019-07-10 2021-01-21 삼성전자주식회사 메모리 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960000837B1 (ko) * 1992-12-02 1996-01-13 삼성전자주식회사 반도체 메모리장치
JP3569310B2 (ja) 1993-10-14 2004-09-22 株式会社ルネサステクノロジ 半導体記憶装置
JPH10228773A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd ダイナミック型ram
KR100290282B1 (ko) * 1998-11-23 2001-05-15 윤종용 프로그램 시간을 단축할 수 있는 불 휘발성반도체메모리 장치

Also Published As

Publication number Publication date
JP2000243084A (ja) 2000-09-08
US6198671B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP3853513B2 (ja) ダイナミック型ram
US6327213B1 (en) Semiconductor integrated circuit device having a hierarchical power source configuration
JP3712150B2 (ja) 半導体集積回路装置
US7230867B2 (en) Semiconductor device
KR100223990B1 (ko) 반도체 기억장치
US20080279017A1 (en) Semiconductor memory device
JP2002245775A (ja) 半導体装置
JPH10284705A (ja) ダイナミック型ram
TW200842870A (en) Semiconductor memory device and sense amplifier circuit
US6052324A (en) Semiconductor memory device capable of fast sensing operation
JP2008210443A (ja) 半導体記憶装置
KR101026658B1 (ko) 단일-종단 감지 증폭기를 갖는 반도체 디바이스
KR940003402B1 (ko) 다이내믹 랜덤 억세스 메모리 디바이스
US6292413B1 (en) Semiconductor device, semiconductor memory device and semiconductor integrated circuit device
JP2002245777A (ja) 半導体装置
US8659956B2 (en) Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
JP3727191B2 (ja) 半導体記憶装置
TWI253650B (en) Semiconductor storage device
US9076503B2 (en) Semiconductor device
JP3694072B2 (ja) 半導体装置
JP3112685B2 (ja) 半導体メモリ装置
JP3935592B2 (ja) 内部電位発生回路
US20160099041A1 (en) Semiconductor Device
KR100769492B1 (ko) 반도체 집적 회로
US7023754B2 (en) Semiconductor device having standby mode and active mode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7