JP3935592B2 - 内部電位発生回路 - Google Patents

内部電位発生回路 Download PDF

Info

Publication number
JP3935592B2
JP3935592B2 JP05962598A JP5962598A JP3935592B2 JP 3935592 B2 JP3935592 B2 JP 3935592B2 JP 05962598 A JP05962598 A JP 05962598A JP 5962598 A JP5962598 A JP 5962598A JP 3935592 B2 JP3935592 B2 JP 3935592B2
Authority
JP
Japan
Prior art keywords
potential
circuit
level
charge pump
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05962598A
Other languages
English (en)
Other versions
JPH11134892A (ja
Inventor
知士 二ッ谷
敦 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP05962598A priority Critical patent/JP3935592B2/ja
Publication of JPH11134892A publication Critical patent/JPH11134892A/ja
Application granted granted Critical
Publication of JP3935592B2 publication Critical patent/JP3935592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、半導体集積回路装置に搭載され、外部からの電源電位を受けて、内部電位を発生する内部電位発生回路に関する。より特定的には、不揮発性半導体記憶装置等において、外部電源電位を受けて、不揮発性メモリ素子へのデータの書込、消去動作等に必要な内部電位を発生する内部電位発生回路に関する。
【0002】
【従来の技術】
半導体集積回路装置、特にフラッシュメモリ等の不揮発性半導体記憶装置においては、フローティングゲートを有するメモリセルトランジスタに対してトンネル電流等により記憶データの書込を行なう。このため、一般には、外部電源電圧(たとえば、Vcc=3.3V)よりも高い電圧をチップ上で生成してやることが必要となる。
【0003】
また、不揮発性半導体記憶装置に限らず、たとえばダイナミック型半導体記憶装置(以下、DRAMと呼ぶ)等においても、センスアンプを左右のビット線対で共有する構成とした場合、このセンスアンプと左右のビット線対との接続を開閉するビット線分離用トランジスタのゲート電圧には十分昇圧した電位を印加する必要がある。すなわち、昇圧された電圧が印加されない場合、メモリセルへのデータの書込やリフレッシュ動作時のデータの再書込動作において、このビット線分離用トランジスタを導通状態としても、メモリセルへ書込まれる“H”レベルのデータの電位レベルが、データ線分離用トランジスタのしきい値電圧分だけ低下してしまうことになる。
【0004】
また、たとえばデータ出力回路において、出力用トランジスタには大きな電流が流れるため、一般にはCMOSラッチアップを避けるために、NチャネルMOSトランジスタが使用される。この場合、出力トランジスタのしきい値電圧分の電位低下による負荷に対する充電速度の低下を避ける必要がある。このため、このNチャネルMOS出力トランジスタのゲート電位も、昇圧した電位で駆動される必要がある。
【0005】
また、フラッシュメモリ等の不揮発性半導体記憶装置においては、後に説明するように、その書込動作や消去動作において、制御ゲート、ソース線および基板に対して、動作モードに応じて負電位が印加される必要がある。
【0006】
さらに、一般にDRAM等においても、CMOS回路のラッチアップ耐性を向上させたり、MOSトランジスタのしきい値変動を抑制するために、基板側に負電位が印加されることが一般的である。
【0007】
この場合、外部から供給される単一電源電位(たとえば、Vcc=3.3V)から、負電位を生成する必要がある。
【0008】
以上説明したような、外部電源電位よりも高い内部電位を生成したり、あるいは負の内部電位を生成する場合、一般にチャージポンプ回路が用いられる。
【0009】
図19は、従来の正の内部高電位を発生するためのチャージポンプ回路2000の要部を示す回路図である。
【0010】
チャージポンプ回路2000は、正の内部高電位が出力されるべき出力ノードNH と、電源電位Vccとの間に互い直列に接続される、各々がダイオード接続されたNチャネルMOSトランジスタQ1〜Q7と、トランジスタQ2〜Q7のゲートにそれぞれ一端が接続するキャパシタC1〜C6とを備える。キャパシタC1,C3およびC5の他端には、クロック信号PHが与えられ、キャパシタC2,C4およびC6の他端には、クロック信号PHと相補な(ノンオーバーラップな)クロック信号の信号/PHが与えられる構成となっている。
【0011】
図20は、図19に示したトランジスタQ1〜Q7の断面構造を示す模式図である。ゲート電極とソースとが共通に接続されているため、ソース側からドレイン側を順方向とするダイオードと等価な構成となっている。
【0012】
図21は、図19に示した回路の等価回路を示す図である。
また、図22はクロック信号PHおよび/PHの時間変化を示すタイミングチャートである。
【0013】
図21および図22を参照して、チャージポンプ回路2000の動作を簡単に説明する。
【0014】
信号PH,信号/PHが、容量を介して結合されるノードの電位は、信号PH,信号/PHに同期して上下する。
【0015】
したがって、図22を参照して、時刻t1において、信号PHが“H”レベル(Vccレベル)となり、信号/PHが“L”レベル(GNDレベル)へと変化すると、ノードN1,N3およびN5の電位レベルは上昇し、ノードN2,N4およびN6の電位は信号/PHに応じて低下しようとする。
【0016】
しかしながら、ノードN1およびノードN2の間、ノードN3およびノードN4の間ならびにノードN5およびノードN6との間にはそれぞれダイオードが接続されているため、ノードN1からノードN2には、ダイオードQ2を介して順方向電流が流れる。同様にして、ノードN3からノードN4へはダイオードQ4を介して、ノードN5からノードN6へはダイオードQ6を介して、それぞれ順方向電流が流れる。このため、時刻t1〜時刻t2の期間において、ノードN2,N4およびN6の電位レベルは、大きくは低下しない。
【0017】
次に、時刻t2において、信号PHが“L”レベルに、信号/PHが“H”レベルへ変化する。時刻t1〜時刻t2の場合と同様にして、ノードN1の電位レベルは、電源電位VccからダイオードQ1を介して流れ込む電流のため信号PHの低下分ほどは低下しない。同様にして、ノードN3およびノードN5も、それぞれダイオードQ3およびQ5を介してノードN2およびノードN4から流れ込む電流のために、信号PHの低下分ほどは低下しない。
【0018】
このような動作が繰返されることにより、内部電源電位Vccよりも十分大きな電位レベルが出力ノードNhに出力されることになる。
【0019】
【発明が解決しようとする課題】
図19に示したチャージポンプ回路2000のダイオードは、MOSトランジスタのソースとゲートとを接続することによって構成されている。この場合、昇圧を行なうことができる電位差は以下の式で表わされる。
【0020】
(パルスとして与える信号の振幅−MOSトランジスタのしきい値)×段数…(1)
一方で、定常状態において、チャージポンプ回路2000から出力される供給電流IOUT は以下の式で表わされる。
【0021】
OUT =f×(C+Cs)×Vl …(2)
ここで、fは、チャージポンプ回路に供給されるクロック信号の周波数であり、Cは、カップリングキャパシタC1〜C6の容量値の和であり、Csは寄生容量であり、VL は、カップリングキャパシタが充放電される際の電圧振幅をそれぞれ表わしている。
【0022】
式(2)によれば、カップリングキャパシタC1〜C6の容量の和Cが大きいほど出力電流が大きいことがわかる。
【0023】
また、過渡状態においては、出力電流が大きい方が負荷容量の充電を高速に行なうことが可能となる。
【0024】
次に、以上のような内部電位発生回路を用いて動作する不揮発性半導体記憶装置、たとえばフラッシュメモリの動作について次に説明する。
【0025】
図23は、従来の不揮発性半導体記憶装置のメモリセルを構成するフローティングゲート型トランジスタの構成と、それに対する書込および消去動作における各部の電位を説明するための模式断面図であり、(a)は書込動作の場合を、(b)は消去動作の場合をそれぞれ示している。
【0026】
図23を参照して、メモリセルトランジスタは、たとえば、p型半導体基板1500表面に形成されるn型ドレイン領域1502およびn型ソース領域1504と、上記ドレイン領域1502およびソース領域1504との間のチャネル領域上に薄いトンネル酸化膜(たとえば、膜厚=10nm)を介して形成されるフローティングゲート1506と、フローティングゲート1506上に、絶縁膜を介して積層される制御ゲート1508とを含む。
【0027】
ドレイン領域1502には、ビット線BLが接続され、ソース領域1504には、ソース線SL(図示せず)を介して、選択的に所定の電位が供給され、あるいはフローティング状態とされる構成となっている。
【0028】
ソースドレイン間の伝導度(コンダクタンス)は、制御ゲートに印加される電位に応じて印加される。上記のような構成においては、制御ゲートに印加される電位が増加するほどチャネルコンダクタンスが増加する。すなわち、ドレインソース間に所定の電圧が印加された状態で、制御ゲートの電位を増加させると、ソースドレイン間に流れる電流Idsも増加することになる。
【0029】
ここで、制御ゲートの電位を増加させることにより、ソースドレイン間に電流Idsが流れ始める制御ゲート電位をセルしきい値と呼ぶ。
【0030】
このセルしきい値は、フローティングゲート1506が電気的に中性な状態から、フローティングゲート1506に電子が蓄積されるにつれて増加する。
【0031】
言換えると、フローティングゲート1506に電子が蓄積されるほど、より高い電圧を制御ゲートに印加しなければ、ソースドレイン間に電流が流れないことになる。
【0032】
フローティングゲートは、文字通り外部から絶縁膜により電気的に遮断されているので、この蓄積された電子により情報が不揮発性的に記憶される構成となっている。したがって、メモリセルにデータが書込まれている状態において、ソートドレイン間に所定の電位差、たとえば1Vを印加し、制御ゲート1508には一定の電位、たとえば3Vを与えたときに、ソースドレイン間に電流が流れるか否かによって、このメモリセルに書込まれているデータを判別することになる。
【0033】
図24は、上記メモリセルへデータを書込む場合、データを消去する場合およびデータの読出を行なう場合のそれぞれにおいて、ビット線BL、制御ゲート1508、ソース線SLおよび基板1500にそれぞれ印加する電位の一例を示す図である。
【0034】
[書込動作]
図23(a)および図13を参照して、以下では、まず書込動作について簡単に説明する。
【0035】
メモリセルへのデータの書込は、フローティングゲート1506から蓄積されている電子を引抜くことにより行なう。
【0036】
つまり、データの読出時において、制御ゲート1508には電源電圧Vccが印加されるものとすると、書込状態のセルしきい値を0V以上電源電圧Vcc以下となるように設定する。
【0037】
一般に、非選択状態のメモリセルの制御ゲート1508の電位レベルは、0Vに保持され、選択状態のメモリセルの制御ゲート1508は電源電位Vccに保持される。したがって、上記のようにセルしきい値を設定すると、選択状態となったメモリセルにデータが書込まれている場合は、そのメモリセルを構成するフローティングゲート型トランジスタには、ソースドレイン間に電流が流れることになる。
【0038】
データの書込においては、一例として、ビット線に5Vの電位を、制御ゲートに−8Vの電位を、基板に0Vの電位を与え、ソース線SLはフローティング状態とする。
【0039】
このように、電位を設定すると、フローティングゲート1506からドレイン領域1502に電子の引抜きが行なわれる。すなわち、セルしきい値が低下していくことになる。
【0040】
[消去動作]
次に、図12(b)と図13とを参照して、消去動作について説明する。
【0041】
消去動作においては、一例として、ビット線BLはフローティング状態に、制御ゲート1508の電位は10Vに、ソース線SLの電位は−8Vに、基板1500の電位は−8Vに設定される。
【0042】
この場合は、正側にバイアスされている制御ゲート1508に向かって、基板1500側、すなわちチャネル領域からフローティングゲート1506に対して電子の注入が行なわれる。
【0043】
つまり、フローティングゲート1506に電子が蓄積されることとなり、セルしきい値が上昇する。
【0044】
したがって、上述したとおり、読出動作において、ビット線BLの電位を1Vに、制御ゲート1508の電位を3Vに、ソース線SLおよび基板1500の電位レベルを0Vとすると、消去されたメモリセルが選択された場合は、ソースドレイン間には電流が流れないことになる。
【0045】
以上説明したとおり、フローティングゲート1506への電子の注入または引抜きにより、セルしきい値を変化させることが可能で、読出動作においては選択されたメモリセルに電流が流れるか否かを検知することで、記憶されているデータを読出すことが可能となる。
【0046】
以上説明したようなフラッシュメモリのメモリセルへのデータの書込、消去および読出動作においては、複数の異なったレベルの高電圧が必要となっている。すなわち外部電源電位3Vに対して、書込時のビット線には5Vが印加され、消去時の制御ゲートには10Vが印加されるという構成になっている。
【0047】
これらの電圧を発生するために、各々に対応したチャージポンプ回路を不揮発性半導体記憶装置のチップ上に搭載することとすると、回路面積が増大し、ひいてはチップ面積の増大を招いてしまう。
【0048】
全く同様のことが、負電位を発生する場合について当てはまる。つまり、図24に示した例においては、負電位としては−8Vの1種類の電位レベルが必要となっているのみであるが、回路動作の最適化等のために、この負電位レベルも複数個発生させることが必要となる可能性がある。
【0049】
この場合においても、それぞれの負電位を発生するために、チャージポンプ回路をそれぞれに対応してチップ内に搭載する構成とすると、チップ面積が増大してしまうことになる。
【0050】
さらに、特開平5−182481号公報に開示されているとおり、たとえば、消去動作モードにおけるメモリセルのしきい値分布範囲を狭くするとともにメモリセルデータの書き換えを容易かつ短時間で行なうために、消去パルス印加後に所定しきい値以下のメモリセルに対してそのしきい値変化量が小さくなる消去動作を行なう場合がある。つまり、消去後書込の際にメモリセルトランジスタのコントロールゲートに印加する電圧(たとえば、10V)を、通常書込時に印加する電圧(たとえば、12V)よりも小さく設定することで、メモリセルのしきい値電圧を徐々に変化させ、しきい値電圧の制御性を向上させることができる。
【0051】
このような場合にも、外部電源電圧以上の少なくとも2種類の高電圧が必要になる。
【0052】
この発明は、上記のような問題点を解決するためになされたものであって、その目的は回路面積を抑制しつつ、必要な複数の内部電位を発生することが可能な内部電位発生回路を提供することである。
【0053】
この発明の他の目的は、複数の内部電位がそれぞれ対応する負荷容量を高速で充電することが可能な内部電位発生回路を提供することである。
【0054】
【課題を解決するための手段】
請求項1記載の内部電位発生回路は、外部電源電位を受けて、第1の所定の内部電位および第1の所定の内部電位よりも絶対値の小さな第2の所定の内部電位を発生する内部電位発生回路であって、互いに相補なクロック信号を出力するクロック発生手段と、第1の所定の内部電位が出力されるべき第1の出力ノードを有し、相補なクロック信号に応じて第1の電流供給量で第1の出力ノードの電位を駆動する第1のチャージポンプ手段と、第2の所定の内部電位が出力されるべき第2の出力ノードを有し、相補なクロック信号に応じて、第1の電流供給量よりも小さな第2の電流供給量で第2の出力ノードの電位を駆動する第2のチャージポンプ手段と、第1の出力ノードと第2の出力ノードとの接続を導通状態および遮断状態のいずれかとするスイッチ手段と、第1の出力ノードの電位レベルおよび第2の出力ノードの電位レベルに応じて、第1のチャージポンプ手段および第2のチャージポンプ手段それぞれへの相補なクロック信号の供給を制御する制御手段とを備え、制御手段は、第1および第2の出力ノードの電位が第2の所定電位となるのに応じて、スイッチ手段を導通状態から遮断状態とする。
【0055】
請求項2記載の内部電位発生回路は、請求項1記載の内部電位発生回路の構成において、第1の所定の内部電位および第2の所定の内部電位は共に正の電位であって、制御手段は、スイッチ手段を遮断状態とした後は、第1の出力ノードの電位レベルが第1の所定の内部電位となるように、第1のチャージポンプ手段への相補なクロック信号の供給を制御し、かつ、第2の出力ノードの電位レベルが第2の所定の内部電位となるように、第2のチャージポンプ手段への相補なクロック信号の供給を制御する。
【0056】
請求項3記載の内部電位発生回路は、請求項1記載の内部電位発生回路の構成において、第1の所定の内部電位および第2の所定の内部電位は共に正の電位であって、制御手段は、スイッチ手段を遮断状態とした後は、第1の出力ノードの電位レベルが第1の所定の内部電位となるように、第1のチャージポンプ手段への相補なクロック信号の供給を制御する第1の内部制御手段と、スイッチ手段を遮断状態とした後は、第2の出力ノードの電位レベルが第2の所定の内部電位となるように、第2のチャージポンプ手段への相補なクロック信号の供給を制御する第2の内部制御手段とを含む。
【0057】
請求項4記載の内部電位発生回路は、請求項2記載の内部電位発生回路の構成において、制御手段は、内部電位発生回路の動作開始に応じて、第1のチャージポンプ手段と第2のチャージポンプ手段の双方に相補なクロック信号の供給を開始させる。
【0058】
請求項5記載の内部電位発生回路は、請求項3記載の内部電位発生回路の構成において、第2の内部制御手段は、第2の出力ノードの電位レベルが第2の所定の内部電位以上となることに応じて、内部制御信号を不活性とし、スイッチ手段は、内部制御信号の不活性化に応じてセット状態となり、内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、ラッチ手段がセット状態となることに応じて、第1の出力ノードと第2の出力ノードとの接続を遮断状態とする接続手段とを含む。
【0059】
請求項6記載の内部電位発生回路は、請求項2記載の内部電位発生回路の構成において、制御手段は、内部電位発生回路の動作開始に応じて、第1のチャージポンプ手段に相補なクロック信号の供給を開始させ、スイッチ手段が遮断状態となった後に、第2のチャージポンプ手段に相補なクロック信号の供給を開始させる。
【0060】
請求項7記載の内部電位発生回路は、請求項3記載の内部電位発生回路の構成において、第2の内部制御手段は、第2の出力ノードの電位レベルが第2の所定の内部電位以上となることに応じて、内部制御信号を不活性とする電位レベル検出手段と、第2のチャージポンプ手段への相補なクロック信号の供給を制御するクロック供給制御手段とを含み、スイッチ手段は、内部制御信号の不活性化に応じてセット状態となり、内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、ラッチ手段がセット状態となることに応じて、第1の出力ノードと第2の出力ノードとの接続を遮断状態とする接続手段とを含み、クロック供給制御手段は、内部制御信号が活性状態であり、かつラッチ手段がセット状態であることに応じて、相補なクロック信号の供給を開始する。
【0061】
請求項8記載の内部電位発生回路は、請求項1記載の内部電位発生回路の構成において、第1の所定の内部電位および第2の所定の内部電位は共に負の電位であって、制御手段は、スイッチ手段を遮断状態とした後は、第1の出力ノードの電位レベルが第1の所定の内部電位となるように、第1のチャージポンプ手段への相補なクロック信号の供給を制御し、かつ、第2の出力ノードの電位レベルが第2の所定の内部電位となるように、第2のチャージポンプ手段への相補なクロック信号の供給を制御する。
【0062】
請求項9記載の内部電位発生回路は、請求項1記載の内部電位発生回路の構成において、第1の所定の内部電位および第2の所定の内部電位は共に負の電位であって、制御手段は、スイッチ手段を遮断状態とした後は、第1の出力ノードの電位レベルが第1の所定の内部電位となるように、第1のチャージポンプ手段への相補なクロック信号の供給を制御する第1の内部制御手段と、スイッチ手段を遮断状態とした後は、第2の出力ノードの電位レベルが第2の所定の内部電位となるように、第2のチャージポンプ手段への相補なクロック信号の供給を制御する第2の内部制御手段とを含む。
【0063】
請求項10記載の内部電位発生回路は、請求項8記載の内部電位発生回路の構成において、制御手段は、内部電位発生回路の動作開始に応じて、第1のチャージポンプ手段と第2のチャージポンプ手段の双方に相補なクロック信号の供給を開始させる。
【0064】
請求項11記載の内部電位発生回路は、請求項9記載の内部電位発生回路の構成において、第2の内部制御手段は、第2の出力ノードの電位レベルが第2の所定の内部電位以下となることに応じて、内部制御信号を不活性とし、スイッチ手段は、内部制御信号の不活性化に応じてセット状態となり、内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、ラッチ手段がセット状態となることに応じて、第1の出力ノードと第2の出力ノードとの接続を遮断状態とする接続手段とを含む。
【0065】
請求項12記載の内部電位発生回路は、請求項8記載の内部電位発生回路の構成において、制御手段は、内部電位発生回路の動作開始に応じて、第1のチャージポンプ手段に相補なクロック信号の供給を開始させ、スイッチ手段が遮断状態となった後に、第2のチャージポンプ手段に相補なクロック信号の供給を開始させる。
【0066】
請求項13記載の内部電位発生回路は、請求項9記載の内部電位発生回路の構成において、第2の内部制御手段は、第2の出力ノードの電位レベルが第2の所定の内部電位以下となることに応じて、内部制御信号を不活性とする電位レベル検出手段と、第2のチャージポンプ手段への相補なクロック信号の供給を制御するクロック供給制御手段とを含み、スイッチ手段は、内部制御信号の不活性化に応じてセット状態となり、内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、ラッチ手段がセット状態となることに応じて、第1の出力ノードと第2の出力ノードとの接続を遮断状態とする接続手段とを含み、クロック供給制御手段は、内部制御信号が活性状態であり、かつラッチ手段がセット状態であることに応じて、相補なクロック信号の供給を開始する。
【0067】
【発明の実施の形態】
[実施の形態1]
図1は、本発明の実施の形態1の不揮発性半導体記憶装置1000の構成を示す概略ブロック図である。
【0068】
図1を参照して、不揮発性半導体記憶装置1000は、外部からのアドレス信号A0〜Aiを受けて、対応する内部行アドレス信号Axと対応する内部列アドレス信号Ayと、ソースアドレスAsl信号と、セレクトゲートアドレス信号Asgを出力するアドレスバッファ102と、メモリセルが行列状に配置されるメモリセルアレイ104と、アドレスバッファ102からの内部行アドレス信号Axを受けて、対応するメモリセルアレイ104の行(ワード線)を選択するXデコーダ106と、アドレスバッファ102からの内部列アドレス信号Ayを受けて、メモリセルアレイ104の対応する列を選択するYデコーダ108とを含む。
【0069】
ここで、メモリセルアレイ104は、2つのメモリセルアレイブロックBLK0およびBLK1を含む。図1に示した例では、簡単のために、1つのメモリセルアレイブロックBLK0またはBLK1は、各々4つのメモリセルトランジスタを含み、メモリセルアレイブロックBLK0は、副ビット線SBL1に各々ドレインが接続するメモリセルトランジスタMC1aおよびMC1bと、副ビット線SBL2に各々ドレインが接続するメモリセルトランジスタMC2aおよびMC2bと、主ビット線BL1と副ビット線SBL1との接続を開閉する選択ゲートSG1と、主ビット線BL2と副ビット線SBL2との接続を開閉する選択ゲートSG2とを含む。
【0070】
メモリセルトランジスタMC1aおよびMC2aの制御ゲートは、共にワード線WL1に接続し、メモリセルトランジスタMC1bおよびMC2bの制御ゲートはワード線WL2に接続している。
【0071】
メモリセルアレイブロックBLK1も、同様にして、副ビット線SBL3と各々ドレインが接続するメモリセルトランジスタMC3aおよびMC3bと、副ビット線SBL4と各々ドレインが接続するメモリセルトランジスタMC4aおよびMC4bとを含む。
【0072】
メモリセルアレイブロックBLK1は、さらに、主ビット線BL1と副ビット線SBL3との接続を開閉する選択ゲートSG3と、主ビット線BL2と副ビット線SBL4との接続を開閉する選択ゲートSG4とを含む。
【0073】
メモリセルトランジスタMC3aとMC4aの制御ゲートはワード線WL3に接続し、メモリセルトランジスタMC3bとMC4bの制御ゲートは、ワード線WL4に接続しているものとする。
【0074】
Xデコーダ106は、アドレスバッファ102から与えられる内部行アドレス信号Axに応じて、対応するワード線WL1〜WL4のいずれかを選択する。
【0075】
不揮発性半導体記憶装置1000は、さらに、外部電源電圧を受けて、メモリセルへのデータ書込あるいは消去動作に必要な高電圧を発生する高電圧発生回路110と、外部電源電圧Vccを受けて、メモリセルアレイへの書込あるいは消去動作において必要な負電圧を発生する負電圧発生回路112と、高電圧発生回路110および負電圧発生回路112の出力を受けて、信号Asgに応じて、対応する選択ゲートSG1〜SG4のゲート電位を制御し、選択的に副ビット線と主ビット線とを接続するセレクトゲートデコーダ114と、負電圧発生回路112の出力を受けて、信号Aslに応じて、メモリセルトランジスタのソースに選択的に所定のソース電位を供給するソースデコーダ116と、負電圧発生回路112の出力を受けて、メモリセルトランジスタの形成される半導体基板表面のウェル電位を制御するウェル電位駆動回路120とを含む。
【0076】
Xデコーダ106は、高電圧発生回路110および負電圧発生回路112の出力を受けて、書込動作においては、選択されたワード線に所定の負電圧、消去動作においては、選択されたワード線に高電圧を供給する。
【0077】
不揮発性半導体記憶装置1000は、さらに、メモリセルへの書込動作および消去動作を制御する書込/消去制御回路122と、内部からのデータを受けて内部回路に、あるいはメモリセルから読出されたデータを受けて外部に出力するデータ入出力バッファ124と、データ入出力バッファ124に入力された書込データを受けて、対応するビット線電位を駆動するデータドライバ126と、データ読出時において、ビット線BL1またはBL2を介して、選択されたメモリセルの記憶情報に応じて、対応する読出データを出力するセンスアンプ128と、データドライバ126からの書込データを受けて保持し、高電圧発生回路110からの高電圧を、対応するビット線に供給する書込回路130と、ベリファイ動作時にXデコーダ106にベリファイ電位VPVRFを供給するベリファイ電圧発生回路100とを含む。
【0078】
ここで、ベリファイ動作とは、メモリセルに対して書込を行なった際に、メモリセルしきい値が、所定の電位レベルとなっているかを確認するための動作を意味する。
【0079】
データドライバ126およびセンスアンプ128は、ビット線BL1に対しては列選択ゲートSLG1を介して、ビット線BL2に対しては列選択ゲートSLG2を介して接続し、選択ゲートSLG1およびSLG2のゲート電位は、Yデコーダ108により制御される。したがって、アドレスバッファ102からの内部列アドレス信号Ayに応じて、選択されたビット線とセンスアンプ128またはデータドライバ126とが接続される。
【0080】
上記の構成において、ビット線を主ビット線および副ビット線からなる階層構造としているのは以下の理由による。
【0081】
すなわち、1つのビット線BL1にメモリセルアレイブロックBLK0中のメモリセルトランジスタMC1a,MC1bとメモリセルアレイブロックBLK1のメモリセルトランジスタMC3a,MC3bとが同時に接続する構成となっている場合、たとえばメモリセルアレイブロックBLK0中のメモリセルに対してのみデータの書込を行なう場合にも、メモリセルアレイブロックBLK1中のメモリセルトランジスタのドレインにも高電圧が印加されてしまう。このため、隣のメモリセルアレイブロックBLK0へのデータ書込中に、メモリセルアレイブロックBLK1中のメモリセルトランジスタのフローティングゲート中の電荷量が変化し、最悪の場合、書込まれているデータが変化してしまうという問題がある。
【0082】
上記の問題の対策としては、データの書込を行なうメモリセルアレイブロックごとにビット線を別々にすればよい。すなわち、主ビット線BL1,BL2と副ビット線SBL1〜SBL4の2層構造とし、主ビット線はすべてのメモリセルアレイブロックを結び、副ビット線SBL1〜SBL4によって、各メモリセルアレイブロック内でのメモリセルトランジスタを接続する。
【0083】
主ビット線BL1,BL2と副ビット線SBL1〜SBL4との間には、選択ゲートSG1〜SG4が存在し、書込動作においては、選択されていないメモリセルアレイブロックをこの選択ゲートにより主ビット線から電気的に切り離す。
【0084】
このようにすることで、1つのメモリセルアレイブロックの書換中に他のメモリセルアレイブロックのメモリセルトランジスタに影響を与えることを防ぐことができる。
【0085】
以下では、図1に示した不揮発性半導体記憶装置1000の構成のうち、高電圧発生回路200または負電圧発生回路400の構成について、さらに詳しく説明する。
【0086】
図2は、図1に示した高電圧発生回路200の構成をより詳しく示す概略ブロック図である。
【0087】
高電圧発生回路200は、図1に示した制御回路122に制御されて、出力ノードNH1に昇圧電位Vpp1を出力する第1の昇圧回路202と、制御回路122に制御されて、第2の出力ノードNH2に第2の昇圧電圧Vpp2を出力する第2の昇圧回路204と、制御回路122および第2の昇圧回路204により制御されて、第1の出力ノードNH1および第2の出力ノードNH2との間の接続を導通状態または遮断状態とする高電圧スイッチ回路218と、高電圧発生回路200の動作の開始に応じて、互いに相補なクロック信号CLKおよびクロック信号/CLKを出力するクロック発生回路220とを含む。
【0088】
第1の昇圧回路202には、制御回路122からの第1の検出回路活性化信号DE1に応じて、動作を開始し、第1の出力ノードNH1に出力される電位レベルVpp1に応じて、第1のクロック活性化信号PE1を活性状態または不活性状態のいずれかとする高電圧レベル検出回路206と、クロック信号CLKおよび/CLKを受けて、信号PE1により制御されて、互いに相補な第1の駆動クロック信号PH1および/PH1を出力するクロックゲート回路210と、信号PH1および/PH1により駆動されて、電位Vpp1を出力ノードNH1に出力する第1のチャージポンプ回路214とを含む。
第2の昇圧回路204は、制御回路122から出力される第2の検出回路活性化信号DE2により制御されて、動作を開始し、出力ノードNH2に出力される電位Vpp2に応じて、互いに相補な第2のクロック活性化信号PE2および信号/PE2を出力する高電圧レベル検出回路208と、クロック信号CLKおよび/CLKを受けて、信号PE2により制御されて、互いに相補な第2の駆動クロック信号PH2および/PH2を出力するクロックゲート回路212と、信号PH2および/PH2により駆動されて、出力ノードNH2に電位Vpp2を出力する第2のチャージポンプ回路216とを含む。
【0089】
高電圧スイッチ回路218は、信号DE2と相補な信号である信号/DE2と、高電圧レベル検出回路208から出力される信号/PE2とに制御されて、高電圧発生回路200が動作を開始する時点では、出力ノードNH1および出力ノードNH2との接続を導通状態とし、第2の出力ノードNH2の電位レベルが所定の電位レベルとなるのに応じて、第1の出力ノードNH1および第2の出力ノードNH2との間の接続を遮断状態とする。
【0090】
ここで、第1のチャージポンプ回路214は、図19に示した従来のチャージポンプ回路2000と同様の構成を有するものとし、後に説明するように第2のチャージポンプ回路216は、第1のチャージポンプ回路214に比べて直列に接続されるダイオード接続されたトランジスタの段数が少なくなっているものとする。
【0091】
すなわち、第2のチャージポンプ回路216の電流供給量は、式(2)に従って、第1のチャージポンプ回路214の供給電流量よりも小さな値となっているものとする。
【0092】
また、クロック発生回路220は、信号DE1または信号DE2のいずれかの活性化に応じて、動作を開始しクロック信号CLKおよびクロック信号/CLKを出力するものとする。
【0093】
図3は、図2に示した高電圧レベル検出回路206の構成を示す概略ブロック図である。
【0094】
高電圧レベル検出回路208の構成も、入力される信号が相違する点を除いて、基本的に高電圧レベル検出回路206の構成と同様であるものとする。したがって、以下では高電圧検出回路206の構成についてのみ詳しく述べることにする。
【0095】
高電圧レベル検出回路206は、電位Vpp1と、接地電位との間に互いに直列に接続される抵抗R1およびR2を含む。抵抗R1およびR2の接続ノードn1からは、電位Vpp1がこれらの抵抗比で分割された電位レベルがVmonが出力されることになる。
【0096】
高電圧レベル検出回路206は、さらに、信号DE1の活性化(“H”レベルへの変化)に応じて活性化され、所定の基準電位Vrefと電位Vmonとを受けてその電位差を増幅するカレントミラー型差動増幅回路2062と、カレントミラー型差動増幅器の出力ノードn2と電源電位Vccとの間に接続され、信号DE1の不活性化(“L”レベルへの変化)に応じて導通状態となるpチャネルMOSトランジスタQ16と、電源電位Vccと、接地電位との間に直列に接続されるpチャネルMOSトランジスタQ17、nチャネルMOSトランジスタQ18およびnチャネルMOSトランジスタQ19とを含む。
【0097】
トランジスタQ17およびQ18のゲートは、共にノードn2に接続し、トランジスタQ19のゲートは、電位Vrefを受けるものとする。
【0098】
高電圧レベル検出回路206は、さらに、トランジスタQ17とトランジスタQ18の接続ノードn3と、接地電位との間に接続され、信号/DE1の不活性化(“H”レベルへの変化)に応じて導通状態となるnチャネルMOSトランジスタQ20と、ノードn3と入力ノードが接続し、信号PE1を出力するインバータ2064とを含む。
【0099】
ノードN3の電位レベルが、信号/PE1として出力される。
次に、高電圧レベル検出回路206の動作について簡単に説明する。
【0100】
信号DE1が不活性状態(“L”レベル)である期間中は、差動増幅回路2062中のトランジスタQ15は遮断状態であって、この差動増幅器2062は不活性状態である。一方、トランジスタQ20は、信号/DE1が不活性状態(“H”レベル)であることに応じて導通状態となり、ノードn3は、“L”レベルとなる。これに応じて、インバータ2064から出力される信号PE1は“H”レベルとなり、信号/PE1は“L”レベルとなる。
【0101】
次に、信号DE1が活性状態(“H”レベル)となると、差動増幅回路2062は活性状態となる。これに応じて、基準電位Vrefと、電位Vmonとの比較結果に応じて、高電圧レベル検出回路206から出力される信号PE1および/PE1の電位レベルは以下のように変化する。
【0102】
i) 基準電位Vrefよりも電位Vmonが大きい場合
信号DE1が活性状態(“H”レベル)であるために、トランジスタQ16は遮断状態である。このため、差動増幅回路2062の出力ノードn2の電位レベルは、“L”レベルへと変化する。これに応じて、トランジスタQ17が導通状態となり、トランジスタQ18は遮断状態となるので、ノードn3の電位レベルは“H”レベルとなる。これに応じて、インバータ2064から出力される信号PE1のレベルは“L”レベルに、信号/PE1は“H”レベルとなる。
【0103】
ii) 基準電位Vrefよりも電位Vmonが低い場合
この場合は、差動増幅器2062の出力ノードn2の電位レベルは“H”レベルとなる。これに応じて、トランジスタQ17は遮断状態となり、トランジスタQ18は導通状態となる。トランジスタQ19のゲートに基準電位Vrefを受けているので、導通状態となっており、これにより、ノードn3の電位レベルは“L”レベルへと変化する。
【0104】
したがって、インバータ2064の出力信号の信号PE1は“H”レベルに、信号/PE1は“L”レベルへと変化する。
【0105】
すなわち、高電圧レベル検出回路206からは、昇圧回路202の出力ノードNH1から出力される電位レベルVpp1の電位レベルが、所定の値以下となった場合には、活性なCLK活性信号PE1が出力されることになる。
【0106】
図4は、図2に示した高電圧スイッチ回路218の構成を示す概略ブロック図である。
【0107】
高電圧スイッチ回路218は、信号/PE2をセット信号として、信号/DE2をリセット信号として受けるフリップフロップ回路2182と、フリップフロップ回路2182の出力信号/TGXを受けて、反転した信号TGXを出力するインバータ2184と、第1の昇圧回路202の出力ノードNH1と、第2の昇圧回路204の出力ノードNH2との接続を導通状態または遮断状態とするpチャネルMOSトランジスタ2188と、信号TGXおよび信号/TGXに制御されて、pチャネルMOSトランジスタ2188のゲート電位レベルを制御するレベル変換回路2186とを含む。
【0108】
pチャネルMOSトランジスタ2188のバックゲートは、出力ノードNH1と接続されている。
【0109】
一方、レベル変換回路2186は、信号TGXが“L”レベルであって、信号/TGXが“H”レベルである場合は、pチャネルMOSトランジスタ2188のゲートに“L”レベル(接地電位)の電位レベルを与え、信号TGXが“H”レベル(信号/TGXは“L”レベル)である期間は、pチャネルMOSトランジスタ2188のゲートには、ノードNH1の電位レベルを供給する。
【0110】
以下、高電圧スイッチ回路218の動作について簡単に説明する。
i) 信号DE2が“L”レベルであり、信号PE2が“H”レベルである場合
図3において説明したとおり、高電圧レベル検出回路208においては、信号DE2のレベルが不活性状態(“L”レベル)である期間中は、信号PE2のレベルは“H”レベルとなっている。
【0111】
この場合は、フリップフロップ回路2182が受ける信号/PE2は“L”レベルであって、信号/DE2は“H”レベルである。したがって、フリップフロップ回路2182から出力される信号/TGHは“H”レベルであって、レベルシフト回路2186により制御されるpチャネルMOSトランジスタ2188は導通状態である。
【0112】
つまり、第1の昇圧回路202の出力ノードNH1と、第2の昇圧回路204の出力ノードNH2とは導通状態に維持される。
【0113】
ii) 信号DE2が“H”レベルとなった場合
この場合、図3において示した高電圧レベル検出回路206において、電位Vmonのレベルは、基準電位Vrefよりも当初は低いはずである。このため、信号DE2が“H”レベルとなって、高電圧レベル検出回路208が活性状態となった時点では、信号PE2は“H”レベルである。
【0114】
したがって、フリップフロップ回路2182は、その状態を変更することなく、信号/TGHは“H”レベルを維持する。
【0115】
すなわち、トランジスタ2188は導通状態のままである。
さらに、信号PE2が“L”レベルへと変化し、信号/PE2が“H”レベルとなると、レベル変換回路2186から、pチャネルMOSトランジスタ2188のゲートに与えられる電位レベルは、ノードNH1の電位レベルと同じとなり、トランジスタpチャネルMOSトランジスタ2188は遮断状態となる。
【0116】
以後は、信号DE2が“H”レベルを維持する限り、信号PE2の電位レベルとかかわりなく、フリップフロップ回路2182の出力する電位レベルは変化せず、pチャネルMOSトランジスタ2188は遮断状態を維持する。
【0117】
図5は、図2に示したCLKゲート回路210の構成を示す概略ブロック図である。
【0118】
CLKゲート回路212も、受ける信号および出力する信号が異なるのみで、その構成は、基本的にCLKゲート回路210の構成と同様である。
【0119】
CLKゲート回路210は、信号CLKおよび信号PE1を受けて、駆動クロック信号PH1を出力する第1のAND回路2102と、信号/CLKと信号PE1とを受けて、駆動クロック信号/PH1を出力する第2のAND回路2104とを含む。
【0120】
したがって、CLKゲート回路210は、信号PE1が活性状態(“H”レベル)である期間のみ、入力されたクロック信号CLKおよび/CLKを、それぞれ駆動クロック信号PH1および/PH1として出力する。
【0121】
信号PE1が不活性状態である期間は、駆動クロック信号PH1および/PH1は、“L”レベルを維持する。
【0122】
図6は、図2に示したチャージポンプ回路212の構成を示す概略ブロック図である。
【0123】
図2において説明したとおり、第1のチャージポンプ回路214は、従来のチャージポンプ回路2000と同様の構成を有している。
【0124】
第1のチャージポンプ回路214が、カップリングキャパシタC1〜C6を介して駆動クロック信号PH1および/PH1により駆動されるダイオード接続されたトランジスタが7段接続され構成となっているのに対し、第2のチャージポンプ回路216においては、ダイオード接続されたトランジスタが3段接続される構成となっている。
【0125】
したがって、式(2)によれば、第2のチャージポンプ回路216の供給電流量は、第1のチャージポンプ回路214の供給電流量に比べて小さな値を有することになる。
【0126】
図7は、図2に示した高電圧発生回路200の動作を説明するためのタイミングチャートである。
【0127】
まず時刻t0において、制御回路122から出力される検出回路活性化信号DE1およびDE2は共に“L”レベルであるものとする。この場合、高電圧レベル検出回路206および208からそれぞれ出力されるCLK活性化信号PE1およびPE2は、共に“H”レベルである。
【0128】
図4において説明したとおり、このような信号レベルにおいては、高電圧スイッチ回路218におけるpチャネルMOSトランジスタ2188は導通状態となっている。
【0129】
続いて、時刻t1において、信号DE1および信号DE2が共に活性状態(“H”レベル)へと変化する。
【0130】
これに応じて、クロック発生回路220は、クロック信号CLKおよびクロック信号/CLKの出力を開始する。
【0131】
第1のチャージポンプ回路214および第2のチャージポンプ回路216は、CLKゲート回路210および212からそれぞれ与えられる駆動クロック信号PH1/PH1ならびにPH2/PH2に応じて、対応する出力ノードNH1およびNH2の電位レベルを上昇させる。ただし、高電圧スイッチ回路218は導通状態となっているので、出力のとNH1および出力ノードNH2の電位レベルは等しく保たれていることになる。
【0132】
言換えると、この段階では、供給電流量のより大きな第1のチャージポンプ回路214が、より支配的に出力ノードNH1および出力ノードNH2の電位レベルを駆動していることになる。
【0133】
時刻t3において、出力ノードNH1の電位レベル(すなわち、出力ノードNH2の電位レベル)が、所定の電位レベルに到達したことを、高電圧レベル検出回路208が検出すると、信号/PE2が“H”レベルへと変化する。
【0134】
これに応じて、高電圧スイッチ回路218中のフリップフロップ回路2182から出力される信号/TGXは“L”レベルに、インバータ2184の出力信号の信号TGXは“H”レベルへと変化する。
【0135】
これら信号TGXおよび/TGXに制御されて、高電圧スイッチ回路218は遮断状態となる。
【0136】
したがって、時刻t3以降は、出力ノードNH1の電位レベルと、出力ノードNH2の電位レベルは、それぞれ第1の昇圧回路202および第2の昇圧回路204とにより独立に制御されることになる。
【0137】
つまり、第2の昇圧回路204の出力ノードNH2から出力される電位Vpp2の電位レベルは、既に時刻t3において所定の電位レベルに到達しているため、以後は、高電圧レベル検出回路208が、この電位レベルVpp2が所定の下限電位レベル以上であるか否かに応じて、CLKゲート回路212を制御することになる。
【0138】
すなわち、たとえば時刻t4において、電位Vpp2が、所定の下限電位レベルVs2よりも低下したと高電圧レベル検出回路208が検知した場合、CLK活性化信号PE2が”L”レベルから”H”レベルへと変化し、いいかえると、高電圧レベル検出回路208は、CLK活性化信号PE2を活性状態として、CLKゲート回路212から第2のチャージポンプ回路216に対して駆動クロック信号PH2および/PH2を出力させる。
【0139】
これにより、再び電位Vpp2は上昇を開始し、時刻t5において、所定の電位レベル以上に上昇したことを、高電圧レベル検出回路208が検知した場合、信号PE2は不活性状態となって、第2のチャージポンプ回路216に対する駆動クロック信号の供給が停止される。
【0140】
以後同様にして、電位Vpp2が所定の電位レベルを維持するように、第2の昇圧回路204が制御されることになる。
【0141】
一方で、第1の昇圧回路202の出力ノードNH1の電位レベルVpp1は、時刻t3の段階では、所定の電位レベルに到達していないため、高電圧レベル検出回路206から出力されるCLK活性化信号PE1は時刻t3以後も活性状態を維持する。
【0142】
時刻t6において、電位Vpp1が所定の電位レベルに達したと高電圧レベル検出回路206が検知すると、CLK活性化信号PE1を不活性化する。
【0143】
これに応じて、第1のチャージポンプ回路214の動作が停止する。電位Vpp1のレベルは、第1のチャージポンプ回路214が停止したことにより徐々に低下し始め、時刻t7において、高電圧レベル検出回路206が、電位Vpp1が所定の下限レベルVs1以下になったと検知すると、CLK活性化信号PE1が活性状態になる。
【0144】
これに応じて、再び第1のチャージポンプ回路214が動作し、電位Vpp1が所定の電位レベル以上となるまで上昇する。以後は、同様にして、高電圧レベル検出回路206に制御されて、第1の昇圧回路202から出力される電位Vpp1のレベルが所定の値に維持される。
【0145】
実施の形態1の高電圧発生回路においては、以上のような動作を行なうので、第2のチャージポンプ回路216の供給電流量が小さい場合、すなわち言換えると第2のチャージポンプ回路216の回路面積の小さい場合であっても、第2の昇圧回路204から出力される電位レベルVpp2の立上がりを、第1の昇圧回路202の立上がり速度と同一にすることが可能である。
【0146】
第2のチャージポンプ回路216は、電位Vpp2のレベルを所定の電位レベルに保持するだけの電流供給量を有していればよいので、高電圧発生回路200が、第1の高電圧出力Vpp1および第2の高電圧出力Vpp2を出力する場合でも、それぞれの電位Vpp1およびVpp2を全く独立の昇圧回路により生成する場合に比べて、回路面積の増大を抑制することが可能である。
【0147】
以上の説明では、高電圧発生回路200から出力される高電圧が2種類の場合について説明したが、本発明はこのような場合に限定されることなく、さらにより多くの高電圧を出力する場合に適用することも可能である。
【0148】
[実施の形態2]
図9は、本発明の実施の形態2の高電圧発生回路300の構成を示す概略ブロック図である。
【0149】
実施の形態1の高電圧発生回路200の構成と異なる点は、高電圧スイッチ218内で生成される信号TGXと、CLK活性化信号PE2の両方に制御されて、第2の昇圧回路204中のCLKゲート回路312が動作する構成となっている点である。
【0150】
その他の点は、図2に示した実施の形態1の高電圧発生回路200の構成と同様であるので、同一部分には同一符号を付してその説明は繰返さない。
【0151】
図8は、図9に示したCLKゲート回路312の構成を示す回路図である。
CLKゲート回路312は、クロック信号CLK,信号TGXおよび信号PE2を受けて、第1の駆動クロック信号PHを出力するAND回路3122と、クロック信号/CLK,信号TGXおよび信号PE2を受けて、第2の駆動クロック信号/PH2を出力するAND回路3124とを含む。
【0152】
したがって、CLKゲート回路312からは、信号TGXおよびPE2が共に活性手段(“H”レベル)である期間中のみクロック信号CLKおよび/CLKに応じて、第1および第2の駆動クロック信号PHおよび/PHが出力されることになる。
【0153】
図10は、図9に示した高電圧発生回路300の動作を説明するためのタイミングチャートである。
【0154】
時刻t0において、制御回路122から出力される検出回路活性化信号DE1およびDE2は、共に不活性状態であり、時刻t1において、信号DE1およびDE2が活性状態(“H”レベル)へと変化する。一方、時刻t0の時点において、信号PE2は活性状態であって、信号/PE2は“L”レベルである。一方、信号/DE2は“H”レベルであるため、図9に示した高電圧スイッチ218は導通状態である。
【0155】
時刻t1において、信号DE2が“H”レベルに、すなわち、信号/DE2が“L”レベルとなった場合でも、高電圧スイッチ218は導通状態を維持する。
【0156】
すなわち、高電圧スイッチ218から出力される信号TGXは“L”レベルである。このため、CLKゲート回路312からは活性な駆動クロック信号PH2および/PH2は出力されない。このため、第2のチャージポンプ回路216は動作を停止したままである。
【0157】
したがって、時刻t1〜t3の期間においては、第1のチャージポンプ回路214のみが動作し、第1の昇圧回路202の出力ノードNH1および第2の昇圧回路204の出力ノードNH2の電位レベルは、第1のチャージポンプ回路214のみによって駆動される。
【0158】
時刻t3において、ノードNH2の電位レベルが、所定の電位レベルになると、高電圧レベル検出回路208は、信号PE2の電位レベルを“L”レベルへと変化させる。これに応じて、高電圧スイッチ回路218に入力する信号/PE2は“H”レベルへと変化し、高電圧スイッチ回路218は遮断状態となる。さらに、信号/PE2の“H”レベルへの変化に応じて、信号TGXも“H”レベルへと変化する。
【0159】
つまり、CLKゲート回路312においては、信号TGXは“H”レベルであるものの、信号PE2が“L”レベルであるため、依然として第2のチャージポンプ回路216には、駆動クロック信号PH2および/PH2は供給されない。
【0160】
時刻t4において、高電圧レベル検出回路208が、ノードNH2の電位レベル、すなわち電位Vpp2の電位レベルが所定の下限電位レベルVs2以下であることを検知すると、高電圧レベル検出回路208は、信号PE2を活性状態へと変化させる。この時点で、信号PE2および信号TGXが共に“H”レベルとなるので、CLKゲート回路312から第2のチャージポンプ回路216に対して、活性な駆動クロック信号PH2および/PH2が供給される。
【0161】
これにより、電位Vpp2は、第2のチャージポンプ回路216により、独立に駆動されて、再び所定の電位レベルに達するまで昇圧される。時刻t5において、高電圧レベル検出回路208が電位Vpp2が所定の電位レベル以上になったことを検知すると、信号PE2は不活性化し、これに応じて、第2のチャージポンプ回路216への駆動クロック信号の供給も停止される。
【0162】
以後は、同様にして、第2の昇圧回路204により独立に、電位Vpp2が制御される。
【0163】
一方、時刻t3において、高電圧スイッチ回路218が遮断状態となった時点では、第1の昇圧回路202から出力される電位Vpp1は、電位Vpp1に対して予め定められた所定の電位レベルには到達していない。したがって、高電圧レベル検出回路206は、信号PE1を活性状態(“H”レベル)に維持する。このため、第1のチャージポンプ回路214が、電位Vpp1を独立に制御してさらに昇圧動作を継続する。
【0164】
時刻t6において、電位Vpp1が、所定の電位レベルに到達したことを高電圧レベル検出回路206が検知すると、信号PE1は不活性状態へと変化する。
【0165】
これに応じて、第1のチャージポンプ回路214への駆動クロック信号PH1および/PH1の供給が停止される。時刻t7において、再び電位Vpp1の電位レベルが、第1の所定の下限電位レベルVs1よりも低下したことを、高電圧レベル検出回路206が検知すると、再び信号PE1が活性状態(”H”レベル)となり、第1のチャージポンプ回路214により電位Vpp1の昇圧動作が行なわれる。
【0166】
以上説明したとおり、実施の形態2の昇圧回路300においては、電位Vpp1が供給される出力ノードNH1および電位Vpp2が供給される出力ノードNH2の電位レベルは、昇圧動作の初期段階においては、共に第1のチャージポンプ回路214により駆動される。
【0167】
第2のチャージポンプ回路216は、第2の所定の電位レベルまで昇圧された電位Vpp2を、この第2の所定電位レベルに維持する動作のみを行なえばよい。このため、第2のチャージポンプ回路の供給電流量を第1のチャージポンプ回路の供給電流量に比べて小さく抑えた場合でも、言換えると、第2のチャージポンプ回路216の回路面積を、第1のチャージポンプ回路214の回路面積に比べて小さく抑えた場合でも、昇圧動作の初期段階においては、ノードNH2の電位レベルは、ノードNH1の電位レベルと同様に立上げることが可能となる。
【0168】
[実施の形態3]
図11は、図1に示した負電圧発生回路400の構成を示す概略ブロック図である。
【0169】
図2に示した実施の形態1の高電圧発生回路200の構成と異なる点は、以下のとおりである。
【0170】
すなわち、負電圧発生回路400においては、まず第1の負電位駆動回路402と、第2の負電位駆動回路404と、負の高電圧スイッチ418と、クロック発生回路220とを含む。
【0171】
ここで、第1の負電位駆動回路402は、その出力ノードNn1の電位レベルを、制御回路122に制御されて、負の高電圧(たとえば、−10V)に駆動する。第2の負電位駆動回路404は、その出力ノードNn1の電位レベルを負の高電位に駆動する。ここで、第2の負電位駆動回路404の供給電流量は、第1の負電位駆動回路402の供給電流量よりも小さなものとする。高電圧スイッチ418は、後に説明するように、制御回路122および出力ノードNn1の電位レベルに応じて制御されて、ノードNn1とノードNn2との接続を開閉する。
【0172】
つまり、第1の負電位駆動回路402および第2の負電位駆動回路404が、共にその出力ノードの電位レベルを負に駆動する点、および高電圧スイッチ回路418が、負の電位レベルにある2つの出力ノードNn1およびNn2の接続を開閉する点において、負電圧発生回路400は、高電圧発生回路200の構成と異なる。
【0173】
第1の負電位駆動回路402は、制御回路122からの検出回路活性化信号DE1に応じて活性化され、出力ノードNn1の電位レベルが所定の電位レベル以上であることを検知すると、CLK活性化信号PE1を活性状態とする高電圧レベル検出回路406と、信号PE1に応じて活性化され、クロック信号CLKおよび/CLKを受けて、駆動クロック信号PH1および/PH1を出力するCLKゲート回路410と、駆動クロック信号PH1および/PH1に応じて、第1の電流供給量で出力ノードNn1の電位レベルを負電位に駆動するチャージポンプ回路414とを含む。
【0174】
第2の負電位駆動回路404も、制御回路122からの検出回路活性化信号DE2に応じて活性化され、出力ノードNn2の電位レベルが、第2の所定の電位レベルよりも高い場合には、CLK活性化信号PE2を活性状態とする高電圧レベル検出回路408と、信号PE2に応じて活性化され、クロック信号CLKおよび/CLKを受けて、駆動クロック信号PH2および/PH2を出力するCLKゲート回路412と、信号PH2および/PH2に応じて駆動され、第2の所定の供給電流量で、出力ノードNn2の電位レベルを駆動する第2のチャージポンプ回路416を含む。
【0175】
負の高電圧レベル検出回路からは、信号PE2の反転信号である/PE2が出力され、高電圧スイッチ回路418は、検出回路活性化信号DE2の反転信号である信号/DE2と信号/PE2とに制御されて、導通状態または遮断状態に切換わる。
【0176】
図12は、図11に示した負の高電圧レベル検出回路406の構成を示す回路図であり、図3と対比される図である。
【0177】
高電圧レベル検出回路408の構成も、入力する信号、出力する信号および基準電位のレベル値が異なるのみで、その基本的な構成は図12に示した高電圧レベル検出回路406の構成と同様である。
【0178】
また、図12に示した高電圧レベル検出回路406の構成が、図3に示した高電圧レベル検出回路206の構成と異なる点は、以下の2点である。
【0179】
すなわち、まず第1には、差動増幅回路4062の入力信号であるVmonを出力するノードn1は、電源電位Vccと電位Vnn1との間に直列に接続される抵抗R1およびR2の接続ノードに対応している。
【0180】
第2には、差動増幅回路4062に入力する電位Vmonと第1の基準電位Vref1に対して、差動増幅回路4062の出力ノードN2の電位レベルが以下のように駆動される点である。
【0181】
すなわち、電位レベルVmonが電位Vref1よりも高い場合、ノードN1の電位レベルは“H”レベルに駆動される。一方、電位Vmonの電位レベルが、電位Vref1よりも低い場合は、ノードN2の電位レベルは“L”レベルに駆動される。
【0182】
したがって、電位Vmonが電位Vref1よりも高い場合は、信号PE1が“H”レベルに、信号/PE1が“L”レベルとなる。
【0183】
一方、電位Vmonの電位レベルが、電位Vref1よりも低い場合は、信号PE1は“L”レベルに、信号/PE1は“H”レベルとなる。
【0184】
その他の点は、図3に示した高電圧レベル検出回路206の構成と同一であるので、同一部分には同一符号を付して説明は繰返さない。
【0185】
図13は、図11に示した高電圧スイッチ回路418の構成を示す回路図であり、図4と対比される図である。
【0186】
図13に示した高電圧スイッチ回路418の構成が、図4の高電圧スイッチ回路218の構成と異なる点は、以下のとおりである。
【0187】
まず第1に、高電圧スイッチ回路418は、フリップフロップ回路2182から出力される信号を受けて反転して出力するインバータ2184の出力ノードと、レベルシフト回路4186との間に、インバータ2184の出力側に、接地電位以下の電位レベルが伝達するのを防止するためのpチャネルMOSトランジスタ4190を含む構成となっている点である。
【0188】
pチャネルMOSトランジスタ4190は、レベルシフト回路4186の入力ノードとインバータ2184の出力ノードとの間に接続され、ゲートは接地電位を受け、バックゲートは、インバータ2184の出力レベルを受ける構成となっている。
【0189】
第2には、レベルシフト回路4186が、インバータ2184から出力される信号に応じて、電源電位Vccを出力する状態と、ノードNH2の電位レベルを出力する状態とに切換わる点である。
【0190】
第3には、ノードNH1とノードNH2との接続を開閉するのは、nチャネルMOSトランジスタ4188となっている点である。
【0191】
nチャネルMOSトランジスタ4188は、ノードNH1とノードNH2との間に接続され、ゲートは、レベルシフト回路4186の出力を受け、バックゲートは、ノードNH2の電位レベルを受ける構成となっている。
【0192】
すなわち、高電圧スイッチ回路418は、信号TE2が“L”レベルであって、信号/DE2が“H”レベル、信号/PE2が“L”レベルである場合は、ノードNH1とノードNH2との接続を導通状態とする。
【0193】
この状態は、信号/PE2が“L”レベルのままで、信号/DE2が“L”レベル(信号DE2は“H”レベル)となった後も維持される。
【0194】
信号/DE2が“L”レベル(信号DE2は“H”レベル)であって、信号/PE2が“H”レベルとなることに応じて、トランジスタ4188は遮断状態となる。
【0195】
図14は、図11に示した負電圧発生回路400の構成要素のうち、第1のチャージポンプ回路414の構成を示す図であり、図19と対比される図である。
【0196】
図19の構成と異なる点は、トランジスタQ1のゲートおよびソースが共に、接地電位を受ける構成となつている点である。
【0197】
その他の点は、図19に示したチャージポンプ回路2000の構成と同様である。
【0198】
図15は、図11に示した負電圧発生回路400の構成要素のうち、第2のチャージポンプ回路416の構成を示す回路図である。
【0199】
図14に示した第1のチャージポンプ回路414の構成と異なる点は、ダイオード接続された互いに直列に接続するトランジスタの段数が、第1のチャージポンプ回路414においては7段構成であるのに対し、第2のチャージポンプ回路416においては、3段構成となっている点である。
【0200】
このため、図14に示したチャージポンプ回路においてはカップリングトランジスタがC1〜C6の6個存在するのに対し、図15に示した第2のチャージポンプ回路416においては、C1′およびC2′の2個が存在するのみである。このため、式(2)によれば、第1のチャージポンプ回路414に比べて、第2のチャージポンプ回路416の供給電流量は小さな値を有することになる。
【0201】
図16は、図11に示した負電圧発生回路400の動作を説明するためのタイミングチャートである。
【0202】
まず時刻t0において、制御回路122から出力される検出回路活性化信号DE1およびDE2は共に“L”レベルであるものとする。この場合、高電圧レベル検出回路406および408からそれぞれ出力されるCLK活性化信号PE1およびPE2は、共に“H”レベルである。
【0203】
図13において説明したとおり、このような信号レベルにおいては、高電圧スイッチ回路418におけるnチャネルMOSトランジスタ4188は導通状態となっている。
【0204】
続いて、時刻t1において、信号DE1および信号DE2が共に活性状態(“H”レベル)へと変化する。
【0205】
第1のチャージポンプ回路414および第2のチャージポンプ回路416は、CLKゲート回路410および412からそれぞれ与えられる駆動クロック信号PH1/PH1ならびにPH2/PH2に応じて、対応する出力ノードNn1およびNn2の電位レベルを上昇させる。ただし、高電圧スイッチ回路418は導通状態となっているので、出力のとNn1および出力ノードNn2の電位レベルは等しく保たれていることになる。
【0206】
言換えると、この段階では、供給電流量のより大きな第1のチャージポンプ回路414が、より支配的に出力ノードNn1および出力ノードNn2の電位レベルを駆動していることになる。
【0207】
時刻t3において、出力ノードNn1の電位レベル(すなわち、出力ノードNn2の電位レベル)が、所定の電位レベルに到達したことを、高電圧レベル検出回路408が検出すると、信号/PE2が“H”レベルへと変化する。
【0208】
これに応じて、高電圧スイッチ回路418中のフリップフロップ回路2182から出力される信号を受けるインバータ2184の出力信号の信号TGXは“H”レベルへと変化する。
【0209】
信号TGXに制御されて、高電圧スイッチ回路418は遮断状態となる。
したがって、時刻t3以降は、出力ノードNn1の電位レベルと、出力ノードNn2の電位レベルは、それぞれ第1の負電位駆動回路402および第2の負電位駆動回路404とにより独立に制御されることになる。
【0210】
つまり、第2の負電位駆動回路404の出力ノードNn2から出力される電位Vnn2の電位レベルは、既に時刻t3において所定の電位レベルに到達しているため、以後は、高電圧レベル検出回路408が、この電位レベルVnn2が所定の上限電位レベルVR2以下であるか否かに応じて、CLKゲート回路412を制御することになる。
【0211】
一般には、ノードNn2の電位レベルは、微少なリーク電流のためにチャージポンプ回路416が不活性化した後は、徐々に上昇する。
【0212】
すなわち、たとえば時刻t4において、電位Vnn2が、所定の上限電位レベルVR2よりも上昇したと高電圧レベル検出回路408が検知した場合、CLK活性化信号PE2は”L”レベルから”H”へと変化し、いいかえると、高電圧レベル検出回路408は、CLK活性化信号PE2を活性状態として、CLKゲート回路412から第2のチャージポンプ回路416に対して駆動クロック信号PH2および/PH2を出力させる。
【0213】
これにより、再び電位Vnn2は下降を開始し、時刻t5において、所定の電位レベル以下に下降したことを、高電圧レベル検出回路408が検知した場合、信号PE2は不活性状態となって、第2のチャージポンプ回路416に対する駆動クロック信号の供給が停止される。
【0214】
以後同様にして、電位Vnn2が所定の電位レベルを維持するように、第2の負電位駆動回路204が制御されることになる。
【0215】
一方で、第1の負電位駆動回路202の出力ノードNn1の電位レベルVnn1は、時刻t3の段階では、所定の電位レベルに到達していないため、高電圧レベル検出回路406から出力されるCLK活性化信号PE1は時刻t3以後も活性状態を維持する。時刻t6において、電位Vnn1が所定の電位レベルに達したと高電圧レベル検出回路406が検知すると、CLK活性化信号PE1を不活性化する。
【0216】
これに応じて、第1のチャージポンプ回路414の動作が停止する。電位Vnn1のレベルは、第1のチャージポンプ回路414が停止したことにより徐々に上昇し始め、時刻t7において、高電圧レベル検出回路406が、電位Vnn1が所定の上限レベルVR1以上になったと検知すると、CLK活性化信号PE1が活性状態になる。
【0217】
これに応じて、再び第1のチャージポンプ回路414が動作し、電位Vnn1が所定の電位レベル以下となるまで低下する。以後は、同様にして、高電圧レベル検出回路406に制御されて、第1の負電位駆動回路402から出力される電位Vnn1のレベルが所定の値に維持される。
【0218】
実施の形態3の高電圧発生回路においては、以上のような動作を行なうので、第2のチャージポンプ回路416の供給電流量が小さい場合、すなわち言換えると第2のチャージポンプ回路416の回路面積の小さい場合であっても、第2の負電位駆動回路404から出力される電位レベルVnn2のたち下がりを、第1の負電位駆動回路402の立ち下がり速度と同一にすることが可能である。
【0219】
第2のチャージポンプ回路416は、電位Vnn2のレベルを所定の電位レベルに保持するだけの電流供給量を有していればよいので、負電圧発生回路400が、第1の高電圧出力Vnn1および第2の高電圧出力Vnn2を出力する場合でも、それぞれの電位Vnn1およびVnn2を全く独立の負電位駆動回路により生成する場合に比べて、回路面積の増大を抑制することが可能である。
【0220】
以上の説明では、負電圧発生回路400から出力される高電圧が2種類の場合について説明したが、本発明はこのような場合に限定されることなく、さらにより多くの高電圧を出力する場合に適用することも可能である。
【0221】
[実施の形態4]
図17は、本発明の実施の形態4の負電圧発生回路500の構成を示す概略ブロック図である。
【0222】
図11に示した実施の形態3の負電圧発生回路の構成と異なる点は、以下のとおりである。
【0223】
すなわち、実施の形態4の負電圧発生回路においては、第2の負電位駆動回路404中のCLKゲート回路512が、高電圧レベル検出回路408からのCLK活性化信号PE2および高電圧スイッチ418からの信号TGXの双方に制御されて動作する構成となっている点である。
【0224】
すなわち、図8に示した、実施の形態2のCLKゲート回路312の構成と同様にして、CLKゲート回路512は、信号TGXおよび信号PE2が共に活性状態(“H”レベル)である期間内のみクロック発生回路220から受けたクロックCLKおよび/CLKを、駆動クロック信号PH2および/PH2として出力する。
【0225】
したがって、負電圧発生回路500の動作の初期段階においては、高電圧スイッチ418は導通状態となっており、かつCLKゲート回路512は、活性な駆動クロック信号PH2および/PH2を出力しない状態となっている。
【0226】
したがって、出力ノードNn2の電位レベルが所望の電圧になるまでは、第2のチャージポンプ回路416は動作しない構成となっている。
【0227】
その他の点は、図11に示した第3の実施例の負電圧発生回路400の構成と同様であるので、同一部分には同一符号を付してその説明は繰返さない。
図18は、図17に示した負電圧発生回路500の動作を説明するためのタイミングチャートである。
【0228】
時刻t0において、制御回路122から出力される検出回路活性化信号DE1およびDE2は、共に不活性状態であり、時刻t1において、信号DE1およびDE2が活性状態(“H”レベル)へと変化する。一方、時刻t0の時点において、信号PE2は活性状態であって、信号/PE2は“L”レベルである。信号/DE2は“H”レベルであるため、図17に示した高電圧スイッチ418は導通状態である。
【0229】
時刻t1において、信号DE2が“H”レベルに、すなわち、信号/DE2が“L”レベルとなった場合でも、高電圧スイッチ418は導通状態を維持する。
【0230】
すなわち、高電圧スイッチ418から出力される信号TGXは“L”レベルである。このため、CLKゲート回路412からは活性な駆動クロック信号PH2および/PH2は出力されない。このため、第2のチャージポンプ回路416は動作を停止したままである。
【0231】
したがって、時刻t1〜t3の期間においては、第1のチャージポンプ回路414のみが動作し、第1の負電位駆動回路402の出力ノードNH1および第2の負電位駆動回路404の出力ノードNn2の電位レベルは、第1のチャージポンプ回路414のみによって駆動される。
【0232】
時刻t3において、ノードNn2の電位レベルが、所定の電位レベルになると、高電圧レベル検出回路408は、信号PE2の電位レベルを“L”レベルへと変化させる。これに応じて、高電圧スイッチ回路418に入力する信号/PE2は“H”レベルへと変化し、高電圧スイッチ回路418は遮断状態となる。さらに、信号/PE2の“H”レベルへの変化に応じて、信号TGXも“H”レベルへと変化する。
【0233】
つまり、CLKゲート回路512においては、信号TGXは“H”レベルであるものの、信号PE2が“L”レベルであるため、依然として第2のチャージポンプ回路416には、駆動クロック信号PH2および/PH2は供給されない。
【0234】
時刻t4において、高電圧レベル検出回路408が、ノードNn2の電位レベル、すなわち電位Vnn2の電位レベルが所定の上限電位レベルVR2以上であることを検知すると、高電圧レベル検出回路408は、信号PE2を活性状態へと変化させる。この時点で、信号PE2および信号TGXが共に“H”レベルとなるので、CLKゲート回路512から第2のチャージポンプ回路416に対して、活性な駆動クロック信号PH2および/PH2が供給される。
【0235】
これにより、電位Vnn2は、第2のチャージポンプ回路416により、独立に駆動されて、再び所定の電位レベルに達するまで降圧される。時刻t5において、高電圧レベル検出回路408が電位Vnn2が所定の電位レベル以下になったことを検知すると、信号PE2は不活性化し、これに応じて、第2のチャージポンプ回路416への駆動クロック信号の供給も停止される。
【0236】
以後は、同様にして、第2の負電位駆動回路404により独立に、電位Vnn2が制御される。
【0237】
一方、時刻t3において、高電圧スイッチ回路418が遮断状態となった時点では、第1の負電位駆動回路402から出力される電位Vnn1は、電位Vnn1に対して予め定められた所定の電位レベルには到達していない。したがって、高電圧レベル検出回路406は、信号PE1を活性状態(“H”レベル)に維持する。このため、第1のチャージポンプ回路414が、電位Vnn1を独立に制御してさらに降圧動作を継続する。
【0238】
時刻t6において、電位Vnn1が、所定の電位レベルに到達したことを高電圧レベル検出回路406が検知すると、信号PE1は不活性状態へと変化する。
【0239】
これに応じて、第1のチャージポンプ回路414への駆動クロック信号PH1および/PH1の供給が停止される。時刻t7において、再び電位Vnn1の電位レベルが、第1の所定の上限電位レベルVR1よりも上昇したことを、高電圧レベル検出回路406が検知すると、再び信号PE1が活性状態となり、第1のチャージポンプ回路414により電位Vnn1の降圧動作が行なわれる。
【0240】
以上説明したとおり、実施の形態4の負電位駆動回路500においては、電位Vnn1が供給される出力ノードNn1および電位Vnn2が供給される出力ノードNn2の電位レベルは、降圧動作の初期段階においては、共に第1のチャージポンプ回路414により駆動される。
【0241】
第2のチャージポンプ回路416は、第2の所定の電位レベルまで降圧された電位Vnn2を、この第2の所定電位レベルに維持する動作のみを行なえばよい。このため、第2のチャージポンプ回路の供給電流量を第1のチャージポンプ回路の供給電流量に比べて小さく抑えた場合でも、言換えると、第2のチャージポンプ回路416の回路面積を、第1のチャージポンプ回路414の回路面積に比べて小さく抑えた場合でも、降圧動作の初期段階においては、ノードNn2の電位レベルは、ノードNn1の電位レベルと同様に立上げることが可能となる。
【0242】
【発明の効果】
請求項1記載の内部電位発生回路においては、第1および第2の出力ノードの電位が第2の所定電位となるまでは、第1および第2のチャージポンプ手段の出力ノードの電位レベルは共通に保たれる。このため、第1のチャージポンプ手段および第2のチャージポンプ手段の電流供給量が異なる場合でも、第1の出力ノードと第2の出力ノードの電位レベルの立上がる速度を共通とすることができる。このため、内部電位発生回路が、第1の所定の内部電位および第2の所定の内部電位を発生する必要がある場合でも、回路面積の増大を抑制することが可能である。
【0243】
請求項2記載の内部電位発生回路は、第2の出力ノードの電位が第2の所定電位となって、スイッチ手段が遮断状態となった後は、第1の出力ノードと第2の出力ノードの電位レベルは、それぞれ独立に制御されるため、第2のチャージポンプ手段が出力する第1の電流供給量は、第2の所定の内部電位を維持する大きさで十分である。このため、第2のチャージポンプ手段の回路面積を縮小することが可能で、内部電位発生回路の回路面積自体の増大を抑制することが可能である。
【0244】
請求項3記載の内部電位発生回路は、第2の出力ノードの電位が第2の所定電位となって、スイッチ手段が遮断状態となった後は、第1の出力ノードと第2の出力ノードの電位レベルは、それぞれ独立に制御されるため、第2のチャージポンプ手段が出力する第1の電流供給量は、第2の所定の内部電位を維持する大きさで十分である。このため、第2のチャージポンプ手段の回路面積を縮小することが可能で、内部電位発生回路の回路面積自体の増大を抑制することが可能である。
【0245】
請求項4記載の内部電位発生回路は、内部電位発生回路が第1の所定の内部電位および第2の所定の内部電位を出力し始める初期段階においては、第1および第2のチャージポンプ手段の双方が動作するため、第1および第2の出力ノードの電位レベルが、それぞれ所定の電位レベルとなるまでの時間を短縮することが可能である。
【0246】
請求項5記載の内部電位発生回路は、内部電位発生回路が第1の所定の内部電位および第2の所定の内部電位を出力し始める初期段階においては、第1および第2のチャージポンプ手段の双方が動作するため、第1および第2の出力ノードの電位レベルが、それぞれ所定の電位レベルとなるまでの時間を短縮することが可能である。
【0247】
請求項6記載の内部電位発生回路は、第1および第2の出力ノードの電位レベルが、第2の所定の電位レベルとなるまでは、第1のチャージポンプ手段のみが動作するため、消費電力を抑制することが可能である。
【0248】
請求項7記載の内部電位発生回路は、第1および第2の出力ノードの電位レベルが、第2の所定の電位レベルとなるまでは、第1のチャージポンプ手段のみが動作するため、消費電力を抑制することが可能である。
【0249】
請求項8記載の内部電位発生回路は、第2の出力ノードの電位が第2の所定電位となって、スイッチ手段が遮断状態となった後は、第1の出力ノードと第2の出力ノードの電位レベルは、それぞれ独立に制御されるため、第2のチャージポンプ手段が出力する第1の電流供給量は、第2の所定の内部電位を維持する大きさで十分である。このため、第2のチャージポンプ手段の回路面積を縮小することが可能で、内部電位発生回路の回路面積自体の増大を抑制することが可能である。
【0250】
請求項9記載の内部電位発生回路は、第2の出力ノードの電位が第2の所定電位となって、スイッチ手段が遮断状態となった後は、第1の出力ノードと第2の出力ノードの電位レベルは、それぞれ独立に制御されるため、第2のチャージポンプ手段が出力する第1の電流供給量は、第2の所定の内部電位を維持する大きさで十分である。このため、第2のチャージポンプ手段の回路面積を縮小することが可能で、内部電位発生回路の回路面積自体の増大を抑制することが可能である。
【0251】
請求項10記載の内部電位発生回路は、内部電位発生回路が第1の所定の内部電位および第2の所定の内部電位を出力し始める初期段階においては、第1および第2のチャージポンプ手段の双方が動作するため、第1および第2の出力ノードの電位レベルが、それぞれ所定の電位レベルとなるまでの時間を短縮することが可能である。
【0252】
請求項11記載の内部電位発生回路は、内部電位発生回路が第1の所定の内部電位および第2の所定の内部電位を出力し始める初期段階においては、第1および第2のチャージポンプ手段の双方が動作するため、第1および第2の出力ノードの電位レベルが、それぞれ所定の電位レベルとなるまでの時間を短縮することが可能である。
【0253】
請求項12記載の内部電位発生回路は、第1および第2の出力ノードの電位レベルが、第2の所定の電位レベルとなるまでは、第1のチャージポンプ手段のみが動作するため、消費電力を抑制することが可能である。
【0254】
請求項13記載の内部電位発生回路は、第1および第2の出力ノードの電位レベルが、第2の所定の電位レベルとなるまでは、第1のチャージポンプ手段のみが動作するため、消費電力を抑制することが可能である。
【図面の簡単な説明】
【図1】 本発明の実施の形態1の不揮発性半導体記憶装置1000の構成を示す概略ブロック図である。
【図2】 実施の形態1の高電圧発生回路200の構成を示す概略ブロック図である。
【図3】 高電圧レベル検出回路206の構成を示す回路図である。
【図4】 高電圧スイッチ回路218の構成を示す概略ブロック図である。
【図5】 CLKゲート回路210の構成を示す概略ブロック図である。
【図6】 第2のチャージポンプ回路216の構成を示す回路図である。
【図7】 実施の形態1の高電圧発生回路200の動作を説明するタイミングチャートである。
【図8】 実施の形態2のCLKゲート回路312の構成を示す概略ブロック図である。
【図9】 実施の形態2の高電圧発生回路300の構成を示す概略ブロック図である。
【図10】 実施の形態2の高電圧発生回路300の動作を説明するためのタイミングチャートである。
【図11】 実施の形態3の負電圧発生回路400の構成を示す概略ブロック図である。
【図12】 高電圧レベル検出回路406の構成を示す回路図である。
【図13】 高電圧スイッチ418の構成を示す回路図である。
【図14】 第1のチャージポンプ回路414の構成を示す回路図である。
【図15】 第2のチャージポンプ回路416の構成を示す回路図である。
【図16】 実施の形態3の負電圧発生回路400の動作を説明するためのタイミングチャートである。
【図17】 実施の形態4の負電圧発生回路500の構成を示す概略ブロック図である。
【図18】 負電圧発生回路500の動作を説明するためのタイミングチャートである。
【図19】 従来のチャージポンプ回路2000の構成を示す回路図である。
【図20】 従来のチャージポンプ回路2000中のトランジスタの構造を示す模式断面図である。
【図21】 従来のチャージポンプ回路2000の等価回路を示す回路図である。
【図22】 駆動クロック信号PHおよび/PHの時間変化を示すタイミングチャートである。
【図23】 従来の不揮発性半導体記憶装置のメモリセルトランジスタの構成および動作を説明するための模式断面図であり、(a)は書込動作における各部分の電位を、(b)は消去動作における各部の電位をそれぞれ示す。
【図24】 従来の不揮発性半導体記憶装置に対する書込動作、消去動作および読出動作における各電位レベルを示す図である。
【符号の説明】
100 ベリファイ電圧発生回路、102 アドレスバッファ、104 メモリセルアレイ、106 Xデコーダ、108 Yデコーダ、114 セレクトゲートデコーダ,116,118 ソースデコーダ、120 ウェル電位駆動回路、122 制御回路、124 データ入出力バッファ、126 データドライバ、128 センスアンプ、130 書込回路、200,300 高電圧発生回路、400,500 負電圧発生回路、1000 不揮発性半導体記憶装置。

Claims (13)

  1. 外部電源電位を受けて、第1の所定の内部電位および前記第1の所定の内部電位よりも絶対値の小さな第2の所定の内部電位を発生する内部電位発生回路であって、
    互いに相補なクロック信号を出力するクロック発生手段と、
    前記第1の所定の内部電位が出力されるべき第1の出力ノードを有し、前記相補なクロック信号に応じて第1の電流供給量で前記第1の出力ノードの電位を駆動する第1のチャージポンプ手段と、
    前記第2の所定の内部電位が出力されるべき第2の出力ノードを有し、前記相補なクロック信号に応じて、前記第1の電流供給量よりも小さな第2の電流供給量で前記第2の出力ノードの電位を駆動する第2のチャージポンプ手段と、
    前記第1の出力ノードと前記第2の出力ノードとの接続を導通状態および遮断状態のいずれかとするスイッチ手段と、
    前記第1の出力ノードの電位レベルおよび前記第2の出力ノードの電位レベルに応じて、前記第1のチャージポンプ手段および前記第2のチャージポンプ手段それぞれへの前記相補なクロック信号の供給を制御する制御手段とを備え、
    前記制御手段は、
    前記第1および前記第2の出力ノードの電位が前記第2の所定電位となるのに応じて、前記スイッチ手段を導通状態から遮断状態とする、内部電位発生回路。
  2. 前記第1の所定の内部電位および前記第2の所定の内部電位は共に正の電位であって、
    前記制御手段は、
    前記スイッチ手段を遮断状態とした後は、前記第1の出力ノードの電位レベルが前記第1の所定の内部電位となるように、前記第1のチャージポンプ手段への前記相補なクロック信号の供給を制御し、かつ、前記第2の出力ノードの電位レベルが前記第2の所定の内部電位となるように、前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御する、請求項1記載の内部電位発生回路。
  3. 前記第1の所定の内部電位および前記第2の所定の内部電位は共に正の電位であって、
    前記制御手段は、
    前記スイッチ手段を遮断状態とした後は、前記第1の出力ノードの電位レベルが前記第1の所定の内部電位となるように、前記第1のチャージポンプ手段への前記相補なクロック信号の供給を制御する第1の内部制御手段と、
    前記スイッチ手段を遮断状態とした後は、前記第2の出力ノードの電位レベルが前記第2の所定の内部電位となるように、前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御する第2の内部制御手段とを含む、請求項1記載の内部電位発生回路。
  4. 前記制御手段は、
    前記内部電位発生回路の動作開始に応じて、前記第1のチャージポンプ手段と前記第2のチャージポンプ手段の双方に前記相補なクロック信号の供給を開始させる、請求項2記載の内部電位発生回路。
  5. 前記第2の内部制御手段は、
    前記第2の出力ノードの電位レベルが前記第2の所定の内部電位以上となることに応じて、内部制御信号を不活性とし、
    前記スイッチ手段は、
    前記内部制御信号の不活性化に応じてセット状態となり、前記内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、
    前記ラッチ手段がセット状態となることに応じて、前記第1の出力ノードと前記第2の出力ノードとの接続を遮断状態とする接続手段とを含む、請求項3記載の内部電位発生回路。
  6. 前記制御手段は、
    前記内部電位発生回路の動作開始に応じて、前記第1のチャージポンプ手段に前記相補なクロック信号の供給を開始させ、前記スイッチ手段が遮断状態となった後に、前記第2のチャージポンプ手段に前記相補なクロック信号の供給を開始させる、請求項2記載の内部電位発生回路。
  7. 前記第2の内部制御手段は、
    前記第2の出力ノードの電位レベルが前記第2の所定の内部電位以上となることに応じて、内部制御信号を不活性とする電位レベル検出手段と、
    前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御するクロック供給制御手段とを含み、
    前記スイッチ手段は、
    前記内部制御信号の不活性化に応じてセット状態となり、前記内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、
    前記ラッチ手段がセット状態となることに応じて、前記第1の出力ノードと前記第2の出力ノードとの接続を遮断状態とする接続手段とを含み、
    前記クロック供給制御手段は、
    前記内部制御信号が活性状態であり、かつ前記ラッチ手段がセット状態であることに応じて、前記相補なクロック信号の供給を開始する、請求項3記載の内部電位発生回路。
  8. 前記第1の所定の内部電位および前記第2の所定の内部電位は共に負の電位であって、
    前記制御手段は、
    前記スイッチ手段を遮断状態とした後は、前記第1の出力ノードの電位レベルが前記第1の所定の内部電位となるように、前記第1のチャージポンプ手段への前記相補なクロック信号の供給を制御し、かつ、前記第2の出力ノードの電位レベルが前記第2の所定の内部電位となるように、前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御する、請求項1記載の内部電位発生回路。
  9. 前記第1の所定の内部電位および前記第2の所定の内部電位は共に負の電位であって、
    前記制御手段は、
    前記スイッチ手段を遮断状態とした後は、前記第1の出力ノードの電位レベルが前記第1の所定の内部電位となるように、前記第1のチャージポンプ手段への前記相補なクロック信号の供給を制御する第1の内部制御手段と、
    前記スイッチ手段を遮断状態とした後は、前記第2の出力ノードの電位レベルが前記第2の所定の内部電位となるように、前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御する第2の内部制御手段とを含む、請求項1記載の内部電位発生回路。
  10. 前記制御手段は、
    前記内部電位発生回路の動作開始に応じて、前記第1のチャージポンプ手段と前記第2のチャージポンプ手段の双方に前記相補なクロック信号の供給を開始させる、請求項8記載の内部電位発生回路。
  11. 前記第2の内部制御手段は、
    前記第2の出力ノードの電位レベルが前記第2の所定の内部電位以下となることに応じて、内部制御信号を不活性とし、
    前記スイッチ手段は、
    前記内部制御信号の不活性化に応じてセット状態となり、前記内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、
    前記ラッチ手段がセット状態となることに応じて、前記第1の出力ノードと前記第2の出力ノードとの接続を遮断状態とする接続手段とを含む、請求項9記載の内部電位発生回路。
  12. 前記制御手段は、
    前記内部電位発生回路の動作開始に応じて、前記第1のチャージポンプ手段に前記相補なクロック信号の供給を開始させ、前記スイッチ手段が遮断状態となった後に、前記第2のチャージポンプ手段に前記相補なクロック信号の供給を開始させる、請求項8記載の内部電位発生回路。
  13. 前記第2の内部制御手段は、
    前記第2の出力ノードの電位レベルが前記第2の所定の内部電位以下となることに応じて、内部制御信号を不活性とする電位レベル検出手段と、
    前記第2のチャージポンプ手段への前記相補なクロック信号の供給を制御するクロック供給制御手段とを含み、
    前記スイッチ手段は、
    前記内部制御信号の不活性化に応じてセット状態となり、前記内部電位発生回路の動作停止に応じてリセット状態となるラッチ手段と、
    前記ラッチ手段がセット状態となることに応じて、前記第1の出力ノードと前記第2の出力ノードとの接続を遮断状態とする接続手段とを含み、
    前記クロック供給制御手段は、
    前記内部制御信号が活性状態であり、かつ前記ラッチ手段がセット状態であることに応じて、前記相補なクロック信号の供給を開始する、請求項9記載の内部電位発生回路。
JP05962598A 1997-08-27 1998-03-11 内部電位発生回路 Expired - Fee Related JP3935592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05962598A JP3935592B2 (ja) 1997-08-27 1998-03-11 内部電位発生回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-231241 1997-08-27
JP23124197 1997-08-27
JP05962598A JP3935592B2 (ja) 1997-08-27 1998-03-11 内部電位発生回路

Publications (2)

Publication Number Publication Date
JPH11134892A JPH11134892A (ja) 1999-05-21
JP3935592B2 true JP3935592B2 (ja) 2007-06-27

Family

ID=26400685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05962598A Expired - Fee Related JP3935592B2 (ja) 1997-08-27 1998-03-11 内部電位発生回路

Country Status (1)

Country Link
JP (1) JP3935592B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465068B1 (ko) * 2002-06-29 2005-01-06 주식회사 하이닉스반도체 펌핑 회로
JP4942979B2 (ja) * 2004-11-17 2012-05-30 ルネサスエレクトロニクス株式会社 半導体装置
KR100723773B1 (ko) 2005-03-25 2007-05-30 주식회사 하이닉스반도체 비휘발성 메모리 장치의 고전압 스위치 회로
KR100769781B1 (ko) * 2005-08-25 2007-10-24 주식회사 하이닉스반도체 비휘발성 메모리 장치의 스텝-업 전압 발생 회로
KR100908536B1 (ko) 2007-12-28 2009-07-20 주식회사 하이닉스반도체 고전압 발생기의 전류 소모 방지 장치
JP5259505B2 (ja) * 2009-06-26 2013-08-07 株式会社東芝 半導体記憶装置
JP5890207B2 (ja) 2012-03-13 2016-03-22 ルネサスエレクトロニクス株式会社 半導体装置
US8947158B2 (en) * 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
TWI643435B (zh) * 2013-08-21 2018-12-01 日商半導體能源研究所股份有限公司 電荷泵電路以及具備電荷泵電路的半導體裝置

Also Published As

Publication number Publication date
JPH11134892A (ja) 1999-05-21

Similar Documents

Publication Publication Date Title
KR100271840B1 (ko) 회로 면적의 증대를 억제하면서 복수의 전위를 출력할 수 있는내부 전위 발생 회로
KR100373223B1 (ko) 반도체장치
US5764572A (en) Integrated circuit memory device
JP3663039B2 (ja) 低い電源電圧での動作に適したメモリおよびそのためのセンスアンプ
KR100377493B1 (ko) 전압 레벨 변환 회로 및 이것을 이용한 반도체 기억 장치
US6999365B2 (en) Semiconductor memory device and current mirror circuit
US6567309B2 (en) Semiconductor device
US5521866A (en) Non-volatile semiconductor memory device having floating gate
US4996669A (en) Electrically erasable programmable read-only memory with NAND memory cell structure
JP3425340B2 (ja) 不揮発性半導体記憶装置
US6480057B2 (en) Charge pump circuit allowing efficient electric charge transfer
JP3451118B2 (ja) 半導体不揮発性記憶装置
US20080266968A1 (en) Charge pump circuit, semiconductor memory device, and method for driving the same
US20060077745A1 (en) Semiconductor device and method for boosting word line
US5592430A (en) Semiconductor device equipped with simple stable switching circuit for selectively supplying different power voltages
JP3223877B2 (ja) 半導体記憶装置
US5022000A (en) Semiconductor memory device
US20010036108A1 (en) Level shifter of nonvolatile semiconductor memory
JP3935592B2 (ja) 内部電位発生回路
KR100292832B1 (ko) 음의전압스위칭회로
US6603700B2 (en) Non-volatile semiconductor memory device having reduced power requirements
JPH07111825B2 (ja) 半導体記憶装置
JP3615041B2 (ja) 不揮発性半導体記憶装置
US6249462B1 (en) Data output circuit that can drive output data speedily and semiconductor memory device including such a data output circuit
EP1646051B1 (en) Memory device and method for operating the same with high rejection of the noise on the high-voltage supply line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees