JP3709302B2 - 半導体記憶装置及びそれを用いたセンサ - Google Patents

半導体記憶装置及びそれを用いたセンサ Download PDF

Info

Publication number
JP3709302B2
JP3709302B2 JP15112299A JP15112299A JP3709302B2 JP 3709302 B2 JP3709302 B2 JP 3709302B2 JP 15112299 A JP15112299 A JP 15112299A JP 15112299 A JP15112299 A JP 15112299A JP 3709302 B2 JP3709302 B2 JP 3709302B2
Authority
JP
Japan
Prior art keywords
address
decoder
data line
rom
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15112299A
Other languages
English (en)
Other versions
JP2000339982A (ja
Inventor
康平 櫻井
辰美 山内
昌大 松本
文夫 村林
弘道 山田
敦史 宮▲崎▼
恵二 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP15112299A priority Critical patent/JP3709302B2/ja
Priority to US09/578,854 priority patent/US6282136B1/en
Priority to DE10027097A priority patent/DE10027097A1/de
Publication of JP2000339982A publication Critical patent/JP2000339982A/ja
Application granted granted Critical
Publication of JP3709302B2 publication Critical patent/JP3709302B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体記憶装置及びこれを適用したセンサに関し、特に低消費電流のROMまたはRAM及びこれを適用した圧力センサに関する。
【0002】
【従来の技術】
近年、各種演算処理を行うマイクロコンピュータなどの集積回路は、高速化,大規模化する傾向にあり、これらを達成しながら同時に消費電流を低減するという課題を有する。これに伴い、ROMあるいはRAMといったチップ内蔵の半導体記憶装置に関しても低消費電流化が要求されている。以下に、半導体記憶装置の一例として特にROMについて従来例を説明する。
【0003】
図10に従来のプリチャージ方式を用いたROMの代表的な構成例を示す。
【0004】
ROMは、制御プログラム,演算プログラムなど不揮発のデータを記憶するための半導体記憶装置である。以下説明するROMにおいて、メモリ部は、メモリ容量n×mビット、つまりワード線がn本,データ線がm本のn行×m列のマトリックスで構成されているものとする。
【0005】
図10に示したROMは、メモリセル50から成りデータが不揮発に記憶されるメモリセルアレイ5,アドレスラッチ4からROMに送られるアドレス信号44に応じて、メモリセルアレイのn本のワード線10の中から1本を選択するXデコーダ1,m本のデータ線30をプリチャージするm個のプリチャージ用トランジスタ90,データ線のデータを読み出す出力回路7,この出力回路とデータ線を接続するm個のパストランジスタ60から成るYスイッチ6,アドレスラッチ4からROMに送られるアドレス信号44に応じて、m本のYスイッチ制御信号線20の中から1本を選択するYデコーダ2により構成される。
【0006】
図10の半導体記憶装置の回路動作について、クロック及び各信号線の電位変化を表わす図11のタイミングチャートを用いて説明する。
【0007】
まず、クロック(CLK)がローレベル(以下、Lと記す)からハイレベル (以下、Hと記す)に変わるとき、つまりクロックの立ち上がりにおいて、アドレスラッチ4からアドレス信号44がXデコーダ1及びYデコーダ2に送られ、デコードが開始される。アドレスのデコードはクロックがHの期間には完了し、m本のYスイッチ制御信号線20のうち1本が選択され、Hになる。
【0008】
また、同じくクロックの立ち上がりに伴い、プリチャージ制御信号9がLになり、プリチャージ用トランジスタ90がオンになる。これによりm本のデータ線30が電源電圧VDDまで、つまりHにプリチャージされる。クロックがHの期間は、Xデコーダ1には、クロックの逆相信号、つまりLが入力されているので、ワード線10はいずれもHにならず、データ線にプリチャージした電荷を引き抜くことはない。
【0009】
次にクロックがLになると、n本のワード線10のうち1本が選択され、Hになる。この時、Nチャネルトランジスタが形成されているメモリセルを選択した場合は、データ線の電荷が引き抜かれてデータ線はLになり、出力回路7を通って出力信号8が出力される。一方、Nチャネルトランジスタが形成されていないメモリセルを選択した場合は、データ線の電荷が引き抜かれずにデータ線はHを維持し、出力回路7を通って出力信号8が出力される。このように、メモリセルアレイ5の各メモリセル50には、Nチャネルトランジスタの有無によって製造時にデータ“1”または“0”をプログラムする。
【0010】
以上説明したように、プリチャージ方式のROMにおいては、クロックがHの期間に“アドレスのデコード”と“データ線のプリチャージ”という二つの動作を完了させることが必須である。
【0011】
上記の従来例の他に、改良されたビット線プリチャージ方式を用いた半導体記憶装置の公知例として、例えば、特開平6−119793 号が開示されている。
【0012】
また、ROMあるいはRAMをセンサ、特に圧力センサの補正手段の一部として用いている公知例には、特開平9−113310号,特開平10−281912 号があるが、これらの半導体記憶装置の具体的な回路構成については特に記されていない。
【0013】
【発明が解決しようとする課題】
図10に示した従来の半導体記憶装置は上記のように構成されているため、実際に選択されたアドレスに関係なくm本全てのデータ線が、クロックがHの期間にプリチャージされる。これは、図11のタイミングチャートに示すように、クロックがHの期間にプリチャージとデコードをパラレルに行うため、この期間内には、アドレスに応じた1本のデータ線を選択することができず、全てのデータ線をプリチャージしておく必要があるためである。
【0014】
上記のように、クロックがLの期間にワード線が1本Hになるが、選択されていないデータ線においても、このデータ線と、Hになっているワード線の交点に位置するメモリセルにNチャネルトランジスタが形成されている場合は、電荷の引き抜きが起こってしまう。このデータ線は、次のサイクルにおいて、再度プリチャージしなくてはならない。このように、全てのデータ線をプリチャージするという従来の回路構成では、無駄な消費電流が多くなり、結果としてメモリセルアレイにおける消費電流が増大するという問題がある。
【0015】
この問題を解決するために、例えば、特開平6−119793 号では、選択されたアドレスのデータ線だけをプリチャージするデータ線選択プリチャージ方式を提案している。
【0016】
この方式は、クロックがHの期間の比較的前半においてアドレスのデコードが完了するため、この動作が完了した後で、選択されたデータ線をプリチャージする、つまりクロックがHの期間でデコードとプリチャージをシリアルに行うことが可能であるということを利用している。これにより、プリチャージ用トランジスタのドレインとメモリセルアレイのデータ線とをYスイッチを介して接続する回路構成をとり、選択されたアドレスのデータ線をプリチャージすることができる。このように、本方式は、上記の全てのデータ線をプリチャージするという従来方式に比べて、プリチャージ時の消費電流の大幅な低減を実現できる。
【0017】
しかし、特開平6−119793 号の回路方式では、アドレスのデコードとデータ線のプリチャージが、クロックの立ち上がりから同時に行われるため、デコード完了前にプリチャージ用トランジスタがオンになる可能性がある。このため、実際には、プリチャージ用トランジスタがオンになってから、デコードが完全に完了する、つまり選択された1つのパストランジスタのみがオンになるまでの期間は、そのサイクルで選択されていないアドレスのデータ線をプリチャージしてしまうという問題がある。特に、特開平6−119793 号では、メモリセルのアドレスをワード線に沿って配置しているので、連続したアドレスをアクセスする際にも、1サイクル毎に異なったデータ線につながるパストランジスタをオンしていかなくてはならないため、上記の理由により、前のサイクルで選択したアドレスのデータ線を再度プリチャージしてしまう。また、Xデコーダのみならず、Yデコーダの出力も毎サイクル変化することになり、デコーダの消費電流も増加してしまう。
【0018】
本発明は以上のような事情を鑑みてなされたものであり、その主たる目的は選択されたアドレスのデータ線を1本だけプリチャージし、プリチャージ時の消費電流の大幅な低減を実現することにある。
【0019】
また、本発明の別の目的は、センサ毎にその特性を補正するための補正手段を有するセンサに上記のような低消費電流の半導体記憶装置を適用することにより、低消費電流のセンサを実現することにある。
【0020】
【課題を解決するための手段】
上記目的は、情報を記憶する複数のメモリセルと、複数のワード線及びデータ線と、
記憶したデータを出力する出力回路と、アドレスの下位ビット信号に対応して前記ワード線のうち1本を選択する第1のデコーダと、前記データ線と前記出力回路を接続する複数のパストランジスタと、アドレスの上位ビット信号に対応して前記パストランジスタのうち1つを選択してオンにする第2のデコーダと、データ読み出し前に前記データ線をあらかじめチャージするためのプリチャージ用トランジスタと、前記プリチャージ用トランジスタが前記パストランジスタよりも前記チャージのための電源側に設けられ、前記プリチャージ用トランジスタをオンにするタイミングを遅延させる遅延手段とを備えた半導体記憶装置により達成される。
【0023】
また、本発明は、前記プリチャージ用トランジスタのドレインと前記データ線とを前記パストランジスタを介して接続することを特徴としている。
【0024】
さらに、上記のような構成の半導体記憶装置を、センサ毎にその特性を補正するための補正手段を有するセンサに適用することによって、低消費電流のセンサを実現できる。
【0025】
【発明の実施の形態】
本発明の半導体記憶装置及びそれを用いたセンサの実施例を、図面を用いて詳細に説明する。
【0026】
図1に本発明の半導体記憶装置に係わる第1の実施例を示す。本実施例は、アドレス信号が、この半導体記憶装置のみにアドレス信号を送るプログラムカウンタから入力され、アドレスの下位ビット信号をXデコーダに、上位ビット信号をYデコーダに入力する半導体記憶装置に関する。
【0027】
図1の実施例は特にROMについて記したものであるが、メモリセルにフリップフロップを用いればRAMにも適用できるものである。以下説明するのはプリチャージ方式のROMであり、そのメモリ部は、メモリ容量n×mビット、つまりワード線がn本,データ線がm本のn行×m列のマトリックスで構成されている。
【0028】
図1に示したROM100は、このROM100のみにアドレス信号を送るプログラムカウンタ200に接続されており、データが記憶されるメモリセルアレイ5,プログラムカウンタ200からROM100に送られるアドレス信号41に応じて、メモリセルアレイのn本のワード線10の中から1本を選択するXデコーダ1,データ線30をプリチャージするプリチャージ用トランジスタ90,データ線のデータを読み出す出力回路7,この出力回路とデータ線を接続するm個のパストランジスタ60から成るYスイッチ6,プログラムカウンタ200からROM100に送られるアドレス信号42に応じて、m本のYスイッチ制御信号線20の中から1本を選択するYデコーダ2により構成される。
【0029】
従来のマイコンとは異なり、プログラムカウンタがROMのみにアドレス信号を送る構成とすることにより、プログラムカウンタがレジスタ,RAMなどのROM以外のハードモジュールの実行アドレスを指定することがなくなり、常に何らかの処理を行うためのプログラムが実行されるため、電源投入時の初期設定のための回路や暴走対策のためのリセット回路が不要になる。
【0030】
プリチャージ用トランジスタ90のドレインは、Yスイッチ6を介してメモリセルアレイのデータ線30と接続されている。このため、Yデコーダ2において選択したパストランジスタのみをオンにして、選択されたアドレスのデータ線をプリチャージすることができ、全てのデータ線をプリチャージするという従来方式に比べて、プリチャージ時の大幅な消費電流低減を実現できる。また、プリチャージ用トランジスタの数も1/m(mはデータ線の本数)にまで減らすことができる。
【0031】
さらに、本実施例の重要な特徴は、Xデコーダ1にアドレスの下位ビット信号41を、Yデコーダ2にアドレスの上位ビット信号42を入力するところにある。これにより、特開平6−119793 号とは異なり、図1に示すようにデータ線方向にメモリセルアレイ5のアドレスを▲1▼から順次配置することができる。このような回路方式は、一般的にプログラムには局所性があり、これに応じてROMのアドレスは、例えば▲1▼→▲2▼→▲3▼→…のように連続的にアクセスされる頻度が高いということを利用して考案されたものである。
【0032】
本発明によって、選択されていないアドレスのデータ線をプリチャージすることがなくなり、特開平6−119793 号の回路方式に比べて消費電流が低減可能であることを、ROM100の各信号線の電位変化を示した図2のタイミングチャートを用いて説明する。
【0033】
まず、クロック(CLK)がローレベル(L)からハイレベル(H)に変わるとき、つまりクロックの立ち上がりで、プログラムカウンタ200においてそのサイクルで選択するアドレスデータがセットされ、アドレスの下位ビット信号41がXデコーダ1に、アドレスの上位ビット信号42がYデコーダ2に入力されデコードが開始される。アドレスのデコードはクロックがHの期間には完了し、m本のYスイッチ制御信号20のうち1本が選択され、Hになる。
【0034】
また、同じくクロックの立ち上がりに伴い、プリチャージ制御信号9がLになり、プリチャージ用トランジスタ90がオンになる。これにより選択されたデータ線30が電源電圧VDDまで、つまりHにプリチャージされる。クロックがHの期間は、Xデコーダ1には、クロックの逆相信号、つまりLが入力されているので、ワード線10はいずれもHにならず、データ線にプリチャージした電荷を引き抜くことはない。
【0035】
この時、前サイクルと同一のデータ線のアドレスが選択されたときは、Yデコーダの出力に全く変化はなく、選択されていないデータ線にプリチャージされることが回避でき、消費電流を低減することができる。
【0036】
次にクロックがLになると、n本のワード線10のうち1本が選択され、Hになる。この時、Nチャネルトランジスタが形成されているメモリセルを選択した場合は、データ線の電荷が引き抜かれてデータ線はLになり、出力回路7を通って出力信号8が出力される。一方、Nチャネルトランジスタが形成されていないメモリセルを選択した場合は、データ線の電荷が引き抜かれずにデータ線はHを維持し、出力回路7を通って出力信号8が出力される。このように、メモリセルアレイ5の各メモリセル50には、Nチャネルトランジスタの有無によって製造時にデータ“1”または“0”をプログラムする。
【0037】
以上のように、本発明の回路方式は、一般的にプログラムに局所性があることを利用しているが、さらに、図3に示すように分岐命令をなくし、命令を順次実行させるようにプログラムを作成することによって、より低消費電流化を実現することができる。この場合、プログラムカウンタが常に1つずつ加算されるため、図2のタイミングチャートに示すように、Yデコーダの出力はnサイクルの期間確定している。このため、nサイクルの期間は、例えばパストランジスタ60−1がオンしているだけで、これ以外のパストランジスタ(60−2〜60−m)はオフしているため、選択されたデータ線30−1のみがプリチャージされ、これ以外のデータ線(30−2〜30−m)がプリチャージされることは確実に回避できる。もっとも、n+1サイクル目に隣のデータ線30−2にアドレスが移るときには、前述したように、Yデコーダの出力が変化するため、前サイクルまで選択されていたデータ線30−1を再度プリチャージしてしまう可能性があるが、一般にnは1に比べて十分に大きいため、このようなことが起こる頻度は極めて少ない。
【0038】
上記のようなプログラムを格納するROMに本発明の方式を適用することにより、全データ線をプリチャージする従来方式のROMと比較して、プリチャージ時の消費電流を1/m(mはデータ線の本数)にまで低減できる。さらに、Yデコーダの消費電流を特開平6−119793 号の回路方式と比べて1/n(nはワード線の本数)にまで低減できる。以上の消費電流低減は、プリチャージ回路あるいはYデコーダ以外の部分の消費電流を増やさずに、またメモリ全体の回路面積を大きくすることなく実現できる。
【0039】
さて、分岐命令のないプログラムは、例えば無限ループに入ることにより暴走するといったことを避けられるという特徴を有する。このため、リセット回路が不要になり、マイクロコンピュータ自体を小型化することができる。このような分岐命令のないプログラムは、高い信頼性が要求され、かつ、小型化,低消費電流が要求される機器、例えば人体に入って患部の治療を行うマイクロロボット等の医療機器に搭載するマイクロコンピュータのプログラムとして利用できる。このようなことを実現する場合、上記プログラムを格納するROMとして、本発明のROMが最適である。
【0040】
図4に本発明の半導体記憶装置に係わる第2の実施例を示す。本実施例は、アドレス信号が、メモリ,レジスタなどの各種ハードモジュール共通のアドレスバスから入力され、アドレスの下位ビット信号をXデコーダに、上位ビット信号をYデコーダに入力する半導体記憶装置に関する。
【0041】
図4の実施例は特にROMについて記したものであるが、メモリセルにフリップフロップを用いればRAMにも適用できるものである。アドレス信号41あるいは42がアドレスバス150からROM100に入力されている以外は、図1に示した第1の実施例のROMと同様の回路構成となっている。ROMも含めて全てのハードモジュールの実行アドレスを1本のアドレスバスによって指定する構成は、従来のマイクロコンピュータにおいて一般的に採用されている。
【0042】
本実施例においてもXデコーダ1にアドレスの下位ビット信号41を、Yデコーダ2にアドレスの上位ビット信号42を入力する構成としている。回路動作は本発明第1の実施例で説明したものと同じであるが、ROMのアドレスが選択されている期間だけROMを動作させるために、クロック信号とCE(チップイネーブル)信号の論理積をとっている。例えば、ROMが選択されたときはCE信号がHになり、ROMが選択されていない期間はCE信号がLになり、ROMの全ての動作は停止する。
【0043】
本実施例の特徴は、Yデコーダ2の前段にアドレスバス150から送られてくるアドレスの上位ビット信号42を保持するためのアドレスラッチ4を設けたことにある。アドレスラッチ4は、ROMが非選択の期間も、最後に選択されたROMのアドレスの上位ビット信号を保持し、この時に選ばれた例えばパストランジスタ60−1はオンし続ける。このため、次にROMが選ばれたときに、前回選択されたデータ線(例えば30−1)と同じデータ線30−1が選択された場合は、Yデコーダの出力はすでに確定しているため、非選択のデータ線をプリチャージすることを回避できる。前述したように、一般的にROMあるいはRAMのアドレスは、例えば▲1▼→▲2▼→▲3▼→…のように連続的にアクセスされる頻度が高いため、アドレスバスからアドレス信号を受け取るROM、あるいはRAMについても、本発明による回路構成とすることで消費電流を低減することができる。
Yデコーダ2の前段にアドレスラッチ4を設けない場合は、Yデコーダはアドレスバス150に直接接続されることになり、ROMが選択されていない期間もYデコーダの入力信号は、他のハードモジュールのアドレスを選択する信号に応じて変化してしまう。また、同じくYデコーダ2の前段にアドレスラッチ4を設けない場合において、Yデコーダの入力信号を変化させないようにアドレス信号42とCEの論理積をYデコーダ2に入力する回路構成としても、ROM非選択の期間、Yデコーダの入力信号は全てLに固定されてしまう。いずれの場合も、次にROMが選択されたとき、Yデコーダの出力が確定するまでの時間が長くなり、この不確定の期間にそのサイクルで選択しないアドレスのデータ線がプリチャージされ、消費電流が増大するという問題を有する。
【0044】
図5に本発明の半導体記憶装置に係わる第3の実施例を示す。本実施例は、アドレス信号が、この半導体記憶装置のみにアドレス信号を送るプログラムカウンタから入力され、遅延手段を備えた半導体記憶装置に関する。
【0045】
図5の実施例は特にROMについて記したものであるが、メモリセルにフリップフロップを用いればRAMにも適用できるものである。以下説明するのはプリチャージ方式のROMであり、そのメモリ部は、メモリ容量n×mビット、つまりワード線がn本,データ線がm本のn行×m列のマトリックスで構成されている。
【0046】
図5に示したROM100は、このROM100のみにアドレス信号を送るプログラムカウンタ200に接続されており、データが記憶されるメモリセルアレイ5,プログラムカウンタ200からROM100に送られるアドレス信号44に応じて、メモリセルアレイのn本のワード線10の中から1本を選択するXデコーダ1,データ線30をプリチャージするプリチャージ用トランジスタ90,データ線のデータを読み出す出力回路7,この出力回路とデータ線を接続するm個のパストランジスタ60から成るYスイッチ6,プログラムカウンタ200からROM100に送られるアドレス信号44に応じて、m本のYスイッチ制御信号線20の中から1本を選択するYデコーダ2、そして遅延手段95により構成される。
【0047】
なお、従来のマイコンとは異なり、プログラムカウンタがROMのみにアドレス信号を送る構成とすることの利点は、本発明第1の実施例で述べた通りである。
【0048】
また、本実施例ではプリチャージ用トランジスタ90のドレインは、Yスイッチ6を介してメモリセルアレイのデータ線30と接続されている。このため、Yデコーダ2において選択したパストランジスタのみをオンにして、選択されたアドレスのデータ線をプリチャージすることができ、全てのデータ線をプリチャージするという従来方式に比べて、プリチャージ時の消費電流の大幅な低減を実現できることも本発明第1の実施例で述べた通りである。
【0049】
本実施例の特徴は、プリチャージ制御信号線9にクロック信号の到達を遅らせる遅延手段95を設けたところにある。また、本実施例ではデコーダへのアドレス信号の入力の仕方については特に制限する必要がない。以下、図6のタイミングチャートを用いて、本実施例の回路動作と消費電流低減の効果について説明する。
【0050】
まず、クロックがLからHに変わるとき、つまりクロックの立ち上がりで、プログラムカウンタ200においてそのサイクルで選択するアドレスデータがセットされ、アドレス信号44がXデコーダ1及びYデコーダ2に入力されデコードが開始される。アドレスのデコードはクロックがHの期間には完了し、m本のYスイッチ制御信号20のうち1本が選択され、Hになる。また、同じくクロックの立ち上がりに伴い、プリチャージ制御信号9がLになり、プリチャージ用トランジスタ90がオンになる。これにより選択されたデータ線30が電源電圧VDDまで、つまりHにプリチャージされる。
【0051】
クロックがLの期間での読み出し動作については、本発明第1の実施例で述べた通りである。
【0052】
本実施例では、クロックがHの期間におけるデコード,プリチャージという二つの動作をこの順番でシリアルに行うために遅延手段95を設けている。つまり、図6に示すように、Yスイッチ制御信号20が完全に確定して、選択されたアドレスのデータ線に接続しているパストランジスタのみがオンになった後で、プリチャージ用トランジスタ90をオンにしてプリチャージを開始する。このような構成とすることで、確実に選択されたデータ線のみをプリチャージでき、プリチャージ時の消費電流を低減することが可能となる。また、アドレスが不連続にアクセスされたり、連続的にアクセスされても特開平6−119793 号の回路構成のようにメモリセルのアドレスがワード線方向に配置されることによって、選択されるデータ線が前サイクルで選択したデータ線と異なる場合でも、Yデコーダの出力確定後にプリチャージを行うことによって、例えば前サイクルで選択したデータ線を再度プリチャージするといったことが回避でき、消費電流を低減できる。
【0053】
さらに、本実施例は以下のような利点を有する。一般に、全動作期間を通じて、クロックの立ち上がりの瞬間は、メモリ以外にもロジックやレジスタ等が一斉に動作するため、チップ全体の消費電流は最大となる。電源ラインには、寄生抵抗も含めて種々の抵抗成分がついているが、クロックの立ち上がり時には、このピーク電流の値に比例して前記抵抗成分による電圧降下が生じるため、チップの内部における電源電圧は外部からこのチップに供給している電源電圧に比べて低くなる。電源電圧の低下は、回路の動作速度の低下を招き、誤動作を引き起こす可能性があるため、ピーク電流はできるだけ低減する必要がある。本発明によると、プリチャージをクロックの立ち上がりから遅らせることができるため、クロックの立ち上がり時のチップ全体の消費電流をプリチャージに要する電流分だけ低減できる。これにより、他のハードモジュールの電圧降下による動作速度の低下を緩和することができる。
【0054】
本実施例において、クロックの立ち上がりから、プリチャージ制御信号9をアドレスのデコード期間以上の時間変化させないための遅延手段95としては、例えばインバータやNAND,NOR等のゲートを多段にわたって接続した回路を用いれば良い。
【0055】
図7に本発明の半導体記憶装置に係わる第4の実施例を示す。本実施例は、アドレス信号が、メモリ,レジスタなどの各種ハードモジュール共通のアドレスバスから入力され、遅延手段を備えた半導体記憶装置に関する。
【0056】
図7の実施例は特にROMについて記したものであるが、メモリセルにフリップフロップを用いればRAMにも適用できるものである。アドレス信号44がアドレスバス150からROM100に入力されている以外は、回路構成の特徴及びその効果は、前記本発明第3の実施例と同様である。
【0057】
本実施例では、遅延手段95を備えているため、前記本発明第2の実施例(図4)のようにYデコーダの前段にアドレスラッチを付加してアドレス信号を保持しておく必要はない。ROMが選択されてからアドレスのデコードを開始しても、このデコードの動作が完了した後にプリチャージが行われるためである。本実施例ではアドレスラッチの代わりに、ROM非選択のときにYデコーダが無駄な電流を消費しないように、Yデコーダに入力されるアドレス信号とCE信号の論理積をとることのできるゲートを設けている。
【0058】
なお、以上説明した実施例1から4において、クロック信号としては、ノンオーバーラップの2相クロックを用いても良い。2相クロックを用いると、クロックスキューによる誤動作を避けることができる。
【0059】
図8に本発明の第5の実施例を示す。本実施例は、実施例1から4に記載した低消費電流の半導体記憶装置をセンサ、特に圧力センサの補正手段の一部として適用した例である。一般にセンサの出力特性は、センサ毎にばらつき、また同一のセンサでも温度によって変化する。このような圧力センサのゼロ点,感度,温度等の特性を所望の出力特性に補正するために補正手段が必要となる。
【0060】
図8に示した本実施例における圧力センサの補正手段300の動作について説明する。まず、圧力センサ301からの補正前のアナログ出力信号302を補正手段300に入力する。この信号302をA/D変換器304によって、また補正手段300の中に含まれる温度センサ303のアナログ出力信号をA/D変換器305によってデジタル信号に変換し、両方の信号を演算器306に入力する。演算器306はPROM(プログラマブルROM)309から補正係数データ311を読み出し補正演算を行う。補正演算後のデータはD/A変換器307でアナログ信号に変換され、特性補正済みのセンサ出力308として出力される。補正係数データ311は、圧力センサ301の特性検査後にシリアル・コミュニケーション・インターフェイス(SCI)310を介して、外部からPROM309 に書き込まれる。また、本補正手段はクロック発生器312を内蔵しており、クロック信号を演算器306に供給している。
【0061】
上記の補正手段300において、ROM、あるいはRAMといったメモリは、演算器306に内蔵されている。図9に演算器306の構成を示す。補正演算等の演算プログラムは、プログラム格納ROM100に記憶される。プログラムカウンタ200は、実行する命令に応じてプログラム格納ROM100のアドレスを指定する。本実施例では、プログラムに分岐命令がなくプログラムカウンタが常時クロック毎に1つずつ加算され、連続的にROMのアドレスを指すように構成しているため、上記本発明第1の実施例に記載のROMを用いることによってセンサ出力の補正手段300の低消費電流化を実現できる。
【0062】
ROMの指定されたアドレスのデータは、命令コードバス400に送られプログラムが実行される。例えば、ROMのデータの最上位ビットは命令コードであり、残りのビットでレジスタ401,演算ユニット(ALU)402,RAM403等、そのサイクルで動作させるデバイスのアドレスを指定する。前記命令コードにより、例えば、これが1であれば実行アドレスで指定したデバイスからレジスタ401に、第1のデータバス404を介してデータを転送する動作(読み出し)を、0であればレジスタ401から実行アドレスで指定したデバイスに、第2のデータバス405を介してデータを転送する動作(書き込み)を指定する。以上のように、2本のデータバスを介して各デバイス間でデータをやり取りすることにより、プログラムに従って補正演算を実行する。このような構成においては、RAM403についても本発明第2あるいは第4の実施例に記載のRAMを用いることによってセンサ出力の補正手段300の低消費電流化を実現できる。
【0063】
本実施例は、一般的に半導体記憶装置のアドレスは連続的にアクセスされる頻度が高いということを利用して考案されたものであり、情報を記憶する複数のメモリセルと、複数のワード線及びデータ線と、記憶したデータを出力する出力回路と、アドレス信号に対応して前記ワード線のうち1本を選択する第1のデコーダと、前記データ線と前記出力回路を接続する複数のパストランジスタと、アドレス信号に対応して前記パストランジスタのうち1つを選択してオンにする第2のデコーダと、データ読み出し前に前記データ線をあらかじめチャージするためのプリチャージ用トランジスタから構成した半導体記憶装置において、前記第1のデコーダにアドレスの下位ビット信号を入力し、前記第2のデコーダにアドレスの上位ビット信号を入力し、メモリセルアレイのアドレスをデータ線方向に順次配置することによって、選択したアドレスのデータ線のみをプリチャージできるため、従来方式に比べてプリチャージ時の消費電流を低減することができる。
【0064】
特に、分岐命令がなく、命令を順次実行するようなプログラムを格納するROMに本発明の方式を適用することにより、全データ線をプリチャージする従来方式のROMと比較して、プリチャージ時の消費電流を1/m(mはデータ線の本数)にまで低減できる。さらに、Yデコーダの消費電流を特開平6−119793 号の回路方式と比べて1/n(nはワード線の本数)にまで低減できる。以上の消費電流低減は、プリチャージ回路あるいはYデコーダ以外の部分の消費電流を増やさずに、またメモリ全体の回路面積を大きくすることなく実現できる。
【0065】
また、アドレスのデコードが完了した後にプリチャージを行うようにプリチャージ制御信号線にクロック信号の到達を遅らせる遅延手段を設けた構成とすることで、アドレスが不連続にアクセスされた場合でも、確実に選択されたアドレスのデータ線のみをプリチャージでき、消費電流を低減することができる。また、本構成は、プリチャージをクロックの立ち上がりから遅らせることができるため、クロックの立ち上がり時のチップ全体の消費電流をプリチャージに要する電流分だけ低減できる。これにより、他のハードモジュールの電圧降下による動作速度の低下を緩和することができる。
【0066】
さらに、上記のような低消費電流の半導体記憶装置をセンサの特性補正手段に適用することにより、低消費電流のセンサを実現することができる。
【発明の効果】
本発明によれば、選択されたアドレスのデータ線を1本だけプリチャージし、プリチャージ時の消費電流の大幅な低減を実現できる。
【図面の簡単な説明】
【図1】本発明第1の実施例についての説明図。
【図2】本発明第1の実施例の回路動作を説明するためのタイミングチャート。
【図3】分岐命令のないプログラムについての説明図。
【図4】本発明第2の実施例についての説明図。
【図5】本発明第3の実施例についての説明図。
【図6】本発明第3の実施例の回路動作を説明するためのタイミングチャート。
【図7】本発明第4の実施例についての説明図。
【図8】本発明第5の実施例についての説明図。
【図9】本発明第5の実施例における演算器の構成についての説明図。
【図10】従来例についての説明図。
【図11】従来例の回路動作を説明するためのタイミングチャート。
【符号の説明】
1…Xデコーダ、2…Yデコーダ、4…アドレスラッチ、5…メモリセルアレイ、6…Yスイッチ、7…出力回路、8…出力信号、9…プリチャージ制御信号、10(10−1〜10−n)…ワード線、20(20−1〜20−m)…Yスイッチ制御信号線、30(30−1〜30−m)…データ線、41…アドレス下位ビット信号、42…アドレス上位ビット信号、44…アドレス信号、50…メモリセル、60(60−1〜60−m)…パストランジスタ、90…プリチャージ用トランジスタ、95…遅延手段、100…ROM、150…アドレスバス、200…プログラムカウンタ、300…補正手段、301…圧力センサ、302…圧力センサからの特性補正前のアナログ出力信号、303…温度センサ、304…A/D変換器(圧力センサ用)、305…A/D変換器(温度センサ用)、306…演算器、307…D/A変換器、308…特性補正済みのセンサ出力、309…PROM(プログラマブルROM)、310…SCI(シリアル・コミュニケーション・インターフェイス)、311…補正係数データ、312…クロック発生器、400…命令コードバス、401…レジスタ、402…ALU(演算ユニット)、403…RAM、404…第1のデータバス、405…第2のデータバス。

Claims (4)

  1. 情報を記憶する複数のメモリセルと、
    複数のワード線及びデータ線と、
    記憶したデータを出力する出力回路と、
    アドレスの下位ビット信号に対応して前記ワード線のうち1本を選択する第1のデコーダと、
    前記データ線と前記出力回路を接続する複数のパストランジスタと、
    アドレスの上位ビット信号に対応して前記パストランジスタのうち1つを選択してオンにする第2のデコーダと、
    データ読み出し前に前記データ線をあらかじめチャージするためのプリチャージ用トランジスタと、
    前記プリチャージ用トランジスタが前記パストランジスタよりも前記チャージのための電源側に設けられ、前記プリチャージ用トランジスタをオンにするタイミングを遅延させる遅延手段とを備えたことを特徴とした半導体記憶装置。
  2. 請求項1において、
    アクセスされるアドレスが連続的に変化することを特徴とする半導体記憶装置。
  3. 請求項1からのいずれかにおいて、
    前記プリチャージ用トランジスタのドレインと前記データ線とを前記パストランジスタを介して接続することを特徴とした半導体記憶装置。
  4. 特性を補正するための補正手段を有するセンサにおいて、
    前記補正手段に、上記請求項1からのいずれか記載の半導体記憶装置を用いたことを特徴としたセンサ。
JP15112299A 1999-05-31 1999-05-31 半導体記憶装置及びそれを用いたセンサ Expired - Fee Related JP3709302B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15112299A JP3709302B2 (ja) 1999-05-31 1999-05-31 半導体記憶装置及びそれを用いたセンサ
US09/578,854 US6282136B1 (en) 1999-05-31 2000-05-26 Semiconductor memory devices and sensors using the same
DE10027097A DE10027097A1 (de) 1999-05-31 2000-05-31 Halbleiterspeichervorrichtung und eine solche Halbleiterspeichervorrichtung verwendender Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15112299A JP3709302B2 (ja) 1999-05-31 1999-05-31 半導体記憶装置及びそれを用いたセンサ

Publications (2)

Publication Number Publication Date
JP2000339982A JP2000339982A (ja) 2000-12-08
JP3709302B2 true JP3709302B2 (ja) 2005-10-26

Family

ID=15511855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15112299A Expired - Fee Related JP3709302B2 (ja) 1999-05-31 1999-05-31 半導体記憶装置及びそれを用いたセンサ

Country Status (3)

Country Link
US (1) US6282136B1 (ja)
JP (1) JP3709302B2 (ja)
DE (1) DE10027097A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701892B1 (ko) * 1999-05-21 2007-03-30 엘지.필립스 엘시디 주식회사 데이터라인 구동방법 및 그를 이용한 액정 표시장치
JP2002100196A (ja) * 2000-09-26 2002-04-05 Matsushita Electric Ind Co Ltd 半導体記憶装置
US6556480B2 (en) * 2000-12-29 2003-04-29 Stmicroelectronics S.R.L. EEPROM circuit, in particular a microcontroller including read while write EEPROM for code and data storing
US6567294B1 (en) * 2002-02-13 2003-05-20 Agilent Technologies, Inc. Low power pre-charge high ROM array
JP4007239B2 (ja) * 2003-04-08 2007-11-14 ソニー株式会社 表示装置
FR2881565B1 (fr) * 2005-02-03 2007-08-24 Atmel Corp Circuits de selection de ligne binaire pour memoires non volatiles
US7289373B1 (en) 2006-06-06 2007-10-30 Arm Limited High performance memory device
US7623367B2 (en) * 2006-10-13 2009-11-24 Agere Systems Inc. Read-only memory device and related method of design
US9916904B2 (en) 2009-02-02 2018-03-13 Qualcomm Incorporated Reducing leakage current in a memory device
KR102492033B1 (ko) * 2018-03-26 2023-01-26 에스케이하이닉스 주식회사 메모리 장치 및 이를 포함하는 메모리 시스템

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119793A (ja) 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd 読み出し専用記憶装置
JP3482751B2 (ja) 1995-10-13 2004-01-06 株式会社デンソー センサ装置
JPH09161495A (ja) * 1995-12-12 1997-06-20 Ricoh Co Ltd 半導体メモリ装置
JPH09231783A (ja) * 1996-02-26 1997-09-05 Sharp Corp 半導体記憶装置
US5745401A (en) * 1997-02-14 1998-04-28 Lucent Technologies Inc. High-speed programmable read only memory
JP3743106B2 (ja) 1997-04-10 2006-02-08 株式会社デンソー 圧力センサ装置
JP3494849B2 (ja) * 1997-05-29 2004-02-09 富士通株式会社 半導体記憶装置のデータ読み出し方法、半導体記憶装置及び半導体記憶装置の制御装置

Also Published As

Publication number Publication date
JP2000339982A (ja) 2000-12-08
US6282136B1 (en) 2001-08-28
DE10027097A1 (de) 2001-02-22

Similar Documents

Publication Publication Date Title
US8189424B2 (en) Semiconductor memory device having plurality of types of memories integrated on one chip
US7386657B2 (en) Random access interface in a serial memory device
JPH10188588A (ja) パイプライン高速アクセス・フローティング・ゲート・メモリ・アーキテクチャおよび動作方法
KR19990064138A (ko) 저 전압 단일 전원 공급 플래시 메모리용 프로그램 알고리즘
US20060146612A1 (en) Flash memory devices configured to output data without waiting for bitline and wordline recovery and methods of operating same
JP3709302B2 (ja) 半導体記憶装置及びそれを用いたセンサ
US6795346B2 (en) Non volatile memory and data processor
KR20090013797A (ko) 내장 메모리의 비경쟁 계층 비트 라인 및 그 방법
KR100984373B1 (ko) 반도체 메모리에서의 워드라인 래칭을 포함하는 시스템 및 방법
JPH0736273B2 (ja) 半導体集積回路
EP2002443B1 (en) Memory with clocked sense amplifier
US5544078A (en) Timekeeping comparison circuitry and dual storage memory cells to detect alarms
EP1012693B1 (en) Program memory and signal processing system storing instructions encoded for reducing power consumption during reads
KR19980070524A (ko) 스태틱형 램
US6125057A (en) Segmented source memory array
US7330934B2 (en) Cache memory with reduced power and increased memory bandwidth
US8151075B2 (en) Multiple access type memory and method of operation
US5347472A (en) Precharge circuitry and bus for low power applications
JP4100930B2 (ja) 半導体記憶装置
US20230015255A1 (en) Integrated counter in memory device
JPH0636319B2 (ja) 半導体集積回路
JPH11185485A (ja) 半導体記憶装置及びデータ処理装置
JPH0668685A (ja) 半導体集積回路
JP2000123576A (ja) 揮発性半導体記憶装置及びデータ処理装置
JPH0387927A (ja) マイクロプロセッサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees