JP3699664B2 - 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器 - Google Patents

非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器 Download PDF

Info

Publication number
JP3699664B2
JP3699664B2 JP2001197243A JP2001197243A JP3699664B2 JP 3699664 B2 JP3699664 B2 JP 3699664B2 JP 2001197243 A JP2001197243 A JP 2001197243A JP 2001197243 A JP2001197243 A JP 2001197243A JP 3699664 B2 JP3699664 B2 JP 3699664B2
Authority
JP
Japan
Prior art keywords
dielectric line
millimeter wave
wave signal
transmission
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001197243A
Other languages
English (en)
Other versions
JP2003017910A (ja
Inventor
和樹 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001197243A priority Critical patent/JP3699664B2/ja
Publication of JP2003017910A publication Critical patent/JP2003017910A/ja
Application granted granted Critical
Publication of JP3699664B2 publication Critical patent/JP3699664B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ミリ波集積回路等に組み込まれて高周波信号の伝送用として用いられ、かつ外部に高周波信号を電波として送受信可能とされた非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器に関する。
【0002】
【従来の技術】
従来、誘電体線路を1対の平行平板導体によって挟持した構造からなる非放射性誘電体線路(NonRadiative Dielectric Waveguideで、以下NRDガイドという)が、高周波信号の伝送線路の1種として用いられることが知られている。そして、このNRDガイドを配線基板などに組入れる場合、回路設計上、NRDガイドを他の高周波用伝送線路,アンテナ等と接続することが必要であり、その場合伝送特性の劣化を小さくして接続することが重要である。
【0003】
そこで、他の高周波伝送線路との接続構造として、NRDガイドとマイクロストリップ線路とを接続するための構造が提案されている。その一般的な構造を図4に示す。同図に示すように、一対の平行平板導体11,12の間に誘電体線路3が配設されたNRDガイドにおいて、平行平板導体11にスロット孔13を形成し、平行平板導体11のスロット孔13を含む表面に、中心導体15が表面に形成された誘電体基板14をスロット孔13と中心導体15の終端部とが所定の位置関係になるように載置して、NRDガイドとマイクロストリップ線路とをスロット孔13を介して電磁的に接続するものである。
【0004】
この他、NRDガイドの誘電体線路と金属導波管とを接続する構成(図示せず)として、誘電体線路の入力端部または出力端部をテーパー状とし、そのテーパー部に近接させて矩形ホーン状とされた金属導波管の一端を配置するものがある。
【0005】
さらに、NRDガイドと金属導波管との接続構造として、平行平板導体の誘電体線路に相当する部分の一部に開孔を設け、その開孔と金属導波管の開放端部とを接続したものが提案されている(特開平12−22407号公報参照)。
【0006】
【発明が解決しようとする課題】
しかしながら、NRDガイドの誘電体線路と金属導波管とを接続する場合に、上記の如く誘電体線路の端部をテーパー状としたタイプでは、そのテーパー部の長さは高周波信号の2波長以上の長さを要するため、ミリ波集積回路の小型化という点で不利である。
【0007】
一方、小型化の点では図4に示した構成がよいが、高周波信号の周波数が30GHz以上のミリ波帯では、マイクロストリップ線路を用いたものでは伝送損失自体が大きくなるため、上記従来の接続構造は信号周波数が30GHz以上である回路基板には不向きであった。
【0008】
マイクロストリップ線路に代わり、30GHz以上のミリ波帯に対してもNRDガイドと同様に伝送損失の小さい伝搬路構造として金属導波管が知られており、回路設計においても金属導波管を用いることが重要となる。その一例として、平行平板導体の誘電体線路に相当する部分の一部に開孔を設け、その開孔と誘電体導波管の開放端部とを接続したものがある(特開平12−22407号公報参照)。しかしながら、この構成では、平行平板導体の誘電体線路相当部と誘電体導波管との接続部で信号の反射や漏れが生じ易く、信号の損失を小さく抑える点で不十分なものであった。
【0009】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、30GHz以上のミリ波帯でも損失の小さい伝送が可能であり、外部に高周波信号を電波として送受信可能な小型化されたものとすることである。
【0010】
【課題を解決するための手段】
本発明の非放射性誘電体線路と金属導波管との接続構造は、高周波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、前記高周波信号が伝搬される誘電体線路が配設されて成る非放射性誘電体線路に対して、一方の前記平行平板導体に前記誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成されるとともに、該開口に金属導波管の開放終端部が接続されている非放射性誘電体線路と金属導波管との接続構造において、前記金属導波管と反対側の前記平行平板導体の内面と前記誘電体線路との間の空隙が平均5μm以下であり、前記誘電体線路の両側面に沿っているとともに前記誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材が設けられていることを特徴とする。
【0011】
本発明は、上記の構成により、NRDガイドと金属導波管とを、反射および伝送損失を小さくして接続することができる。金属導波管と反対側の平行平板導体の内面と誘電体線路との間の空隙が平均5μmを超えると、高周波信号の反射及び伝送損失が著しく大きくなる。一方、誘電体線路と金属導波管側の平行平板導体との間に空隙がある程度形成されていると、高周波信号の反射および伝送損失の劣化を抑えることができる。つまり、平行平板導体の内面と誘電体線路との間にできる空隙について、金属導波管側に形成される場合はよいが、金属導波管と反対側の平行平板導体の内面と誘電体線路との間に形成される空隙は所定以下の小さいものとする必要がある。なお、高周波信号の波長の2分の1以下の間隔とは、空気中での高周波信号の波長に相当するものである。
【0012】
本発明において、好ましくは、前記金属導波管側の前記平行平板導体の内面と前記誘電体線路との間の空隙は平均100μm以下であることを特徴する。
【0013】
本発明は、上記の構成により、空隙による高周波信号の反射および伝送損失の劣化を抑えることができる。金属導波管側の平行平板導体の内面と誘電体線路との間の空隙が平均100μmを越えた場合、高周波信号の反射および伝送損失が著しく劣化する。
【0016】
本発明のミリ波送受信器は、ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、高周波発生素子が一端部に付設され、前記高周波発生素子から出力された前記ミリ波信号を伝搬させる第1の誘電体線路と、バイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力するための可変容量ダイオードと、前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記送信用のミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの前記接続部から入力された前記送信用のミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接続されるサーキュレータと、該サーキュレータの前記第2の接続部に接合され、前記送信用のミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第3の誘電体線路と、前記送受信アンテナで受信され前記第3の誘電体線路を伝搬して前記サーキュレータの前記第3の接続部より出力した受信波をミキサー側へ伝搬させる第4の誘電体線路と、前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、前記送信用のミリ波信号の一部と前記受信波とを混合して中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、前記第3の誘電体線路の終端部の両側面に沿っているとともに前記第3の誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記第3の誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材が設けられており、一方の前記平行平板導体に前記第3の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成され、かつ一方の開放終端部が前記開口に接続され他方に送受信アンテナが設けられた金属導波管を具備しており、前記金属導波管と反対側の前記平行平板導体の内面と前記第3の誘電体線路との間の空隙が平均5μm以下であることを特徴とする。
【0017】
本発明のミリ波送受信器は、上記の構成により、ミリ波信号の伝送損失が小さくなるため伝送特性に優れ、その結果ミリ波レーダー等に適用した場合に探知距離を増大し得るものとなる。
【0018】
また、本発明のミリ波送受信器は、ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、高周波発生素子が一端部に付設され、前記高周波発生素子から出力された前記ミリ波信号を伝搬させる第1の誘電体線路と、バイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力するための可変容量ダイオードと、前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記送信用のミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの前記接続部から入力された前記送信用のミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接続されるサーキュレータと、該サーキュレータの前記第2の接続部に接続され、前記送信用のミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第3の誘電体線路と、先端部に受信アンテナ、他端部にミキサーが各々設けられた第4の誘電体線路と、前記サーキュレータの前記第3の接続部に接続され、前記送信アンテナで受信混入したミリ波信号を伝搬させるとともに先端部に設けられた無反射終端部で前記ミリ波信号を減衰させる第5の誘電体線路と、前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、前記送信用のミリ波信号の一部と受信波とを混合させて中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、前記第3の誘電体線路と前記第4の誘電体線路の終端部の両側面に沿っているとともに前記第3の誘電体線路と前記第4の誘電体線路の各終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記第3の誘電体線路と前記第4の誘電体線路の各終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材がそれぞれ設けられており、一方の前記平行平板導体に前記第3の誘電体線路中および前記第4の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口がそれぞれ形成され、かつ一方の開放終端部が前記開口に接続され他方に送信アンテナまたは受信アンテナが設けられた金属導波管を具備しており、前記金属導波管と反対側の前記平行平板導体の内面と、前記第3の誘電体線路および前記第4の誘電体線路との間のそれぞれの空隙が平均5μm以下であることを特徴とする。
【0019】
本発明は、上記の構成により、ミリ波信号の伝送損失が小さくなるとともに送信用のミリ波信号がサーキュレータを介してミキサーへ混入することがなく、その結果ミリ波信号の伝送特性に優れ、ミリ波レーダー等に適用した場合に受信信号のノイズが低減し探知距離が増大するものとなる。
【0020】
【発明の実施の形態】
本発明のNRDガイドについて以下に詳細に説明する。図1,図5,図6,図7は本発明のNRDガイドを示す斜視図であり、これらの図に示すように、本発明のNRDガイドは、一対の平行平板導体1,2間に、断面形状が幅a×高さbの矩形の誘電体線路3が配設されており、その終端部は閉じた終端部3aとなっており、高周波信号に対しては短絡状態ではなく開放状態とされた終端部3aとなっている。この構成のNRDガイドでは、図2に示したLSMモードによる電界の定在波が終端部3aの端面からの反射波によって生じる。
【0021】
本発明では、この定在波の電界の強い部分、即ち図2におけるE1,E2,E3,E4のいずれかの箇所に対応する平行平板導体1の部位に、E1〜E4の各箇所のいずれかを中心とする開口5を設ける。尚、E1(下記mがm=0)は誘電体線路3の終端部3a付近であり、E2(m=1),E3(m=2),E4(m=3)は終端部3aから管内波長のm/2(mは0以上の整数)倍の長さに相当する位置に存在する。そして、誘電体線路3と金属導波管4との接続位置は、低損失の点から、E2,E3またはE4の箇所に開口5を設けることが良い。さらに、低損失および小型化の点からE2の個所がより好ましい。
【0022】
図1に示すように、誘電体線路3と金属導波管4側の平行平板導体1の内面との間の空隙t1は平均100μm以下が好ましく、100μmを超えると、高周波信号の反射特性が著しく劣化し、損失も大きくなる。より好ましくはt1は平均50μm以下が良い。誘電体線路3と金属導波管4と反対側の平行平板導体2の内面との間の空隙t2は平均5μm以下とする。5μmを超えると反射特性が著しく劣化し、損失も大きくなる。好ましくは、誘電体線路3を平行平板導体2に接着するのがよい。これにより、空隙を小さくすることができる。このとき、誘電体線路3の上面や下面を平行平板導体2に接着する場合、上面や下面の全面を接着すると、高温環境下では誘電体線路3と平行平板導体2との熱膨張係数差により誘電体線路3にクラック等が入ることがあるため、上面や下面の一部を接着することがある。この場合誘電体線路3と平行平板導体1の内面との間に小さな空隙が生じることになる。
【0023】
また、空隙t2は5μm以下と小さくしなければならないことから、誘電体線路3と金属導波管4と反対側の平行平板導体2の内面とを接着することが好ましい。
【0024】
誘電体線路3と平行平板導体1の内面との間の空隙t1,t2は、例えば誘電体線路3と平行平板導体1とを信号伝送方向に平行な面で切断しその断面を観察することにより測定することができる。また、誘電体線路3の接合面の算術平均粗さおよび平行平板導体1の内面の算術平均粗さを測定し、それらから算出することもできる。
【0025】
誘電体線路3と金属導波管4とは、平行平板導体1に設けられた開口5を介して接続される。接続の構成としては、これらの電界方向が合致するようにして接続する。即ち、図6に示すように、開口5に金属導波管4の一方の開放終端部41が接続される構成である。これに加え、高周波信号(以下、信号ともいう)の漏洩等による接続損失を低減し、信号の反射を小さくするために、図1に示すように、開口5の周辺の誘電体線路3の終端部3aの両側面に沿って電磁遮蔽部材B1,B2を配設することがよい。また、終端部3aの端面に離隔して電磁遮蔽部材B3を設けており、終端部3aの端面側への高周波信号の漏洩を防ぐことができる。
【0026】
本発明の電磁遮蔽部材B1,B2,B3は、電気的導体材料からなっていればよく、具体的にはCu,Al,Fe,Ni,Cr,Ti,Au,Ag,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金),Fe−Ni合金,Fe−Ni−Co合金等の金属、合金、または上記金属元素の1種以上を主成分として含む合金が好ましい。これらは高い導電性を有し形状の加工性も比較的良好である。また、プラスチック,セラミックス等の絶縁性の基体表面に上記金属材料をメッキ法等により被着させたもの、あるいはプラスチック,セラミックス等の絶縁性の基体表面に上記金属材料の微粒子を含む導電性樹脂等をコートしたものでもよい。
【0027】
また、電磁遮蔽部材B1,B2,B3は、板状のもので壁を成すもの、梯子状のものを梯子段が立設するように配置したもの、格子状のもの、網目状のもの、複数のポール状(柱状)のものを立設して配列したもの等種々の形状とし得る。梯子状のものの場合の梯子段と梯子段との間隔、格子状のものの場合の格子間隔、網目状のもの場合の網目間隔、ポール状のものの場合のポール間隔は、電磁遮蔽を行ううえでそれぞれλ/4以下(λは高周波信号の波長)とするのがよい。
【0028】
電磁遮蔽部材B1,B2,B3の高さb1(図1)は、平行平板導体1,2の間隔bと同じであるのが、電磁遮蔽の点で好ましいが、電磁遮蔽部材B1,B2,B3の高さはbよりも若干低くてもよい。電磁遮蔽部材B1,B2の長さcは、誘電体線路3の終端部3aの端面から開口5を超える長さとするのがよく、その場合信号の漏洩等を有効に抑えることができる。
【0029】
誘電体線路3の側面と電磁遮蔽部材B1,B2との間隔d1,d2は、それぞれλ/16以上が好ましく、λ/16未満では、電磁遮蔽部材B1,B2に対向する誘電体線路3のインピーダンスが変化し、誘電体線路3中を伝搬してきた信号の反射が大きくなる。また、誘電体線路3の幅とd1,d2との和に等しくなる電磁遮蔽部材B3の長さdは、動作周波数で不要モードが遮断される幅dx以下であり、この幅dxを超えると、信号の漏洩等を有効に抑えることが困難になる。例えば、dxは、信号の周波数が77GHz,誘電体線路3の比誘電率が4.9(コーディエライトセラミックス)の場合、約3.2mmである。また、誘電体線路3の端面と電磁遮蔽部材B3との間に間隔d3が有る場合、d3は特に限定するものではない。
【0030】
平行平板導体1に形成した開口5の形状および寸法は、図1(a)に示すように、誘電体線路3の管内波長の半分以下の長さLと、誘電体線路3の幅aと同じ程度の幅Wを持つ長方形等の矩形がよく、このような矩形状の開口5は接続損失が小さいうえ加工性も良好である。また、矩形状に限らず、円形状、長円形状等であってもよい。
【0031】
本発明では、図5に示すように、平行平板導体1の主面に平行な方向において誘電体線路3に金属導波管4を接続した構成とすることもできる。この場合、開口5に、一方が閉じた終端部で他方が開放終端部とされた金属導波管4の閉じた終端部から管内波長のn/2+1/4(nは0以上の整数)倍の位置の側面に設けられた開口が接続されているのがよい。これにより、金属導波管4の電界強度が最も大きくなる部位が接続されるため、高周波信号の損失が小さくなり伝送特性が向上する。
【0032】
さらに本発明において、図6に示すように、金属導波管4の他方の開放終端部42を漸次大口径化されたホーンアンテナ6と成すことが好ましい。この構成により、金属導波管4の他方の開放終端部42をアンテナとして共用することができ、他のアンテナ部材を設ける場合と比較して、アンテナ部材との接続部による接続損失が小さくなる。また高周波信号を電波として外部に送受信可能とすることで、高効率の伝送特性を有する自動車用のミリ波レーダーシステム等に適用できる。また、図7のように、金属導波管4の他方の開放終端部42に、平面アンテナ7等のアンテナ部材を設けることが好適である。この場合、図6の場合よりもアンテナ部材の接続損失が若干大きくなるが、金属導波管4の他方の開放終端部42にアンテナ部材を設けることで高周波信号を電波として外部に送受信可能とし、高効率の伝送特性を有する自動車用のミリ波レーダーシステム等に適用できる。
【0033】
本発明において、金属導波管4に設けられる開口面アンテナとしてはホーンアンテナ,積層型開口面アンテナ等があり、平面アンテナとしてはパッチアンテナ,スロットアンテナ,プリントダイポールアンテナ等があり、特にミリ波帯域ではミリ波集積回路の小型化の点で平面アンテナが好ましい。このアンテナについては、上記範疇のものであればその他種々のものが使用できる。
【0034】
金属導波管4はCu,Al,Fe,Ag,Au,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金)等の導体材料、あるいはセラミックス,樹脂等から成る絶縁材料の表面にこれらの導体層を形成したものでもよい。これらの導体材料は、高い電気伝導度および加工性等の点で好適である。また、誘電体線路3の材料は、テフロン,ポリスチレン等の樹脂系誘電体材料、またはコーディエライト(2MgO・2Al23・5SiO2)セラミックス,アルミナ(Al23)セラミックス,ガラスセラミックス等のセラミックスが好ましく、これらは高周波帯域において低損失である。
【0035】
本発明でいう高周波帯域は数10〜数100GHz帯域のマイクロ波帯域およびミリ波帯域に相当し、例えば30GHz以上、特に50GHz以上、更には70GHz以上の高周波帯域が好適である。
【0036】
本発明のNRDガイド用の平行平板導体1,2は、高い電気伝導度および加工性等の点で、Cu,Al,Fe,Ag,Au,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金)等の導体板、あるいはセラミックス,樹脂等から成る絶縁板の表面にこれらの導体層を形成したものでもよい。
【0037】
また、本発明のNRDガイドは、高周波発生素子としてガンダイオード等の高周波ダイオードを組み込むことによって、無線LAN,自動車のミリ波レーダー等に使用されるものであり、例えば自動車の周囲の障害物および他の自動車に対しミリ波を照射し、反射波を元のミリ波と合成して中間周波信号を得、この中間周波信号を分析することにより障害物および他の自動車までの距離、それらの移動速度等が測定できる。
【0038】
かくして、本発明は、NRDガイドの誘電体線路と金属導波管とを接続損失を小さくして接続することができ、またNRDガイドおよびそれが組み込まれるミリ波集積回路等が小型化されるという作用効果を有する。
【0039】
次に本発明のミリ波送受信器について以下に説明する。図8〜図11は本発明のミリ波送受信器を示し、図8は送信アンテナと受信アンテナが一体化されたものの平面図、図9は送信アンテナと受信アンテナが独立したものの平面図、図10はミリ波信号発振部の斜視図、図11はミリ波信号発振部用の可変容量ダイオード(バラクタダイオード)を設けた配線基板の斜視図である。
【0040】
図8において、51は本発明の一方の平行平板導体(他方は省略する)、52は第1の誘電体線路53の一端部に設けられた電圧制御型のミリ波信号発振部である。このミリ波信号発振部は、ガンダイオード等の高周波ダイオードと可変容量ダイオードを具備しており、バイアス電圧印加方向がミリ波信号の電界方向に合致するように、第1の誘電体線路53の高周波ダイオード(高周波発生素子)近傍に可変容量ダイオードが配置されており、その可変容量ダイオードの入出力電極間に印加するバイアス電圧を制御して、高周波ダイオードからのミリ波信号を三角波,正弦波等で周波数変調した送信用のミリ波信号として出力する。
【0041】
53は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、54は、第1,第3,第4の誘電体線路53,55,57にそれぞれ接続される第1,第2,第3の接続部54a,54b,54cを有する、フェライト円板等から成るサーキュレータ、55は、サーキュレータ54の第2の接続部54bに接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナ56を有する第3の誘電体線路、56は、第3の誘電体線路55に金属導波管を介して接続される送受信アンテナである。
【0042】
なお、サーキュレータ54は、平行平板導体51に平行に配設されたフェライト円板の周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第1の接続部54a,第2の接続部54bおよび第3の接続部54cを有し、一つの接続部から入力されたミリ波信号をフェライト円板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力させるものである。
【0043】
また57は、送受信アンテナ56で受信され第3の誘電体線路55を伝搬してサーキュレータ54の第3の接続部54cより出力した受信波をミキサー59側へ伝搬させる第4の誘電体線路、58は、第1の誘電体線路53に一端側が電磁結合するように近接配置されるかまたは第1の誘電体線路53に一端が接合されて、ミリ波信号の一部をミキサー59側へ伝搬させる第2の誘電体線路、58aは、第2の誘電体線路58のミキサー59と反対側の一端部に設けられた無反射終端部(ターミネータ)である。図中M1は、第2の誘電体線路58の中途と第4の誘電体線路57の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波を混合させて中間周波信号を発生させるミキサー部である。
【0044】
本発明では、第1の誘電体線路53と第2の誘電体線路58とを接合する場合、誘電体線路53,58のうちいずれか一方の接合部を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とするのがよい。これにより、高周波信号を低損失に、かつ出力電力を均等に分岐させることができる。また、第2の誘電体線路58と第4の誘電体線路57とを接合する場合、上記と同様に、誘電体線路58,57のうちいずれか一方の接合部を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とするのがよい。
【0045】
そして、これらの各種部品は、ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に設けられており、第3の誘電体線路55の開放状態とされた終端部から生じる定在波の電界が最大になる箇所に対応して、一方の平行平板導体に開口が形成され、その開口に金属導波管を介して送受信アンテナ56が設けられている。この金属導波管、送受信アンテナ56の構成、金属導波管と第3の誘電体線路55との接続構造、および各誘電体線路の詳細な構成、材料、電磁遮蔽部材等については、上述した通りである。
【0046】
図8において、第1の誘電体線路53の中途に、図11に示した構成の変調器としてのスイッチを介在させ、ミリ波信号を変調することもできる。例えば、図11のように、配線基板38の一主面に第2のチョーク型バイアス供給線路40を形成し、その中途に実装されたPINダイオードやショットキーバリアダイオードを設けたスイッチである。この配線基板38を、第1の誘電体線路53の第2の誘電体線路58との信号分岐部とサーキュレータ54との間に、PINダイオードやショットキーバリアダイオードなどの振幅変調用ダイオードの入出力電極に印加されるバイアス電圧印加方向が高周波信号の電界方向に合致するようにして、図10に示すように第1の誘電体線路53に介在させるものである。
【0047】
また、第1の誘電体線路53にもう一つのサーキュレータを介在させ、その第1,第3の接続部に第1の誘電体線路53を接続し、第2の接続部に他の誘電体線路を接続し、その誘電体線路の先端部の端面に、図11のようなショットキーバリアダイオードを設けたスイッチを設置してもよい。
【0048】
本発明のミリ波送受信器について実施の形態の他の例として、送信アンテナと受信アンテナを独立させた図9のタイプがある。同図において、61は本発明の一方の平行平板導体(他方は省略する)、62は第1の誘電体線路63の一端に設けられた電圧制御型のミリ波信号発振部である。このミリ波信号発振部は、ガンダイオード等の高周波ダイオードと可変容量ダイオードを具備しており、バイアス電圧印加方向がミリ波信号の電界方向に合致するように、第1の誘電体線路63の高周波ダイオード近傍に可変容量ダイオードが配置されている。その可変容量ダイオードの入出力電極間に印加するバイアス電圧を制御して、高周波ダイオードからのミリ波信号を三角波,正弦波等で周波数変調した送信用のミリ波信号として出力する。
【0049】
63は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、64は、第1,第3,第5の誘電体線路63,65,67にそれぞれ接続される第1,第2,第3の接続部64a,64b,64cを有する、フェライト円板等から成るサーキュレータである。65は、サーキュレータ64の第2の接続部64bに接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナ66を有する第3の誘電体線路、66は、第3の誘電体線路65に金属導波管を介して接続される送信アンテナ、67は、サーキュレータ64の第3の接続部64cに接続され、送信用のミリ波信号を減衰させる無反射終端部67aが先端に設けられた第5の誘電体線路である。
【0050】
また68は、第1の誘電体線路63に一端側が電磁結合するように近接配置されるかまたは第1の誘電体線路63に一端が接合されて、ミリ波信号の一部をミキサー71側へ伝搬させる第2の誘電体線路、68aは、第2の誘電体線路68のミキサー71と反対側の一端部に設けられた無反射終端部、69は、受信アンテナ70で受信された受信波をミキサー71側へ伝搬させる第4の誘電体線路である。図中M2は、第2の誘電体線路68の中途と第4の誘電体線路69の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波信号を発生させるミキサー部である。
【0051】
本発明では、第1の誘電体線路63と第2の誘電体線路68とを接合する場合、誘電体線路63,68のうちいずれか一方の接合部を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とするのがよい。これにより、高周波信号を低損失で、かつ出力電力を均等に分岐させることができる。また、第2の誘電体線路68と第4の誘電体線路69とを接合する場合、上記と同様に、誘電体線路68,69のうちいずれか一方の接合部を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とするのがよい。
【0052】
そして、これらの各種部品は、ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に設けられており、第3の誘電体線路65と第4の誘電体線路69のそれぞれについて、それぞれの開放状態の終端部からの反射波によって生じるLSM(Longitudinal Section Magnetic)01モードの定在波の電界が最大になる箇所に対応して一方の平行平板導体に開口が形成され、その開口に、一端に送信アンテナ66または受信アンテナ70が設けられた金属導波管の他端の開放終端部が接続される。この金属導波管,送受信アンテナの構成、金属導波管と第3の誘電体線路65,第4の誘電体線路69との接続構造、および各誘電体線路の詳細な構成、材料、電磁遮蔽部材等については、上述した通りである。
【0053】
図9において、サーキュレータ64をなくし、第1の誘電体線路63の先端部に送信アンテナ66を接続した構成とすることもできる。この場合、小型化されたものとなるが、受信波の一部がミリ波信号発振部62に混入しノイズ等の原因となり易いため、図9のタイプが好ましい。
【0054】
また、図9において、第1の誘電体線路63の中途に、図11の構成のスイッチを設け、それを振幅変調信号で制御することでミリ波信号を振幅変調することもできる。例えば、図11のように、配線基板38の一主面に第2のチョーク型バイアス供給線路40を形成し、その中途に実装されたビームリードタイプのPINダイオードやショットキーバリアダイオードを設けたスイッチである。この配線基板38を、第1の誘電体線路63の第2の誘電体線路68との信号分岐部と、サーキュレータ64との間に、PINダイオードやショットキーバリアダイオードなどの振幅変調用ダイオードの入出力電極に印加されるバイアス電圧印加方向が高周波信号の電界方向に合致するようにして、図10に示すようにして第1の誘電体線路63に介在させるものである。
【0055】
また、第1の誘電体線路63にもう一つのサーキュレータを介在させ、その第1,第3の接続部に第1の誘電体線路63を接続し、第2の接続部に他の誘電体線路を接続し、その誘電体線路の先端部の端面に、図11のようなショットキーバリアダイオードを設けたスイッチを設置してもよい。
【0056】
図9のタイプにおいて、第2の誘電体線路68が、第3の誘電体線路65に一端側が電磁結合するように近接配置されるかまたは第3の誘電体線路65に一端が接合されて、ミリ波信号の一部をミキサー71側へ伝搬させるように配置されていてもよい。この場合も図9のものと同様の効果が得られる。
【0057】
これらのミリ波送受信器において、平行平板導体間の間隔はミリ波信号の空気中での波長であって使用周波数での波長の2分の1以下となる。
【0058】
図8,図9のミリ波送受信器用のミリ波信号発振部52,62を図10,図11に示す。これらの図において、32は、ガンダイオード33を設置するための金属ブロック等の金属部材、33は、ミリ波を発振する高周波ダイオードの1種であるガンダイオード、34は、金属部材32の一側面に設置され、ガンダイオード33にバイアス電圧を供給するとともに高周波信号の漏れを防ぐローパスフィルタとして機能するチョーク型バイアス供給線路34aを形成した配線基板である。また35は、チョーク型バイアス供給線路34aとガンダイオード33の上部導体とを接続する金属箔リボン等の帯状導体、36は、誘電体基体に共振用の金属ストリップ線路36aを設けた金属ストリップ共振器、37は、金属ストリップ共振器36により共振した高周波信号をミリ波信号発振部外へ導く誘電体線路である。
【0059】
さらに、誘電体線路37の中途には、周波数変調用ダイオードであって可変容量ダイオードの1種であるバラクタダイオード30を装荷した配線基板38を設置している。このバラクタダイオード30の入出力電極は、誘電体線路37での高周波信号の伝搬方向に垂直かつ平行平板導体の主面に平行な方向(電界方向)に並んでいる。また、バラクタダイオード30の入出力電極に印可されるバイアス電圧の印加方向は、誘電体線路37中を伝搬するLSM01モードの高周波信号の電界方向と合致しており、これにより高周波信号とバラクタダイオード30とを電磁結合させ、バイアス電圧を制御することによりバラクタダイオード30の静電容量を変化させることで、高周波信号の周波数を制御できる。また、39は、バラクタダイオード30と誘電体線路37とのインピーダンス整合をとるための高比誘電率の誘電体板である。
【0060】
また図11に示すように、配線基板38の一主面には第2のチョーク型バイアス供給線路40が形成され、第2のチョーク型バイアス供給線路40の中途にビームリードタイプのバラクタダイオード30が配置される。第2のチョーク型バイアス供給線路40のバラクタダイオード30との接続部には、接続用の電極31が形成されている。
【0061】
そして、ガンダイオード33から発振された高周波信号は、金属ストリップ共振器36を通して誘電体線路37に導出される。次いで、高周波信号の一部はバラクタダイオード30部で反射されてガンダイオード33側へ戻る。この反射信号がバラクタダイオード30の静電容量の変化に伴って変化し、発振周波数が変化する。
【0062】
また、図8,図9のミリ波送受信器はFMCW(Frequency Modulation Continuous Waves)方式であり、FMCW方式の動作原理は以下のようなものである。ミリ波信号発振部の変調信号入力用のMODIN端子に、電圧振幅の時間変化が三角波等となる入力信号を入力し、その出力信号を周波数変調し、ミリ波信号発振部の出力周波数偏移を三角波等になるように偏移させる。そして、送受信アンテナ56,送信アンテナ66より出力信号(送信波)を放射した場合、送受信用アンテナ56,送信アンテナ66の前方にターゲットが存在すると、電波の伝搬速度の往復分の時間差をともなって、反射波(受信波)が戻ってくる。この時、ミキサー59,71の出力側のIFOUT端子には、送信波と受信波の周波数差が出力される。このIFOUT端子の出力周波数等の周波数成分を解析することで、Fif=4R・fm・Δf/c{Fif:IF(Intermediate Frequency)出力周波数,R:距離,fm:変調周波数,Δf:周波数偏移幅,c:光速}という関係式から距離が得られる。
【0063】
本発明のミリ波信号発振部において、チョーク型バイアス供給線路34aおよび帯状導体35の材料は、Cu,Al,Au,Ag,W,Ti,Ni,Cr,Pd,Pt等から成り、特にCu,Agが、電気伝導度が良好であり、損失が小さく、発振出力が大きくなるといった点で好ましい。また、帯状導体35は金属部材32の表面から所定間隔をあけて金属部材32と電磁結合しており、チョーク型バイアス供給線路34aとガンダイオード33間に架け渡されている。即ち、帯状導体35の一端はチョーク型バイアス供給線路34aの一端に半田付け等により接続され、帯状導体35の他端はガンダイオード33の上部導体に半田付け等により接続されており、帯状導体35の接続部を除く中途部分は宙に浮いた状態となっている。
【0064】
そして、金属部材32は、ガンダイオード33の電気的な接地(アース)を兼ねているため金属導体であれば良く、その材料は金属(合金を含む)導体であれば特に限定するものではないが、真鍮(黄銅:Cu−Zn合金),Al,Cu,SUS(ステンレススチール),Ag,Au,Pt等から成る。また金属部材32は、全体が金属から成る金属ブロック、セラミックスやプラスチック等の絶縁基体の表面全体または部分的に金属メッキしたもの、絶縁基体の表面全体または部分的に導電性樹脂材料等をコートしたものであっても良い。
【0065】
かくして、本発明のミリ波送受信器は、図8のものではミリ波信号の伝送特性に優れ、ミリ波レーダーの探知距離を増大し得るものとなり、図9のものではミリ波信号の伝送特性に優れるうえ送信用のミリ波信号がサーキュレータを介してミキサーへ混入することがなく、その結果受信信号のノイズが低減し探知距離が増大するものとなる。
【0067】
図1,図6に示すNRDガイドと金属導波管との接続構造を以下のように構成した。まず、図1のNRDガイドを以下のように構成した。一対の平行平板導体1,2として、厚さ6mmの2枚のAl板を1.8mmの間隔で平行に置き、断面形状が幅0.8mm、高さ1.8mm、長さ60mm、比誘電率4.8のコーディエライトセラミックスから成る誘電体線路3を平行平板導体1,2板間に設置することで、NRDガイドの本体部分を作製した。そして、誘電体線路3の終端部3a側の上面に、図1に示す接続構造を設けた。即ち、誘電体線路3の終端部3aの端面から2.52mmの位置に中心を持つ、幅Wが1.55mm、長さLが3.10mmの矩形の開口5を平行平板導体1に開けた。
【0068】
また、図1に示すように、Alから成る板状の電磁遮蔽部材B1,B2を、終端部3a側の誘電体線路3の両側面に沿うように立設した。このとき、電磁遮蔽部材B1,B2の高さb1は1.8mm、電磁遮蔽部材B1,B2の長さcは5.8mm、電磁遮蔽部材B1,B2と誘電体線路3の側面との間隔d1,d2は1.55mmであった。
【0069】
そして、開口5に対して、開口5形状と略同じ断面形状を持つ金属導波管4を接続した。この構成の接続構造について、誘電体線路3(LSMモード)側からみた金属導波管4との接続部(開口5)での反射損失s11を有限要素法によりシミュレーションして算出した。この計算結果を図3のグラフに示す。
【0070】
平行平板導体1,2と誘電体線路3とが接着されており、これらの間に空隙が無い場合についてシミュレーションを行った。その結果、反射特性は76〜77GHzで−20dB以下(−37dB:76.5GHz)の特性が得られた。
【0071】
金属導波管4側の平行平板導体1の内面と誘電体線路3との間に100μmの空隙がある場合についてシミュレーションを行った。その結果、反射特性は76〜77GHzで−20dB以下(−34dB:76.5GHz)の特性が得られた。
【0072】
金属導波管4と反対側の平行平板導体2の内面と誘電体線路3との間に10μmの空隙がある場合についてシミュレーションを行った。その結果、反射特性は76〜77GHzで−20dB以上(−18dB:76.5GHz)で特性が劣化した。
【0073】
図3から、平行平板導体1,2と誘電体線路3との間に空隙の無い構造のものと、金属導波管4側の平行平板導体1の内面と誘電体線路3との間に100μmの空隙があるものは、−20dB以下の良好な変換特性を示し、低い反射特性で低損失な接続が可能なことが判った。これに対し、金属導波管4と反対側の平行平板導体2の内面と誘電体線路3との間に10μmの空隙があるものは反射特性が劣化したことがわかった。
【0074】
また、図5のものについても同様にシミュレーションを行ったが、上記例と同様の結果が得られた。
【0075】
なお、本発明は、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等差し支えない。
【0076】
本発明は、高周波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、高周波信号が伝搬される誘電体線路が配設されて成るNRDガイドに対して、一方の平行平板導体に誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成されるとともに、その開口に金属導波管の開放終端部が接続されているものにおいて、金属導波管と反対側の平行平板導体の内面と誘電体線路との間の空隙が平均5μm以下であり、前記誘電体線路の両側面に沿っているとともに誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材の長さが高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材が設けられていることにより、NRDガイドと金属導波管とを、反射および伝送損失を小さくして接続することができる。金属導波管と反対側の平行平板導体の内面と誘電体線路との間の空隙が平均5μmを超えると、高周波信号の反射及び伝送損失が著しく大きくなる。
【0077】
本発明は、好ましくは金属導波管側の平行平板導体の内面と誘電体線路との間の空隙は平均100μm以下であることにより、空隙による高周波信号の反射および伝送損失の劣化を抑えることができる。
【0078】
また本発明は、好ましくは、誘電体線路の両側面に沿って電磁遮蔽部材が設けられていることにより、高周波信号の漏洩等の接続損失が低減され、反射を小さくすることができる。
【0079】
本発明の送受信アンテナを具備したNRDガイド型のミリ波送受信器は、第3の誘電体線路の終端部の両側面に沿って電磁遮蔽部材が設けられるとともに、一方の平行平板導体に第3の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成され、かつ一方の開放終端部が開口に接続され他方に送受信アンテナが設けられた金属導波管を具備しており、金属導波管と反対側の平行平板導体の内面と第3の誘電体線路との間の空隙が平均5μm以下であることにより、ミリ波信号の伝送特性に優れ、その結果ミリ波レーダー等に適用した場合に探知距離を増大し得るものとなる。
【0080】
また、本発明の送信アンテナと受信アンテナが独立したNRDガイド型のミリ波送受信器は、第3の誘電体線路と第4の誘電体線路の終端部の両側面に沿って電磁遮蔽部材がそれぞれ設けられるとともに、一方の平行平板導体に第3の誘電体線路中および第4の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口がそれぞれ形成され、かつ一方の開放終端部が開口に接続され他方に送信アンテナまたは受信アンテナが設けられた金属導波管を具備しており、金属導波管と反対側の平行平板導体の内面と、第3の誘電体線路および第4の誘電体線路との間のそれぞれの空隙が平均5μm以下であることにより、ミリ波信号の伝送特性に優れるうえ送信用のミリ波信号がサーキュレータを介してミキサーへ混入することがなく、その結果受信信号のノイズが低減し探知距離が増大するものとなる。
【図面の簡単な説明】
【図1】本発明のNRDガイドと金属導波管との接続構造について実施の形態の例を示し、(a)は誘電体線路の終端部の両側面に沿って電磁遮蔽部材を設けたものの部分透過斜視図、(b)は(a)について誘電体線路の軸方向を含む面で切断した場合の縦断面図である。
【図2】NRDガイド内の誘電体線路の電界分布を説明するための平面図である。
【図3】図1のものについて平行平板導体の内面と誘電体線路との間の空隙を三種に変化させた場合の高周波信号の伝送特性を示すグラフである。
【図4】従来例を示し、NRDガイドの誘電体線路にマイクロストリップ線路を接続したものの斜視図である。
【図5】本発明の接続構造について実施の形態の他の例を示す斜視図である。
【図6】本発明の接続構造について実施の形態の他の例を示す斜視図である。
【図7】本発明の接続構造について実施の形態の他の例を示す斜視図である。
【図8】本発明のNRDガイド型のミリ波送受信器について実施の形態の例を示す平面図である。
【図9】本発明のNRDガイド型のミリ波送受信器について実施の形態の他の例を示す平面図である。
【図10】本発明のミリ波送受信器用のミリ波信号発振部の斜視図である。
【図11】図10のミリ波信号発振部用の可変容量ダイオードを設けた配線基板の斜視図である。
【符号の説明】
1,2:平行平板導体
3:誘電体線路
3a:終端部
4:金属導波管
5:開口

Claims (4)

  1. 高周波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、前記高周波信号が伝搬される誘電体線路が配設されて成る非放射性誘電体線路に対して、一方の前記平行平板導体に前記誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成されるとともに、該開口に金属導波管の開放終端部が接続されている非放射性誘電体線路と金属導波管との接続構造において、前記金属導波管と反対側の前記平行平板導体の内面と前記誘電体線路との間の空隙が平均5μm以下であり、前記誘電体線路の両側面に沿っているとともに前記誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材が設けられていることを特徴とする非放射性誘電体線路と金属導波管との接続構造。
  2. 前記金属導波管側の前記平行平板導体の内面と前記誘電体線路との間の空隙は平均100μm以下であることを特徴する請求項1記載の非放射性誘電体線路と金属導波管との接続構造。
  3. ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、
    高周波発生素子が一端部に付設され、前記高周波発生素子から出力された前記ミリ波信号を伝搬させる第1の誘電体線路と、
    バイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力するための可変容量ダイオードと、
    前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
    前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記送信用のミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの前記接続部から入力された前記送信用のミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接続されるサーキュレータと、
    該サーキュレータの前記第2の接続部に接合され、前記送信用のミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第3の誘電体線路と、
    前記送受信アンテナで受信され前記第3の誘電体線路を伝搬して前記サーキュレータの前記第3の接続部より出力した受信波をミキサー側へ伝搬させる第4の誘電体線路と、
    前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、前記送信用のミリ波信号の一部と前記受信波とを混合して中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、
    前記第3の誘電体線路の終端部の両側面に沿っているとともに前記第3の誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記第3の誘電体線路の終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材が設けられており、一方の前記平行平板導体に前記第3の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口が形成され、かつ一方の開放終端部が前記開口に接続され他方に送受信アンテナが設けられた金属導波管を具備しており、前記金属導波管と反対側の前記平行平板導体の内面と前記第3の誘電体線路との間の空隙が平均5μm以下であることを特徴とするミリ波送受信器。
  4. ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、
    高周波発生素子が一端部に付設され、前記高周波発生素子から出力された前記ミリ波信号を伝搬させる第1の誘電体線路と、
    バイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力するための可変容量ダイオードと、
    前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
    前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記送信用のミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの前記接続部から入力された前記送信用のミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接続されるサーキュレータと、
    該サーキュレータの前記第2の接続部に接続され、前記送信用のミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第3の誘電体線路と、
    先端部に受信アンテナ、他端部にミキサーが各々設けられた第4の誘電体線路と、
    前記サーキュレータの前記第3の接続部に接続され、前記送信アンテナで受信混入したミリ波信号を伝搬させるとともに先端部に設けられた無反射終端部で前記ミリ波信号を減衰させる第5の誘電体線路と、
    前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、前記送信用のミリ波信号の一部と受信波とを混合させて中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、
    前記第3の誘電体線路と前記第4の誘電体線路の終端部の両側面に沿っているとともに前記第3の誘電体線路と前記第4の誘電体線路の各終端部の端面に離隔して設けられた電磁遮蔽部材であって、前記第3の誘電体線路と前記第4の誘電体線路の各終端部の端面に離隔して設けられた電磁遮蔽部材の長さが前記高周波信号の周波数で不要モードが遮断される長さ以下の電磁遮蔽部材がそれぞれ設けられており、一方の前記平行平板導体に前記第3の誘電体線路中および前記第4の誘電体線路中を伝搬するLSMモードの定在波の電界が最大になる箇所に対応して開口がそれぞれ形成され、かつ一方の開放終端部が前記開口に接続され他方に送信アンテナまたは受信アンテナが設けられた金属導波管を具備しており、前記金属導波管と反対側の前記平行平板導体の内面と、前記第3の誘電体線路および前記第4の誘電体線路との間のそれぞれの空隙が平均5μm以下であることを特徴とするミリ波送受信器。
JP2001197243A 2001-06-28 2001-06-28 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器 Expired - Fee Related JP3699664B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197243A JP3699664B2 (ja) 2001-06-28 2001-06-28 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197243A JP3699664B2 (ja) 2001-06-28 2001-06-28 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器

Publications (2)

Publication Number Publication Date
JP2003017910A JP2003017910A (ja) 2003-01-17
JP3699664B2 true JP3699664B2 (ja) 2005-09-28

Family

ID=19034879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197243A Expired - Fee Related JP3699664B2 (ja) 2001-06-28 2001-06-28 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器

Country Status (1)

Country Link
JP (1) JP3699664B2 (ja)

Also Published As

Publication number Publication date
JP2003017910A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
US6868258B2 (en) Structure for connecting non-radiative dielectric waveguide and metal waveguide, millimeter wave transmitting/receiving module and millimeter wave transmitter/receiver
US6052087A (en) Antenna device and radar module
US7068118B2 (en) Pulse modulator for nonradiative dielectric waveguide, and millimeter wave transmitter/receiver using the same
JP3699664B2 (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器
JP3709163B2 (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器
JP3638533B2 (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信器
JP2001237618A (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信部並びにミリ波送受信器
JP2002076721A (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信部並びにミリ波送受信器
JP2002016406A (ja) 非放射性誘電体線路と金属導波管との接続構造およびミリ波送受信部ならびにミリ波送受信器
JP3652275B2 (ja) 非放射性誘電体線路用のパルス変調器およびそれを用いたミリ波送受信器
JP3659480B2 (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP4268507B2 (ja) 非放射性誘電体線路用の振幅変調器およびそれを用いたミリ波送受信器
JP3777099B2 (ja) 高周波ダイオード発振器およびそれを用いたミリ波送受信器
JP3709186B2 (ja) 非放射性誘電体線路用の振幅変調器およびそれを用いたミリ波送受信器
JP3571000B2 (ja) 非放射性誘電体線路用のパルス変調器およびそれを用いたミリ波送受信器
JP2002290110A (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP2001203510A (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP2003218609A (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP2001237615A (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP3722804B2 (ja) 非放射性誘電体線路用のサーキュレータおよびそれを用いたミリ波送受信器
JP3623146B2 (ja) 非放射性誘電体線路用のモードサプレッサおよびそれを用いたミリ波送受信器
JP2002135056A (ja) 高周波ダイオード発振器およびそれを用いたミリ波送受信器
JP2003032009A (ja) 非放射性誘電体線路およびミリ波送受信器
JP2001339247A (ja) 高周波ダイオード発振器およびそれを用いたミリ波送受信器
JP2002043656A (ja) 高周波ダイオード発振器およびそれを用いたミリ波送受信器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees