JP3569115B2 - 給水システムの末端圧力一定制御装置 - Google Patents

給水システムの末端圧力一定制御装置 Download PDF

Info

Publication number
JP3569115B2
JP3569115B2 JP23261597A JP23261597A JP3569115B2 JP 3569115 B2 JP3569115 B2 JP 3569115B2 JP 23261597 A JP23261597 A JP 23261597A JP 23261597 A JP23261597 A JP 23261597A JP 3569115 B2 JP3569115 B2 JP 3569115B2
Authority
JP
Japan
Prior art keywords
pressure
pump
water supply
supply system
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23261597A
Other languages
English (en)
Other versions
JPH1162876A (ja
Inventor
幸一 佐藤
浩二 大野
啓 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP23261597A priority Critical patent/JP3569115B2/ja
Publication of JPH1162876A publication Critical patent/JPH1162876A/ja
Application granted granted Critical
Publication of JP3569115B2 publication Critical patent/JP3569115B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給水システムのポンプ制御装置に係り、特にインバータにより可変速駆動されるポンプを備えた給水システムの末端圧力一定制御装置に関する。
【0002】
【従来の技術】
可変速駆動型のポンプによる給水圧力の制御方式には、大別して、ポンプの吐出し側の圧力を一定に保つ吐出し圧力一定制御方式と、給水管路の抵抗曲線に沿って圧力制御を行う末端圧力一定制御方式の2種がある。
ここで、前者の吐出し圧力一定制御方式は、後者の末端圧力一定制御方式における抵抗曲線の傾きを0としたものに相当する。
【0003】
ところで、この末端圧力一定制御方式は、例えば特開昭61−247891号公報に記載されているものであるが、この方式では、圧力制御時の目標値となる抵抗曲線を関数として、又はデータテーブル化して、予め制御装置のメモリに記憶させておく必要がある。
【0004】
例えば関数を記憶する方式の場合、図12に示すように、水量0のときの所要圧力H と、ポンプ1台フル運転時の所要圧力HK、それにポンプ2台同時運転時の所要圧力H とを結ぶ曲線Fが目標圧力特性になっているので、これを記憶し、さらに、先発ポンプの始動圧力HON、停止圧力HOFF、追従ポンプの始動圧力H、同停止圧力H、1台運転時NMIN、停止速度NOFF、……など、ポンプを運転する上で複数のデータが必要になる。
そこで、従来技術では、これらを予め制御装置のメモリに記憶していた。
【0005】
【発明が解決しようとする課題】
従来技術には、以下の問題があった。
まず、目標とする抵抗曲線がポンプの運転速度と圧力に基づいて決められているため、経年劣化によりポンプ性能が低下した場合、或いはポンプ吸込側圧力が大きく変動した場合には、前述の圧力と速度との関係が崩れ、変更しなければならなくなるが、従来技術では、メモリに即値データとして記憶しているため、変更しようとすると、新にデータを書込んだものと制御装置を交換しなければならず、面倒であり、コスト高となってしまう。
【0006】
次に、基準となる圧力、基準となる速度の2点をスイッチで設定し、他の前述した圧力及び速度の各データは、基準値に対して所定の値を加減演算して自動的に設定されるようになっているため、前述した特定のデータに対する変更の要求が生じた場合でも、前述の基準値をスイッチで変更するところまでしかできず、結果として平行移動でしか設定変更ができない。
つまり、抵抗曲線の傾きを変えたり、ポンプを始動させる最低圧力HON や、ポンプを停止させる最大圧力HOFF などのデータを個々に変更しようとしてもできなない。
【0007】
さらに、基準となるデータとして運転速度を用いた場合には、最高運転速度をNMAX、その時の締切圧力をH とすると、基準速度NMIN について、
MIN=NMAX √(H/H
として、設定前に予め演算して求めておく必要があるが、これが大変に面倒であり、設定の簡素化が強く要求されているが、これが満たされず、さらには設定点数の削減や設定手段の操作の簡略化が望まれて来ているが、これらも満たされていない。
【0008】
本発明の目的は、上記問題点を解消し、市場で要求されている簡素化に応えることができるようにした給水システムの末端圧力一定制御装置を提供することにある。
具体的には、以下の点が目標となるようにしたものである。
【0009】
まず、圧力制御時の目標となる抵抗曲線に応じた制御定数(パラメータ)の設定及び変更が自由に簡単に出来るようにし、且つ、末端圧力一定制御時の目標となる演算式が自動生成できるようにすること。
次に、演算式の自動生成に必要な、例えば、上記したHON、HOFF、H、H などの作動点データと、始動時速度f00、f00’などの作動点データが、速度データを用いずに自動設定できるようにすること。
【0010】
【課題を解決するための手段】
上記目的は、ポンプ吐出し側の圧力が、予め設定してある管路抵抗曲線上に位置するように、ポンプの運転速度を制御することにより、末端圧力一定制御が得られるようにした給水システムの末端圧力一定制御装置において、ポンプの運転速度を決めることにより、前記管路抵抗曲線に対応した制御目標値が決定されるようにして達成される。
【0011】
また、上記目的は、ポンプ吐出し側の圧力が、予め設定してある管路抵抗曲線上に位置するように、ポンプの運転速度を制御することにより、末端圧力一定制御が得られるようにした給水システムの末端圧力一定制御装置において、前記管路抵抗曲線の少なくとも2点における運転速度と吐出し圧力をティーチングにより設定する手段を設け、これにより設定された運転速度と吐出し圧力から制御目標値が決定されるようにして達成される。
【0012】
このため、本発明の或る実施形態では、まず、制御定数(パラメータ)設定手段と、手動運転モード、自動運転モード、パラメータ設定モード等のモード設定手段、それにインバータの出力周波数を指令する指令手段(例えば可変抵抗器)を設ける。
【0013】
パラメータは、設定手段を用い、前述した各作動点をティーチングにより試行し、同作動点の圧力、周波数(運転速度と同意)をメモリ(不揮発性のメモリが望ましい)に記憶しておき、末端圧力一定制御を行う際の演算式を自動生成し、さらに、自動運転する上での各作動点もティーチングにより自動設定するようになっている。
【0014】
これにより、例えば従来技術で必要であった最低速度NMIN、NMIN’などの事前での計算が不要になり、この結果、目的が達成されることになる。
【0015】
【発明の実施の形態】
以下、本発明による給水システムの末端圧力一定制御装置について、図示の実施形態により詳細に説明する。
図1は、本発明の一実施形態が適用された給水システムの一例で、図示してないインバータにより可変速運転される電動機4と、これによって駆動されるポンプ3を備え、吸込管1と仕切弁2−1を介して、図示してない外部の給水系統から導入されてくる水をポンプ3で加圧し、逆止め弁5を介して配水管6に送り出し、仕切弁2−2を介して配管に接続されている水栓(蛇口)などに対する給水が得られるようになっている。
【0016】
そして、ポンプ3の吐き出し側には、過少水量を検出して出力を発生する流量スイッチ10が設けてあり、これにより過少水量状態が検出されるようになっている。
次に配水管6には、内部に空気溜りを有する圧力タンク7と圧力センサ8、それに圧力計9が設けてあり、圧力タンク7により給水圧力の変動が緩和され、圧力センサ8により給水圧力が検出され、このとき、圧力計9により圧力が監視できるようになっている。
【0017】
図3は、この給水システムの制御装置で、例えば商用電源から端子R、S、Tと漏電遮断器ELB、さらに入力端子R、S、T を介して3相交流電力が給電されるインバータ装置100を備え、これにより可変電圧可変周波数の3相交流電力を出力端子U、V、Wに発生し、これを電動機4に供給してポンプ3を可変速運転するように構成されている。
【0018】
このため、インバータ装置100は、コンバータ部CNV、インバータ部INV、電源投入時の突入電流抑制用抵抗RS、平滑コンデンサCB、負荷状態を検出するシャント抵抗SH、安定化電源AVR、演算処理装置CPU、負荷電流を検出するカレントセンサCT1、CT2、点弧回路、電流制御回路G、ディジタルスイッチSW、ボリューム(可変抵抗器)VRなどを備えている。
【0019】
そして、図示されていないが、演算処理装置CPUには、所定の記憶容量をUするメモリが設けてあり、これに、後述するようにして自動生成した各種のパラメータが格納されるように構成されている。なお、このメモリとしては、例えば不揮発性のメモリや電源バックアップメモリなど、電源が切られたときでもデータが保存されるメモリの方が望ましい。
【0020】
ここで、ディジタルスイッチSWは、手動運転、自動運転及びパラメータ設定などの各種のモードを設定する手段であり、ボリュームVRは、手動運転時、或いはパラメータ設定時でのインバータ周波数を設定する手段である。
【0021】
さらに、このインバータ装置100には、始動用のスイッチSSを演算処理装置CPUに接続するための端子FW、COM1と、流量スイッチ10を接続するための端子STOP、COM2、圧力センサ8を接続するための端子AN、COM3を備えており、その他、フォトカプラFTC、抵抗R1、R2、ダイオードD1、D2、コンデンサC1などが設けられている。
【0022】
コンバータ部CNVは、交流電力を直流電力に変換する回路モジュールで、インバータ部INVはトランジスタモジュールなどからなり、点弧回路、電流制御回路Gの指令により、直流電力を所望の周波数、電圧に変換する回路モジュールである。
【0023】
演算処理装置CPUは、例えばワンチップマイコンで構成され、以下のようにして、インバータ装置100内の各部を監視し、制御する働きをする。
まず、スイッチSSにより端子FW、COM1間がショートされたとき、フォトカプラFTCがONすることにより信号レベルがHからLとなる信号PN5を読込むことにより、運転指令信号を取り込む。
【0024】
また、信号端子CNO、CNGから入力されるシャントSH間の電圧により、負荷電流状態を検出する。なお、シャント抵抗SHに代えて、ホール素子などを使用した電流検出器を用いるようにしてもよい。
さらに、圧力センサ8の信号は、その出力を端子AN、COM3に接続することにより入力端子PN7から読込み、流量スイッチ10の接点のON、OFF信号は、その出力を端子STOP、COM2間に接続することにより読み込むようになっている。
【0025】
一方、点弧回路には信号SG1を供給してインバータ周波数を指令し、電流制御回路Gからは信号SG2を取り込んでインバータ出力電圧を制御し、これにより電動機4に所定の周波数で所定の電圧の3相交流電力を供給し、ポンプ3を可変速運転させる。
【0026】
次に、この実施形態の動作について説明するのであるが、その前提として、まず、図2により、この実施形態において用いている、末端圧力一定制御の目標値を与える演算式と、これを自動生成して運転する上で必要な作動点について説明する。
【0027】
この図2において、H00 は水量が0のときの目標圧力、H01 は同じく所定運転速度f01 のときの目標圧力、f00 は前述した水量0のときの目標圧力H00 を与えるのに必要なインバータ最低周波数、HON はポンプの始動圧力、HOFF は同じく停止圧力、Q は瞬時最大水量である。
ここで、目標圧力H01 は、通常、給水系の全揚程と同じで、従って給水系の仕様で決る値であり、最大水量Q も、同じく仕様で決る値である。
【0028】
Fは給水系の管路抵抗曲線で、末端圧力一定制御を行う上での目標圧力となるものであり、この曲線上で、圧力とポンプの運転速度、すなわちインバータ出力周波数との関係に基づいて、演算式を次の(数1)式のように決めている。
目標圧力演算式=f(f)…… ……(数1)
ここで、fは関数のことであり、従って、この(数1)式は、目標圧力が周波数の関数であることを表わしている。
なお、前述の仕様点Q、H01は管路抵抗曲線F上にあり、所定周波数f01 で運転しているときのQ−H特性Aの左側にある。
【0029】
ポンプ3は、給水圧力がHON 以下になると始動し、始動した後は、給水圧力が前述の管路抵抗曲線F上にくるように運転する。
そして、使用水量が減少し、これによる水量QMIN の低下状態が前述した流量スイッチ10で検出され、この状態が一定時間以上継続すると、ポンプ3は、運転速度をfOFF、給水圧力をHOFF まで高めてから停止させられる。
【0030】
以下の実施形態は、末端圧力一定制御する際の目標圧力演算式について、次の(数2)式で示す近似式を用いるようにしたものであり、従って、このときの管路抵抗特性は、図2の直線近似F’で示すようになっている。
【0031】
【数2】
Figure 0003569115
【0032】
ここで、既に説明したように、H00、H01、f00、f01 は設定値で、定数であり、他方、fx は現在のインバータ出力周波数で、これは変数である。
従って、このインバータ出力周波数fx を検出して、(数2)式に代入してやれば目標圧力が得られることになる。
そして、この実施形態では、これら定数であるパラメータH00、H01、F00、f01 についても、それらをティーチングによって生成させるため、上記したように、ディジタルスイッチSWとボリュームVRが設けられているのである。
【0033】
ここで、ディジタルスイッチSWは、上記したように、モード選択用で、スイッチの位置0〜7とモードの関係は以下の通りである。
0……手動運転モード
1……自動運転モード
2……パラメータ設定モード(1)
3……パラメータ設定モード(2)
4……パラメータ設定モード(3)
5……パラメータ設定モード(4)
6……パラメータ設定モード(5)
7……パラメータ設定モード(6)
【0034】
次に、各モードの内容について説明する。
<手動運転モード>
ディジタルスイッチSWを“0”にセットすることにより得られるモードで、ボリュームVRを操作し、必要とする所定のポンプ特性を手動操作により決めて入力する。その後、この決められたポンプ特性に従って運転する。
【0035】
<パラメータ設定モード(1)>
図2の点(1)でのパラメータH00、f00 を設定するモードで、ディジタルスイッチSWを“2”にセットし、ポンプ出口側の仕切弁2−2を全閉にして、圧力計9の目盛が所定圧力H00 になるようボリュームVRを回す。
そして、ポンプ所定圧力が得られたときのインバータ出力周波数f00 及び圧力センサ10が検出した圧力をH00 としてメモリに記憶させる。
【0036】
<パラメータ設定モード(2)>
図2の点(2)でのパラメータH01、f01 を設定するモードで、ディジタルスイッチSWを“3”にセットし、給水系の仕様で決るパラメータH01 及びf01 をメモリに記憶させる。
こうして、メモリに対する4個のパラメータH00、f00、H01、f01 の記憶が終わると、演算処理装置CPUは、これらのパラメータを(数2)式に代入し、末端圧力一定制御に必要な演算式を自動生成する。
【0037】
<パラメータ設定モード(3)>
図2の点(3)でのパラメータHON を設定するモードで、ディジタルスイッチSWを“4”にセットし、ポンプ出口側の仕切弁2−2を全閉にしてポンプの締切運転を行い、ボリュームVRを下方から徐々に上げてゆく方向に回し、圧力計9が圧力HON を示すまでインバータ周波数を調整してやる。
そうすると、結果は周波数fON となる筈である。
そこで、このときの圧力センサ10の検出圧力を、HON としてメモリに格納する。
【0038】
<パラメータ設定モード(4)>
図2の点(4)でのパラメータHOFF を設定するモードで、ディジタルスイッチSWを“5”に設定し、ポンプ出口側の仕切弁2−2を全閉にしてポンプの締切運転を行い、ボリュームVRを回し、下方から徐々に上げる操作をして、圧力計9が圧力HOFF を示すまでインバータ周波数を調整してやる。
そうすると、結果は周波数fON となる筈である。
そこで、このときの圧力センサ10の検出圧力を、HON としてメモリに格納する。
【0039】
<パラメータ設定モード(5)>
図2の点(5)でのパラメータH を設定するモードで、ディジタルスイッチSWを“6”に設定し、ポンプ出口側の仕切弁2−2を全閉にしてポンプの締切運転を行い、ボリュームVRを回し、下方から徐々に上げる操作をして、圧力計9が圧力Hを示すまでインバータ周波数を調整してやる。
これで結果は周波数fとなる筈である。
そこで、このときの圧力センサ10の検出圧力を、Hとしてメモリに格納する。
【0040】
<パラメータ設定モード(6)>
図2の点(6)でのパラメータH03 を設定するモードで、ディジタルスイッチSWを“7”に設定し、ポンプ出口側の仕切弁2−2を全閉にしてポンプの締切運転を行い、ボリュームVRを回し、下方から徐々に上げる操作をして、圧力計9が圧力H03 を示すまでインバータ周波数を調整してやる。
これで結果は周波数f01となる筈である。
そこで、このときの圧力センサ10の検出圧力を、H03 としてメモリに格納する。
【0041】
<自動運転モード>
ディジタルスイッチSWを“1”に設定すると、以後、演算処理装置CPUにより自動運転が行われる状態になる。
ところで、上記したように、以上のアルゴリズムでは、直線近似特性F’を与える演算式になっているが、これに代えて、目標圧力を周波数fの関数として、例えば図2の管路抵抗カーブFのように、周波数fの2乗になるようにしても良い。
【0042】
この場合には、点(7)に示すように、周波数f20、圧力H20 の点を追加し、これに応じてディジタルスイッチSW1にもポジション“8”を設け、前述したティーチングにより、この点(7)での周波数f20、圧力H20 を検出し、メモリに記憶しておき、演算式に代入して自動生成させれば良く、これによれば、さらに精度が向上される。
【0043】
次に、以上の実施形態の動作について、フローチャートにより説明する。
図4は全体の処理である。
まず、ステップ100でMCU(演算処理装置CPU)の初期設定を行い、ステップ101でTIMINT(タイマ割込処理)を許可し、待機処理を行う。
この結果、図6のタイマ割込処理ステップ200にジャンプし、ステップ201では、これ以降のタイマ割込処理内にアナログ割込処理が割込んでこないようにするため、ANINT(アナログ入力割込)を禁止し、次のステップ202で、ディジタルスイッチSWの設定データを読込み、ステップ204〜208で示すように、そのデータをフラグとしてメモリSWFに格納する。
【0044】
例えば、次の通りである。
SW=0……SWF=00H(手動運転を意味するデータ)
SW=1……SWF=01H(自動運転を意味するデータ)
SW=2……SWF=02H(パラメータ設定モード(1)を意味するデータ)
SW=3……SWF=03H(パラメータ設定モード(2)を意味するデータ)


SW=8……SWF=08H(パラメータ設定モード(7)を意味するデータ)
【0045】
ステップ209では、禁止していたアナログ入力割込を許可し、ステップ210で割込前のステップ101に戻るが、このときのアナログ入力割込の許可により、今度は図7のステップ300にジャンプする。
そして、まずステップ301で、TIMINT及びINT1(初期処理1)の割込を禁止し、ステップ302では圧力センサ10が検出したデータを入力し、その結果をメモリPSに格納する。そして、ステップ303でINT1の割込を許可した後、ステップ304でアナログ入力割込処理から復帰する。
【0046】
そこで、今度はINT1からの割込要求により、図8のステップ400にジャンプし、まずステップ401でTIMINT及びANINTの割込を禁止し、ステップ402で演算処理装置CPUのポートPN5が“0”か否かを判定する。そして、“0”ならステップ405で、起動指令フラグとしてメモリSSにOFFのデータをセットし、そうでなければステップ403で起動不可指令フラグとしてメモリSSに00Hのデータをセットする。
【0047】
次に、同様にして、ステップ406〜408では演算処理装置CPUのポートPN6のレベルを調べ、使用水量が少なく流量スイッチ10がONして停止可能状態か否かを判定する。
その結果、流量スイッチ10がONしていればメモリFSにOFFHをセットし、OFFしていればメモリFSに00Hをセットする。
そして、ステップ409でTIMIN割込の禁止だけを解除し、このステップ400の処理から復帰し、図4のステップ102に戻る。
【0048】
このステップ102では、メモリSSのデータがOFFHになっているか否かを判定する。
起動スイッチSSが閉じているとメモリSSのデータはOFFHであり、このときは図5のステップ110にジャンプする。
そして、メモリSWFが00Hか否かを判定し、00Hならば手動運転モードなので、ステップ118とステップ119により手動運転に必要な処理を実行してからステップ110に戻る。
【0049】
一方、ステップ110での判定結果が00Hでなければ、次のステップ111に進み、ここで、メモリSWFが01Hか否かを判定する。
そして、01Hならば自動運転モードであり、103ステップ以降の処理にジャンプする。
【0050】
一方、01Hでなければ、次のステップ112に進み、ここでメモリSWFが02Hか否かを判定し、判定結果が02Hであれば、図2の点(1)でのパラメータ設定モードなので、ステップ120で、前述の通りにして得られたデータf00とH01がメモリに格納される。
以下、これに続く、これ以外のSWF=03Hから08Hまでの処理も、前述と同様なので、説明は省略する。
【0051】
こうしてステップ115に進んだら、ここではパラメータ設定モード、すなわちティーチングにより得られたデータが設定されているかチェックし、設定されているときにはステップ117に進み、これらのデータを、次の(数3)式に代入し、演算式を自動生成してからステップ103にジャンプする。
【0052】
【数3】
Figure 0003569115
【0053】
一方、ステップ115でパラメータが設定されていないと判断されたときは、ステップ116で、(数3)式にデフォルト値(初期値)を設定して、ステップ103にジャンプし、スイッチSWの設定が01Hであればステップ103以降の処理を実行する。
すなわち、まずステップ103では、圧力センサ8で検出した圧力データPSが始動圧力HON 以下に達しているか否かを判定し、達していなければステップ102に戻り、達するまでこのループの処理を実行する。
【0054】
給水圧力がHON 以下であれば次のステップ104に進み、ここで図9のCNT1の処理を呼び出す。
まずステップ501では、ポンプが運転している状態にあるか判定し、初回であればステップ509で、最低周波数f=f00 をインバータ周波数としてセットし、ステップ502に進む。
一方、ステップ501での判定が運転中だった場合は、そのままステップ502に進む。
【0055】
ステップ502では、設定周波数fと現在周波数f と比較し、指示速度に到達したか否かをチェックする。
そして、現在周波数f が設定周波数fより低い(f>f)ときは、ステップ503に進み、ここで目標圧力H と給水圧力Hと比較する。
そして、|H−H|≦ΔH(ΔH:ヒステリシスを与えるための所定値)の状態であれば、給水圧力が目標圧力に一致していることを意味しているので、そのままステップ513に抜け、そうでなければステップ504とステップ505でインバータを増速処理(現在周波数f をΔf だけ上げる処理)してからステップ513に抜ける。
【0056】
一方、ステップ502での判定結果がf=f のときは、ステップ502Aに進み、ここで目標圧力H と給水圧力Hを比較し、一致していればステップ509で、上記の自動生成した演算式を用いて目標圧力を更新する。
しかして、一致していない場合は、ステップ506で再び目標圧力H と給水圧力Hを比較し、比較した結果、H>Hのときはステップ507で設定周波数を1ビット上げ、反対にH<Hのときは、ステップ508で設定周波数を1ビット下げる。
そして、これらの後でステップ513に抜けるのである。
【0057】
また、ステップ502での判定結果がf<fのときは、ステップ510に進み、ここで目標圧力H と給水圧力Hと比較する。
そして、H=Hの状態であれば、給水圧力が目標圧力に一致していることを意味しているので、ステップ513に抜け、そうでなければステップ511とステップ512でインバータを減速処理(現在周波数f をΔf だけ下げる処理)してステップ513に抜け、ステップ105に戻る。
【0058】
ステップ105〜ステップ109では、使用水量が少なくて流量スイッチ10が閉じており、この状態で一定時間が経過したとき、ステップ109でインバータ周波数をfOFF まで増速させ、給水圧力をHOFF まで高めて停止させる処理を実行する。
そして、この後、ステップ102に戻り、以下、これらの処理を繰返し実行するのである。
【0059】
従って、この実施形態によれば、圧力制御時の目標となる抵抗曲線に応じた制御定数(パラメータ)の設定及び変更が自由に簡単にでき、且つ、末端圧力一定制御時の目標となる演算式が自動生成でき、しかもこのとき、その演算式の自動生成に必要なHON、HOFF、H、H、f00、f00’などの作動点データが、速度データを用いずに自動設定できることになる。
【0060】
次に、ポンプを2台用いた給水システムに、本発明を適用した場合の実施形態のアルゴリズムについて、図9により説明する。
この実施形態では、ポンプ2台並列運転時の目標圧力は、次の(数4)式により与えられる。
【0061】
【数4】
Figure 0003569115
【0062】
ここで、図10に示すように、f01 はポンプ2台運転時での所定周波数で、H02 はポンプ2台運転時で所定周波数f01 のときの目標圧力、f00’はポンプ1台を所定周波数f01 で運転しながら、もう1台のポンプを運転したとき、目標圧力H01 を得るのに必要な周波数で、並列運転時の最低周波数と同じで定数となり、fxが変数となる。
そして、これらのポンプ1台分のパラメータであるH00、H01、f00、f01、HON、HOFF、H03、Hについては、前述のポンプ1台運転時の実施形態におけるアルゴリズムと同じである。
【0063】
次に、この実施形態では、モード選択用のディジタルスイッチSWに次の設定モードを追加する。
9……パラメータ設定モード(9)
A……パラメータ設定モード(10)
B……パラメータ設定モード(11)
C……パラメータ設定モード(12)
そして、これら各モードの内容は以下の通りである。
【0064】
<パラメータ設定モード(9)>
図10の(9)点でのパラメータHTON の設定モードで、ディジタルスイッチSW1を“9”に合わせ、仕切弁2−2を全閉にし、一方のポンプについて、周波数が低い方より徐々に圧力が上昇するようボリュームVRを調整し、圧力計9の目盛がHTON となった所でボリュームVRをそのままに維持し、そのときの圧力をHTON としてメモリに格納しておく。
【0065】
<パラメータ設定モード(10)>
図10の(10)点でのパラメータHTOFF の設定モードで、ディジタルスイッチSW1を“A”に設定し、上記パラメータ設定モード(9)と同じ要領でパラメータHTOFF を求め、メモリに格納する。
【0066】
<パラメータ設定モード(11)>
図10の(11)点でのパラメータH01 とf00’の設定モードで、ディジタルスイッチSWを“B”に合わせ、一方のポンプを運転し、仕切弁2−2を操作して圧力計9の目盛がH01 になるように開度を調整する。そして、この状態でボリュームVRを調整して周波数をf01 とする。
【0067】
次に、他方のポンプを最低周波数で運転し、ボリュームVRを調整して圧力計9の目盛がH01 を越えるまで調整し、その後、H01 に戻すようにボリュームVRを調整する。
そして、このときのデータH01 とf00’をメモリに記憶しておく。
次に、これが終わったらポンプの号機を入れ替えて同じ操作調整を行い、同様にメモリに記憶しておく。
【0068】
<パラメータ設定モード(12)>
図10の(12)点でのパラメータH02 とf01 の設定モードで、ディジタルスイッチSW1を“C”に合わせ、前述のパラメータ設定モード(11)と同じ要領でパラメータf01、H02 を求め、メモリに記憶しておく。
このようして、(11)点でのパラメータH01、f00’と、(12)点でのパラメータH02、f01 を獲得したら、これらのデータを(数4)式に代入し、目標値である演算式を自動生成する。
【0069】
この実施形態の具体的な処理内容は、大筋では図4〜図9の場合と同じで、ステップ114ステップと115ステップの間に、SWFについて9〜Cの処理を追加し、パラメータを各メモリに格納する処理をそれぞれ設ければ良い。
【0070】
さらに、本発明の実施形態として、ティーチングによるパラメータの設定と演算による応用例を次に説明する。
上記したパラメータ設定処理で、各パラメータH00、f00、H01、f01 をティーチングにより設定した後、HON、HOFF、H、H、H の値を演算により自動設定する。
ON =H00+a……メモリに格納
OFF=H00+b……メモリに格納
=H01−c……メモリに格納
=H01+a……メモリに格納
=H00×e
なお、H00の代りにH01を基準としても良い。
【0071】
また、a、b、c、d、eはパラメータとして予めメモリに記憶しておく。
【0072】
ここでも、前述した実施形態と同様に、具体的な処理は図4のフローチャートにおけるステップ114とステップ115の間に、これらの演算式を追加し、結果をメモリに記憶させれば良い。
【0073】
この実施形態によれば、パラメータの内で経年変化やポンプ吸込側の圧力変動に影響を受けるパラメータについては、ティーチングによりデータを獲得し、他のパラメータは自動演算されるので、全体としてのパラメータの設定を、さらに効率よく処理することができる。
【0074】
図11は、上記実施形態におけるポンプを2台用いた給水システムの一例で、図1と図3で説明した実施形態と同一符号を付した部分は、ここでも同じものであるから、説明は省略してあり、その他、特に関係のない部分についての説明も省略してある。
図11において、1−1、1−2は吸込管、2−1A、2−1B、2−2A、2−2Bは仕切弁、3−1、3−2はポンプ、4−1、4−2は電動機、5−1、5−2は逆止め弁であり、その他は図1と同じである。
【0075】
次に、CNUは制御装置で、2台の漏電遮断器ELB1、ELB2、同じく2台のインバータINV1、INV2及びノイズフィルタZCL0、ZCL1、ZCL2を備えている。
従って、この実施形態は、図3の実施形態における漏電遮断器ELBが、各々2台のインバータINV1、INV2に組込まれた形になっており、さらに、これらのインバータINV1、INV2に、ソフトウェアも含めて演算処理装置CPUが組込まれている形になっているものである。
【0076】
そして、各インバータINV1、INV2は、漏電遮断器ELB1、ELB2からのトリップ信号ALは、それぞれ信号線S1、S2を介して端子DI3、DI4から入力し、圧力センサ8からの信号は、それぞれ信号線S6、S7を介して端子AN0、AN1、Lから入力し、流量スイッチ10−1、10−2からの信号は、それぞれ信号線S4、S5を介して端子FW−COMから入力する。
【0077】
このとき、圧力センサ8は、インバータINV1、INV2で共通に使用されるため、両者間は信号線S8により接続されている。
そして、インバータINV1、INV2の端子DI1、DI2、DO1、DO2間を信号線S3で接続し、運転状態、故障状態、運転要求などの信号のやり取りを行なう。
ここで、信号線S9、S10は、装置全体の運転状態を中央の監視盤等へ出力するための信号伝達用であり、故障が発生したときの状態も、これにより伝達されるようになっている。
【0078】
【発明の効果】
本発明によれば、以下の効果がある。
制御装置の一部を交換することなく、特定のパラメータ設定及び末端圧力一定制御時の目標値の設定が実際の現場状況に合わせ、ティーチングにより設定できるので、コストの低減と共に、ポンプの運転に必要なデータの設定作業を簡単且つ容易に行うなうことができ、設定変更にも簡単に、しかも容易に対応することができる。
【0079】
また、このとき、速度パラメータはティーチング又は自動演算で決められ、予め速度パラメータを演算して求めておく必要がなく、このため、難しくて手間のかかる作業から解消され、この結果、設定作業のスピードアップ化を充分に得ることができる。
【図面の簡単な説明】
【図1】本発明による給水システムの末端圧力一定制御装置の一実施形態が適用された給水システムの一例を示す構成図である。
【図2】本発明の一実施形態の動作を説明するための給水特性図である。
【図3】本発明の一実施形態が適用された給水システムにおける制御系のブロック図である。
【図4】本発明の一実施形態の動作を説明するフローチャートである。
【図5】本発明の一実施形態の動作を説明するフローチャートである。
【図6】本発明の一実施形態の動作を説明するフローチャートである。
【図7】本発明の一実施形態の動作を説明するフローチャートである。
【図8】本発明の一実施形態の動作を説明するフローチャートである。
【図9】本発明の一実施形態の動作を説明するフローチャートである。
【図10】本発明の他の一実施形態の動作を説明するための給水特性図である。
【図11】本発明の他の一実施形態が適用された給水システムの一例を示す構成図である。
【図12】従来技術による給水システムの動作を説明するための給水特性図である。
【符号の説明】
1 吸込管
2−1、2−2 仕切弁
3 ポンプ
4 電動機
5 逆止め弁
6 送水管
7 圧力タンク
8 圧力センサ
9 圧力計
10 流量スイッチ

Claims (5)

  1. ポンプ吐出し側の圧力が、予め設定してある管路抵抗曲線上に位置するように、ポンプの運転速度を制御することにより、末端圧力一定制御が得られるようにした給水システムの末端圧力一定制御装置において、
    前記設定手段と前記圧力計を用い、複数の運転モードの中から選択したモードに従ってティーチングを行い、
    末端圧力を一定に制御するのに必要な演算式を生成し、
    この演算式に基づいてポンプの運転速度を決めることにより、前記管路抵抗曲線に対応した制御目標値が決定されるように構成したことを特徴とする給水システムの末端圧力一定制御装置。
  2. ポンプ吐出し側の圧力が、予め設定してある管路抵抗曲線上に位置するように、ポンプの運転速度を制御することにより、末端圧力一定制御が得られるようにした給水システムの末端圧力一定制御装置において、
    前記設定手段と前記圧力計を用い、前記管路抵抗曲線の少なくとも2点における運転速度と吐出し圧力を複数の前記運転モードの中から選択したモードに従ってティーチングにより設定する手段を設け、
    これにより設定された運転速度と吐出し圧力から制御目標値が決定されるように構成したことを特徴とする給水システムの末端圧力一定制御装置。
  3. 請求項2の発明において、
    前記設定された運転速度と吐出し圧力から、前記制御目標値の演算式が自動的に生成されるように構成したことを特徴とする給水システムの末端圧力一定制御装置。
  4. 請求項2の発明において、
    ポンプの始動圧力と停止圧力を含むポンプの作動点をティーチングにより獲得し、記憶する手段が設けられていることを特徴とする給水システムの末端圧力一定制御装置。
  5. 請求項4の発明において、
    前記ティーチングにより獲得した圧力データを基準にし、これと、所望のポンプ作動点との差を表わすデータを予め設定して記憶する外部設定手段を設け、
    制御に使用するポンプの作動点を、前記ティーチングにより獲得した圧力データと前記記憶してある差を表わすデータから演算して求めるように構成したことを特徴とする給水システムの末端圧力一定制御装置。
JP23261597A 1997-08-28 1997-08-28 給水システムの末端圧力一定制御装置 Expired - Fee Related JP3569115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23261597A JP3569115B2 (ja) 1997-08-28 1997-08-28 給水システムの末端圧力一定制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23261597A JP3569115B2 (ja) 1997-08-28 1997-08-28 給水システムの末端圧力一定制御装置

Publications (2)

Publication Number Publication Date
JPH1162876A JPH1162876A (ja) 1999-03-05
JP3569115B2 true JP3569115B2 (ja) 2004-09-22

Family

ID=16942119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23261597A Expired - Fee Related JP3569115B2 (ja) 1997-08-28 1997-08-28 給水システムの末端圧力一定制御装置

Country Status (1)

Country Link
JP (1) JP3569115B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718655B1 (ko) * 2016-03-25 2017-03-23 허태석 부하량 변경에 따른 차압의 가변 제어를 위한 부하량 비례 차압값 설정방법
KR101718656B1 (ko) * 2016-03-25 2017-03-23 허태석 상/하향식 순환 배관에 따른 순환용 펌프의 가변 운전률 보상방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812275B2 (ja) * 2004-09-22 2011-11-09 株式会社荏原製作所 給水装置
JP4938304B2 (ja) * 2005-12-22 2012-05-23 株式会社荏原製作所 ポンプの制御方法及び給水装置
JP5172245B2 (ja) * 2007-08-22 2013-03-27 株式会社日立産機システム 給水装置
JP5775791B2 (ja) * 2011-10-25 2015-09-09 株式会社日立産機システム 給水装置および給水装置の運転方法
JP5775437B2 (ja) * 2011-12-02 2015-09-09 株式会社日立産機システム 給水装置
JP6024402B2 (ja) * 2012-11-09 2016-11-16 オムロン株式会社 システム制御装置およびその制御方法、プログラム、ならびに、制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718655B1 (ko) * 2016-03-25 2017-03-23 허태석 부하량 변경에 따른 차압의 가변 제어를 위한 부하량 비례 차압값 설정방법
KR101718656B1 (ko) * 2016-03-25 2017-03-23 허태석 상/하향식 순환 배관에 따른 순환용 펌프의 가변 운전률 보상방법

Also Published As

Publication number Publication date
JPH1162876A (ja) 1999-03-05

Similar Documents

Publication Publication Date Title
JP2754079B2 (ja) コンプレッサシステムの制御方法及び制御装置
JP3569115B2 (ja) 給水システムの末端圧力一定制御装置
JPH08326109A (ja) 水道直結給水システム
JP3768045B2 (ja) インバータ
JP3732627B2 (ja) 複数ポンプを用いた給水システムの制御装置
JP3649897B2 (ja) 水道直結給水システム
JP3373295B2 (ja) ターボ機械制御方法とターボ機械装置
JPH0988871A (ja) 回転機械制御装置及びその制御方法
JPH01225859A (ja) 自動給湯風呂装置
JPH0791765A (ja) 熱源制御装置
JPH1182361A (ja) 給水圧力制御装置
JP3930930B2 (ja) インバータ付給水ポンプ装置及びその運転方法
JP3167004B2 (ja) 水道用給水システムの末端圧力一定制御装置
JP3002118B2 (ja) 圧縮機の運転方法
JPH08171431A (ja) 力率改善装置
JPS6128780A (ja) 給液装置
JP3744760B2 (ja) 水道用給水システムの末端圧力一定制御方法
JP2011113329A (ja) 給水装置及び液位制御装置
EP0304775A1 (en) Circulation pump with an integrated flow control device
JP2516193B2 (ja) 圧力タンク式給水装置
JP4678798B2 (ja) 給水装置及び給水装置制御方法
JP2794983B2 (ja) 給水装置
JP2670042B2 (ja) 給水システムの制御装置
SU1754909A1 (ru) Способ автоматического регулировани паровод ного аккумул тора
JP3933616B2 (ja) 可変速給水装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees