JP3565566B2 - 4輪駆動車用駆動力配分装置 - Google Patents

4輪駆動車用駆動力配分装置 Download PDF

Info

Publication number
JP3565566B2
JP3565566B2 JP8955591A JP8955591A JP3565566B2 JP 3565566 B2 JP3565566 B2 JP 3565566B2 JP 8955591 A JP8955591 A JP 8955591A JP 8955591 A JP8955591 A JP 8955591A JP 3565566 B2 JP3565566 B2 JP 3565566B2
Authority
JP
Japan
Prior art keywords
differential
driving force
gear
hydraulic
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8955591A
Other languages
English (en)
Other versions
JPH04300729A (ja
Inventor
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP8955591A priority Critical patent/JP3565566B2/ja
Publication of JPH04300729A publication Critical patent/JPH04300729A/ja
Application granted granted Critical
Publication of JP3565566B2 publication Critical patent/JP3565566B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、センタデファレンシャルにこのセンタデファレンシャルの差動を制限して前後輪への駆動力配分を調整しうる油圧式差動制限機構をそなえたものに用いて好適の、4輪駆動車用駆動力配分装置に関する。
【0002】
【従来の技術】
4輪駆動車には、エンジンからの駆動力を前後輪へ配分するセンタデファレンシャル(以下、センタデフという)に差動制限機構を設けて、前後輪への駆動力配分を調整できるようにしたものが開発されており、かかる差動制限機構には、ビスカスカップリングユニット(VCU)やハイドロリックカップリングユニット(HCU)の他、油圧多板クラッチ機構を用いたものが開発されている。
【0003】
また、遊星歯車機構(シンプソン式遊星歯車機構)を用いたセンタデフも開発されており、例えば図8は、差動制限用クラッチ機構付きの遊星歯車式センタデフを示す断面図であり、遊星歯車式差動装置12は、サンギヤ121と、このサンギヤ121の外方に配置されたプラネタリギヤ122と、このプラネタリギヤ122の外方に配置されたリングギヤ123とをそなえ、自動変速機6の出力軸8の出力が、入力ギヤ113から連結部材131を介してプラネタリギヤ122を支持するキャリア125に入力され、サンギヤ121は前輪用出力軸27および減速歯車機構(図示省略),前輪用差動歯車装置(図示省略)を介して前輪側車軸と連動し、リングギヤ123は後輪用出力軸29およびベベルギヤ機構(図示省略)を介してプロペラシャフト(図示省略)更には後輪側車軸と連動するようになっている。
【0004】
この遊星歯車式差動装置12には、油圧式差動制限機構としての油圧多板クラッチ機構28Aが付設されており、この油圧多板クラッチ機構28Aは、ギヤ121(又はリングギヤ123)とキャリア125との間に介装され、自身の油圧室に作用される制御圧力によって摩擦力が変わり、サンギヤ121(又はリングギヤ123)とキャリヤ125との差動を拘束するようになっている。
【0005】
油圧多板クラッチ機構28Aは、センタデフ12の入力側であるキャリヤ125と前輪への出力側である前輪用出力軸27との間に設けられ、多板クラッチ28a,28bと、多板クラッチ28a,28bを押圧する油圧ピストン141A,142Aと、これらのピストン141A,142Aを駆動するための油圧室147A,148Aと、油圧室147A,148A内の油圧に抗してピストン141A,142Aを後退させるリターンスプリング150とをそなえている。
【0006】
また、油圧室147A,148A内に外部の油圧源(図示省略)から圧油を供給するために、油圧多板クラッチ機構28Aのケース116cから回転側のピストンケース145aにかけて油通路117が形成されている。そして、油路117を通じて油圧室147A,148A内へ圧油を供給して油圧を上昇させると、この油圧によりピストン141A,142Aが前進して多板クラッチ28a,28bを押圧し、一方、油圧室147A,148A内の油圧を低下させると、リターンスプリング150によりピストン141A,142Aが後退して多板クラッチ28a,28bを離隔するようになっている。
【0007】
また、油通路117は、固定側のケース116cから回転側のピストンケース145aにかけて形成されているので、油通路117の途中には、回転シール133が必要となる。
【0008】
なお、図8中、符号114a〜114dは軸受、115はトランスミッションケースの各部、116a〜116cはセンタデフケース、126はピニオンシャフト、130は連結部材、133はOリング、143は仕切り壁、146はピストンケース145aに一体結合され多板クラッチ28a,28bの一方のクラッチプレート28aを支持する支持部材である。
【0009】
一方、図9に示すような油圧多板クラッチ機構28Bも考えられてる。この油圧多板クラッチ機構28Bは、油圧ピストン141B,142Bがボールベアリング140Bを仲介して接続されており、油圧ピストン141Bが回転しても油圧ピストン142Bは回転しないようになっている。そして、油圧室147Bは非回転の油圧ピストン142Bの後方に設けられており、油圧室147B自体も回転しないようになっている。なお、図9中、12′は遊星歯車式差動装置、27′は前輪用出力軸、29′は後輪用出力軸、115′はトランスミッションケースの各部、116a′〜116c′はセンタデフケース、121′はサンギヤ、122′はプラネタリギヤ、123′はリングギヤ、125′はキャリヤ、126′はピニオンシャフト、130′は連結部材である。
【0010】
【発明が解決しようとする課題】
ところで、上述の図8に示す油圧多板クラッチ機構28Aでは、駆動トルクの伝達時に油圧室147A,148Aが回転するので、油圧室147A,148A内の外周部分に、遠心油圧が生じてその分だけピストン141A,142Aの受圧面に加わる油圧は大きくなる。したがって、遠心油圧分だけリターンスプリング150の剛性も強く設定する必要があり、装置の大型化やコスト高騰を招くという問題点がある。
【0011】
また、油通路117の途中に設ける回転シール117aでは、必然的にオイル漏れが生じるので、油圧を供給するオイルポンプのポンプ容量を大きくする必要があり、これも装置の大型化やコスト高騰を招くという問題点がある。
【0012】
一方、上述の図9に示す油圧多板クラッチ機構28Bでは、油圧室147Bが回転しないので遠心油圧の悪影響がなくなり、回転シールが不要となることから、オイル漏れ対策としてのポンプ容量の増大も不要となるが、油圧ピストン141B,142Bがボールベアリング140Bを仲介して接続されているので、組付誤差が大きくなって製品精度が劣化しやすいという問題点や、多板クラッチの制御応答性が低下しやすいという問題点がある。
【0013】
本発明は、上述の課題に鑑み創案されたもので、組付誤差の増大や制御応答性の劣化を招くことなく油圧室を回転しないようにして、製品精度や十分な制御応答性を確保しながら遠心油圧の悪影響の回避や油圧供給用オイルポンプの容量増加の抑制を行なえるようにした、4輪駆動車用駆動力配分装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
このため、本発明の4輪駆動車用駆動力配分装置は、以下のように構成されている。
【0015】
つまり、本発明の請求項の4輪駆動車用駆動力配分装置は、センタデファレンシャルと、このセンタデファレンシャルの差動を制限する差動制限機構とをそなえた4輪駆動車用駆動力配分装置において、上記センタデファレンシャルがラビニオ式遊星歯車機構を用いて構成されて、上記ラビニオ式遊星歯車機構のリングギヤがエンジンからの駆動力伝達部に接続され、上記ラビニオ式遊星歯車機構のピニオンギヤ及びスモールサンギヤのうちの一方のギヤが前輪側への駆動力伝達部に接続されるとともに他方のギヤが後輪側への駆動力伝達部に接続されて、上記差動制限機構が、上記ラビニオ式遊星歯車機構のラージサンギヤと非回転部との間に介設されていることを特徴としている。
【0016】
本発明の請求項の4輪駆動車用駆動力配分装置は、センタデファレンシャルと、このセンタデファレンシャルの差動を制限する差動制限機構とをそなえた4輪駆動車用駆動力配分装置において、上記センタデファレンシャルがラビニオ式遊星歯車機構を用いて構成されて、上記ラビニオ式遊星歯車機構のピニオンギヤがエンジンからの駆動力伝達部に接続され、上記ラビニオ式遊星歯車機構のリングギヤ及びラージサンギヤのうちの一方のギヤが前輪側への駆動力伝達部に接続されるとともに他方のギヤが後輪側への駆動力伝達部に接続されて、上記差動制限機構が、上記ラビニオ式遊星歯車機構のスモールサンギヤと非回転部との間に介設されていることを特徴としている。
【0017】
【作用】
上述の本発明の請求項1及び請求項2の4輪駆動車用駆動力配分装置では、差動制限機構がラビニオ式遊星歯車機構を構成する歯車要素のうちの一つとセンタデファレンシャルの非回転部との間に介設されており、該歯車要素のうちの一つと該非回転部との係合状態を制御することにより上記センタデファレンシャルの差動制限を行なうので、差動制限機構の回転部分の回転速度を比較的低速なものにできる
【0018】
【実施例】
以下、図面により、本発明の実施例について説明すると、図1乃至図4は本発明の第1実施例としての4輪駆動車用駆動力配分装置を示すもので、図1はその模式的な構成図、図2はその4輪駆動車用駆動力配分装置をそなえた車両の駆動力伝達系の全体構成図、図3はそのセンタデフロック時の各ギヤの速度線図、図4はそのセンタデフが滑っている時の各ギヤの速度線図であり、図5乃至図7は本発明の第2実施例としての4輪駆動車用駆動力配分装置を示すもので、図5はその模式的な構成図、図6はそのセンタデフロック時の各ギヤの速度線図、図7はそのセンタデフフリー時の各ギヤの速度線図である。
【0019】
まず、第1実施例について説明する。はじめに、図2を参照してこの4輪駆動車用駆動力配分装置をそなえた車両の駆動力伝達系の全体構成を説明する。
【0020】
図2において、符号2はエンジンであって、このエンジン2の出力はトルクコンバータ4及び自動変速機6を介して出力軸8に伝達される。出力軸8の出力は、中間ギヤ10を介して前輪と後輪とのエンジントルクを所要の状態に配分する差動制限装置(センタデファレンシャル、以下、センタデフと略す)12に伝達されるようになっている。
【0021】
このセンタデフ12の出力は、一方において減速歯車機構19,前輪用の差動歯車装置14を介して車軸17L,17Rから左右の前輪16、18に伝達され、他方においてベベルギヤ機構15,プロペラシャフト20,ベベルギヤ機構21,後輪用の差動歯車装置(リヤディファレンシャル)22を介して車軸25L,25Rから左右の後輪24,26に伝達されるようになっている。
【0022】
センタデフ12には、その前輪側出力部と後輪側出力部との差動を拘束又は制限することで前輪と後輪とのエンジンの出力トルクの配分を変更しうる差動制限用油圧駆動式クラッチ機構としての油圧多板クラッチ28が付設されている。
【0023】
ここでは、センタデフ12において、油圧多板クラッチ28を完全フリーの状態からロックさせた状態まで適宜制御することにより、前輪側及び後輪側へ伝達されるトルクを、例えば前輪:後輪が約32:68程度から50:50の間で制御することができるようになっている。なお、完全フリー状態での前輪:後輪の値:約32:68は、遊星歯車の前輪側及び後輪側の入力歯車の歯数比等の設定により規定されるが、ここでは、油圧多板クラッチ28の油圧室内の圧力がゼロで完全フリーの状態のときには約32:68となるように設定されている。
【0024】
このように、後輪をベースとしたトルク配分から前後輪均一のトルク配分までの範囲でトルク制御を行なうのは、車両の操縦性と走行安定性とを兼ね備えるように考慮したものであり、例えば、旋回初期には気持ち良く曲がり始めるようにしながら、旋回後半では車両の挙動を安定させながら旋回を完了できるようにめるようにしたい。このためには、通常時は、後輪寄りのトルク配分として旋回の応答性を確保しながら、そのままでは走行安定性が損なわれるような場合に、その度合いに応じて前輪へのトルク配分を増加させるようにすればよい。後輪をベースとしたトルク配分から前後輪均一のトルク配分までの範囲でトルク制御を行な得るようにしているのである。
【0025】
た、油圧室内の圧力が設定圧(9kg/cm)とされて油圧多板クラッチ28がロック状態にあって、差動制限が実質的にゼロとなると、前輪と後輪とのトルク配分は、前輪系と後輪系との負荷バランス等によって変化するが通常50:50となって直結状態となる。
【0026】
符号30はステアリングホイール32の中立位置からの回転角度、即ちハンドル角θを検出するハンドル角センサ、34a,34bはそれぞれ車体の前部および後部に作用する横方向の加速度Gyf,Gyrを検出する横加速度センサであり、この例では、2つの検出データGyf,Gyrを平均して横加速度データとしているが、車体の重心部付近に横加速度センサ34を1つだけ設けて、この検出値を横加速度データとしてもよい。
【0027】
符号36は車体に作用する前後方向の加速度Gxを検出する前後加速度センサ、38はエンジン2のスロットル開度θtを検出するスロットルポジションセンサ、39はエンジン2のエンジンキースイッチ、40,42,44,46はそれぞれ左前輪16,右前輪18,左後輪26,右後輪28の回転速度を検出する車輪速センサであり、これらスイッチ及び各センサの出力はコントローラ48に入力されている。
【0028】
符号50はアンチロックブレーキ装置であり、このアンチロックブレーキ装置50はブレーキスイッチ50Aと連動して作動する。つまり、ブレーキペダル51の踏込時にブレーキスイッチ50Aがオンとなると、これに連動してアンチロックブレーキの作動信号が出力されて、アンチロックブレーキ装置50が作動する。また、アンチロックブレーキの作動信号が出力されるときには同時にその状態を示す信号がコントローラ48に入力されるように構成されている。また、52はコントローラ48の制御信号に基づき点灯する警告灯である。
【0029】
符号54は油圧源であり、油タンクからの油を駆動し加圧するポンプを備えている。56は油圧源54と油圧多板クラッチ28の油圧室との間に介装されてコントローラ48からの制御信号により制御される圧力制御弁系(以下、圧力制御弁と略す)である。
【0030】
なお、コントローラ48は、図示しないが後述する制御に必要なCPU、ROM、RAM、インタフェイス等を備えており、上述の各センサからの情報に基づいて、警告灯52や圧力制御弁56やリヤディファレンシャル22を制御するようになっている。
【0031】
ところで、上述のセンタデフ12は、第1図に示すように、ラビニオ式遊星歯車機構を用いて構成されており、スモールサンギヤ221Aと、ラージサンギヤ221Bと、スモールサンギヤ221Aの外側に噛合するインナプラネタリギヤ222と、ラーサンギヤ221Bの外側及びインナプラネタリギヤ222の外側に噛合するアウタプラネタリギヤ222と、これらのプラネタリギヤ222A,222Bを支持するプラネットキャリア225と、アウタプラネタリギヤ222の外方に噛合するリングギヤ223とをそなえている。
【0032】
そして、エンジン2からの駆動力が、自動変速機6の出力軸8から入力ギヤ213を通じてリングギヤ223に入力されて、プラネタリギヤ222A,222Bを介して、キャリア225から前輪用出力軸27へ、スモールサンギヤ221Aから後輪用出力軸29へと出力されるようになっている。
【0033】
つまり、リングギヤ223の回転を受けると、アウタプラネタリギヤ222は公転及び自転を行ない、アウタプラネタリギヤ222の公転に応じてキャリア225とともに前輪用出力軸27が回転して、アウタプラネタリギヤ222の自転に応じてインナプラネタリギヤ222を介してスモールサンギヤ221Aとともに後輪用出力軸29が回転するようになっている。
【0034】
また、上述の差動制限用油圧駆動式クラッチ機構(油圧多板クラッチ)28は、ラージサンギヤ221Bとトランスミッションケース115との間に介装されており、自身の油圧室に作用される制御圧力によって摩擦力が変わり、この摩擦力を付与することにより、ラージサンギヤ221Bの自転が拘束されて、アウタプラネタリギヤ222Bの自転が制限され、アウタプラネタリギヤ222Bの公転と自転とのバランス、つまり、前輪側と後輪側とへの駆動力配分が調整されるようになっている。
【0035】
油圧多板クラッチ機構28は、ラージサンギヤ221B側に装着された多数のディスクプレート28bとトランスミッションケース115側に装着された多数のディスクプレート28aとが交互に並設されてなる多板クラッチと、これらの多板クラッチ28a,28bを押圧してその係合状態を調整する油圧駆動機構140とをそなえている。
【0036】
油圧駆動機構140は、多板クラッチ28a,28bを押圧しうるように設けられた油圧ピストン141と、このピストン141を押圧するように隣接して設けられた油圧室147と、油圧室147に油圧源54からの油圧を供給したり排出したりするための圧力制御弁56と、ピストン141を油圧に抗して元の位置に戻すリターンスプリング150とをそなえている。
【0037】
特に、油圧室147は、センタデフケース115側に設けられているので、油圧室147は常時回転しないようになっている。
【0038】
そして、前述のようにコントローラ48によって圧力制御弁56が適宜切り換えられることで、油圧室147の内圧が調整されて、多板クラッチ28a,28bの結合状態が調整されるようになっている。
【0039】
ところで、上述のセンタデフ12では、定常走行時に、前輪16,18と後輪24,26とが同一回転速度になるように前後の終減速比を定める必要がある。このためには、前後輪が同一回転速度の時、油圧多板クラッチ(差動制限機構)28の回転速度、つまり、ラージサンギヤ221Bの回転速度が0となるようにすればよい。
【0040】
図3の速度線図に基づいて説明すると、図3において、RGはリングギヤ223の回転数位置を、Cはキャリア225の回転数位置を、SAはスモールサンギヤ221Aの回転数位置を、SBはラージサンギヤ221Bの回転数位置を示しており、Zはスモールサンギヤ221Aの歯数を、Zはリングギヤ223の歯数を、Zはラージサンギヤ221Bの歯数を示している。
【0041】
ここで、Nをjの回転数、Tをjのトルク、ρをjの終減速比とする。ただし、j=i,1,2,1f,2f,b,r,f,tであって、iは入力部を示す添字、1は出力1を示す添字、2は出力2を示す添字、1fは終減速後の出力1を示す添字、2fは終減速後の出力2を示す添字、bは差動制限部を示す添字、rはリヤデフギヤ部を示す添字、fはフロントデフギヤ部を示す添字、tはトランスファーギヤ部を示す添字である。
【0042】
ラージサンギヤ221Bの回転速度が0となるためには、下式が成立する必要がある。
=0
1f=N2f
1f=1/ρ・N
2f=1/ρ・N
1/Z /(1/Z+1/Z・N
(1/Z+1/Z)/(1/Z+1/Z・N
これらから、
ρ=(Z/Z+1)ρ ・・・(1.1)
となる。
【0043】
ここで、出力1がリヤ側であるとすると、
ρ=ρ・ρ
ρ=ρ
となり、例えば、前後デフ比ρ,ρを同一にする場合には、トランスファー比ρを、
ρ=ρより、
ρ=(Z/Z+1) ・・・・(1.2)
とすればよい。
【0044】
また、前後輪のスリップ時の状態を速度線図に表現すると、図4に示すようになる。図4において、鎖線L1はリヤスリップの場合を示し、破線L2はフロントスリップの場合を示している。
【0045】
つまり、リヤスリップ時には、鎖線L1に示すように、フロントは一定値のままであるから、リヤスリップによって、SBつまりラージサンギヤ221Bは逆回転になる。しかし、このラージサンギヤ221Bの逆回転速度はリヤスリップ量に対して小さいものになる。
【0046】
また、フロントスリップ時には、破線L2に示すように、リヤは一定値のままであるから、フロントスリップによって、SBつまりラージサンギヤ221Bは正回転になり、しかも、このラージサンギヤ221Bの正回転速度はフロントスリップ量に対して大きいものになる。
【0047】
この構成によるセンタデフでは、出力1の方がセンタデフフリー時のトルク配分は大きくなる。このため、この実施例では、出力1をリヤとしている。したがって、使用頻度の高いリヤスリップの場合に、ラージサンギヤ221Bの回転数Nが小さくて済む。
【0048】
ところで、前後輪へのトルク配分について考察すると、
図3より、
+T=T+T
(1/Z)・T−(1/Z)・T+(1/Z)・T=0
したがって、センタデフ出力軸上のトルクT,Tは、
=(Z /Z)・T−(Z /Z)・T
=[(Z−Z)/Z]・T+[(Z +Z)/Z]・T・・・・(1.3)
【0049】
前後の終減速比には、式(1.1)のような関係があるので、車軸上での前後のトルクは、
1f= ρ ・ ( Z/Z+1)・T
2f= ρ・ T
となる。
【0050】
これと、式(1.3)より、前後のトルク配分比は、
Figure 0003565566
ただし、このときセンタデフに減速比が生じるので、回転数については、
=[ Z/ (Z+Z)] N
したがって、
1/ρCD=Z/(Z+Z
とおくと、
ρCD=(Z+Z)/Z ・・・・(1.5)
となる。
【0051】
よって、定常状態では、
1f=N2f=( 1/ρ)・( 1/ρCD)・N ・・・・(1.6)
となる。
【0052】
ここで、一例として、Z=26,Z=74,Z=34と設定すると、出力1のデフ比ρは、式(1.1)より、
ρ=2.308ρ
前後デフ比を同一とするとトランスファー比ρは、式(1.2)より、
ρ=2.308
センタデフの減速比ρCDは、式(1.5)より、
ρCD=1.459
そして、センタデフフリー時のトルク配分は、式(1.4)より、
1f:T2f=56:44
となる。
【0053】
また、差動制限トルクの効率は、ベースに対して、
2×(Z+Z)/Z=3.52
となる。
【0054】
本発明の第1実施例としての4輪駆動車用駆動力配分装置は、上述のように構成されているので、以下のように作動する。
【0055】
つまり、エンジン2から出力される駆動力は、自動変速機6の出力軸8から入力ギヤ213を通じてセンタデフ12に入る。そして、センタデフ28では、入力ギヤ213から入力された駆動力が、リングギヤ223から、アウタプラネタリギヤ222に伝達されて、アウタプラネタリギヤ222が公転及び自転を行ないながら、前輪側及び後輪側へ駆動力が配分される。
【0056】
即ち、アウタプラネタリギヤ222Bの公転に応じてキャリア225から前輪用出力軸27に駆動力が伝達されるとともに、アウタプラネタリギヤ222の主として自転に応じてインナプラネタリギヤ222及びスモールサンギヤ221Aから後輪用出力軸29に駆動力が伝達される。
【0057】
このとき、油圧多板クラッチ28の係合状態により、ラージサンギヤ221Bの自転が拘束され、アウタプラネタリギヤ222の自転が制限されて、アウタプラネタリギヤ222Bの公転と自転とのバランス、即ち、前輪側と後輪側とへの駆動力配分が調整される。
【0058】
つまり、コントローラ48を通じて油圧室147内の油圧が調整されて、油圧室147内の油圧が高められると、多板クラッチ28a,28bの係合状態が強まって、ラージサンギヤ221B及びアウタプラネタリギヤ222Bの自転が制限され、アウタプラネタリギヤ222Bの公転と自転とのバランス、即ち、前輪側と後輪側とへの駆動力配分が調整されるのである。
【0059】
逆に、コントローラ48を通じて油圧室147内の油圧が低下されると、リターンスプリング150の付勢力によって、多板クラッチ28a,28bの係合状態が強まって、ラージサンギヤ221B及びアウタプラネタリギヤ222Bの自転の制限が解除され、前輪側と後輪側とへの駆動力配分が調整される。
【0060】
ところで、ここでは出力1をリヤ側としているが、これについて説明すると、スモールサンギヤ221Aとラージサンギヤ221Bの各歯数Z,Zは、
>Z
の関係があり、2出力間の終減速比差は2以上となって、式(1.1)より、
ρ>2ρ ・・・・(3.1)
前述の定常時のトルク配分比を示す式(1.4)と上式(3.1)とから、出力1の方がトルク配分比を大きく設定しやすい。そこで、前述のように後輪をベースとしたトルク配分を実現するために、出力1をリヤ側としているのである。
【0061】
このようにして、使用頻度の高いリヤスリップの場合に、ラージサンギヤ221Bの回転数Nが小さな範囲に収まるので、多板クラッチの係合圧を比較的低めの範囲で調整しながら前後輪への駆動力配分の制御を行なえるようになって、多板クラッチによる駆動力配分制御の性能向上や、磨耗損傷が低減されることによる耐久性の向上も行なえる利点がある。
【0062】
次に、第2実施例について説明する。この実施例の4輪駆動車用駆動力配分装置をそなえた車両の駆動力伝達系の全体構成は、第1実施例のもの(図2参照)とほぼ同様に構成されるので、ここでは説明を省略する。
【0063】
この実施例のセンタデフ12′も、第1実施例と同様に、ラビニオ式遊星歯車機構を用いて構成されているが、このセンタデフ12′では、第5図に示すように、エンジン2からの駆動力が、自動変速機6の出力軸8から入力ギヤ213を通じてキャリア225に入力されて、プラネタリギヤ222A,222Bを介して、一方で、リングギヤ223から前輪用出力軸27へ、他方でラージサンギヤ221Bから後輪用出力軸29へと出力されるようになっている。
【0065】
つまり、キャリア225が回転すると、アウタプラネタリギヤ222Bは公転及び自転を行ない、このアウタプラネタリギヤ222Bの公転及び自転に応じて、一方でリングギヤ223とともに前輪用出力軸27が回転し、他方でラージサンギヤ221Bとともに後輪用出力軸29が回転するようになっている。
【0066】
そして、このセンタデフ12に設けられる差動制限用油圧駆動式クラッチ機構(油圧多板クラッチ)28は、インナプラネタリギヤ222Aに噛合するスモールサンギヤ221Aとセンタデフケース115との間に介装されている。
【0067】
油圧多板クラッチ機構28は、スモールサンギヤ221A側に装着された多数のディスクプレート28bと、センタデフケース115側に装着された多数のディスクプレート28aとが交互に並設されてなる多板クラッチと、これらの多板クラッチ28a,28bを押圧してその係合状態を調整する油圧駆動機構140とをそなえ、油圧駆動機構140は、第1実施例と同様に、油圧ピストン141と、油圧室147と、圧力制御弁56と、リターンスプリング150とをそなえている。
【0068】
したがって、油圧室147は、第1実施例と同様にセンタデフケース115側に設けられているので、油圧室147は常時回転しないようになっている。
【0069】
そして、前述のようにコントローラ48によって圧力制御弁56が適宜切り換えられることで、油圧室147の内圧が調整されて、多板クラッチ28a,28bの結合状態が調整されるようになっている。
【0070】
また、このセンタデフ12′でも、センタデフロック時に、前輪16,18と後輪24,26とが同一回転速度になるように前後の終減速比を定める必要がある。このためには、前後輪が同一回転速度の時、油圧多板クラッチ(差動制限機構)28の回転速度、つまり、スモールサンギヤ221Aの回転速度が0となるようにすればよい。
【0071】
図6の速度線図に基づいて説明すると、図6において、RG,C,SA,SB及びZ,Z,Zはそれぞれ第1実施例の場合と同様なものを示しており、N,T,ρを第1実施例の場合と同様に設定すると、ラージサンギヤ221Bの回転速度が0となるための条件から、
ρ=[(1/Z−1/Z)/( 1/Z+1/Z)] ・ρ ・・・(2.1)
となる。
【0072】
ここで、出力2がリヤ側であるとすると、
ρ=ρ・ρ
ρ=ρ
となり、例えば、前後デフ比ρ,ρを同一にする場合には、トランスファー比ρを、
ρ=ρより、
ρ=(1/Z−1/Z)/(1/Z+1/Z) ・・・(2.2)
とすればよい。
【0073】
また、前後輪のスリップ時の状態を速度線図に表現すると、図7に示すようになる。図7において、図4と同様に、鎖線L1はフロントスリップの場合を示し、破線L2はリヤスリップの場合を示している。
【0074】
つまり、フロントスリップ時には、鎖線L1に示すように、リヤは一定値のままであるから、フロントスリップによって、SAつまりスモールサンギヤ221Aは正回転になり、しかも、このラージサンギヤ221Bの正回転速度はフロントスリップ量に対して大きいものになる。
【0075】
また、リヤスリップ時には、破線L2に示すように、フロントは一定値のままであるから、リヤスリップによって、SAつまりスモールサンギヤ221Aは逆回転になるが、このラージサンギヤ221Bの逆回転速度はリヤスリップ量に対して小さいものになる。
【0076】
ところで、前後輪へのトルク配分について考察すると、
図6より、
Figure 0003565566
【0077】
ところで、前後の終減速比には、式(2.1)のような関係があるので、車軸上での前後のトルクT1f,T2fの比は、
Figure 0003565566
このときセンタデフに減速比が生じるので、回転数については、
=〔(Z+Z)/Z〕N
したがって、
1/ρCD=(Z+Z)/Z
とおくと、
ρCD=Z/(Z+Z) ・・・・(2 .5)
となる。
【0078】
よって、定常状態では、
1f=N2f=( 1/ρ)・( 1/ρCD)・N ・・・・(2.6)
と、第 1実施例と同様になる。
【0079】
ここで、一例として、Z=19,Z=74,Z=34と設定すると、出力1のデフ比ρは、式(2.1)より、
ρ=0.4748ρ
前後デフ比を同一とするとトランスファー比ρは、式(2.2)より、
ρ=0.4748
センタデフの減速比ρCDは、式(2.5)より、
ρCD=0.6415
そして、センタデフフリー時のトルク配分は、式(2.4)より、
1f:T2f=51:49
となる。
【0080】
本発明の第2実施例としての4輪駆動車用駆動力配分装置は、上述のように構成されているので、エンジン2から出力される駆動力は、第2実施例と同様に自動変速機6の出力軸8から入力ギヤ213を通じてセンタデフ12に入り、センタデフ28を通じて前輪側及び後輪側へ駆動力が配分される。
【0081】
つまり、アウタプラネタリギヤ222Bの公転に応じてキャリア225から前輪用出力軸27に駆動力が伝達されるとともに、アウタプラネタリギヤ222の主として自転に応じてインナプラネタリギヤ222及びスモールサンギヤ221Aから後輪用出力軸29に駆動力が伝達される。
【0082】
このとき、油圧多板クラッチ28の係合状態により、ラージサンギヤ221Bの自転が拘束され、アウタプラネタリギヤ222の自転が制限されて、アウタプラネタリギヤ222の公転と自転とのバランス、即ち、前輪側と後輪側とへの駆動力配分が調整される。
【0083】
つまり、コントローラ48を通じて油圧室147内の油圧が調整されて、油圧室147内の油圧が高められると、多板クラッチ28a,28bの係合状態が強まって、スモールサンギヤ221A及びインナプラネタリギヤ222の自転が制限され、アウタプラネタリギヤ222の公転と自転とのバランス、即ち、前輪側と後輪側とへの駆動力配分が調整される。一方、コントローラ48を通じて油圧室147内の油圧が低下されると、リターンスプリング150の付勢力によって、多板クラッチ28a,28bの係合状態がまって、スモールサンギヤ221A及びインナプラネタリギヤ222の自転の制限が解除され、アウタプラネタリギヤ222の公転と自転とのバランス、即ち、前輪側と後輪側とへの駆動力配分が調整される。
【0084】
ところで、ここでは出力2をリヤ側としているが、これについて説明すると、スモールサンギヤ221A,リングギヤ223,ラージサンギヤ221Bの各歯数Z,Z,Zは、
≫Z≧Z
の関係があり、例えば、Z=Zと仮定すると、式(2.1)にこれを代入して、
ρ=1/2−Z/2Z ・・・・(3.1)
∴ρ≦0.5ρ ・・・・(3.2)
前述の定常時のトルク配分比の式(2.4)と上式(3.2)に、Z≒2Zを考慮すると、出力2の方がトルク配分比を大きく設定しやすい。そこで、この場合、後輪をベースとしたトルク配分を実現するためには、出力2をリヤ側とすべきである。
【0085】
これにより、第1実施例と同様に、使用頻度の高いリヤスリップの場合にラージサンギヤ221Bの回転数Nが小さな範囲に収まり、多板クラッチの係合圧を比較的低めの範囲で調整しながら前後輪への駆動力配分の制御を行なえるようになって、多板クラッチによる駆動力配分制御の性能向上や、磨耗損傷が低減されることによる耐久性の向上も行なえる利点がある。
【0086】
ところで、上述の各実施例では、油圧式差動制限機構として多板クラッチ機構08を用いているが、油圧式差動制限機構としては、他に、ビスカス・カップリング・ユニット(VCU)や、ハイドロリック・カップリング・ユニット(HCU)が考えられ、上述の各実施例における多板クラッチ機構28に代えてこのようなVCUやHCUを採用してもよい。
【0087】
このようなVCUやHCUでは、差動制限を行なう部分に大きな回転数差が発生した方が制御を行ない易い。つまり、第1実施例におけるラージサンギヤ221B(図4のSA参照)や第2実施例におけるスモールサンギヤ221A(図7のSB参照)に、大きな回転数が発生する方が制御上好ましい。
【0088】
ところで、使用頻度の高いリヤスリップの場合を考えると、第1実施例では、出力2をリヤ側に設定する方がラージサンギヤ221B(SA)に大きな回転数が発生し易く、第2実施例では、出力をリヤ側に設定する方がスモールサンギヤ221A(SB)に大きな回転数が発生し易い。
【0089】
そこで、油圧式差動制限機構としてVCUやHCUを採用する場合には、制御性能を考慮すると、第1実施例の場合では出力2をリヤ側に設定し、第2実施例の場合では出力をリヤ側に設定するのがよい。
【0090】
【発明の効果】
以上詳述したように、本発明の請求項1,請求項2の各4輪駆動車用駆動力配分装置によれば、差動制限機構の回転部分の回転速度を比較的低速なものにできるため、かかる差動制限機構を油圧制御する場合に、組付誤差の増大や制御応答性の劣化を招くことなく油圧室を回転しないようにでき、製品精度や十分な制御応答性を確保しながら遠心油圧の悪影響の回避や油圧供給用オイルポンプの容量増加の抑制を行なえるようになる
【図面の簡単な説明】
【図1】本発明の第1実施例としての4輪駆動車用駆動力配分装置を示す模式的な構成図である。
【図2】本発明の第1実施例としての4輪駆動車用駆動力配分装置をそなえた車両の駆動力伝達系の全体構成図である。
【図3】本発明の第1実施例としての4輪駆動車用駆動力配分装置の定常走行時の各ギヤの速度線図である。
【図4】本発明の第1実施例としての4輪駆動車用駆動力配分装置のセンタデフが滑っている時の各ギヤの速度線図である。
【図5】本発明の第2実施例としての4輪駆動車用駆動力配分装置を示す模式的な構成図である。
【図6】本発明の第2実施例としての4輪駆動車用駆動力配分装置の定常走行時の各ギヤの速度線図である。
【図7】本発明の第2実施例としての4輪駆動車用駆動力配分装置のセンタデフが滑っている時の各ギヤの速度線図である。
【図8】従来の4輪駆動車用駆動力配分装置を示す模式的な構成図である。
【図9】従来の他の4輪駆動車用駆動力配分装置を示す模式的な構成図である。
【符号の説明】
2 エンジン
4 トルクコンバータ
6 自動変速機
8 出力軸
10 中間ギヤ
12 差動制限装置(センタデファレンシャル,センタデフ)
19 減速歯車機構
14 前輪用の差動歯車装置
15 ベベルギヤ機構
16、18 前輪
17L,17R 車軸
20 プロペラシャフト
21 ベベルギヤ機構
22 後輪用の差動歯車装置(リヤディファレンシャル)
24,26 後輪
25L,25R 車軸
27 前輪用出力軸
28 油圧式差動制限機構としての油圧多板クラッチ
28a,28b ディスクプレート
29 後輪用出力軸
30 ハンドル角センサ
32 ステアリングホイール
34a,34b 横加速度センサ
36 前後加速度センサ
38 スロットルポジションセンサ
39 エンジン2のエンジンキースイッチ
40,42,44,46 車輪速センサ
48 コントローラ
50 アンチロックブレーキ装置
50A ブレーキスイッチ
51 ブレーキペダル
52 警告灯
54 油圧源
56 圧力制御弁系(圧力制御弁)
115 センタデフケース
140 油圧駆動機構
141 油圧ピストン
147 油圧室
150 リターンスプリング
221A スモールサンギヤ
221B ラージサンギヤ
222A アウタプラネタリギヤ
222B インナプラネタリギヤ
223 リングギヤ
225 プラネットキャリア
出力1部の回転数
出力2部の回転数
差動制限部の回転数
1f 終減速後の出力1部の回転数
2f 終減速後の出力2部の回転数
出力1部に伝達されるトルク
出力2部に伝達されるトルク
差動制限部に伝達されるトルク
スモールサンギヤ221Aの歯数
リングギヤ223の歯数
ラージサンギヤ221Bの歯数Z
ρ 出力1部の終減速比
ρ 出力2部の終減速比
ρ フロントデフギヤ部の終減速比
ρ リヤデフギヤ部の終減速比
ρ トランスファーギヤ部の終減速比

Claims (2)

  1. センタデファレンシャルと、このセンタデファレンシャルの差動を制限する差動制限機構とをそなえた4輪駆動車用駆動力配分装置において、上記センタデファレンシャルがラビニオ式遊星歯車機構を用いて構成されて、上記ラビニオ式遊星歯車機構のリングギヤがエンジンからの駆動力伝達部に接続され、上記ラビニオ式遊星歯車機構のピニオンギヤ及びスモールサンギヤのうちの一方のギヤが前輪側への駆動力伝達部に接続されるとともに他方のギヤが後輪側への駆動力伝達部に接続されて、上記差動制限機構が、上記ラビニオ式遊星歯車機構のラージサンギヤと非回転部との間に介設されていることを特徴とする、4輪駆動車用駆動力配分装置。
  2. センタデファレンシャルと、このセンタデファレンシャルの差動を制限する差動制限機構とをそなえた4輪駆動車用駆動力配分装置において、上記センタデファレンシャルがラビニオ式遊星歯車機構を用いて構成されて、上記ラビニオ式遊星歯車機構のピニオンギヤがエンジンからの駆動力伝達部に接続され、上記ラビニオ式遊星歯車機構のリングギヤ及びラージサンギヤのうちの一方のギヤが前輪側への駆動力伝達部に接続されるとともに他方のギヤが後輪側への駆動力伝達部に接続されて、上記差動制限機構が、上記ラビニオ式遊星歯車機構のスモールサンギヤと非回転部との間に介設されていることを特徴とする、4輪駆動車用駆動力配分装置。
JP8955591A 1991-03-28 1991-03-28 4輪駆動車用駆動力配分装置 Expired - Lifetime JP3565566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8955591A JP3565566B2 (ja) 1991-03-28 1991-03-28 4輪駆動車用駆動力配分装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8955591A JP3565566B2 (ja) 1991-03-28 1991-03-28 4輪駆動車用駆動力配分装置

Publications (2)

Publication Number Publication Date
JPH04300729A JPH04300729A (ja) 1992-10-23
JP3565566B2 true JP3565566B2 (ja) 2004-09-15

Family

ID=13974071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8955591A Expired - Lifetime JP3565566B2 (ja) 1991-03-28 1991-03-28 4輪駆動車用駆動力配分装置

Country Status (1)

Country Link
JP (1) JP3565566B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108248364A (zh) * 2018-01-19 2018-07-06 重庆大学 双行星排式多模混合动力驱动装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69413672T2 (de) * 1993-12-16 1999-02-25 Mitsubishi Motors Corp Aufbau eines verteilergetriebes
JP4673490B2 (ja) * 2000-03-03 2011-04-20 アイシン・エーアイ株式会社 四輪駆動車用トランスファ装置
JP4775237B2 (ja) * 2006-11-28 2011-09-21 トヨタ自動車株式会社 駆動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108248364A (zh) * 2018-01-19 2018-07-06 重庆大学 双行星排式多模混合动力驱动装置
CN108248364B (zh) * 2018-01-19 2020-12-25 重庆大学 双行星排式多模混合动力驱动装置

Also Published As

Publication number Publication date
JPH04300729A (ja) 1992-10-23

Similar Documents

Publication Publication Date Title
US7562947B2 (en) Apparatus for controlling driving force of vehicle
EP1896752B1 (en) Torque distributing drive mechanism with ravigneaux gearset
CA2612425C (en) Torque distributing drive mechanism with limited slip
JPS61169326A (ja) 4輪駆動車の駆動力配分制御装置
JP2004505216A (ja) 車両トランスミッション装置
EP0396323A1 (en) Torque distribution control system for a four-wheel drive motor vehicle
JP2772979B2 (ja) 4輪駆動車のトルク配分制御装置
JPH0616061A (ja) 4輪駆動制御装置
US7083541B2 (en) Axle drive block with a differential lock
JP3340038B2 (ja) 左右輪駆動力配分装置
JP2005534881A (ja) トルク調整能力及びロック能力を備え、トランスミッションと従駆動アクスルの間にトルクを分割する流体継手
JP3565566B2 (ja) 4輪駆動車用駆動力配分装置
US5916054A (en) Driving force distributing apparatus for four wheel drive vehicle
JP2979878B2 (ja) 車両用左右駆動力調整装置
JPS5826636A (ja) フルタイム式4輪駆動車
US5722305A (en) System for generating difference in speed between left and right wheels of vehicle
JP2970913B2 (ja) 4輪駆動車のトルク配分制御装置
JP2652715B2 (ja) 4輪駆動車の動力配分制御装置
JP2712857B2 (ja) ダブルピストン型油圧式差動制限機構
JP4346710B2 (ja) 車両の動力配分制御装置
JPS61155030A (ja) 4輪駆動車
JP2731922B2 (ja) 4輪駆動車のトルク配分制御装置
JP3326081B2 (ja) エンジンの空ぶかし検出方法並びにそれを用いた駆動力配分装置
JP2003025862A (ja) 4輪駆動システム
JPH07233863A (ja) デファレンシャル装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

EXPY Cancellation because of completion of term