JP3273118B2 - 高圧処理装置 - Google Patents

高圧処理装置

Info

Publication number
JP3273118B2
JP3273118B2 JP07693696A JP7693696A JP3273118B2 JP 3273118 B2 JP3273118 B2 JP 3273118B2 JP 07693696 A JP07693696 A JP 07693696A JP 7693696 A JP7693696 A JP 7693696A JP 3273118 B2 JP3273118 B2 JP 3273118B2
Authority
JP
Japan
Prior art keywords
pressure
tank
liquid
solvent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07693696A
Other languages
English (en)
Other versions
JPH0994456A (ja
Inventor
喜久 斎藤
久昭 牧野
武彦 守谷
正澄 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP07693696A priority Critical patent/JP3273118B2/ja
Priority to US08/631,812 priority patent/US5843386A/en
Priority to DE19615974A priority patent/DE19615974A1/de
Publication of JPH0994456A publication Critical patent/JPH0994456A/ja
Priority to US09/041,499 priority patent/US6066263A/en
Application granted granted Critical
Publication of JP3273118B2 publication Critical patent/JP3273118B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は被処理物の分解、合成等
に利用し得る高圧処理装置に関するもので、水熱反応や
超臨界流体反応等に広範な応用が期待されるものであ
る。
【0002】
【従来の技術】各種の廃棄物の分解処理、有機・無機化
合物の合成、微粒子の製造さらには微粒子相互の反応な
どにこれまで高温・高圧の水と原材料とを接触混合させ
る水熱反応や、溶媒として高温・高圧の超臨界流体を用
いる超臨界流体反応の利用が試みられており、処理対象
とする原材料には石炭、重質油、ゴム、廃プラスチッ
ク、し尿、PCB(ポリクロルビフェニル)等があるほ
か反応を通じて微粒子を製造する場合への応用も提案さ
れている。こうした提案はしかし実験室規模を出ていな
い報告が実態であり、原材料の大量処理と工業化に欠く
ことの出来ない連続処理装置の実用化レベルでの具体化
が強く要請されていた。
【0003】従来の典型的な高圧処理装置は、特開平5
−177188号公報に記載されている如く、分解反応
器(オートクレーブ)を用いPCBなど分解対象物、水
または水熱溶媒、反応促進剤を収容してから高温高圧条
件で分解させるもので、これはバッチ式である。すなわ
ち、図1に示すように、加圧気体供給手段である窒素ボ
ンベ3、該窒素ボンベ3からなる加圧手段2そして電気
ヒーターなどの加熱手段4を有する分解反応容器(オー
トクレーブ)1内へ、配管5,6,7,ポンプ8,9,
10を通じて、分解の対象物、水または水熱溶媒(溶
媒)11、反応促進剤12を任意の割合で分解反応容器
1へ供給し、加圧手段2を用い分解反応容器1内の圧力
を高圧にし、その後加熱手段4により反応容器内を任意
の温度に設定し、所定時間、反応容器内を高温・高圧に
維持することにより分解の対象物を分解した後、加熱を
停止して反応容器の温度を下降させるとともに分解反応
容器の大気放出弁を解放して内部の圧力を下降させ、分
解液排出手段である13の弁14を解放し、加圧手段2
の加圧により配管15を通して分解排出タンク16に排
出する。その際、分解液中に固形物が含有される場合に
はフィルタ17により除去するものである。連続式と称
する内容では、分解反応容器1に原液を連続供給しなが
ら反応容器内の液位を一定に保つために分解液を連続的
に反応容器から排出するものであるが、これは分解液の
一部が原液を含んでいる混合状態で排出するため連続化
した場合には不完全処理しか出来ないものである。
【0004】また、特開平4−284886号公報は、
高圧注入ポンプで原料を直管パイプで構成した垂直反応
塔に注入し連続的に処理する方式を提案する。これは、
図2に示すように、加熱手段30を有する高耐圧性の直
管パイプ(反応管30A)で構成された反応塔29に、
コンプレッサー19により配管21を通じて水タンク2
0の水と原料液タンク18の原料を押し出し、配管2
2,23を接続して混合し(原料を希釈)、配管24を
通じて高圧注入ポンプ25、配管26、配管27を有す
る熱交換器28に通し、同じく反応塔出口に接続した配
管30Bから熱交換器28、冷却器30C、減圧弁30
Dを経て処理済液を排出するものである。この連続式装
置では分解対象物を供給するためのパイプ、反応促進剤
を供給するためのパイプ、反応塔の上下流の熱交換器パ
イプ、反応塔内の垂直直管パイプ、さらに処理済液用排
出パイプがそれぞれ多様に寄せ集められ、反応塔内の直
管パイプを反応液が単純に垂直流下させられる一方全体
として複雑な流路を構成しているものである。
【0005】
【発明が解決しようとする課題】一般に高圧高温下で水
熱反応等により被処理物(原料)を安定かつ効率良く処
理するためには、被処理物と水あるいは水熱溶媒との混
合及び接触が十分に行われているとともに処理の完了ま
でそうした良好な混合接触状態が維持されなければなら
ず、さらに反応物について反応温度、圧力、処理量(流
量)を一定化または任意に可変設定し制御し得ることが
不可欠の条件となる。すなわち、水熱反応など高圧処理
時には分解等の被処理物と水または溶媒とが激しく接触
することで反応が促進され処理効率が高められているの
であり、こうした接触または混合が不十分であると反応
効率が極めて低いものとなり所期の処理が達成されず実
用化に難を来たすことになる。
【0006】分解の対象物が固体、粉体の場合には分解
の目的、処理条件によっては分解の対象物が完全には分
解せずに、固体または粉体として存在することになる。
水と固体または粉体が十分に混合していないと、水と固
体または粉体が2層に分離してしまい、装置内に不均一
場ができ安定した反応が期待できない。被処理物が液体
であっても、分解の対象物と溶媒、反応促進剤が十分に
混合されずに分離したまま反応容器中を通過しても効率
よい反応は期待できない。また分解により粉体生成物が
副生してしまう場合にも粉体と流体が均一になって一様
に移動すればよいが、粉体と流体の移動速度に差異が生
じると反応装置系統での粉体の詰まりによる閉塞あるい
は粉体がまとまって減圧弁に流出することによる減圧弁
での詰まりなどの問題が生じる。更に同様なことは、水
熱処理によって意図的に固体あるいは粉体を生成させる
場合にも言えることになる。
【0007】前掲の従来技術で仮に実用化したとして
も、バッチ式の大型の反応容器の場合、反応容器内部で
撹拌などの操作を行うことが出来ないため水と分解の対
象物との十分な混合は期待できず、分解液中に固形物を
含む場合には反応容器から分解液と固形物を取り出し、
フィルターを用いて固形物を除去することが必要とな
る。しかし、高温・高圧の反応容器から分解液と固形物
を安定して取り出し、高圧中でフィルターにより濾過操
作を安定して行うのは事実上困難なことである。
【0008】バッチ式高圧処理の別の問題として、反応
時間、反応温度、処理量(流量)の設定などの運転操作
上の問題点がある。バッチ式では運転条件が反応容器に
依存し、多様な運転対応が困難で、例えば反応容器内の
温度勾配を処理対象によって多様に制御することが必要
であるが、バッチ式は温度勾配を多様に制御することは
困難である。
【0009】例えば、ポリエチレンは500℃前後の超
臨界水中で極めて高速にパラフィン、オレフィンなどの
直鎖状炭化水素や、芳香族化合物あるいはそれらの混合
物となって低分子化し、これらパラフィン、オレフィン
系炭化水素などの化合物が超臨界水の温度、処理時間を
制御することにより芳香族化合物等に改質できる。従っ
て、ポリエチレンを高速に連続分解し且つその後の改質
反応を連続的に行うためには温度、処理時間を任意に連
続的に制御すること、途中から温度を変化させること、
途中から水素ガスなどの反応制御(促進、抑制)剤等を
圧入する等、反応を任意に制御する必要がある。ポリエ
チレンの処理に限らず、多種の分解の対象物に対応する
ためには、処理時間、温度制御などの処理条件を多様に
変化させることが可能な高圧処理を実現し得るものでな
ければならない。
【0010】前掲の従来技術に示されている連続式の場
合では、反応塔の直管パイプが例示されているように内
径20mm、全長2890mm程度で容積が極めて限定
されたものであり、このため、処理量(流量)や反応時
間などを多様に設定することは困難である。処理量を多
くするために直管パイプの径を大にすれば体積と共に熱
容量が大になり、効率的な加熱および温度の維持が困難
になり、また、反応塔の高さを大にすればこの場合にも
反応温度や温度勾配の維持が困難になる。
【0011】反応装置は高圧・高温になるために装置に
損傷が生じた場合極めて危険であり、特に処理中の分解
液の噴出のような事故に進行する故障は防がなければな
らず、こうした故障を招き易いシールなどを要する接続
部は出来るだけ避けることが必要である。また、上述の
高圧処理装置は、反応塔・反応容器部分に、被処理物の
流入パイプと異なる高圧パイプまたは高圧容器を設けて
いるため、被処理物の流入パイプと反応塔または反応容
器、反応塔または反応容器と分解物の流出パイプの内径
が異なるために流速に変化が生じかつ流れが断続的に乱
れるために、反応塔または反応容器内部での熱水と分解
の対象物の相状態の解析が難しく装置の設計が困難にな
るといった問題があった。
【0012】本発明は、分解、合成等高圧反応の対象物
と水または水熱溶媒(溶媒)の十分かつ一様な流動と混
合を確保すると共に、反応時間、反応温度、温度勾配、
流量、圧力などの反応条件の設定維持が容易で、安定し
た反応を実現維持するだけでなく安全な高圧処理装置を
提供するものである。
【0013】
【課題を解決するための手段】本発明による高圧処理装
置は、処理対象物と、水または溶媒、反応促進剤等の処
理液を圧入する処理液圧入手段と、該処理液圧入手段に
連通し圧入された処理液を高温・高圧条件に保って処理
する加熱手段を有する湾曲状パイプで形成された反応器
と、該反応器に連通し処理済液を排出する減圧手段とを
備え、前記加熱手段は圧入された処理液を水の超臨界ま
たは亜臨界状態の反応温度に急速に加熱する急速加熱手
段と、前記急速加熱された処理液を前記反応温度に保温
する保温手段を有することを特徴とする。
【0014】本発明における請求項2に記載の高圧反応
装置にあって、減圧手段は、反応器と連通する圧力調整
タンクと、該圧力調整タンクに送出された処理済液を排
出する自動開閉弁と、前記圧力調整タンクに該タンク内
の処理済液の圧力とバランスする高圧ガスを供給する高
圧ガス供給手段とを有し、前記高圧ガス供給手段のガス
供給を制御することにより前記圧力調整タンク内の圧力
を所定範囲に維持すると共に、前記自動開閉弁を制御す
ることにより前記圧力調整タンク内の処理済液の液面レ
ベルを所定範囲に維持するようにしたことを特徴とす
る。
【0015】本発明における請求項3に記載の高圧処理
装置にあって、複数の処理液収納タンクを設け、処理対
象物、溶媒、反応促進剤等を別々に収納し、それらを別
々に圧入できるようにしたことを特徴とする。本発明に
おける請求項4に記載の高圧処理装置にあって、前記減
圧手段は処理済液を収納する排出タンクに連通し、該排
出タンクから処理済液を溶媒濃度調整手段に導出して溶
媒の濃度を最初の処理液と同等の濃度に調整し、調整さ
れた溶媒濃度の処理済液を再度前記反応器に圧入するよ
うに構成したことを特徴とする。
【0016】本発明における請求項5に記載の高圧処理
装置にあって、前記減圧手段は処理済液の加熱手段を有
する排出タンクに連通し、処理済液の加熱により前記排
出タンク内で未分解の処理対象物と溶媒とを分離し、未
分解の処理対象物は処理対象物を収納した前記処理液収
納タンクへ導出し、溶媒は溶媒濃度調整手段に導出して
溶媒の濃度を最初の処理液と同等の濃度に調整すると共
に、溶媒を収納した前記処理液収納タンクへ導出するこ
とにより、処理済液を再度前記反応器に圧入するように
構成したことを特徴とする。
【0017】
【作用】本発明による高圧処理装置では、反応器ユニッ
トに組み込まれる流路を湾曲状パイプで構成しその前後
を通じた高圧系統部がほぼ同一内径の一連のパイプで構
成することができ、処理の対象物、水や水熱溶媒(溶
媒)、反応促進剤等を混合した処理原料流体が乱流領域
となるように設定することが容易であり系全体が常に原
料の良好かつ十分な混合状態が維持でき安定した反応が
実現できる。さらに、反応器ユニットはスパイラル状に
構成することにより所要スペースの割りに増大した処理
容量を確保でき、また流量の制御により反応時間などを
任意に設定できる。
【0018】反応部は、熱板ブロックの回り又はその内
側にスパイラル状に巻いてユニット形式で構成し、これ
を複数個多段に設けるので、各ユニットの温度は独立し
て制御可能であり精度の高い温度勾配の制御を達成でき
る。また、多段反応部の途中から水や水熱溶媒(溶
媒)、反応促進剤等を注入できるので前段と後段で異な
った反応条件の設定が可能である。
【0019】装置の高圧系統はほぼ同一内径の一連のパ
イプで構成されているのでシールを要する接続部などは
最小限に減少でき、シール部の破損等が格段に減り安全
性の高い装置を構成できるのである。
【0020】
【実施例】図3は本発明の処理装置の一例を示す説明図
である。31は撹拌手段32を有する処理液(分解の対
象物+溶媒+反応促進剤)タンク、33は高圧圧入ポン
プ、34は油圧ユニット、35は熱交換器、36は反応
部又は反応器ユニット37を多段(図では4段)に構成
した反応装置である。38は冷却器で、39は減圧弁、
40は処理済み液排出タンクである。熱交換器35、反
応装置36、冷却器38はそれぞれスパイラル、または
曲折した一連の同一径のパイプ41で構成されており、
さらに各装置は同一径のパイプで連通接続されている。
【0021】パイプ内部の圧力は一連の同一径のパイプ
で構成されているので、高圧圧入ポンプ33から減圧弁
39の間のどの箇所で測定してもほぼ同一と見なせる
が、この図では高圧圧入ポンプ33と熱交換器35の間
42、冷却器38と減圧弁39の間43、反応器ユニッ
ト37の間の44,45,46,47で測定している。
反応装置内部のパイプ内の流体の温度(反応温度)は圧
力検出位置と同じ箇所の温度・圧力検出器42,43,
44,45,46,47で検出される。流量はシリンダ
ーポンプの移動量をロータリーエンコーダー48で検出
し、これら全ての出力信号は、開示されていないが、制
御用コンピューターと制御盤に送られて表示されるとと
もに制御用コンピューターにより各部を設定条件に保つ
ように自動制御される。処理液タンク31には処理液計
量器又は液レベルセンサー50が取り付けられており残
量を常に確認できるようになっている。処理液計量器5
0は超音波式レベルセンサーなど多種の計量器を使用す
ることができる。尚、流量、圧入圧力、各反応器ユニッ
ト37の温度の制御と、起動・停止は制御盤ならびに制
御用コンピューターにより制御できる。
【0022】処理液タンク31に分解の対象物、水また
は水熱溶液(溶媒)、そして反応促進剤を投入し、必要
があれば撹拌手段32を利用して均一にしたのち高圧圧
入ポンプ33で圧入する。この例では分解の対象物、水
溶液そして反応促進剤を一つのタンクから供給するよう
になっているが、図4に示すように分解の対象物タンク
53、水または水熱溶液(溶媒)タンク54そして反応
促進剤タンク55の全てを別々のタンクにしてそれぞれ
のポンプ56,57,58の押出し量(流量)を変化さ
せて混合比を任意に設定することも可能である。図5に
示すように、それぞれのタンク53,54,55の出口
に流量調整器52,52,52を取付け、流量を任意に
制御すれば一つのポンプでも任意の割合で配合した処理
対象液を圧入可能である。分解の対象物、水溶液そして
反応促進剤の中の2つを任意の割合でタンク内で配合
し、2つのタンクに分けても構わない様々な組み合わせ
が可能である。
【0023】図6に示すように、反応制御剤を反応装置
36の任意の箇所から逆止弁68を介して圧入すること
も可能である。
【0024】上記の反応器ユニットは、縦に連設してあ
るが、横に多段に水平配置してもよい。
【0025】次に各構成部について説明する。反応器ユ
ニット37の要部(加熱ユニット)69は、図7から図
10に示すように、一対の板状のヒーター70とスパイ
ラル状にしたパイプ41で構成される。図7に示すヒー
ター70は、図8に示すように伝熱特性の熱板ブロック
71に必要個数のカートリッジヒーター73の設置穴7
2を切削し、カートリッジヒーター73を設置すること
により構成される。熱板ブロックに必要な条件としては
耐熱性、高熱伝導性、易加工性があり、SUH(耐熱
鋼)、SUS(ステンレス)、FCD(ダクタイル鋳
鉄)などがあるが、ここではFCD(ダクタイル鋳鉄)
を用いた。カートリッジヒーター73は一本当たりに出
力する発熱量の種類が選択でき、図7に示すように各熱
板ブロック71にパイプ41への伝熱効率が良くなるよ
うに必要個数配置される。図8ではパイプ41の外側を
熱伝導材75で覆い熱効率の向上を図っている。図9に
示すように、熱板ブロック71の側面にはパイプ41が
嵌まるパイプ溝76を設けパイプ41と接触面積を増大
し熱伝導率を良くすることもできる。また、図10に示
すように湾曲状パイプ41は2枚の熱板ブロック71間
に収装するようにして設置することもでき、この場合さ
らに熱板ブロック内面に図9に示したようなパイプ溝を
形設してパイプ41を保持してもよい。反応器ユニット
37は高温に加熱されるため熱膨張による応力が吸収で
きる構造にする必要があるが、この構成はパイプ軸方向
の膨張による応力を遊定状態にした湾曲部(B部分)で
簡単に吸収できる。このような加熱ユニットを例えば図
11に示すように熱板ブロック内に断熱材75’を填充
するとともにステンレス製の板で覆い、流入パイプと流
出パイプを引出し接続部を設けることによって反応器ユ
ニット37が構成される。図10に示す湾曲状パイプ4
1の他にも、図10aの様な円形パイプ41及び円弧状
の熱板ブロックも利用可能であり、両者は取付金具95
によって一体的にされている。図10,11に示す湾曲
状パイプ41からなる反応器ユニット37と同様な構造
がこの場合の円形パイプ41からなる反応器ユニットに
も適用出来る。
【0026】反応装置36は、図12に示すように、反
応器ユニット37を必要な数だけ多段に接続して構成す
る。接続する段数(図面では3段)や、ユニットの規模
は、処理の対象物の種類、処理量(流量)などに対応
し、反応時間、加熱時間、温度勾配などの反応条件が最
適になるように設定される。例えば、反応器ユニット3
7の段数を多段にしても分解の対象物が瞬間的に処理さ
れてしまう場合には多段のユニット37の加熱は必要な
いために必要なユニット37数のみをヒーター加熱すれ
ばよく、他のユニット37のカートリッジヒーター73
はオフにすれば熱効率、処理コストの面で極めて効率的
である。逆に、難分解なまたは処理し難い被処理物の場
合は、処理に必要な段数だけの反応器ユニット37を加
熱すれば良い。また、反応器ユニット37の取り付けは
各反応器ユニット37を取付金具などにより固定が可能
であるが、反応器ユニット37の補修の際に、容易に目
的の反応器ユニット37を取り出し、交換可能なよう
に、図12aに示す如く枠体37’に各反応器ユニット
をカートリッジ式に据えつける事も可能である。
【0027】熱交換器35は圧入した分解の対象物+溶
媒+反応促進剤(以下、処理液と省略)の予熱と、処理
済み液の予冷を行うものであり周知の構造を任意に採用
できる。ポンプ33、冷却器38、減圧弁39も同様で
ある。処理の対象物は処理液タンク31内で水または水
熱溶媒(溶媒)とあるいは必要があれば反応促進剤と撹
拌手段32により十分に混合され高圧圧入ポンプ33に
より圧入される。圧入された処理液は熱交換器35で予
熱され反応装置36で処理され処理済み液は再度熱交換
器35で予冷され、減圧弁39にて減圧され処理済み液
排出タンク40に排出される。
【0028】反応装置36と接続される熱交換器35、
冷却器38および相互の接続は全て反応装置36と同一
のパイプ41で一連に構成されており、接続された流路
系統は一連の同一径のパイプ41の接続であり、高温・
高圧下での信頼性の高い接続が容易に達成できる。
【0029】前記の通り、反応の途中から反応器ユニッ
トごとに反応温度を変化させることや、反応制御(促
進、抑制)剤を圧入することで更に水熱反応の効率良い
制御が可能となる。図6はこうした条件を具体化するた
めの一例を示す説明図である。図6において、31から
51までは図3に示す要素に対応しており、反応器ユニ
ット37の途中から反応制御剤注入手段60を反応器ユ
ニット37に設置したものである。反応制御剤注入手段
60は反応制御剤タンク61、配管41、高圧圧入ポン
プ63、油圧ユニット64、配管41から構成される。
反応制御剤タンク61には液レベルセンサー50が設置
してあり常に液量を監視している。配管41の途中には
反応制御剤計量装置66、温度・圧力測定装置67、逆
止弁68が設置してある。流量は反応制御剤計量装置6
6またはシリンダーポンプ63の移動量を測定するロー
タリーエンコーダー48で検出される。これらの出力信
号は制御用コンピューターと制御盤に送られ、表示され
且つ制御用コンピューターにより各部を設定条件に保つ
ように自動制御される。反応制御剤タンク61には処理
液計量器50が取り付けられており、残量を常に確認で
きるようになっている。反応制御剤がガスの場合は反応
制御剤タンク61の代わりにガスボンベを設置する。液
レベルセンサーまたは処理液計量器50は超音波式レベ
ルセンサーなど多種の計量器を使用することができる。
なお、流量、圧入圧力の制御と、起動・停止は制御盤な
らびに制御用コンピューターにより制御できる。
【0030】次に、図13により流路系統の圧力を所定
範囲に維持する減圧装置について説明する。図13にお
ける各機器の設定値は次の通りである。
【0031】 増圧装置83:吐出圧力400kg/cm2 吐出量2.5リットル/min エアコンプレッサー82:吐出圧力7kg/cm2 圧力調整タンク80:耐圧400kg/cm2 圧力スイッチ84:190kg/cm2 自動開閉弁81:圧力200kg/cm2の時流量1.0リットル/ minとなるように調整
【0032】反応パイプ41より圧力200kg/cm
2で1リットル/minの処理液が圧力調整タンク80
に流入してくる。この時圧力調整タンク80の液レベル
がCの位置とすれば流入量と自動開閉弁81から排出さ
れる量がバランスしており、圧力調整タンク80内の圧
力は変動せず一定であり定常状態となっている。
【0033】フロン分解装置においてはシリンダポンプ
を用いているから流量は多少変動するが、圧力調整タン
ク80に取り付けられた圧力センサー85により圧力変
動を感知し、自動開閉弁81の開口度を制御用コンピュ
ーター90によりコントロールすれば圧力変動は殆ど生
じない。フロンの分解時にはフッ化ナトリウムの粉体が
処理液中に生じ処理液は固液混合液となる。
【0034】自動開閉弁81の開口度は200kg/c
2の時1リットル/minの排出量であるから、開口
面積が非常に小さいため粉体が排出口付近に詰まって著
しく流量が少なくなり、それにつれて液レベルが高くな
るから安全弁86の設定圧力210kg/cm2より高
くなると自動的に気体が排出され内部圧力は210kg
/cm2以下に維持される。この時、同時に自動開閉弁
81をコントロールして開口度を大きくしているから、
ある開口度になると詰まりが解放されて噴出し急速に液
レベルが下がり始め圧力低下が起きるが、200kg/
cm2以下になると圧力スイッチ84が自動的にオンに
なり、エアタンク89に蓄積されている400kg/c
2のエアーが送り出され圧力調整タンク80内の圧力
を190kg/cm2以上に維持する。この時同時に制
御用コンピューター90により自動開閉弁81がコント
ロールされ急速に閉じて元の開口度の位置にまで復元さ
れる。液レベルが液LOWレベルセンサー88の位置よ
りも低ければ更に少し自動開閉弁81を閉じて液レベル
がA位置を越えてから定位置に戻す。また、液レベルが
液HIGHレベルセンサー87の位置より高ければ自動
開閉弁81を少し開いて液レベルを下げ、B位置より低
くなってから定位置に戻す。以下、この動作を繰り返し
行い圧力調整タンク80内の圧力を190〜210kg
/cm2に維持する。
【0035】さらに処理液にガスが含まれている場合に
は圧力調整タンク80内の圧力は徐々に上昇するが、2
10kg/cm2を越えると安全弁86によりガスは外
部に排出される。ガスの種類によって危険な場合は、増
圧装置83の吸入ガスに窒素ガスを用いるなどすればよ
い。また、圧力スイッチ84は圧力調整タンク80の圧
力が設定圧(フロン分解の場合は200kg/cm2
以下になると自動的にオンとなりエアタンク89に蓄積
されている400kg/cm2のエアーを圧力調整タン
ク内に送り込み一定圧力となるように作動する。この
時、設定圧よりもエアタンク89内のガス圧力(今の場
合400kg/cm2)が高いほど急速に応答できる
し、タンク容量が大きいほど補充空気量が増すから安全
性が良くなる。また、圧力調整タンク80の容積が大き
ければ大きいほど自動開閉弁81の開口度の変化による
圧力調整タンク80内の圧力の変動は小さくなるから、
圧力調整タンク80の容積が大きければ自動開閉弁81
の開口度の制御はオン,オフ制御で可能である。
【0036】以上のように自動開閉弁81における詰ま
りや処理反応に伴うガス発生による異常圧にも対応でき
従来の圧力変動は殆どなくなり連続的かつ安全な操業が
確立され得るのである。
【0037】さらに別の実施例を図15に示す。31は
撹拌手段32を有する処理液(分解の対象物+溶媒+反
応促進剤)タンク、33は高圧圧入ポンプ、34は油圧
ユニット、35は熱交換器、35’は反応器ユニット3
7を多段(図では4段)に構成した予熱器、36’は誘
導加熱法によりパイプを加熱することによりパイプ内の
溶媒温度を瞬間に目的温度まで昇温可能な誘導加熱器、
37”は誘導加熱器36’により昇温された溶媒の温度
を保温する保温器、38は冷却器、39は減圧弁、40
は処理済み液排出タンクである。予熱器35’はもちろ
ん反応装置36としても利用できる。
【0038】例えば処理対象物を含む溶媒を瞬間に目的
温度まで昇温させたい場合に、誘導加熱器36’による
加熱が可能である。この誘導加熱では磁化履歴損失と渦
巻き電流によって100℃/min以上の急速加熱が可
能である。誘導加熱を採用することにより、僅か1m長
さのパイプを誘導加熱器で加熱するだけでパイプ中の溶
媒を約200℃以上も瞬間に昇温可能である。誘導加熱
の特徴、利点は、瞬間に設定(目標)温度まで昇温可能
でありかつ反応を制御しやすい。熱自定数が極めて小さ
いために、温度の制御が容易である。構造が極めてシン
プルである。瞬間にパイプ中の溶媒を目的温度まで加熱
可能であるので、加熱に要するパイプ長さが短距離で可
能である。などがあげられる。
【0039】従って、例えば反応温度を400℃に設定
したい場合、図15のように、予熱器35’で約250
℃に予熱し、次に誘導加熱器36’で瞬間的に設定温度
まで昇温する。その後は所定の反応時間だけその温度を
維持すれば良いので、ほぼ保温のみ(多少の加熱は必
要)で所定の反応温度、反応時間を達成可能である。保
温の方法には反応器ユニット37と同様の構造も可能で
あるが、反応器ユニット37と同様な構造のほかに、図
16に示すように熱風発生器を利用した空気の循環によ
る保温・加熱方式でも構わない。保温器37”は、熱風
発生器91、断熱材75’、仕切り板92、例えばステ
ンレス製の板77で覆うことで構成される。保温器3
7”は、構造が極めてシンプルであるために、部品交換
などのメンテナンスが容易である。熱時定数が小さいた
めに温度制御が容易にできるなどの利点があげられる。
通常は空気を利用するが、空気以外にも比熱、熱伝導率
が優れた気体を利用することも可能である。なお、反応
温度条件、誘導加熱器の設計条件により予熱器が省略で
きる。
【0040】次に高圧圧入ポンプにシリンダーポンプを
用いた場合の圧力の維持(補償)についての実施例を説
明する。高圧圧入ポンプ33にシリンダーポンプが使用
できるが、シリンダーポンプはシリンダーが両端で戻る
時に、圧が一時的に下がる。例えば、シリンダーの移動
速度によっても変わるが、シリンダーポンプからの押出
し圧力が200kg/cm2であっても、シリンダーポ
ンプが端で戻る時には5kg/cm2、大きいときでは
100kg/cm2の圧力の減少が見られる。
【0041】そこで、シリンダーが端で戻る時に圧力が
下がるのを、圧力補償手段94により処理液を圧入する
ことにより防止する。図17は本発明の圧力補償方式の
別例を示す説明図である。高圧圧入ポンプ33は、圧力
に関係なくシリンダーの移動速度を一定にすることによ
り、パイプ中に一定量の処理液を圧入する。圧力補償用
処理液圧入ポンプ93は、パイプ中の圧力が設定した圧
力以下に下がったとき、その下がった圧力を補償するよ
うに動作する。従って、通常高圧圧入ポンプ33のシリ
ンダーの両端に無いときは、動作しない。
【0042】今、高圧圧入ポンプ33のシリンダー移動
速度と減圧弁の開口度を調整し、圧力200kg/cm
2、流量1.0l/minで処理液がパイプ内を流れて
いる。
【0043】高圧圧入ポンプ33のシリンダーが端で折
返し戻るその時、パイプ内の圧力が下がる。パイプ内の
圧力減少を圧力センサー42が感知し、減圧弁39の開
口度を狭くして圧力の減少を防ごうとしても、パイプ内
の圧力減少が瞬間に発生するために、減圧弁39の開口
度の調整が追いつかず、制御しようとしても開口度を狭
めすぎてしまい圧力が急激に上昇し逆に圧力の変動を大
きくしてしまう。
【0044】しかし、圧力の減少を圧力センサー42が
感知すると同時に、圧力補償用処理液圧入ポンプ93で
その減少分だけの処理液を圧入すればポンプ両端での圧
力の変動は全く発生しない。
【0045】このように、シリンダーポンプ両端での圧
力減少を圧力センサー42が感知すると同時に、それを
補償する分だけ圧力補償用処理液圧入ポンプ93のシリ
ンダーを移動させれば圧力変動が無い安定した水熱反応
を実施できる。
【0046】高圧処理装置における反応パイプを内管、
外管の2重管構造にすることにより反応パイプが損傷し
ても外部に内容物が噴出するのを防止できる。しかしそ
のままでは、反応容器部分の熱時定数が大きいため反応
容器部分の温度が上昇するので、例えば反応パイプの損
傷による圧力減少を検知すると同時に、2重管の外管と
内管の間に水を高圧圧送ポンプで圧入するようにすれば
反応装置部分の温度を下げることが可能であるし反応パ
イプ中の分解の対象物も外部に漏洩することなく回収で
きる。2重管にする流路範囲は、装置の構造、分解の対
象物など諸条件によって任意に決定すればよい。
【0047】次に、本発明の高圧処理装置によりフロン
を分解した例を図3に基づいて説明する。
【0048】反応器ユニット37のパイプ41は内径6
mm、外径10mmのSUS316(ステンレス)製パ
イプ15mをスパイラル状に構成し、4段に連設構成と
した。高圧圧入ポンプ33はシリンダーポンプを使用し
た。
【0049】特定フロンであるCFC113を350
g、溶媒である4M(規定)水酸化ナトリウム水溶液3
6l、反応促進剤であるメタノール36lを処理液タン
ク31内で混合し、流量1l/min、レイノルズ数は
乱流の最低条件である2300の約3倍強である708
0とし、十分に乱流領域になるように設定した。
【0050】まず、流路切替えバルブ51により水を高
圧圧入ポンプ33に送り込み、流量1l/min、圧力
200kg/cm2で熱交換器35を経て反応装置36
に圧入する。流量は減圧弁39の開閉度で、圧入圧力は
高圧圧入ポンプ33の押し出し圧力を制御盤ならびに制
御用コンピューターで遠隔操作して設定した。次に、反
応装置36の各反応器ユニット37を設定温度に設定
し、各ユニット37が設定温度に到達したことを確認し
てから流路切替えバルブ51を処理液タンク31側の流
路に切替え、同様に圧入した。分解の対象物を含む流体
(処理液)は反応装置36を約2分弱の短時間で通過
し、熱交換器35、冷却器38を経て減圧弁39で減圧
され処理済み液排出液タンク40に排出される。フロン
をこの条件で分解すると分解生成物としてフッ化ナトリ
ウムが生成するが、フッ化ナトリウムはアルカリ/メタ
ノール水溶液での溶解度が低いために粉体として析出す
る。乱流条件で分解すれば分解が効率よく実施できると
共に、流体とフッ化ナトリウムが完全に均一の状態で減
圧弁39まで流通するため、パイプ41の途中などで閉
塞を引き起こす心配はない。しかし乱流条件ではなく特
に層流条件下で分解を実施すると、分解により生成した
フッ化ナトリウムが流体と均一になって減圧弁までに運
搬されないため、パイプ41内部で閉塞を引き起こした
り、フッ化ナトリウムがまとまって一気に減圧弁39ま
で移動してしまうため減圧弁39の閉塞を引き起こす。
【0051】分解結果を図14に示す。フロンの分解は
反応時間2min以下、200℃以下でも行われ、24
0℃以上で99.99%以上分解する。また、圧力を増
加させると分解反応が促進する。このことは、反応温度
が200℃程度でも反応器ユニット37をさらに多段に
して反応時間を長くしたり処理液を反応装置に還流させ
れば完全に分解が実施できることを示している。
【0052】また、処理対象物がフロン12(CCl2
2)などのように常温・常圧で気体であっても、加圧
や温度を下げることによって液化可能な場合は、図18
に示すように、フロン12が充填され安全弁98、温度
・圧力センサー99、ストップバルブ100を備えてい
るボンベ104を、加熱手段96を有する加熱ヒーター
97で加熱し、ボンベ内の内圧を高めて配管101を通
じてスパイラル状に巻き冷却効率を高めた配管103を
有する冷却装置102を通すことにより液化可能とな
り、通常のポンプで圧入可能となる。
【0053】次に、処理対象物の処理が目的値に達しな
かった場合や、処理廃液の低減を目的とした水熱溶液
(溶媒)を再利用するための循環システムについて説明
する。
【0054】処理対象物の分解が安価な水熱溶液(溶
媒)で可能な場合は処理コストなどで問題となることは
ないが、高価な水熱溶液(溶媒)が必要な場合は、水熱
溶液(溶媒)の回収・再利用が望ましい。また、処理対
象物が一度の処理で目的値に達しなかった場合は、その
未分解処理対象物を再処理する必要がある。
【0055】処理対象物の処理を確実にするためには、
例えば反応器ユニット37や保温器37”を必要数(距
離)だけ追加することにより可能となる場合もあるが、
設備コスト・設備面積などで問題となる場合もある。
【0056】従って、処理済み液中に存在する未分解処
理対象物は再度水熱処理し、かつ水熱溶液(溶媒)その
ものも循環再利用できれば水熱溶液(溶媒)コスト、設
備規模が有利になり且つ処理が確実になる。或は未分解
処理対象物と水熱溶液(溶媒)を分離せずにそのままの
混合状態で再度高圧処理装置36に圧入しても構わな
い。
【0057】図19は、未処理物がフロン12のような
常温・常圧で気体であっても、加圧や温度を下げること
によって液化可能な場合の循環処理システムを示す。
【0058】水熱溶液として水酸化ナトリウム(NaO
H)溶媒のみを用いてフロン12を分解する際の反応を
総括的に示すと次式の様になる。但し、水酸化ナトリウ
ム濃度が高いほど反応は進行するので、実際には水酸化
ナトリウム濃度の過剰雰囲気で分解を行う。 CCl2F2+2H2O+5NaOH→NaHCO3+2NaF+2NaCl+4H2O
【0059】従って、処理済み液中に含有される未反応
の水酸化ナトリウム水溶液を再利用するとともに、もし
くは処理済み液中に未分解処理対象物であるフロン12
が含有されている場合は、フロン12を回収し、再度処
理すれば確実な分解と処理コストの低減を図ることがで
きる。
【0060】減圧弁39で未分解処理対象物(フロン1
2)を含有する処理済み液が配管107を通じて加熱手
段105および温度センサー126を有する排出タンク
106に排出される。水熱溶液(溶媒)は排出タンク下
方に、フロン12は上方に分離される。排出タンク内の
液量は液レベルセンサー50により液量が監視され、制
御用コンピューター110により自動制御され、液レベ
ルを監視しながら一定の液量を保持するように自動開閉
バルブ109を制御する。但し、フロン12が水熱溶液
(溶媒)中に溶存している場合には処理済み液を加熱手
段105で加熱し、水熱溶液(溶媒)中のフロン12を
気相中に分離し、水熱溶液(溶媒)とフロン12を完全
に分離する。分離後のフロン12はガス排出パイプ11
2から排出され加圧ポンプ113により加熱手段119
を有するボンベ120に圧入される。ボンベ120内の
フロン12は加熱手段119により加熱され内圧を高め
てから配管121を通じてポンプ122により、スパイ
ラル状に巻き冷却効率を高めた配管103を有する冷却
装置102を通すことにより液化され、配管114を通
じて再処理に供される。
【0061】一方、処理済み液である水熱溶液(溶媒)
は制御用コンピューター110により自動開閉バルブ1
09が制御され、配管111を通じて水熱溶液(溶媒)
濃度調整用タンク116に排出される。濃度調整用タン
ク116中の処理済み液は、フロン12の分解に伴いア
ルカリ濃度が減少しているので、再度水熱溶液(溶媒)
として使用する場合には濃度調整用タンク116内の処
理済み液のアルカリ濃度を測定し、濃度が低ければアル
カリ溶液タンク117内の高濃度アルカリ溶液を配管1
27を通じてポンプ125により濃度調整用タンク11
6に送液し、濃度を調整してから、配管128を通じて
再度水熱溶液(溶媒)として利用すればよい。フロンの
分解に伴いフッ化ナトリウムが生成し、排出タンク10
6内の底部に沈積するので、制御用コンピューター11
0’によりスラリー自動排出バルブ109’を一定の時
間後制御し、排出する。
【0062】また、排出タンク106の加熱には加熱手
段105以外にも、熱交換器35を通過し予冷された処
理済み液の一部を排出タンク106内に循環させれば排
出タンク106の加熱が可能となる。
【0063】図19では、排出タンク106で水熱溶液
と分離されたフロン12は、ボンベ120の後の冷却装
置102で液化され、温度・圧力センサー99’そして
逆止弁68を介してポンプ51より再度圧入されるが、
ボンベ120の後の冷却装置102を省略し、配管10
1を通じて冷却される液化装置102と共有することも
可能であるし、配管101からのフロンガスと冷却装置
102の直前で合流させて一緒に液化させて再度圧入し
値処理することも可能である。
【0064】次に、未処理物が液状で水熱溶液(溶媒)
より比重が軽く、且つ水熱溶液(溶媒)に溶解しない場
合には、図19の変形例図20に示すように、排出タン
ク106から配管113を通じて未分解処理対象物を排
出する。未分解処理対象物を排出するための配管113
端と液面との調整は、例えば水熱溶液(溶媒)の体積に
大きな変化は無いので、水熱溶液(溶媒)の投入量から
排出タンク内の処理後の水熱溶液(溶媒)の液面位置が
計算されるから、排出タンク106の自動開閉バルブ1
09の開閉量を監視・自動測定を行い、さらに液レベル
センサー50により排出タンク106内の水熱溶液(溶
媒)の液面を確認し、それ以上の高さの液を排出すれ
ば、未分解処理対象物は確実に分離できる。
【0065】未処理物の比重が水熱溶液(溶媒)よりも
重いときには、前記記載の方法と逆に実施し、自動開閉
バルブ109の開閉量を監視して、水熱溶液(溶媒)の
圧入量を監視しながらこの圧入量に見合った量を排出す
れば良い。
【0066】未処理対象物が固体、或は気体、液体、固
体の混合物であってもこれらの手法を組み合わせること
により循環処理システムを具体化することができる。
【0067】また、排出タンク106内に水熱溶液(溶
媒)と未反応処理対象物が均一に混合している場合に
は、図21に従い、そのまま再度高圧処理装置に圧入可
能であるし、水熱溶液(溶媒)の組成が反応により変化
していれば、それを補う量を加えればよい。
【0068】例えば、PCB含有絶縁油を水熱溶液(溶
媒)として水酸化ナトリウム溶液で分解処理する場合、
水酸化ナトリウム溶液とPCB含有絶縁油が排出タンク
106に排出される。PCB含有絶縁油と水酸化ナトリ
ウム溶液は2相に分離し、PCB含有絶縁油は上相に、
水酸化ナトリウム溶液は下相に分離するが、PCB含有
絶縁油相中のPCB濃度と、水酸化ナトリウム溶液中に
僅かに溶解しているPCB濃度を測定し、油相中の濃度
が基準値以上であればPCB含有絶縁油を図20に従
い、再度排出配管113を通じて再度対象物タンク53
に循環し、一方の水酸化ナトリウム溶液も濃度を調整し
た後、水熱溶液(溶媒)タンク54に循環し再度処理を
行うことにより、確実な分解が実施できる。再度循環し
ても目的値に達しなかった場合には、目的値に達するま
で何度でも循環処理を行えばよい。本処理法では完全な
クローズドシステムでの処理が可能であるために、装置
外への漏洩の懸念がなく安全且つ確実な分解が実施でき
る。
【0069】以下に、図19に示した循環システムによ
るフロン12(CCl22)の分解試験結果を説明す
る。反応時間を長くするために、反応器ユニット37の
他に、反応器ユニット37のパイプ41と同一素材・内
径・外径のパイプを160mスパイラル状に構成した保
温器37”を追加し、反応装置36のパイプ長は反応器
ユニット37→保温器37”→反応器ユニット37→保
温器37”の長さ352mの4段の連接構成とした。
【0070】まず、流路切り替えバルブ51により水を
高圧圧入ポンプ33に送り込み、流量150cc/min、圧
力200kg/cm2で熱交換器35を経て反応装置36に圧
入する。流量は減圧弁39の開閉度で、圧入圧力は高圧
圧力ポンプ33の押し出し圧力を制御盤ならびに制御用
コンピューターで遠隔操作して設定した。次に、反応装
置36の各反応器ユニット37と保温器37”を設定温
度330℃に設定し、各ユニット37と保温器37”が
設定温度に到達したことを確認してから、流路切り替え
バルブ51を処理液側の流路に切り替え、2M水酸化ナ
トリウム溶液を300cc/min圧入した。
【0071】また、処理対象物であるフロン12は高圧
圧入ポンプ56で6cc/minの流量で同様に圧入した。分
解の対象物を含む流体(処理後)は反応装置36を約3
5分弱で通過し、熱交換器35冷却機38を経て減圧弁
39で減圧され処理済み液排出タンク106に排出され
る。フロン12はこの条件では99.95%程度分解す
る。また、水熱溶液(溶媒)である水酸化ナトリウム
(NaOH)は、処理済み液中に含有されている。
【0072】排出タンク106の温度を60℃とし、処
理済み液中に含有する未分解フロン12を気相へ移行こ
せ、処理済み液から除去し、配管112を通じて再度処
理した。配管112からのフロンガスはボンベに保管
し、改めて分解にしても良い。
【0073】処理済み液中には、多量の水酸化ナトリウ
ム(NaOH)が含有されているために再循環を目的と
して配管111を通じて水熱溶液(溶媒)濃度調整用タ
ンク116に送液され、濃度調整用タンク116内でア
ルカリ濃度を調整し、配管128を通じて再度水熱溶液
(溶媒)として利用した。
【0074】以上のようのして、未分解フロンを再度処
理し、かつ水熱溶液(溶媒)を循環利用することにより
設備コスト、設備面積、試薬コスト・処理廃液の低減そ
して確実な分解が実現し得る。
【0075】フロン以外の有機塩素化合物の他の例とし
ては例えば、トリクレンはアルカリ−メタノール、アル
カリ水溶液あるいはアルカリ−過酸化水素、金属イオ
ン、固体触媒など様々な組合せの水熱溶液で前述のフロ
ンと同様に分解できる。
【0076】排水中のトリクレンは活性炭吸着により除
去する方法があるが、このような場合はトリクレンが吸
着している活性炭をアルカリ−メタノール水溶液とし混
合し上記記載の方法で処理することにより活性炭に吸着
したトリクレンは分解できるし、活性炭は再利用でき
る。活性炭を連続して流し込み処理する方法もあるが、
トリクレンによって汚染された活性炭をパイプライン途
中に設置し、活性炭が流出しないようにフィルターを設
け、アルカリ/メタノール溶液を連続的に流通して活性
炭からトリクレンを抽出・分解する方法や、活性炭から
トリクレンのみを抽出し、その後にアルカリ/メタノー
ル溶液を途中から注入し分解する方法も可能である。完
全に分解が行われていなければ再度装置に圧入し、水熱
処理すればよい。同様なことは活性炭中に含有されるト
リクレンの抽出除去・分解のみではなく、飛灰中に存在
するダイオキシンの処理など、固体又は粉体に含有され
る分解の対象物を水熱反応により処理する場合に適応可
能である。
【0077】
【0078】
【効果】以上説明したように、本発明により水熱反応ま
たは超臨界流体反応において連続的かつ効率的な反応処
理を実現し、被処理物や固液気体の混合状態でも処理済
みの物質の円滑な移動を確保し得るため、信頼性及び安
全性が高く、広範囲の処理対象に対応して処理条件が設
定可能な連続式の高圧処理技術を提供するものである。
【図面の簡単な説明】
【図1】バッチ式処理装置の従来例を示す図
【図2】連続式処理装置の従来例を示す図
【図3】本発明による高圧処理装置の説明図
【図4】被処理液、溶媒、反応促進剤の送入量を各別に
設定し得る図3の高圧処理装置の例を示す図
【図5】被処理液、溶媒、反応促進剤の送入量を1個の
調整弁で設定し得るようにした同様な高圧処理装置の例
を示す図
【図6】反応制御剤を反応器ユニットに適宜送入し得る
ようにした同様な高圧処理装置の例を示す図
【図7】本発明装置の反応器ユニットに組み込む湾曲状
パイプと加熱ユニットの一例を示す斜視図
【図8】図7のA−Aで切取って見た断面図
【図9】加熱ユニットの熱板ブロックにパイプ溝を設け
た例の断面図
【図10】湾曲状パイプを熱板ブロック内側に収装した
図7と同様の斜視図 10aは円形状パイプを円弧状熱板ブロックと一体化し
た例の上面図
【図11】反応器ユニットの部分破断上面図
【図12】反応器ユニットを3段連設した状態を示す部
分断側面図 12aは反応器ユニットをカートリッジ式に収納する例
の模示図
【図13】反応器ユニットの終端に圧力調整タンクを配
設した例を示す説明図
【図14】本発明技術によりフロンを分解処理した例を
示すグラフ
【図15】予熱器として誘導加熱器を用いる例を示す図
【図16】熱風式の保温器の例を示す図
【図17】本発明における圧力補償方式の異型例を示す
【図18】本発明における未分解対象物の分解を完全に
なす反応系統を示す図
【図19】未分解対象物を還流させ完全分解させる反応
系統を示す図
【図20】図19の変形例を示す図
【図21】図20の変形例を示す図
【符号の説明】
36 反応装置 37 反応器ユニット 41 湾曲状パイプ 33,60 注入部 69 加熱ユニット 70 カートリッジヒーター 71 熱板ブロック 76 パイプ溝 75 熱伝導材 80 圧力調整部(タンク) 95 取付金具 97,106 排出タンク 102 冷却装置 116 溶媒濃度調整用タンク
───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 久昭 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社 研究開発センター 内 (72)発明者 守谷 武彦 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社 研究開発センター 内 (72)発明者 金澤 正澄 高知県高知市新屋敷1丁目2−12−8 (56)参考文献 特開 昭63−100927(JP,A) 特開 昭64−71479(JP,A) 特開 平4−300696(JP,A) 特開 平5−31000(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 - 3/04

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】 処理対象物と、水または溶媒、反応促
    進剤とを含む処理液を圧入する処理液圧入手段と、該処
    理液圧入手段に連通し圧入された処理液を高温・高圧条
    件に保って処理する加熱手段を有する湾曲状パイプで形
    成された反応器と、該反応器に連通し処理済液を排出す
    る減圧手段とを備え、前記加熱手段は圧入された処理液
    を水の超臨界または亜臨界状態の反応温度に急速に加熱
    する急速加熱手段と、前記急速加熱された処理液を前記
    反応温度に保温する保温手段を有することを特徴とする
    高圧処理装置。
  2. 【請求項2】 請求項1に記載の高圧処理装置におい
    て、減圧手段は、反応器と連通する圧力調整タンクと、
    該圧力調整タンクに送出された処理済液を排出する自動
    開閉弁と、前記圧力調整タンクに該タンク内の処理済液
    の圧力とバランスする高圧ガスを供給する高圧ガス供給
    手段とを有し、前記高圧ガス供給手段のガス供給を制御
    することにより前記圧力調整タンク内の圧力を所定範囲
    に維持すると共に、前記自動開閉弁を制御することによ
    り前記圧力調整タンク内の処理済液の液面レベルを所定
    範囲に維持するようにしたことを特徴とする高圧処理装
    置。
  3. 【請求項3】 請求項1又は2に記載の高圧処理装置に
    おいて、複数の収納タンクを設け、処理対象物、溶媒、
    反応促進剤のそれぞれを別々の収納タンクに収納し、そ
    れらを別々に圧入できるようにしたことを特徴とする高
    圧処理装置。
  4. 【請求項4】 請求項1又は2に記載の高圧処理装置に
    おいて、前記減圧手段は処理済液を収納する排出タンク
    に連通し、該排出タンクから処理済液を溶媒濃度調整手
    段に導出して、その媒濃最初の処理液の溶媒濃度
    と同等になるように調整し、調整された溶媒濃度の処理
    済液を再度前記反応器に圧入するように構成したことを
    特徴とする高圧処理装置。
  5. 【請求項5】 請求項3に記載の高圧処理装置におい
    て、前記減圧手段は処理済液の加熱手段を有する排出タ
    ンクに連通し、処理済液の加熱により前記排出タンク内
    で未分解の処理対象物と溶媒とを分離し、未分解の処理
    対象物は処理対象物を収納した収納タンクへ導出し、溶
    媒は溶媒濃度調整手段に導出して、収納タンクに収納さ
    れた溶媒の濃度と同等になるようにその濃度調整する
    と共に該収納タンクへ導出することにより、処理済液を
    再度前記反応器に圧入するように構成したことを特徴と
    する高圧処理装置。
JP07693696A 1995-04-20 1996-03-29 高圧処理装置 Expired - Fee Related JP3273118B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP07693696A JP3273118B2 (ja) 1995-04-20 1996-03-29 高圧処理装置
US08/631,812 US5843386A (en) 1995-04-20 1996-04-10 Hydrothermal reaction apparatus
DE19615974A DE19615974A1 (de) 1995-04-20 1996-04-22 Hochdruckbehandlungsvorrichtung
US09/041,499 US6066263A (en) 1995-04-20 1998-03-12 Apparatus for converting waste plastic into oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-95002 1995-04-20
JP9500295 1995-04-20
JP07693696A JP3273118B2 (ja) 1995-04-20 1996-03-29 高圧処理装置

Publications (2)

Publication Number Publication Date
JPH0994456A JPH0994456A (ja) 1997-04-08
JP3273118B2 true JP3273118B2 (ja) 2002-04-08

Family

ID=26418047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07693696A Expired - Fee Related JP3273118B2 (ja) 1995-04-20 1996-03-29 高圧処理装置

Country Status (3)

Country Link
US (1) US5843386A (ja)
JP (1) JP3273118B2 (ja)
DE (1) DE19615974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388601B1 (ja) 2022-05-09 2023-11-29 三菱電機株式会社 構造物計測装置、データ処理装置、及び構造物計測方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367822B2 (ja) * 1996-06-06 2003-01-20 三菱重工業株式会社 プラスチック廃棄物の油化方法及び装置
JP3333699B2 (ja) * 1996-11-22 2002-10-15 仲道 山崎 連続水熱反応における原料粒子噴霧方法および装置
WO2001036088A1 (en) * 1999-11-18 2001-05-25 Basf Corporation Modular reactor for continuous polymerization processes
US6380367B1 (en) 1999-11-18 2002-04-30 Basf Corporation Continuous process for the production of sucrose based polyether polyols
US6410801B1 (en) 1999-11-18 2002-06-25 Basf Corporation Continuous process for the production of polyether polyols
AU2002221569A1 (en) * 2000-12-15 2002-06-24 Hobolth Instruments Aps Method and apparatus for continuous processing of organic material
CA2426253A1 (en) * 2003-04-22 2004-10-22 Hurdon A. Hooper Rubber reduction
JP4334298B2 (ja) * 2003-08-19 2009-09-30 株式会社東芝 有機廃棄物の処理装置および処理方法
JP2006000732A (ja) * 2004-06-16 2006-01-05 Japan Organo Co Ltd 水熱反応方法および装置
US8034989B2 (en) * 2005-08-26 2011-10-11 Knupp Stephen L Energy generation process
US20080206949A1 (en) * 2007-02-28 2008-08-28 Semiconductor Technology Academic Research Center Apparatus for forming conductor, method for forming conductor, and method for manufacturing semiconductor device
JP2009066541A (ja) * 2007-09-14 2009-04-02 Hyogo Prefecture 水熱反応処理装置及び水熱反応処理方法
DE102008047883B4 (de) * 2008-09-18 2011-06-01 Agrokraft Gmbh Vorrichtung und Verfahren zur Behandlung von Biomasse
DE102010009514A1 (de) 2010-02-26 2011-09-01 Karlsruher Institut für Technologie (Körperschaft des öffentlichen Rechts) Reaktor für Reaktionen bei hohem Druck und hoher Temperatur und dessen Verwendung
CN101829488B (zh) * 2010-06-11 2012-05-23 天津市环境保护科学研究院 感应加热消解氟利昂的热解感应加热炉
KR101319302B1 (ko) * 2011-04-01 2013-10-16 한국에너지기술연구원 비접촉식 고압 마이크로 채널 반응장치
WO2013117000A1 (zh) * 2012-02-09 2013-08-15 同济大学 一种用于进行水热反应的系统和方法
US20150165340A1 (en) * 2012-09-03 2015-06-18 Laminar Co., Ltd. Purification System Comprising Continuous Reactor and Purification Method Using Continuous Reactor
CA2889012C (en) * 2012-10-22 2017-08-22 Applied Research Associates, Inc. High-rate reactor system
US9475029B2 (en) 2013-08-28 2016-10-25 Louisiana Eco Green, L.L.C. Method of manufacturing bio-diesel and reactor
CN104014289B (zh) * 2014-06-10 2015-10-21 中国石油大学(北京) 反应釜加热装置及水热反应方法
CN104324663A (zh) * 2014-10-28 2015-02-04 南通御丰塑钢包装有限公司 转鼓加热装置
CN105413603B (zh) * 2015-11-09 2017-12-05 陕西科技大学 有效改善复合材料界面结合的复合材料制备系统及方法
PL238324B1 (pl) * 2017-08-29 2021-08-09 Inst Chemii Organicznej Polskiej Akademii Nauk Aparatura przepływowa do prowadzenia procesów pod wysokim ciśnieniem w trybie ciągłym
CN110721637B (zh) * 2018-07-17 2021-09-07 宋波 改进型的水反应容器
WO2020263905A1 (en) * 2019-06-24 2020-12-30 Dhf America, Llc. System and method of decomposing a fluidic product having particles
US11124707B2 (en) 2019-12-17 2021-09-21 Saudi Arabian Oil Company Production of liquid hydrocarbons from polyolefins by supercritical water
CN117683549B (zh) * 2023-12-28 2024-09-03 山东省科学院能源研究所 一种用于高湿有机固废连续水热碳化的反应装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053404A (en) * 1975-06-25 1977-10-11 Whirlpool Corporation Heat exchange method for wet oxidation systems
US4217218A (en) * 1977-12-27 1980-08-12 Sterling Durg Inc. Removal of solids from a wet oxidation reactor
US4272383A (en) * 1978-03-17 1981-06-09 Mcgrew Jay Lininger Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions
US4338199A (en) * 1980-05-08 1982-07-06 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US5106272A (en) * 1990-10-10 1992-04-21 Schwing America, Inc. Sludge flow measuring system
US4721575A (en) * 1986-04-03 1988-01-26 Vertech Treatment Systems, Inc. Method and apparatus for controlled chemical reactions
US4882497A (en) * 1986-08-15 1989-11-21 Sumitomo Electric Industries, Ltd. Method and apparatus of measuring outer diameter and structure of optical fiber
US5054108A (en) * 1987-03-30 1991-10-01 Arnold Gustin Heater and method for deionized water and other liquids
US4774006A (en) * 1987-06-22 1988-09-27 Vertech Treatment Systems, Inc. Fluid treatment method
US5128515A (en) * 1990-05-21 1992-07-07 Tokyo Electron Sagami Limited Heating apparatus
US5133877A (en) * 1991-03-29 1992-07-28 The United States Of America As Represented By The United States Department Of Energy Conversion of hazardous materials using supercritical water oxidation
US5372725A (en) * 1991-11-04 1994-12-13 Halff; Albert H. Method for separation and removal of impurities from liquids
JP3243572B2 (ja) * 1991-12-26 2002-01-07 東芝プラント建設株式会社 Pcb含有液の処理装置
US5192453A (en) * 1992-01-06 1993-03-09 The Standard Oil Company Wet oxidation process for ACN waste streams
US5431889A (en) * 1994-05-31 1995-07-11 Huang; He High temperature and high pressure reaction process and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388601B1 (ja) 2022-05-09 2023-11-29 三菱電機株式会社 構造物計測装置、データ処理装置、及び構造物計測方法

Also Published As

Publication number Publication date
JPH0994456A (ja) 1997-04-08
US5843386A (en) 1998-12-01
DE19615974A1 (de) 1996-10-24

Similar Documents

Publication Publication Date Title
JP3273118B2 (ja) 高圧処理装置
US10370276B2 (en) Near-zero-release treatment system and method for high concentrated organic wastewater
CN103130356B (zh) 废液处理装置和废液处理方法
CN103157405B (zh) 液体废物处理装置
US10087093B2 (en) Fluid treatment apparatus
AU747415B2 (en) Method and apparatus for treating salt streams
CN114262042B (zh) 一种超临界水氧化工业化排盐方法及系统
KR100671858B1 (ko) 고순도 및 초고순도 이산화탄소의 공급 및 수송을 위한시스템
JP4156761B2 (ja) バッチ式超臨界水反応装置
US20020070179A1 (en) Process and device for supercritical wet oxidation
JP4334162B2 (ja) 反応容器
JP2008246342A (ja) 気液分離器
JP2003340262A (ja) 水熱反応処理装置及び水熱反応処理方法
JP6029005B2 (ja) 流体浄化装置
JP2003236594A (ja) 汚泥の処理装置
JP2004290819A (ja) 高温高圧処理装置
JP2014136176A (ja) 流体浄化装置
JP2004057925A (ja) 水熱反応器及び水熱反応装置
JP3686778B2 (ja) 超臨界水反応装置の運転方法
JP2003326153A (ja) 高粘度スラリー供給装置及びその起動方法
KR102582677B1 (ko) 슬러지 탈수 및 고형물 무배출 시스템
JP2002224681A (ja) 有機性被処理液の酸化処理方法及び装置
JP2001120987A (ja) バッチ式超臨界水反応装置
JP2612249B2 (ja) 環境汚染物質の水熱反応処理方法及びその装置
JP2001120986A (ja) バッチ式超臨界水反応装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees