WO2013117000A1 - 一种用于进行水热反应的系统和方法 - Google Patents

一种用于进行水热反应的系统和方法 Download PDF

Info

Publication number
WO2013117000A1
WO2013117000A1 PCT/CN2012/070981 CN2012070981W WO2013117000A1 WO 2013117000 A1 WO2013117000 A1 WO 2013117000A1 CN 2012070981 W CN2012070981 W CN 2012070981W WO 2013117000 A1 WO2013117000 A1 WO 2013117000A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
container
heating
reaction
heater
Prior art date
Application number
PCT/CN2012/070981
Other languages
English (en)
French (fr)
Inventor
陈德珍
马晓波
尹丽洁
邱霖
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US14/377,828 priority Critical patent/US9662623B2/en
Priority to PCT/CN2012/070981 priority patent/WO2013117000A1/zh
Priority to CN201280027622.2A priority patent/CN103608099B/zh
Publication of WO2013117000A1 publication Critical patent/WO2013117000A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2445Stationary reactors without moving elements inside placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/008Controlling or regulating of liquefaction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00065Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00092Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • the invention belongs to the field of harmless and resource treatment of solid waste.
  • the present invention relates to a system for performing a hydrothermal reaction, particularly a hydrothermal reaction for detoxification and resource treatment of solid waste such as incineration fly ash, sludge, biomass waste, and the like. It is a hydrothermal reaction that operates continuously and semi-continuously.
  • the invention also relates to a method for carrying out a hydrothermal reaction.
  • the hydrothermal reaction is a reaction under a certain temperature and pressure after being mixed with water, and is an important reaction mode for pollutant treatment, stabilization and recycling of biomass waste, because of its high efficiency and secondary pollution. Avoid, the application is more and more extensive.
  • Persistent organic pollutants contained in particulate matter such as incineration fly ash and contaminated soil (referred to as POPs)
  • POPs Persistent organic pollutants contained in particulate matter such as incineration fly ash and contaminated soil
  • hydrothermal reactions generally require a certain residence time to ensure complete reaction, so that most of the current hydrothermal reactions are completed in batches in pressure vessels, although the prior art employs multiple parallel pressure vessel reactors to achieve continuous hydrothermal reaction. It is semi-continuous, but the pressure vessel as a reactor is also a heater, making the reaction system very unsafe.
  • Newly developed methods for removing POPs contained in particulate matter include supercritical fluid extraction (SCFE), supercritical water oxidation (SCWO), hydrothermal treatment, etc., as disclosed in the patent ZL200510075433.4.
  • SCFE supercritical fluid extraction
  • SCWO supercritical water oxidation
  • hydrothermal treatment etc., as disclosed in the patent ZL200510075433.4.
  • the critical water oxidation method is very effective for treating waste solutions containing toxic organic substances.
  • Hydrothermal reaction of biomass materials can produce hydrogen, bio-oil and stabilize biomass organic waste, for example, the application number / patent number is 200680054674 Announced the resource system for organic waste, using batch reactor; invention patent application 200910265487.5 A horizontal reactor for sludge hydrothermal reaction is disclosed; invention patent application 200780052294.0 discloses a method for realizing wet heat chemical conversion of biomass by hydrothermal carbonization; invention patent application 201010128949.1 A method for producing a fuel oil by biomass hydrothermal liquefaction is disclosed.
  • the reactor system for realizing the above process is a hydrothermal reaction system, but due to the combination of heating and reaction of the reactor, there are currently insufficient deficiencies in large-scale, safe and reliable, for example, high requirements for manufacturing materials, large high-pressure tanks, That is, the reactor itself is not safe as a heating surface; on the other hand, the heating area is limited, and the heating rate is slow, thereby affecting the reaction speed and reducing the system efficiency.
  • the hydrothermal treatment of the particle-containing stream requires continuous stirring to keep the particles uniformly distributed in the liquid phase, while the stirring of the existing large-scale high-pressure tank is usually magnetically stirred, and a cooling system is required to prevent the magnetic disappearance when the temperature rises. very complicated.
  • the present invention proposes a safe and reliable hydrothermal reaction system and method which can be operated continuously or semi-continuously to realize hydrothermal treatment of the particulate-containing fluid.
  • a heating device comprising a flow-through element for fluid flow therethrough and a heat source for heating the fluid
  • a reaction device comprising a vessel for holding the vessel; the vessel being in communication with the flow-through element through a conduit.
  • Another object of the present invention is to provide a method for performing a hydrothermal reaction, the method comprising: heating a fluid comprising a reactant and a water for performing a hydrothermal reaction; and conveying the heated fluid to The container that can be insulated is subjected to a hydrothermal reaction.
  • the fluid referred to herein may contain a reactant and water for performing a hydrothermal reaction, for example, a hydrothermal reaction system including particulate matter such as incineration fly ash or contaminated soil.
  • the fluids in the systems and methods provided by the present invention are preferably particulate and water, and Treatment
  • the liquid to solid ratio mass ratio is preferably 1.8 : 1 ⁇ 10:1 More preferably, it is 2.8 : 1 ⁇ 4.4:1 .
  • the step of heating and reacting in the hydrothermal reaction can be carried out separately by the system or method for carrying out the hydrothermal reaction provided by the present invention, since the reactor, ie the reactor, is not required Heating itself, this avoids the safety issues associated with heating the reactor and reduces the cost of manufacturing the reactor.
  • the heating device in the system provided by the present invention includes A flow-through element for fluid flow therethrough and a heat source for heating the fluid.
  • the fluid flows through the flow-through element of the heating device, it is heated by the heat source and sent to the reaction device for hydrothermal reaction. That is to say, the main function of the heating device is to raise the temperature of the fluid to the temperature required for the hydrothermal reaction.
  • the flow-through member may be a member including a tube, a cavity, a chamber, and the like which can accommodate a certain amount of fluid, for example, a tube heater, a coil heater, a coil heater, and a tube type heating.
  • the flow-through element can be a tubular tube heater (such as shellless and shell-and-tube type), a coil heater, a coiled tube heater flow conduit, and the flow-through component can also It is the inner sleeve of the sleeve heater, and the flow-through element can also be a spiral passage of the spiral plate heater.
  • the heat source may be any heat source capable of heating the fluid in the flow-through element, for example, may be heated from the outside of the flow-through element, such as high-temperature flue gas, molten salt, steam, electric heating elements, etc., wherein the high-temperature flue gas preferably comes from a furnace or a smoke
  • the high temperature flue gas of the road; the steam is preferably from a boiler, a steam pipe network or a discharged steam.
  • the purpose of heating can be achieved by disposing the flow-through element in high-temperature flue gas, molten salt, steam, or by setting the electric heating element around the flow-through element, for example, in the jacket of the sleeve heater,
  • the outer wall of the serpentine tube heater is covered with an electric heating wire or an electric heating rod. It is also possible to heat from the inside of the flow-through element, such as an electric heating tube provided inside the flow-through element or a steam that can be transported to the inside of the flow-through element.
  • a preferred embodiment of the heating device is a tubular heater or coil heater or coil heater exposed to high temperature flue gas or molten salt; using steam as a heat source
  • the flow-through member is a tubular heater, a sleeve heater or a spiral plate heater; and when the electric heating element is used as a heat source, the flow-through member is preferably a sleeve heater or a coil heater.
  • the heating may be performed by flowing the fluid through a tube heater, a coil heater, a coil heater, a casing.
  • the heating device can be configured to dispense fluid (eg particulate matter / once) as needed
  • the liquid phase mixture is heated to a predetermined temperature, and may also be configured to bring the fluid to a predetermined temperature by a plurality of cycles of heating, thereby reducing the heating area of the heating device.
  • a container for holding heat is included; the method provided by the present invention includes delivering the heated fluid to a container capable of holding the heat for a hydrothermal reaction.
  • the main function of the container is to provide sufficient capacity for the fluid and to provide sufficient reaction time.
  • the container body can be a can body, a tube or other structure that can hold the required amount of fluid.
  • the container body can be a cylindrical or spherical can body that can be fitted with the necessary level display and control elements and / or pressure display and control elements and / or temperature display elements; tanks can also be connected to pipes and / or valves used to add reagents or chemicals; the bottom of the tank can also be used with pipes for exhausting materials and / Or the valve is connected.
  • the container body can also be a tube like a shell and tube heat exchanger.
  • the insulation function of the container can be achieved in various ways.
  • the container is a can body whose outer wall is covered with a heat insulating material, or the container is a heat source which is covered with an insulating material and is provided with a heat source capable of accompanying heat, such as an electric heater, or the container is a tube body which is heated by a hot fluid.
  • flue gas or steam having a temperature slightly higher than or equal to a fluid subjected to hydrothermal reaction flows around a pipe body of a tube of a similar shell-and-tube heat exchanger.
  • the vessel may be provided with separate inlets and outlets, the inlet for the heated fluid entering the vessel, the conduit being in communication with the flow-through elements of the heating device, and the outlet for the reacted fluid flowing out of the vessel.
  • the container is a can
  • the inlet of the container is located in the lower portion of the outlet in the direction of gravity; more preferably, the inlet of the container is located at the bottom of the can, and the outlet of the container is located at the top of the can.
  • the use of the inlet and outlet of the container can also be changed as needed.
  • fluid can be introduced into the tank from an outlet located at the upper portion, allowing fluid to flow out of the tank from the inlet located at the lower portion; the conduit communicating with the outlet at the upper portion can also be communicated through a conduit to a branch pipe for adding reagents or medicaments; When the fluid in the tank is in the tank, the fluid can also be discharged through the inlet located at the lower portion.
  • a magnetic stirring element may be disposed inside the can body, or a magnetic stirring element may not be provided.
  • the magnetic stirring element When the magnetic stirring element is not disposed inside the tank body, in order to prevent the precipitation of particulate matter in the tank body, the fluid in the tank body can be circulated through the pipeline connecting the inlet and the outlet of the tank body, so that the tank body can be further reduced. manufacturing cost.
  • the outlet of the container may be in communication with the inlet of the flow-through element through a conduit, the inlet of the container and the outlet of the flow-through member Connected through pipes to form a circulation line.
  • the method provided by the present invention may also include circulating a fluid through the flow-through element a plurality of times.
  • the system provided by the present invention may further comprise a heat exchange device in communication with the outlet of the vessel through the conduit.
  • the heat exchange device comprises a heat exchange element, such as A sleeve type heat exchanger, a spiral plate heat exchanger or a shell-and-tube heat exchanger, preferably a sleeve type heat exchanger.
  • the heat exchange device is used for transferring the fluid discharged from the outlet of the container, that is, the heat of the fluid after the hydrothermal reaction, to other liquids that need to be heated, such as before flowing through the heating device, that is, before the heating, or before the reaction. .
  • the method provided by the present invention may further comprise: flowing the fluid after the hydrothermal reaction through the heat exchange device herein.
  • the system provided by the present invention may further comprise a mixing device for mixing the reactants and water for performing a hydrothermal reaction, the mixing device being in communication with the inlet of the flow-through element through a conduit.
  • the mixing device comprises a stock tank and a stirrer.
  • the mixing device comprises a stock tank and a stirrer having a shredded stock function.
  • the reactants such as incinerated fly ash, contaminated soil, biomass and other particulate matter, and water or solution are mixed in a preparation tank by a stirrer, or even shredded to form a fluid, and then delivered to a heating device, or via a change The heat device is then sent to the heating device.
  • the system provided by the present invention may comprise a plurality of reaction devices, i.e. two or more reaction devices, preferably two or three reaction devices.
  • a plurality of reaction devices are mounted in parallel in the system provided by the present invention.
  • the conduit connecting the inlets of the vessels of the two reaction devices and the conduits communicating the outlets of the flow-through elements of the heating device are connected by a pipe branch; the conduit connecting the outlets of the containers of the two reaction devices
  • the pipe connected to the heat exchange device is connected to the pipe branch.
  • the method provided by the present invention may include separately delivering the heated fluid to a plurality of containers.
  • a corresponding pump and/or a pump can be installed in the pipeline as needed. Or valve. That is, the system provided by the present invention can be installed with one or more pumps capable of driving fluid throughout the entire pipeline of the system; the system provided by the present invention can also be installed to control the tubes including the respective devices. The road performs independent opening and closing of the valve.
  • the present invention adopts a tube heater, or a spiral plate heater, or a sleeve heater, and is pumped to include
  • the particle stream (such as the mixture of fly ash and water) can be thoroughly mixed, without stirring, and heated while advancing in the tube or in the spiral plate, avoiding the sealing design required for the stirring device and avoiding the possibility that the salt may be deposited on the wall surface. Fouling creates difficulties in the maintenance of the reactor.
  • the tube heating surface or the spiral plate heating surface is greatly improved in pressure resistance compared with the volumetric reaction tank. The larger volume of the warmer in the system does not undertake the task of heating. The continuous in and out of the material avoids the need for a stirrer to mix the materials evenly in the tank, and the reliability of the entire pressure system is greatly improved.
  • FIG. 1 is a schematic illustration of a first embodiment of a system provided by the present invention.
  • FIG. 2 is a schematic illustration of a second embodiment of the system provided by the present invention.
  • FIG 3 is a schematic illustration of a second embodiment of the system provided by the present invention.
  • Figure 4 is a schematic illustration of four other embodiments of the heating apparatus of the present invention other than a tube heater.
  • Figure 5 is a schematic view of a specific embodiment of the heat-retainable container of the present invention.
  • Figure 5A Is a schematic diagram of the flow of the hot fluid for the heat tracing, the arrow shows the flow pattern of the hot fluid
  • FIG. 5B is a schematic cross-sectional view of the container, the arrow shows the flow of the fluid for the hydrothermal reaction
  • It is a schematic diagram of the manner in which the tubes are connected, and the arrows show the manner in which the fluids undergoing the hydrothermal reaction are circulated.
  • Figure 1 shows a specific embodiment of the system provided by the present invention.
  • the system of this embodiment includes a mixing device 1 , heat exchange device 2, heating device 3, first reaction device 4, and second reaction device 5 .
  • the mixing device 1 comprises a preparation tank, a stirrer, a material feeder, and a heating device 3 a tubular heater;
  • the heat exchange device 2 is a heat exchanger;
  • the first reaction device 4 includes a first heat preservation container;
  • the second reaction device 5 includes a second heat preservation container, a first heat preservation container and a second heat insulation container a tank body having a cylindrical body covered with an insulating material and having a first heat insulator and a second heat heater, respectively.
  • the first insulated container and the second insulated container are respectively provided with independent inlets and outlets, the inlet is located at the bottom of the can body, and the outlet is located at the top of the can body.
  • the outlet is in communication with the piping and valves used to add reagents or agents.
  • the system of this embodiment further includes a feed pump 6, a first circulation pump 7, and a second circulation pump 8.
  • Flow line of fluid 1 mixing device ⁇ feed pump ⁇ heat exchanger ⁇ heating device ⁇ inlet of first reaction device ⁇ Incubate in the first reactor for the desired time ⁇ Exit of the first reactor ⁇ First circulation pump ⁇ Heat exchanger ⁇ Discharge
  • Flow line 3 of the fluid mixing device ⁇ feed pump ⁇ heat exchanger ⁇ heating device ⁇ inlet of the first reactor ⁇
  • the fluid reaches the desired volume in the first reaction unit ⁇ the outlet of the first reaction unit ⁇ the first circulation pump ⁇ the heating device ⁇ the heating and circulation between the heating device and the first circulation pump to the desired temperature and time ⁇
  • Flow line 4 of the fluid mixing device ⁇ feed pump ⁇ heat exchanger ⁇ heating device ⁇ inlet of the second reactor ⁇
  • the fluid reaches the desired volume in the second reaction unit ⁇ the outlet of the second reaction unit ⁇ the second circulation pump ⁇ the heating device ⁇ the heating and circulation between the heating device and the second circulation pump to the desired temperature and time ⁇
  • Fluid running line six mixing device ⁇ feed pump ⁇ heat exchanger ⁇ heating device ⁇ inlet of second reaction device ⁇ The outlet of the second reaction unit ⁇ The second circulation pump ⁇ The heating device ⁇ Circulate and heat to a predetermined temperature between the heating device and the second reaction device ⁇ The inlet of the second reaction device ⁇ The second circulation pump ⁇ The outlet of the second reaction device ⁇ the second reaction device ⁇ circulates the fluid in the pipe and the second reaction device for a predetermined time by the action of the second circulation pump ⁇ the inlet of the second reaction device ⁇ the heat exchange device ⁇ Discharge
  • the operating line of the fluid is seven: the inlet of the first reaction unit ⁇ the heat exchange unit ⁇ the discharge
  • operating lines one and two are that the fluid is heated once to the desired temperature and hydrothermally reacted in the vessel, in order to To prevent precipitation of particulate matter in the container, a magnetic stirring element can be placed inside the can body.
  • the combined use of operating lines one and two can achieve continuous or semi-continuous hydrothermal reaction.
  • the five and six operating lines are characterized by multiple cycles of heating to the desired temperature.
  • the fluid in the vessel is still in circulation, and the circulating fluid passes through the outlet at the top of the tank.
  • the inside of the tank, the outlet at the top of the tank, the circulation pump, and then the outlet at the top of the tank is circulated without circulation through the heating device.
  • the precipitation of particulate matter in the container is prevented; when the heat source of the heating device is an electric heating element and steam, the electric heating element and the steam can be stopped.
  • the combined use of operating lines 5 and 6 allows for continuous or semi-continuous hydrothermal reaction.
  • the continuous or semi-continuous hydrothermal reaction can also be achieved by combining any of the operating lines one, three, and five with any one of the operating lines two, four, and six.
  • the operating line of the fluid of the system provided by the present invention may include the above, but is not limited to the above.
  • the first circulation pump and the second circulation pump in turn have the function of a discharge pump. Simultaneous or semi-continuous operation of the hydrothermal reaction can be achieved by providing two reaction units at the same time.
  • the valve used is preferably a electric gate valve or an electric shut-off valve;
  • the circulation pump is preferably a screw type slurry pump or a wear-resistant high temperature resistant slurry pump.
  • FIG. 2 illustrates another embodiment of the system provided by the present invention. As shown in Figure 2, and Figure 1 The system shown differs in that the heat exchange device of the system of the present embodiment is not disposed between the mixing device and the heating device, but is disposed upstream of the mixing device, such that the heat exchange device can be used to heat the water before mixing. .
  • Figure 3 illustrates yet another embodiment of the system provided by the present invention. As shown in Figure 3, unlike the system shown in Figure 2, The system of the present embodiment includes three reaction devices.
  • Figure 4 shows four further embodiments of the heating device of the present invention.
  • the heating device of the present invention may also employ the embodiment shown in FIG.
  • the flow component is Coiled heater
  • the heat source is high temperature flue gas, molten salt, steam or electric heating element
  • the flow-through element is a cannulated heater (the fluid used for the hydrothermal reaction flows in the inner casing)
  • the heat source is the hot fluid circulating in the outer casing
  • the hot fluid is high-temperature flue gas or steam, or is disposed in An electrical heating element in the outer casing.
  • the flow-through element is a spiral passage of the spiral plate heater; the heat source is a hot fluid in another spiral passage, and the hot fluid is high-temperature flue gas or steam; as shown in Fig. 4D, the flow-through element is Serpentine tube heater, the heat source is high temperature flue gas, molten salt, steam or electric heating element.
  • Figure 5 shows a specific embodiment of the container of the present invention.
  • the container capable of holding the heat of the present invention can be used in addition to Figure 1
  • the illustrated insulated container i.e., in the form of a can, it may be in the form of a tubular body.
  • the container is similar Shell-and-tube heat exchangers, the tubes in the heat exchanger are used for the storage and circulation of fluids for hydrothermal reaction;
  • the shell of the heat exchanger is a cylindrical thin shell, which is different from the shell of a conventional shell-and-tube heat exchanger It is not under pressure, and there is a hot fluid that can be accompanied by heat, for example, a flue gas or steam having a temperature slightly higher than or equal to that of the hydrothermal reaction.
  • the insulated container can be configured to be stored The total amount of reacted fluid passing through the heating device within 5 to 30 minutes.
  • the body container is also connected to branch pipes and valves for the addition of reagents or medicaments so that the desired medicament can be delivered.
  • Fig. 2 the system shown in Fig. 2 is used, and the heater is changed to a serpentine tube heater.
  • the fly ash produced by a 1000t/d waste incineration plant contains dioxins, heavy metals and high-concentration salts, especially those containing Cl ions.
  • the water is first washed, and the stones are separated and washed.
  • the fly ash enters the preparation tank through the material feeder.
  • the water used for the mortar is preheated by the heat exchange device and then sent to the preparation tank to be mixed with the fly ash to form a mortar.
  • the heat source in the heat exchange device comes from the material of the insulated container.
  • the soluble ferrous and iron salts similar to those disclosed in PCT/CN2011/073562 are passed through the material feeder in solid form into the preparation tank and the mixer is started to stir evenly.
  • the mortar is fed into the heating device by the feed pump; the heating device is a serpentine tube heater placed in the flue of the incinerator at a temperature of 550 to 650 ° C, and is bent by a corrosion-resistant stainless steel pipe such as a 2205 duplex stainless steel pipe of ⁇ 45*3
  • the single-row tube is 30m long and has 5 rows.
  • the flow rate of the mortar in the pipe is about 0.5 m/s (the flow rate at the time of starting is 0.80 m/s or more), and is sent from the outlet header to the first heat preservation container; the lower portion of the first heat preservation container is fed until the predetermined liquid level is reached.
  • the first circulating pump connected to the first insulated container is opened, and the material starts to circulate between the heating device and the first insulated container until the upper limit liquid level is reached; at this time, the feeding pump stops feeding, only the circulating pump works, and the material is heated. Circulate between the device and the first insulated container, and all materials are recycled to a predetermined temperature of 260 ° C to 293 ° C after 5 cycles. Thereafter, the cycle is maintained until a predetermined reaction time is reached (the heater does not need to be operated during the process), for example, after the predetermined temperature is maintained for 30 to 60 minutes, the material is discharged into the heat exchange device, and at the same time, the feed pump starts feeding, and the heating is performed.
  • the device is then sent to the second insulated container and circulated between the second insulated container and the heating device until the reaction is completed.
  • the working volume of the first insulated container and the second insulated container is 5 m 3 .
  • the pressure is also lowered while being cooled by the heat exchange device.
  • the concentration of dioxin in the fly ash is reduced by 90% or more (equivalent toxicity equivalent), and is sent to the next step or treatment step.
  • the advantage of this system is that the heating device requires only a small heating area; and the insulated container can be made of ordinary steel and can even be made of carbon steel and still safe.
  • This embodiment employs the system shown in FIG.
  • a medical waste incinerator fly ash disposal station is set up between two cities to treat about 2.8 ⁇ 3t/d of medical waste incineration fly ash from two cities.
  • the waste incineration fly ash contains dioxins, heavy metals and high-concentration salts, especially those containing Cl - , which are treated by the technique of the present invention, without any pretreatment of fly ash and the soluble sub-disclosed by PCT/CN2011/073562
  • Any one of the iron salt and the iron salt, here preferably the iron salt is metered and mixed and passed through the material feeder into the preparation tank.
  • the water used for the mortar is first preheated by the heat exchange device and then sent to the preparation tank; the heat source in the heat exchange device is from the material of the heat preservation container.
  • the coil heater (shown in Figure 4A) is bent from a ⁇ 38*3.5 corrosion-resistant stainless steel tube such as a 254SMO tube with a length of 30 meters and a single tube in and out.
  • the fly ash/water mixture that is, the material is heated and sent to the first heat preservation container; from the lower portion of the first heat preservation container, until the predetermined liquid level is reached, the first circulation pump connected to the first heat preservation container is opened, and the material starts to be heated.
  • the working volume of the first insulated container and the second insulated container are both 1.0 m 3 .
  • the reaction system utilizes a 254SMO tube and two 316 or 316L stainless steel insulated containers to solve the problem of two large cities of medical waste incineration fly ash conveniently and economically.
  • This embodiment employs the system shown in FIG.
  • the volume of the first insulated container, the second insulated container, and the third insulated container were both 5 m 3 , and the others were the same as those used in the first embodiment.
  • the fly ash from a 1500 t/d waste incineration plant contains dioxins, heavy metals and high concentrations of salt, especially containing Cl ions. .
  • the first heat preservation container When the first heat preservation container reaches a predetermined temperature, it is kept warm to maintain a specific reaction time such as 60 minutes.
  • a specific reaction time such as 60 minutes.
  • the feed pump is started to feed to the heating device, and then to the second insulated vessel, and thereafter to the second insulated vessel and the heating device.
  • the cycle is performed; when the second heat preservation container reaches the predetermined reaction time to discharge, the feed pump is started, and the material passes through the heating device and enters the third heat preservation container.
  • the reaction time of one insulated container when the reaction time of one insulated container is maintained, the feeding and circulation of other insulated containers are not delayed, so that only one insulated container and its corresponding cycle need to be added without changing any conditions.
  • the pump and valve system can increase the processing capacity of the reacted fluid. 50%.
  • This embodiment uses the system shown in FIG.
  • the moisture content of the sludge discharged from a sewage treatment plant is 80 ⁇ 93%,
  • the material feeder is fed into the preparation tank; the material feeder also has a stone filtering function.
  • the mixer is started to be evenly stirred, it is sent to the heat exchange device for preheating by the feed pump; the heat source in the heat exchange device is the material from the heat preservation container.
  • the material is preheated and sent to the heating device; the heating device is a spiral plate type (as shown in the figure) 4C), stainless steel, such as 304L, 316 or 316L.
  • the steam goes up and down the channel, the sludge enters the spiral channel and is heated to 165 ⁇ 170 °C And then sent to the first insulated container; from the lower portion of the first insulated container, until the predetermined liquid level is reached, the first circulating pump connected to the first insulated container is opened, and the material begins to circulate between the heating device and the first insulated container. Until the upper limit liquid level is reached; at this time, the feed pump is turned off, and the material is circulated between the heating device and the first insulated container, and the cycle 10min After the discharge is started, the sludge is sent to the heat exchange device for cooling and then to the next liquid-solid separation device.
  • the feed pump is started, the material is sent from the heat exchange device to the heating device, and is sent to the second heat preservation container.
  • the same cycle and discharge program as the first heat preservation container is started.
  • the outer side of the first heat preservation container and the second heat preservation container are insulated, and there is a heat tracing device, and the heat tracing device is The 2KW electric heater is only activated when the material temperature is below 165 °C. This system can be realized if the system including three reaction devices shown in Figure 3 is used.
  • the hydrothermal treatment of the sludge discharged from the sewage treatment plant is continuous.
  • the moisture content of the sludge discharged from a sewage treatment plant is 80 ⁇ 93%,
  • the material feeder is fed into the preparation tank; the material feeder also has a stone filtering function.
  • the stirrer is started to be evenly stirred, it is sent to the heat exchange device for preheating by the feed pump; the heat source in the heat exchange device is derived from the reacted fluid of the heat preservation container.
  • the unreacted material fluid is preheated and sent to the heating device; the heating device is sleeve type (as shown in the figure) 4B), stainless steel, such as 304L, 316 or 316L.
  • the steam travels outside the channel, unreacted material flows into the inner tube channel and is heated to After 265 ⁇ 270 °C, it is sent to the first insulated container;
  • the first insulated container is a tube body similar to the shell-and-tube heat exchanger (shown in Figure 5), and the tubes are connected by elbows.
  • the flow rate in the tube of the first insulated container is 0.05m/s
  • the reaction material flowing out from the last section of the first insulated container is connected to the first circulating pump, and the fluid is circulated in the pipeline and the first insulated vessel by the action of the first circulating pump, and the sludge hydrothermal treatment can be added during the cycle.
  • the conditioning agent until the predetermined holding time is reached, at which time the second insulated container is in the discharge and feeding operation.
  • the feed pump and the corresponding pipeline are simultaneously started, and the feed and the discharge from the first heat preservation container are still sent to the first heat preservation container after heat exchange in the heat exchange device, and the next step is started.
  • Wheel heating and insulation operations The operation of the second insulated container is similar to that of the first insulated container, and the two are alternately fed and discharged to achieve continuous operation.
  • the reacted material from the heat exchange device is a carbonized sludge fluid, which is recycled after being subjected to the next liquid-solid separation treatment. In the process, under the action of the conditioning agent, the heavy metal contained in the sludge can be partially removed. Or stabilize. Insulation container with heat insulation fluid Hot smoke at 300 °C or superheated steam above 280 °C.
  • This embodiment uses the system shown in FIG.
  • the moisture content of the kitchen waste of a kitchen waste treatment plant is 80 ⁇ 85%,
  • the material feeder is fed into the preparation tank; the material feeder is provided with a filtering device to remove bones, hard thorns and stones. After starting the agitator with the blade and chopping function, the mixture is evenly stirred, and then fed to the heat exchange device for preheating by the feed pump; the suction port of the feed pump is located below the middle of the preparation tank; the bottom of the preparation tank is tapered to collect Fine sand.
  • the heat source in the heat exchange device is the material from the insulated container.
  • the heating device is a coiled tube heater (as shown in the figure) 4D), bent from a corrosion-resistant stainless steel tube such as ⁇ S 5*2.5 254SMO tube, externally heated with steam until the material is heated to 200 °C , the last section uses electric heating to heat the kitchen waste materials to 280 °C
  • feeding to the first heat preservation container feeding from the lower portion of the first heat preservation container until the predetermined liquid level is reached, the first circulation pump connected to the first heat insulation container is opened, and the material starts to circulate between the heating device and the first heat preservation container Until the upper limit liquid level is reached; at this time, the feeding is stopped and the heat is kept.
  • the first circulation pump becomes a discharge pump; the material is sent to the heat exchange device; the feed pump is opened at the same time, and the heating device is preheated by the heat exchange device, and finally sent to the second heat preservation container.
  • the cycle procedure similar to that of the first insulated container is repeated.
  • the upper exhaust valve of the first heat preservation container and the second heat preservation container are periodically opened to discharge the gas generated during the process, and the material discharged from the heat exchange device is sent to the next device for further disposal.
  • the reaction system of the present invention By using the reaction system of the present invention, the decomposition of persistent organic pollutants and the separation process of heavy metals in the particulate matter can be realized, and the hydrothermal reaction of the organic waste and the hydrothermal treatment of the sludge and the partial separation of the heavy metals can be realized.
  • the reaction process is safe, avoiding the safety hazard caused by scaling and corrosion of the large-sized partition wall heating surface, and the leakage problem that may occur due to the stirring of the large-sized high-pressure space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种用于进行水热反应的系统,该系统包括:加热装置(3),该加热装置(3)包括用于流体流经的流通元件以及用于加热流体的热源;和反应装置(4,5),该反应装置(4,5)包括用于保温的容器;容器与流通元件通过管道连通。以及一种用于进行水热反应的方法,该方法包括:加热包含用于进行水热反应的被反应物和水的流体;以及,将加热后的流体输送至能够保温的容器进行水热反应。

Description

一种用于进行水热反应的系统和方法
技术领域
本发明属于固体废弃物的无害化和资源化处理领域。具体地,本发明涉及一种用于进行水热反应的系统,特别是用于焚烧飞灰、污泥、生物质废弃物等固体废弃物的无害化和资源化处理的水热反应,尤其是连续和半连续运行的水热反应。本发明还涉及用于进行水热反应的方法。
背景技术
水热反应是被反应物与水混和后在一定温度和压力下的反应,是污染物治理、生物质类废弃物稳定化和资源化的重要反应模式,因其反应高效、二次污染可完全避免,应用越来越广泛。如焚烧飞灰、被污染的土壤等颗粒物中含有的持久性有机污染物 ( 简称 POPs) 的消除和重金属的分离或者稳定化、污泥的水热干化和水热调节、有机生物质垃圾的水热稳定化、有机物的高温水解反应均是在高温、高压下进行的水热反应。然而水热反应一般需要一定的停留时间以保证反应完全,使目前水热反应大都在压力容器中批次完成,虽然现有技术采用了多个平行的压力容器反应器实现了水热反应的连续化或者半连续化,但是作为反应器的压力容器同时又是加热器,使反应系统很不安全。
新发展的去除颗粒物中所含有的持久性有机污染物的方法有超临界流体萃取 (SCFE) 、超临界水氧化 (SCWO) 法、水热处理法等,如发明专利 ZL200510075433.4 公开了一种超临界水氧化法,对于处理含毒性有机物的废物溶液非常有效。在超临界反应条件下 (T c ,≥373.95℃, P C ≥220.64bar) , 有机物、氧和水形成了单一的均相,以使氧化反应迅速地进行,从而有效地销毁如 PCDD/Fs 之类的有机物 ; 中国专利 200710040771.3 公布了一种垃圾焚烧飞灰的水热处理方法,利用肼类物质分解产氢,并对二恶英类污染物进行加氢脱卤;发明专利申请 PCT/CN2011/073562 公开了 一种在颗粒物 / 水的混合物中同时添加 Fe2+ 和 Fe3+ 盐以形成 FexOy ,并在水热反应条件下催化降解所含持久性有机污染物的处理方法然而当该技术用于工程设计和操作运行时,现有的实施装置--大型的罐式批处理反应器既要对物料加热、又要保温;成本高、维护困难。
对生物质类物质进行水热反应可以制取氢、生物油并将生物质有机废弃物稳定化,例如申请号 / 专利号为 200680054674 公布了有机性废弃物的资源化系统,使用批处理反应器;发明专利申请 200910265487.5 公布了一种用于污泥水热反应的卧式反应釜;发明专利申请 200780052294.0 公开了一种通过水热碳化而实现生物质湿热化学转化的方法;发明专利申请 201010128949.1 公开了一种生物质水热液化生产燃料油的方法。实现上述工艺的反应器系统均为水热反应系统,但是由于反应器集加热和反应于一体,导致目前在大型化和安全可靠方面均存在不足,例如:制造材料要求高,大型高压罐体,即反应器本身作为加热面一方面很不安全;另一方面加热面积有限,加热速率慢因而影响了反应速度、降低了系统效率。另外含颗粒物流的水热处理需要连续不断的搅拌以保持颗粒物在液相中均匀分布,而现有的大型高压罐体内的搅拌常用磁力搅拌,在温度升高时都需要冷却系统防止磁性消失,系统非常复杂。
鉴于现有的水热反应系统不能满足安全的、高效的、大型化的处理要求,为了更经济、安全、高效地利用水热反应连续处理或半连续式地大批量处理污染性颗粒物或者对生物质废弃物进行稳定化与资源化,本发明提出一种安全、可靠的、可以连续或者半连续运行的水热反应系统及方法以实现含颗粒物流体的水热处理。
发明内容
本发明的一个目的是提供一种 用于进行水热反应的系统,所述系统包括:
加热装置,所述加热装置包括用于流体流经的流通元件以及用于加热所述流体的热源;和
反应装置,所述反应装置包括用于保温的容器;所述容器与所述流通元件通过管道连通。
本发明的另一个目的是提供一种用于进行水热反应的方法,所述方法包括:加热包含用于进行水热反应的被反应物和水的流体;以及,将加热后的流体输送至能够保温的容器进行水热反应。
这里所说的流体可以含有用于进行水热反应的被反应物和水,例如,包括焚烧飞灰或被污染的土壤等颗粒物的水热反应体系。本发明所提供的系统和方法中的流体优选颗粒物与水、以及 处理药剂 混合的浆状混合物流体;其中,颗粒物优选粉体、泥浆状颗粒物、生物质碎片,颗粒物的尺寸不超过 30mm 。液固比质量比优选为 1.8 : 1 ~10:1 ,更优选为 2.8 : 1 ~ 4.4:1 。
采用本发明所提供的用于进行水热反应的系统或方法可以使水热反应中的加热和反应的步骤分开进行,由于不需要对容器,即反应器 本身进行加热,这就避免了加热反应器带来的安全性问题,而且降低了反应器的制造成本。
本发明所提供的系统中的加热装置包括 用于流体流经的流通元件以及用于加热所述流体的热源。当流体流经加热装置的流通元件时,被热源加热,再输送至反应装置进行水热反应。也就说,加热装置的主要作用是使流体升温至水热反应所需的温度。这里,流通元件可以是包括管、腔、室等各种能容纳一定量的流体的结构的元件,例如,列管式加热器、盘管式加热器、蛇形管加热器、套管式加热器、螺旋板加热器等;具体地,流通元件可以是列管式加热器(例如无壳式和管壳式)、盘管式加热器、蛇形管加热器的流通管道,流通元件也可以是套管式加热器的内套管,流通元件还可以是螺旋板加热器的螺旋通道。热源可以是任何能加热流通元件中的流体的热源,例如,可以从流通元件的外部进行加热,比如高温烟气、熔盐、蒸汽、电加热元件等,其中,高温烟气优选来自炉膛或者烟道的高温烟气;蒸汽优选来自锅炉、蒸汽管网或者排放的蒸汽。将流通元件设置在高温烟气、熔盐、蒸汽中便可以实现加热的目的,或将电加热元件设置在流通元件周围也可以实现加热的目的,例如,在套管式加热器的外套中、蛇形管加热器的外壁覆盖一层电加热丝或电加热棒。也可以从流通元件的内部进行加热,比如设置在流通元件内部的电热管或能够输送至流通元件内部的蒸汽。加热装置的一种优选的实施方式是 暴露于高温烟气中或者熔盐中的列管式加热器或者盘管式加热器或者蛇形管加热器;使用蒸汽作为 热源 时,流通元件优选列管式加热器、套管式加热器或螺旋板加热器;使用电热元件作为 热源 时,流通元件优选套管式加热器或者蛇形管加热器。 在本发明所提供的用于进行水热反应的方法中,加热方式也可以为:使所述流体流经选自列管式加热器、盘管式加热器、蛇形管加热器、套管式加热器或螺旋板加热器的流通元件,并通过选自高温烟气、熔盐、蒸汽或电加热元件的热源进行加热 。 加热装置可以被配置成根据需要一次性将流体(例如颗粒物 / 液相混合物)加热到预定温度,也可以配置成通过多次循环加热使流体达到预定温度,从而减少加热装置的加热面积。
本发明所提供的系统中的反应装置 包括用于保温的容器;本发明所提供的方法包括将加热后的流体输送至能够保温的容器进行水热反应。容器的主要作用是给流体提供足够的容量,以及提供足够的反应时间。容器主体可以为罐体、管体或其它能容纳所需要的量的流体的结构。例如,容器主体可以是圆柱形或者球形的罐体,罐体可以安装有必要的料位显示与控制元件和 / 或压力显示与控制元件和 / 或温度显示元件;罐体也可以与用于添加试剂或药剂的管道和 / 或阀门连通;罐体的底部也可以与用于排尽物料的管道和 / 或阀门连通。容器主体也可以是类似管壳式换热器的列管。容器的保温功能可以通过各种方式实现。例如,容器是外壁覆盖有保温材料的罐体,或者容器是外壁覆盖有保温材料并设置有能够伴热的热源,如电加热器的罐体,或者容器是利用热流体进行伴热的管体,如在类似管壳式换热器的列管的管体周围流通有温度略高于或等于进行水热反应的流体的烟气或蒸汽。容器可以设置独立的进口和出口,进口用于加热后的流体进入容器,通过管道与加热装置的流通元件连通;出口用于反应后的流体流出容器。当容器为罐体时,优选地,容器的进口在重力方向上位于出口的下部;更优选地,容器的进口位于罐体的底部,容器的出口位于罐体的顶部。在进行水热反应的过程中,容器的进口和出口的用途也可以根据需要做相应的变换。例如,可以使流体从位于上部的出口进入罐体,使流体从位于下部的进口流出罐体;与上部的出口连通的管道还可以通过管道与用于添加试剂或药剂的支管连通;当最后排放罐体中的流体时,也可以通过位于下部的进口排放流体。当容器为罐体时,罐体内部可以设置磁力搅拌元件,也可以不设置磁力搅拌元件。当罐体内部不设置磁力搅拌元件时,为了防止罐体中的颗粒物发生沉淀,可以使罐体中的流体通过连通罐体的进口和出口的管道进行循环,这样,也可以进一步降低罐体的制造成本。
当本发明的加热装置被配置成通过多次循环加热使流体达到预定温度时,所述容器的出口可以与所述流通元件的进口通过管道连通,所述容器的进口与所述流通元件的出口通过管道连通,以形成循环管路。这样,便可以将流体输出所述容器,重新流经加热装置进行加热,以通过在加热装置和容器之间进行多次循环的方式进行加热。本发明所提供的方法也可以包括:使流体多次循环流经流通元件。
本发明所提供的系统还可以包括换热装置, 与容器的出口通过管道连通。 所述换热装置包括换热元件,如 套管式换热器、螺旋板换热器或者管壳式换热器,优选套管式换热器。换热装置用于将从容器的出口排出的流体,即进行水热反应后的流体的热量传递给需要加热的其它液体,例如流经加热装置前,即加热前的流体,或者反应前的水。这样,既可以节约一定的热量,又可以使反应后的流体迅速冷却,避免了输送过程中物料中液固分离,从而有利于直接排出或进一步处理,保证系统的畅通和稳定。本发明所提供的方法还可以包括:使进行水热反应后的流体流经这里所说的换热装置。
本发明所提供的系统还可以包括用于混合被反应物和水的混合装置,所述被反应物和水用于进行水热反应,所述混合装置与所述流通元件的进口通过管道连通。在一个优选的实施方式中,所述混合装置包括备料罐和搅拌器,在一个更优选的实施方式中,所述混合装置包括备料罐和具有切碎备料功能的搅拌器。被反应物,如焚烧飞灰、受污染的土壤、生物质等的颗粒物,和水或溶液在备料罐中通过搅拌器混合,甚至切碎备料,形成流体,然后输送至加热装置,或经由换热装置后再输送至加热装置。
为了实现水热反应的连续或半连续进行,本发明所提供的系统可以包括多个反应装置,即两个或两个以上的反应装置,优选两个或三个反应装置。多个反应装置以并联的方式安装于本发明所提供的系统中。例如,当该系统包括两个反应装置时,连通两个反应装置的容器的进口的管道与连通加热装置的流通元件的出口的管道通过管道分支连通;连通两个反应装置的容器的出口的管道与连通换热装置的管道通过管道分支连通。本发明所提供的方法可以包括:将加热后的流体分别输送至多个容器。
在本发明所提供的系统中,可以根据需要在管路中安装相应的泵和 / 或阀门。也就是说,本发明所提供的系统可以安装由能驱动流体在所述系统的整个管路中运行的一个或多个泵;本发明所提供的系统也可以安装能控制分别包括各个装置的管路进行独立的开启和关闭的阀门。
与批式处理反应器 采用大尺寸间壁式加热面相比,本发明采用管式加热器,或者螺旋板加热器,或者套管式加热器,并用泵送的方式,使含 颗粒物流(如飞灰和水的混合物料)得以充分混合、不需要搅拌,在管子中或者螺旋板中边前进边加热,避免了搅拌装置所需的密封设计、避免了盐可能析出而在壁面结垢给反应器的维护造成困难。特别是管子加热面或者螺旋板加热面与容积式反应罐相比,耐压能力大为提高。而系统中较大容积的保温器不承担加热的任务,物料的连续进出与循环避免了罐中需要搅拌器将物料混合均匀,整个压力系统的可靠性大为提高。
附图说明
图 1 是本发明所提供的系统的第一种具体实施方式的示意图。
图 2 是本发明所提供的系统的第二种具体实施方式的示意图。
图 3 是本发明所提供的系统的第二种具体实施方式的示意图。
图 4 是本发明的加热装置除列管式加热器以外的其它四种具体实施方式的示意图。
图 5 是本发明的能够保温的容器的一种具体实施方式的示意图;其中,图 5A 是用于伴热的热流体的流通示意图,箭头示出热流体的流通方式;图 5B 是该容器的横截面示意图,箭头示出进行水热反应的流体的流通方式;图 5C 是列管连接方式的示意图,箭头示出进行水热反应的流体的流通方式。
具体实施方式
图 1 示出了本发明所提供的系统的一种具体实施方式。如图 1 所示,该具体实施方式的系统包括混合装置 1 、换热装置 2 、加热装置 3 、第一反应装置 4 、第二反应装置 5 。其中,混合装置 1 包括备料罐、搅拌器、物料进料器;加热装置 3 为列管式加热器;换热装置 2 为换热器;第一反应装置 4 包括第一保温容器;第二反应装置 5 包括第二保温容器,第一保温容器和第二保温容器 是外壁覆盖有保温材料并分别设置有第一伴热器和第二伴热器的主体为圆柱形的罐体, 第一保温容器和第二保温容器分别设置有独立的进口和出口,进口位于罐体的底部,出口位于罐体的顶部。出口 与用于添加试剂或药剂的管道和阀门连通。 该具体实施方式的系统还包括进料泵 6 、第一循环泵 7 、第二循环泵 8 。
在该具体实施方式的系统中,通过设置相应的管道连接和阀门,可以实现流体的如下运行:
流体的运行线路一:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第一反应装置的进口 → 在第一反应装置中保温至所期望的时间 → 第一反应装置的出口 → 第一循环泵 → 换热装置 → 排出
流体的运行线路二:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第二反应装置的进口 → 在第二反应装置中保温至所期望的时间 → 第二反应装置的出口 → 第二循环泵 → 换热装置 → 排出
流体的运行线路三:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第一反应装置的进口 → 流体在第一反应装置中达到所期望的容积 → 第一反应装置的出口 → 第一循环泵 → 加热装置 → 在加热装置和第一循环泵之间循环加热至所期望的温度和时间 → 第一反应装置的进口 → 第一反应装置的出口 → 第一循环泵 → 换热装置 → 排出
流体的运行线路四:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第二反应装置的进口 → 流体在第二反应装置中达到所期望的容积 → 第二反应装置的出口 → 第二循环泵 → 加热装置 → 在加热装置和第二循环泵之间循环加热至所期望的温度和时间 → 第二反应装置的进口 → 第二反应装置的出口 → 第二循环泵 → 换热装置 → 排出
流体的运行线路五:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第一反应装置的进口 → 第一反应装置的出口 → 第一循环泵 → 加热装置 → 在加热装置和第一反应装置之间循环加热至预定温度 → 第一反应装置的进口 → 第一循环泵 → 第一反应装置的出口 → 第一反应装置 → 通过第一循环泵的作用使流体在管道和第一反应装置中循环至预定时间 → 第一反应装置的进口 → 换热装置 → 排出
流体的运行线路六:混合装置 → 进料泵 → 换热装置 → 加热装置 → 第二反应装置的进口 → 第二反应装置的出口 → 第二循环泵 → 加热装置 → 在加热装置和第二反应装置之间循环加热至预定温度 → 第二反应装置的进口 → 第二循环泵 → 第二反应装置的出口 → 第二反应装置 → 通过第二循环泵的作用使流体在管道和第二反应装置中循环至预定时间 → 第二反应装置的进口 → 换热装置 → 排出
流体的运行线路七: 第一反应装置的进口 → 换热装置 → 排出
流体的运行线路八: 第二反应装置的进口 → 换热装置 → 排出
其中:
( 1 )运行线路一和二的特点是流体一次性加热到所期望的温度并在容器中进行水热反应,为了 防止容器中的颗粒物发生沉淀,可以在罐体内部设置磁力搅拌元件。 运行线路一和二的合并使用可以实现水热反应的连续化或半连续化。
( 2 )运行线路三和四的特点是多次循环加热到所期望的温度,水热反应进行的同时,容器中的流体仍然处于循环之中,这样可以 防止容器中的颗粒物发生沉淀,当加热装置的热源为高温烟气时,也可以防止加热装置温度过高被烧毁。 运行线路三和四的合并使用可以实现水热反应的连续化或半连续化。在此线路中,伴热器不需要工作。
( 3 )运行线路五和六的特点是多次循环加热到所期望的温度,随着水热反应进行的同时,容器中的流体仍然处于循环之中,循环方式流体依次通过位于罐体顶部的出口、罐体内部、位于罐体顶部的出口、循环泵,然后再到罐体顶部的出口进行循环,而不通过加热装置进行循环,这样可以 防止容器中的颗粒物发生沉淀;当加热装置的热源为电加热元件和蒸汽时,电加热元件和蒸汽可以停止工作。 运行线路五和六的合并使用可以实现水热反应的连续化或半连续化。
( 4 )运行线路七和八的特点是可以使罐体中的流体排放得更加充分,运行线路气可以合并到运行线路一或五;运行线路八可以合并到运行线路二或六。
( 5 )运行线路一、三、五中的任意一种和运行线路二、四、六中的任意一种进行合并使用也可以实现水热反应的连续化或半连续化。
( 6 )本发明所提供的系统的流体的运行线路可以包括以上情况,但不限于以上情况。
在这里,第一循环泵和第二循环泵又具有排料泵的功能。同时设置两个反应装置可以实现水热反应的连续或半连续进行。其中,所采用的阀门优选电动闸阀或者电动截止阀;循环泵优选螺杆式渣浆泵或耐磨耐高温渣浆泵。
图 2 示出了本发明所提供的系统的另一种具体实施方式。如图 2 所示,与图 1 所示的系统所不同的是,本实施方式的系统的换热装置不是设置于混合装置和加热装置之间,而是设置于混合装置的上游,这样设置可以用换热装置加热混合前的水。
图 3 示出了本发明所提供的系统的又一种具体实施方式。如图 3 所示,与图 2 所示的系统所不同的是, 本实施方式的系统包括三个反应装置。
图 4 示出了本发明的加热装置另外四种具体实施方式。除了采用图 1-3 所示的列管式加热器的实施方式之外,本发明的加热装置也可以采用图 4 所示的实施方式。如图 4A 所示,流通元件为 盘管式加热器,热源为高温烟气、熔盐、蒸汽或者电加热元件;如图 4B 所示,流通元件为套管式加热器(用于进行水热反应的流体在内套管流通),热源为外套管中流通的热流体,热流体为高温烟气或蒸汽;或者是布置在外套管中的电加热元件。如图 4C 所示,流通元件为螺旋板加热器的螺旋通道;热源在另外的螺旋通道的热流体,热流体为高温烟气或蒸汽; 如图 4D 所示,流通元件为 蛇形管加热器,热源为高温烟气、熔盐、蒸汽或者电加热元件。
图 5 示出了本发明的容器的一种具体实施方式。本发明的能够保温的容器除了可以采用图 1 所示的保温容器,即罐体的形式之外,也可以采用管体的形式。如图 5 所示,容器类似 管壳式换热器,换热器中的列管用于进行水热反应的流体的储存和流通;换热器的壳体为圆柱形薄壳,与常规管壳式换热器的壳体不同,它不承压,内部流通有能够伴热的热流体,例如,温度略高于或等于进行水热反应的流体的烟气或蒸汽。保温容器可以被配置成储存 5~30min 内通过加热装置的被反应流体的总量。与罐体容器类似,该管体容器也连接用于添加试剂或药剂的分支管道和阀门,这样可以送入所需的药剂。
下面通过具体实施例来详细说明本发明的实施方案和效果。
实施例 1
本实施例采用图 2 所示的系统,加热器改为蛇形管加热器。
某一座 1000t/d 垃圾焚烧厂产生的飞灰中含有二恶英、重金属和高浓度盐分,尤其是含有 Cl 离子,利用本 发明技术处理时,先经过清水洗涤,并将石子沉淀分离,洗涤后的飞灰经过 物料进料器进入备料罐。用于配灰浆的 水先经换热装置预热后再送入 备料罐,与飞灰混合形成灰浆。换热装置中的热源来自保温容器的物料。 类似 PCT/CN2011/073562 所公开的可溶性的亚铁盐和铁盐以固体形式经过 物料进料器先后进入备料罐,启动搅拌器搅拌均匀。灰浆由进料泵送入加热装置;加热装置是置于焚烧炉 550~650 ℃温区的 烟道内的蛇形管加热器,由耐腐蚀不锈钢管例如 Φ 45*3 的 2205 双相不锈钢管子弯曲而成,单排管长 30m ,共有 5 排,进入端有分配集箱,出口端有汇集集箱。灰浆在管内的流速为 0.5m/s 左右(启动时流速达 0.80m/s 以上),自出口集箱送到第一保温容器;自第一保温容器的下部送入,直至到达预定液位后,与第一保温容器连接的第一循环泵打开,物料开始在加热装置和第一保温容器间循环,直至达到上限液位;此时进料泵停止送料,仅循环泵工作,使物料在加热器和第一保温容器之间循环,全部物料循环 5 次以后到达 260 ℃~293℃的预定温度 。此后维持此循环直到达到预定的反应时间(在此过程中伴热器不需工作),例如维持预定温度 30~60min 后,物料排入换热装置,与此同时进料泵启动送料,通过加热装置后送入第二保温容器,在第二保温容器和加热装置之间进行循环,直至反应完成。第一保温容器和第二保温容器的工作容积均为 5m3 。物料排出后在经过换热装置冷却的同时压力也下降,排出的物料,经过处理后飞灰中二恶英浓度降低 90% 或以上(等毒性当量),送入下一步利用或者处理步骤。本系统的优点是加热装置只需要很少的加热面积;而保温容器用普通不锈钢甚至可以用碳钢制造而仍然安全。
实施例 2
本实施例采用图 2 所示的系统。
某两城市之间设一座医疗废物焚烧炉飞灰处置站,用于处理两个城市产生的医废焚烧飞灰约 2.8~3t/d 。医废焚烧飞灰中含有二恶英、重金属和高浓度盐分,尤其是含有 Cl- ,利用本 发明技术处理时,未经任何预处理的飞灰与 PCT/CN2011/073562 所公开的可溶性的亚铁盐和铁盐的任何一种、这里优选为铁盐按计量混合后经过 物料进料器进入备料罐。用于配灰浆的 水先经过 换热装置预热后, 送入 备料罐;换热装置中的热源来自保温容器的物料。启动搅拌器搅拌使水与飞灰混合形成灰浆,随后再加入另一种亚铁盐的溶液,搅拌均匀后,由进料泵送入加热装置;加热装置是置于 450 ℃的 熔盐中的盘管式加热器(如图 4A 所示),由 Φ 38*3.5 的耐腐蚀不锈钢管例如 254SMO 管子弯曲而成,管长 30 米,单管进出。飞灰 / 水混合物即物料加热后送到第一保温容器;自第一保温容器的下部送入,直至到达预定液位后,与第一保温容器连接的第一循环泵打开,物料开始在加热装置和第一保温容器之间循环,直至达到上限液位;此时停止送料泵,仅循环泵工作,物料在第一保温容器和加热装置之间循环;全部物料平均循环 2.36 次加热到 292 ℃ 以后,保温 30~60min (在此过程中伴热器不需工作),然后将物料排出,送入换热装置,物料在冷却的同时压力也下降,处理后的飞灰送入下一步利用或者处理步骤。与此同时进料泵打开,物料送入加热装置后再送到第二保温容器,重复上述过程。第一保温容器和第二保温容器的工作容积均为 1.0m3 。本反应系统利用一段 254SMO 管子和 2 个 316 或者 316L 的不锈钢的保温容器相配合,方便、经济地解决了 2 个大型城市医废焚烧飞灰的问题。
实施例 3
本实施例采用图 3 所示的系统。第一保温容器、第二保温容器、第三保温容器的容积均为 5m3 ,其它与实施 1 所采用的系统相同。
某一座 1500t/d 垃圾焚烧厂产生的飞灰中含有二恶英、重金属和高浓度盐分,尤其是含有 Cl 离子 。
当第一保温容器在到达预定温度后保温以维持特定的反应时间如 60min 时,关闭第一进料回路、第一循环回路、第一排料回路;而此时启动进料泵进料到加热装置,再到第二保温容器,此后在第二保温容器和加热装置之间进行循环;当第二保温容器到达预定反应时间出料时,启动进料泵,物料经过加热装置后进入第三保温容器。本实施例与其它实施例相比,当维持一个保温容器的反应时间时,并不耽搁其它保温容器的进料和循环,因而在不改变任何条件下只需要加一个保温容器及其对应的循环泵、阀系统,就可以实现被反应流体的处理容量增加 50% 。
实施例 4
本实施例采用图 1 所示的系统。
某污水处理厂的排出的污泥水分含量 80~93%, 自 物料进料器送入备料罐;物料进料器同时具备石子过滤功能。启动搅拌器搅拌均匀后,由进料泵送入换热装置预热;换热装置中的热源是来自保温容器的物料。物料预热后送入加热装置;加热装置是螺旋板式(如图 4C 所示),不锈钢材质,例如 304L , 316 或者 316L 。由 180 ℃的蒸汽 加热,蒸汽走上下通道,污泥进入螺旋通道,加热到 165~170 ℃ 以后送到第一保温容器;自第一保温容器的下部送入,直至到达预定液位后,与第一保温容器连接的第一循环泵打开,物料开始在加热装置和第一保温容器间循环,直至达到上限液位;此时关闭进料泵,使物料在加热装置和第一保温容器间循环,循环 10min 后开始排料;污泥送入换热装置冷却后再进入下一步的液固分离装置。同时启动进料泵,物料自换热装置再到加热装置,送入第二保温容器,当第二保温容器到达预定的料位上限后,启动与第一保温容器相同的循环与排料程序。第一保温容器和第二保温容器的外侧均有保温,并有伴热器,伴热器是 2KW 的电加热器,仅在物料温度低于 165 ℃ 以下时启动。本系统如果采用 图 3 所示的包括三个反应装置的系统,则可以实现 污水处理厂排出污泥的水热处理的连续化。
实施例 5
本实施例采用图 1 所示的系统,但保温容器换成图 5 所示的利用热流体进行伴热的管体。
某污水处理厂的排出的污泥水分含量 80~93% , 自 物料进料器送入备料罐;物料进料器同时具备石子过滤功能。启动搅拌器搅拌均匀后,由进料泵送入换热装置预热;换热装置中的热源来自保温容器的反应后的流体。未反应的物料流体预热后送入加热装置;加热装置是套管式(如图 4B 所示),不锈钢材质,例如 304L , 316 或者 316L 。用 6MPa 的蒸汽加热,蒸汽走管外通道,未反应的物料流进内管通道,加热到 265~270 ℃ 以后送到第一保温容器;第一保温容器为类似管壳式换热器(如图 5 所示)的管体,各管之间用弯头连接。在第一保温容器的列管内的流速为 0.05m/s ;自第一保温容器最后一段管流出的反应物料连接第一循环泵,通过第一循环泵的作用使流体在管道和第一保温容器中循环,并可以在此循环过程中加入污泥水热处理的调理剂,直到达到预定的保温时间,此时第二保温容器在进行排料和进料操作。第一保温容器内到达预定时间后同时启动进料泵和相应的管路,进料与来自第一保温容器的排料在换热装置中换热后仍旧送入第一保温容器,开始下一轮加热与保温操作。第二保温容器的工作与第一保温容器类似,二者交替进料与排料,实现连续运行。自换热装置出来的反应后的物料是已炭化的污泥流体,进入下一步液固分离处理后回收利用,在此过程中,在调理剂的作用下,污泥所含的重金属能部分去除或者稳定化。保温容器中伴热保温流体采用 300 ℃ 的热烟或者是 280 ℃以上 的过热蒸汽。
实施例 6
本实施例采用图 1 所示的系统。
某餐厨垃圾处理厂的餐厨垃圾水分含量 80~85%, 自 物料进料器送入备料罐;物料进料器带有过滤装置除去了骨头、硬刺和石子。启动带有刀片和切碎功能的搅拌器搅拌均匀后,由进料泵送入换热装置预热;进料泵的吸料口在备料罐的中部偏下;备料罐底部为锥形可以收集细沙。换热装置中的热源是来自保温容器的物料。物料预热后送入加热装置;加热装置是蛇管式加热器(如图 4D 所示),由耐腐蚀不锈钢管例如 Φ4 5*2.5 规格的 254SMO 管子弯曲而成,外部先用蒸汽加热,直至物料加热到 200 ℃ ,最后一段采用电加热将餐厨垃圾物料加热到 280 ℃ ,送到第一保温容器;自第一保温容器的下部送入,直至到达预定液位后,与第一保温容器连接的第一循环泵打开,物料开始在加热装置和第一保温容器间循环,直至达到上限液位;此时停止送料,保温 20~30min 后;打开相应管路,第一循环泵变成排料泵;将物料送入换热装置;同时打开进料泵,通过换热装置预热后送加热装置,最后送入第二保温容器,当第二保温容器到达预定的料位后,重复与第一保温容器类似的循环程序。第一保温容器、第二保温容器的上部排气阀定期开启以排放过程中产生的气体,自换热装置排出的物料送入下一装置等候进一步处置。
使用本发明的反应系统,可以实现颗粒物中的持久性有机污染物分解和重金属分离过程,也可以实现有机废物的水热反应和污泥的水热处理与重金属的部分分离。反应过程安全,避免了大尺寸的间壁式加热面因结垢、腐蚀带来的安全隐患,以及大尺寸高压空间实施搅拌可能出现的泄露问题。

Claims (19)

  1. 一种用于进行水热反应的系统,其特征在于,所述系统包括:
    加热装置,所述加热装置包括用于流体流经的流通元件以及用于加热所述流体的热源;和
    反应装置,所述反应装置包括用于保温的容器,所述容器与所述流通元件通过管道连通。
  2. 根据权利要求1所述的系统,其中,所述流体含有用于进行所述水热反应的被反应物和水。
  3. 根据权利要求1所述的系统,其中,所述流通元件选自列管式加热器、盘管式加热器、蛇形管加热器、套管式加热器或螺旋板加热器。
  4. 根据权利要求1所述的系统,其中,所述热源选自高温烟气、熔盐、蒸汽或电加热元件。
  5. 根据权利要求1所述的系统,其中,所述容器为外壁覆盖有保温材料的罐体。
  6. 根据权利要求1所述的系统,其中,所述容器为利用热流体进行伴热的管体。
  7. 根据权利要求1所述的系统,所述容器设置有独立的进口和出口,所述进口和出口之间通过管道连通。
  8. 根据权利要求1所述的系统,其中,所述容器设置有独立的进口和出口,所述进口在重力方向上位于所述出口的下部。
  9. 根据权利要求1所述的系统,其中,所述容器设置有独立的进口和出口,所述容器的出口与所述流通元件的进口通过管道连通,所述容器的进口与所述流通元件的出口通过管道连通。
  10. 根据权利要求1所述的系统,其中,所述系统还包括换热装置,与所述容器的出口通过管道连通。
  11. 根据权利要求6所述的系统,其中,所述换热装置包括换热元件,所述换热元件选自套管式换热器、螺旋板换热器或管壳式换热器。
  12. 根据权利要求1所述的系统,其中,所述系统还包括用于混合被反应物和水的混合装置,所述被反应物和水用于进行所述的水热反应,所述混合装置与所述流通元件的进口通过管道连通。
  13. 根据权利要求1所述的系统,其中,所述反应装置的数量为多个,多个反应装置通过并联的方式安装于所述系统中。
  14. 根据权利要求13所述的系统,其中,所述反应装置的数量为两个或三个。
  15. 一种用于进行水热反应的方法,其特征在于,所述方法包括:加热包含用于进行水热反应的被反应物和水的流体;以及,将加热后的流体输送至能够保温的容器进行水热反应。
  16. 根据权利要求15所述的方法,其中,所述的加热包含用于进行水热反应的被反应物和水的流体的加热方式为:使流体流经选自列管式加热器、盘管式加热器、蛇形管加热器、套管式加热器或螺旋板加热器的流通元件,并通过选自高温烟气、熔盐、蒸汽或电加热元件的热源进行加热。
  17. 根据权利要求16所述的方法,其中,所述的加热方式为:使流体一次或多次循环流经所述的流通元件。
  18. 根据权利要求15所述的方法,其中,所述方法还包括:使进行水热反应后的流体流经换热装置。
  19. 根据权利要求15所述的方法,其中,所述容器的数量多个,所述方法还包括:将加热后的流体分别输送至多个容器。
PCT/CN2012/070981 2012-02-09 2012-02-09 一种用于进行水热反应的系统和方法 WO2013117000A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/377,828 US9662623B2 (en) 2012-02-09 2012-02-09 System and method for hydrothermal reaction
PCT/CN2012/070981 WO2013117000A1 (zh) 2012-02-09 2012-02-09 一种用于进行水热反应的系统和方法
CN201280027622.2A CN103608099B (zh) 2012-02-09 2012-02-09 一种用于进行水热反应的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070981 WO2013117000A1 (zh) 2012-02-09 2012-02-09 一种用于进行水热反应的系统和方法

Publications (1)

Publication Number Publication Date
WO2013117000A1 true WO2013117000A1 (zh) 2013-08-15

Family

ID=48946895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070981 WO2013117000A1 (zh) 2012-02-09 2012-02-09 一种用于进行水热反应的系统和方法

Country Status (3)

Country Link
US (1) US9662623B2 (zh)
CN (1) CN103608099B (zh)
WO (1) WO2013117000A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018615A1 (zh) * 2016-07-29 2018-02-01 同济大学 一种利用高含水率有机废弃物制备燃气的方法和系统
US20210237014A1 (en) * 2014-07-11 2021-08-05 Ibj Technology Aps Method and apparatus for producing biofuel in an oscillating flow production line under supercritical fluid conditions
CN114797736A (zh) * 2022-04-07 2022-07-29 西安交通大学 一种具有梯级保温功能的管流式水热和溶剂热合成反应器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049368A1 (en) 2011-09-27 2013-04-04 Thermochem Recovery International, Inc. System and method for syngas clean-up
CN109070156B (zh) * 2016-02-16 2021-08-17 国际热化学恢复股份有限公司 两阶段能量集成产物气体发生系统和方法
MX2018011589A (es) 2016-03-25 2019-09-18 Thermochem Recovery Int Inc Sistema y metodo de generacion de gas producto de energia ntegrada de tres etapas.
US10364398B2 (en) 2016-08-30 2019-07-30 Thermochem Recovery International, Inc. Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas
GB2559583B (en) * 2017-02-09 2022-04-20 Phycofeeds Ltd Hydrothermal liquefaction reactor
CN112384070A (zh) * 2018-04-05 2021-02-19 沃咖啡公司 通过受控的真空对被提取的饮料(包括咖啡)的温度控制以及相关的系统和方法
CN109020133A (zh) * 2018-09-04 2018-12-18 天津百利机械装备集团有限公司中央研究院 一种污泥低温碳化系统及工艺方法
WO2020125900A1 (en) * 2018-12-17 2020-06-25 Aquarden Technologies Aps Intertwined coil heat exchanger
CN109553267A (zh) * 2019-01-17 2019-04-02 上海蓝州环保科技有限公司 一种有机物连续处理装置及其处理方法
EP3753999B1 (en) * 2019-06-19 2021-11-03 The Hong Kong Research Institute of Textiles and Apparel Limited Semi-continous hydrothermal reaction system
CN113137217B (zh) * 2020-01-20 2022-09-06 中国海洋石油集团有限公司 一种多元热流体发生并联系统及其启动方法
CN112246843B (zh) * 2020-10-21 2022-05-24 盐城工学院 一种垃圾焚烧飞灰处理的一体化装置及处理方法
CN112588217B (zh) * 2020-11-27 2022-08-09 湖南汉华京电清洁能源科技有限公司 超临界水氧化加热方法、装置和超临界水氧化系统
CN113429993B (zh) * 2021-07-26 2022-05-31 天津理工大学 一种连续水热液化系统和方法
CN114272854A (zh) * 2021-12-03 2022-04-05 中国农业大学 水热反应监控方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464861B1 (en) * 1999-11-01 2002-10-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Apparatus for treating flora and fauna waste with hydrothermal reaction
CN1446621A (zh) * 2003-04-18 2003-10-08 清华大学 管式高温高压水热反应装置
CN101851688A (zh) * 2010-06-10 2010-10-06 清华大学 生物质水热处理独立溶解和水解的半连续式反应系统
CN102093913A (zh) * 2011-01-11 2011-06-15 同济大学 水热共处理甘油和重油同时得到乳酸和轻质化油的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273118B2 (ja) * 1995-04-20 2002-04-08 東北電力株式会社 高圧処理装置
CN100344386C (zh) 1997-08-20 2007-10-24 株式会社东芝 废弃物处理方法
JP2008055285A (ja) 2006-08-30 2008-03-13 Fujimura Tsusho Kk 水蒸気の水成分と水蒸気の熱にて被処理物を水熱処理する水熱処理装置と方法
WO2008038361A1 (fr) 2006-09-28 2008-04-03 Eco Material Co., Ltd. système d'élimination des déchets organiques
EP2134821A1 (de) 2007-03-22 2009-12-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur nasschemischen umwandlung von biomasse durch hydrothermale karbonisierung
JP2008253861A (ja) * 2007-03-30 2008-10-23 Bussan Food Science Kk バイオマス処理用連続式高圧水熱反応装置
CN101050862B (zh) 2007-05-17 2010-12-01 同济大学 一种垃圾焚烧飞灰的水热处理方法
FI122817B (fi) * 2008-12-19 2012-07-13 Upm Kymmene Corp Menetelmä, järjestelmä ja käyttö lämmönvaihtoa varten
CN102108002B (zh) 2009-12-29 2012-10-10 北京机电院高技术股份有限公司 一种用于污泥水热反应的卧式反应釜
DE102010000578A1 (de) * 2010-02-26 2011-09-01 G+R Technology Group Ag Reaktor zur hydrothermalen Karbonisierung von Biomasse und Verfahren zum Betrieb des Reaktors
CN101805629B (zh) 2010-03-22 2014-03-26 华东理工大学 生物质水热液化生产燃料油的方法
WO2012145930A1 (zh) 2011-04-29 2012-11-01 同济大学 一种颗粒物中所含持久性有机污染物的处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464861B1 (en) * 1999-11-01 2002-10-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Apparatus for treating flora and fauna waste with hydrothermal reaction
CN1446621A (zh) * 2003-04-18 2003-10-08 清华大学 管式高温高压水热反应装置
CN101851688A (zh) * 2010-06-10 2010-10-06 清华大学 生物质水热处理独立溶解和水解的半连续式反应系统
CN102093913A (zh) * 2011-01-11 2011-06-15 同济大学 水热共处理甘油和重油同时得到乳酸和轻质化油的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210237014A1 (en) * 2014-07-11 2021-08-05 Ibj Technology Aps Method and apparatus for producing biofuel in an oscillating flow production line under supercritical fluid conditions
WO2018018615A1 (zh) * 2016-07-29 2018-02-01 同济大学 一种利用高含水率有机废弃物制备燃气的方法和系统
CN109642163A (zh) * 2016-07-29 2019-04-16 同济大学 一种利用高含水率有机废弃物制备燃气的方法和系统
US10611657B2 (en) 2016-07-29 2020-04-07 Tongji University Method and system for preparing fuel gas by utilizing organic waste with high water content
CN114797736A (zh) * 2022-04-07 2022-07-29 西安交通大学 一种具有梯级保温功能的管流式水热和溶剂热合成反应器

Also Published As

Publication number Publication date
US9662623B2 (en) 2017-05-30
CN103608099B (zh) 2017-02-22
US20140364676A1 (en) 2014-12-11
CN103608099A (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2013117000A1 (zh) 一种用于进行水热反应的系统和方法
JP3297680B2 (ja) 超臨界反応装置及び方法
KR102048220B1 (ko) 회수 증기의 재순환이 있는 연속적인 열적 가수분해의 방법 및 장치
US4509434A (en) Procedure and equipment for destroying waste by plasma technique
US20110294083A1 (en) Molten Salt Treatment System and Process
CA3090902A1 (en) An environmentally friendly remediation method and system combined with soil washing and thermal desorption for treating high-concentration oil sludge
US6475396B1 (en) Apparatus and method for applying an oxidant in a hydrothermal oxidation process
WO2012144792A2 (ko) 유기물의 분해 장치 및 그를 이용한 유기물의 분해 방법
CN109305722B (zh) 一种分级注氧的超临界水氧化系统及基于该系统的废水和/或污泥处理方法
AU2002338425A1 (en) Process for hydrothermal treatment of materials
WO2002085796A1 (en) Process for hydrothermal treatment of materials
CN105601017A (zh) 一种高浓度有机废水及污泥的近零排放处理系统及方法
CN106745417A (zh) 废液处理系统
JP2004269755A (ja) 油化プラント
JPH06501644A (ja) シアン化物含有液の加水分解のための装置及び方法
KR100599377B1 (ko) Pvc가 혼합된 고분자 폐기물로부터 염소분 제거를 위한간접 가열식 탈염시스템
CN114042743A (zh) 一种熔盐循环式异位间接热脱附土壤修复系统及方法
CN106517446A (zh) 高危废液处理装置
JP3836270B2 (ja) 超臨界水反応装置の運転停止方法
CN206556030U (zh) 含盐废水处理系统
JP2002119996A (ja) し尿および/または浄化槽汚泥の処理方法および装置
JP2004290819A (ja) 高温高圧処理装置
CN204400792U (zh) 一种污泥处理反应器
JP2001259696A (ja) し尿および/または浄化槽汚泥の処理方法および装置
JP2002273482A (ja) し尿および/または浄化槽汚泥の処理方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14377828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.10.2014)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-02-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12868311

Country of ref document: EP

Kind code of ref document: A1