CN109020133A - 一种污泥低温碳化系统及工艺方法 - Google Patents

一种污泥低温碳化系统及工艺方法 Download PDF

Info

Publication number
CN109020133A
CN109020133A CN201811025376.2A CN201811025376A CN109020133A CN 109020133 A CN109020133 A CN 109020133A CN 201811025376 A CN201811025376 A CN 201811025376A CN 109020133 A CN109020133 A CN 109020133A
Authority
CN
China
Prior art keywords
sludge
reaction kettle
carbonized
electronic converter
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811025376.2A
Other languages
English (en)
Inventor
黄威
姚成豪
高永全
付延军
王德智
曹建波
唐慧颖
赵轩
洪学明
冯慧泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACADEMIA SINICA TIANJIN BENEFO MACHINERY EQUIPMENT GROUP Co Ltd
Original Assignee
ACADEMIA SINICA TIANJIN BENEFO MACHINERY EQUIPMENT GROUP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACADEMIA SINICA TIANJIN BENEFO MACHINERY EQUIPMENT GROUP Co Ltd filed Critical ACADEMIA SINICA TIANJIN BENEFO MACHINERY EQUIPMENT GROUP Co Ltd
Priority to CN201811025376.2A priority Critical patent/CN109020133A/zh
Publication of CN109020133A publication Critical patent/CN109020133A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Abstract

本发明公开了一种污泥低温碳化系统及工艺方法,属于污泥处理技术领域,其特征在于:所述污泥低温碳化系统包括:初步过滤部分,该初步过滤部分对污泥进行初步过滤;加热部分,该加热部分将初步过滤后的污泥加热至碳化所需温度;碳化部分,该碳化部分将加热后的污泥进行碳化。所述初步过滤部分包括第一过滤器,该第一过滤器的输入端口与污泥源连通,该第一过滤器的输出端口通过输泥管路与加热部分的输入端口连通;在上述输泥管路上安装有污泥输送泵。通过采用上述技术方案,本发明能够显著地提高污泥处理效率、降低设备运行能耗,提高设备运行的可靠性和使用寿命,降低污泥处理的工艺要求。

Description

一种污泥低温碳化系统及工艺方法
技术领域
本发明属于污泥处理技术领域,尤其涉及一种污泥低温碳化系统及工艺方法。
背景技术
污泥的产生在人类活动过程中是不可避免的。污水处理产生的大量污泥的任意堆放和投弃对环境造成了新的污染。传统的填埋、堆肥工艺,由于二次污染、重金属污染等问题,使用场合受到很大限制;焚烧工艺由于污泥的高含水率,需要借助干化等工艺或者添加燃料才能实现能源的净输出。新兴的污泥低温碳化工艺以减量化明显、无害化彻底、能够资源再利用等优势,在污泥处置行业得到广泛关注和迅速发展。
污泥的粘壁特性与污泥的含水率密切相关,当污泥的含水率在60~35%之间时,为污泥的塑性阶段,具有胶粘相特征,此时污泥为胶状,粘稠,细颗粒与脱水时添加的高分子化合物形成联系异常紧密的团粒结构,能够有效固结水分,降低蒸发效率,干化能耗急剧增加,粘壁现象严重,很难干化。
污泥低温碳化工艺极大地降低了污泥和水的分离难度,经过热调理的污泥经浓缩和机械脱水后,泥饼的含水率可降至30%~45%。由于污泥低温碳化工艺没有汽化的发生,所以只通过消耗很少的能源即脱除了75%的水分。由于水的去除机理不同,污泥低温碳化工艺的能源消耗成本不到污泥干化工艺的一半;在运行维护中,污泥低温碳化技术较污泥干化技术而言,具有碳化产物可再利用和运行成本低等明显的技术和经济优势。
污泥低温碳化工艺是使污泥在一定压力下进行短时间加热,使污泥固体凝结,破坏凝胶体结构,减弱污泥颗粒与水的亲和力,从而释出污泥的结合水。低温碳化最节省能源。同时加热可对污泥进行消毒,杀死其中的致病微生物和寄生虫卵,并在一定程度上消除污泥的臭味。泥饼体积不到浓缩-机械脱水法所得泥饼的1/4。污泥处理后因通过一定温度和压力的作用,污泥的稳定化效果良好。有机质含量较高的市政污泥等都可以用来做碳化。污泥经碳化、脱水、干化后污泥体积最大化减小,运输方便。
污泥水解后能够将污泥水解后提取蛋白,蛋白液可以作氮肥的原料,也可以作工业原料,比如做发泡剂等,利润比堆肥产品高很多,在污泥资源化这方面很有竞争力。处理后的污泥或污泥产品用于农用以外的土地作为肥料或土壤改良材料,主要有用于园林、绿地、林业、土壤修复及改良等。污泥可用于制砖、制纤维板材、制熔融材料、制陶粒等。脱水污泥也可拿去填埋,对环境没有污染。干化污泥(含水量40%以下)可以拿去高炉焚烧,作为燃烧燃料。
发明内容
针对现有技术的缺陷,本发明提供一种高效、稳定、操控方便的污泥低温碳化系统及工艺方法。
本发明所采用的具体技术方案为:
一种污泥低温碳化系统,包括:
初步过滤部分,该初步过滤部分对污泥进行初步过滤;
加热部分,该加热部分将初步过滤后的污泥加热至碳化所需温度;
碳化部分,该碳化部分将加热后的污泥进行碳化。
本发明的工作原理为:本发明首先对污泥进行初步过滤,滤除污泥中的石块、塑料袋等固态杂质;然后对污泥进行加热,最后将加热的污泥进行碳化处理。
进一步,所述初步过滤部分包括第一过滤器,该第一过滤器的输入端口与污泥源连通,该第一过滤器的输出端口通过输泥管路与加热部分的输入端口连通;在上述输泥管路上安装有污泥输送泵。
更进一步,所述加热部分包括预加热单元和加热器;其中:
所述预加热单元包括换热器,该换热器包括第一介质回路和第二介质回路,所述第一介质回路的一端为加热部分的输入端口;所述第一介质回路的另一端与碳化部分的输入端口连通;所述第二介质回路的一端通过回流管路与碳化部分的输出端口连通;所述第二介质回路的另一端通过第二过滤器与过滤液存储罐连通。本发明在加热时,分为预加热和直接加热两步,预加热时采用碳化处理后的废热进行加热,这样能够极大地节约能源;
更进一步,所述碳化部分包括反应釜、向反应釜内注水的水容器,上述水容器通过输水管路与反应釜的入口连通。
更进一步,所述反应釜为两个,碳化部分的输入端口处安装有第一电动换流阀,第一电动换流阀的出口分别与两个反应釜的入口连通;碳化部分的输出端口处安装有第二电动换流阀,第二电动换流阀的入口分别与两个反应釜的出口连通,第一电动换流阀的入口为碳化部分的输入端口,第二电动换流阀的出口为碳化部分的输出端口。本发明采用两个反应釜进行交替工作,即当一个反应釜进行碳化反应时,向另一个反应釜进行污泥注入工序,这样能够极大地提高效率。
更进一步,在每个反应釜内设置有温度传感器和压力传感器,还包括接收每个温度传感器和压力传感器数据的中央控制器。本发明采用温度传感器和压力传感器能够对碳化的温度和压力进行准确测量,保证碳化的环境参数。
更进一步,所述水容器通过清洗管路分别与第一电动换流阀、第二电动换流阀和第一过滤器连接。本发明利用水容器和清洗管路能够对第一电动换流阀、第二电动换流阀和第一过滤器进行清洗,保证第一电动换流阀、第二电动换流阀和第一过滤器工作的准确性。
更进一步,在所述第一过滤器的入口侧和出口侧分别安装有电动阀、在所述污泥输送泵的入口侧安装有电动阀、在所述第二过滤器的两侧安装有电动阀、在每条清洗管路上安装有电动阀;所述中央控制器的I/O端子分别与每个电动阀、第一电动换流阀、第二电动换流阀、污泥输送泵电连接。本发明利用中央控制器能够控制系统的不同环节,通过中央控制器的协调统一控制,保证整个系统的正常工作。
一种污泥低温碳化系统的工艺方法,包括如下步骤:
S1、对污泥进行初步过滤;
S2、将污泥加热至碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化。
一种污泥低温碳化系统的工艺方法,包括如下步骤:
S1、对污泥进行初步过滤;
S2、将污泥加热至碳化所需温度;具体为:
输泥管路内的污泥首先与反应釜输出的泥水进行热交换,进而实现预热;随后预热后的污泥通过加热器加热后达到碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化;具体为:
S301、通过第一电动换流阀将污泥导入第一反应釜,随后向第一反应釜内注入水,使得第一反应釜内的压力到达预设值;污泥在第一反应釜内保温保压一定时间完成碳化;
S302、在第一反应釜开始进行碳化时,通过第二电动换流阀将污泥导入第二反应釜,随后向第二反应釜内注入水,使得第二反应釜内的压力到达预设值;污泥在第二反应釜内保温保压一定时间完成碳化。
本发明的优点及积极效果为:
通过采用上述技术方案,本发明具有如下的技术效果:
本发明能够显著地提高污泥处理效率、降低设备运行能耗,提高设备运行的可靠性和使用寿命,降低污泥处理的工艺要求。具体体现为:
本发明通过设置并联的两个反应釜,由两台电动换流阀对两个反应釜的输送和反应状态进行切换。另外通过水泵进行系统升压并通过单向阀进行保压,水泵的工作条件优良,设备的维护性好、成本低廉,泵仅仅起到升压作用,工作时间短,能耗低,不会产生污泥对设备的磨损问题。
电动换流阀关闭时可以先通入水,对阀门的阀芯和阀座进行冲洗,避免阀门接触面存在污泥造成关闭不严而磨损增大、反应釜压力降低的问题。而且阀门对双支路进行切换,一支路保压的情况下,另一条支路处于打开状态,同时,阀门设计关闭时有过载保护装置,结构设计简单,阀门运行可靠性高。
为了改善污泥的输送性能,降低污泥粘度,减少污泥输送过程中的压力损失,污泥进入碳化系统前需要稀释至含水率85-90%,即需要添加一定比例的稀释水,这样做实质是降低了系统的处理能力,增加了系统的能耗。现在采用的过滤器的过滤孔径约7mm左右,杂质去除不彻底,造成后续的高压柱塞泵、换热器和背压阀相关部件和部位的磨损。由于污泥输送泵和换热器都是低压状态,并且污泥输送泵是以柱塞的形式进行输送,对污泥的流动性要求低,污泥过滤器可以采用较大孔的过滤器,提高了设备的过滤效率、降低了压力损失、延长了自反冲的间隔时间、延长了设备的使用寿命。
换热器是低压状态,便于设备的设计和降低制造成本。换热器适应污泥低温碳化生产工艺要求,换热效率高、使用寿命长、可维护性好,保证系统热平衡,大大降低设备运行的能源消耗,降低污泥低温碳化处理的运行成本。
转毂带式过滤器结合离心和滤布的特点,过滤过程连续、效率高、维护量少。设计采用离心使污泥浓缩、对污泥施加压力将滤液挤压出滤带的方法。由于污泥中固体颗粒和水的密度不同,在高速旋转的离心机中,二者所受的离心力也不相同,从而使二者分离,污泥得到浓缩。其优点是效率高、需时短、占地少、缺点是能耗高。采用透气、透水但不透泥、易清洗、经压滤后的滤饼易剥离的滤带确保污泥脱水机正常工作并最大限度发挥效能。固液分离向浓缩-脱水一体机。
阀门、压力和温度传感器反馈到中央处理器自动控制,设备的自动化水平高。
污泥低温碳化是一种低成本污泥处理技术,一方面是投资成本低,由于它的技术简单、工艺流程短,工艺中使用的绝大部分设备为中国目前已经比较成熟的设备(如换热器,反应釜,泵等),使得该技术的投资大大减少;另一方面是运行成本低,通过连续运行中的热量回收,污泥实际的净升温不超过100℃,整个工艺中污泥中的水分不蒸发,避免了蒸发热所需要的大量能量;污泥低温碳化工艺占地面积很小。
附图说明
图1是本发明优选实施例的结构原理图;
其中:1、污泥池;2、电动截止阀;3、自反冲污泥过滤器;4、污泥输送泵;5、单向阀;6、流量计;7、压力表;8、换热器;9、加热炉;10、加热器;11、中央控制器;12、污泥手动阀;13、转毂带式过滤器;14、过滤固体物;15、过滤液存储罐;16、第一传感器组;17、第一反应釜;18、第一电动换流阀;19、第二电动换流阀;20、第二传感器组;21、第二反应釜;22、清水单向阀、23清水电动阀;24、清水压力表;25、溢流阀;26、低压泵;27、高压泵;28、截止阀;29、低压过滤器;30、水容器。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。
下面结合附图对本发明的结构作详细的描述。
请参阅图1:一种污泥低温碳化系统,包括:
初步过滤部分,该初步过滤部分对污泥进行初步过滤;具体为,利用污泥输送泵4将污泥池1内的污泥导出至自反冲污泥过滤器3中,滤除污泥内的石块、塑料等固态杂质;
加热部分,该加热部分将初步过滤后的污泥加热至碳化所需温度;碳化所需温度优选为250℃~300℃;
碳化部分,该碳化部分将加热后的污泥进行碳化。
本发明的工作原理为:本发明首先对污泥进行初步过滤,滤除污泥中的石块、塑料袋等固态杂质;然后对污泥进行加热,最后将加热的污泥进行碳化处理。
上述优选实施例的工作过程为:
一种污泥低温碳化系统的工艺方法,包括如下步骤:
S1、对污泥进行初步过滤;具体为,利用污泥输送泵4将污泥池1内的污泥导出至自反冲污泥过滤器3中,滤除污泥内的石块、塑料等固态杂质;
S2、将污泥加热至碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化。
作为优选,所述初步过滤部分包括第一过滤器,本优选实施例中的第一过滤器选择的是自反冲污泥过滤器3,该第一过滤器的输入端口与污泥源连通,该第一过滤器的输出端口通过输泥管路与加热部分的输入端口连通;在上述输泥管路上安装有污泥输送泵。在该输泥管路上还安装有单向阀5、流量计6和压力表7;
作为优选,所述加热部分包括预加热单元和加热器10;换热器8通过加热炉9进行加热;其中:
所述预加热单元包括换热器8,该换热器8包括第一介质回路和第二介质回路,所述第一介质回路的一端为加热部分的输入端口;所述第一介质回路的另一端与碳化部分的输入端口连通;所述第二介质回路的一端通过回流管路与碳化部分的输出端口连通;所述第二介质回路的另一端通过第二过滤器与过滤液存储罐15连通。上述第二过滤器优选的是转毂带式过滤器13,转毂带式过滤器13的入口侧安装有污泥手动阀12;转毂带式过滤器13将过滤出来的过滤固体物14导出;本发明在加热时,分为预加热和直接加热两步,预加热时采用碳化处理后的废热进行加热,这样能够极大地节约能源;
作为优选,所述碳化部分包括反应釜、向反应釜内注水的水容器,上述水容器通过输水管路与反应釜的入口连通。
作为优选,所述反应釜为两个,分别为第一反应釜17和第二反应釜21,碳化部分的输入端口处安装有第一电动换流阀18,第一电动换流阀18的出口分别与两个反应釜的入口连通;碳化部分的输出端口处安装有第二电动换流阀19,第二电动换流阀19的入口分别与两个反应釜的出口连通,第一电动换流阀18的入口为碳化部分的输入端口,第二电动换流阀19的出口为碳化部分的输出端口。本发明采用两个反应釜进行交替工作,即当一个反应釜进行碳化反应时,向另一个反应釜进行污泥注入工序,这样能够极大地提高效率。
作为优选,在每个反应釜内设置有一个传感器组,分别为第一传感器组16和第二传感器组20,第一传感器组16至少包括一个温度传感器和一个压力传感器,第二传感器组20至少包括一个温度传感器和一个压力传感器,还包括接收每个温度传感器和压力传感器数据的中央控制器11。本发明采用温度传感器和压力传感器能够对碳化的温度和压力进行准确测量,保证碳化的环境参数。
作为优选,所述水容器30通过清洗管路分别与第一电动换流阀、第二电动换流阀和第一过滤器连接。具体为:水容器30通过第一清洗管路与第一电动换流阀18连接,在第一清洗管路上沿水流方向依次安装有截止阀28、高压泵27、第二清水电动阀23、清水单向阀22。水容器30通过第二清洗管路与第二电动换流阀19连接,在第二清洗管路上沿水流方向依次安装有截止阀28、低压泵26。在上述第一清洗管路上安装有清水压力表24,在水容器30的出口设置有低压过滤器29,水容器30通过溢流管与第一清洗管路连通,溢流管上安装有溢流阀25;
本发明利用水容器和清洗管路能够对第一电动换流阀、第二电动换流阀和第一过滤器进行清洗,保证第一电动换流阀、第二电动换流阀和第一过滤器工作的准确性。
作为优选,在所述第一过滤器的入口侧和出口侧分别安装有电动阀(本优选实施例选择的是电动截止阀2)、在所述污泥输送泵的入口侧安装有电动阀、在所述第二过滤器的两侧安装有电动阀、在每条清洗管路上安装有电动阀;所述中央控制器11的I/O端子分别与每个电动阀、第一电动换流阀、第二电动换流阀、污泥输送泵电连接。本发明利用中央控制器能够控制系统的不同环节,通过中央控制器的协调统一控制,保证整个系统的正常工作。
一种污泥低温碳化系统的工艺方法,包括如下步骤:
S1、对污泥进行初步过滤;
S2、将污泥加热至碳化所需温度;具体为:
输泥管路内的污泥首先与反应釜输出的泥水进行热交换,进而实现预热;随后预热后的污泥通过加热器加热后达到碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化;具体为:
S301、通过第一电动换流阀将污泥导入第一反应釜,随后向第一反应釜内注入水,使得第一反应釜内的压力到达预设值;污泥在第一反应釜内保温保压一定时间(一般优选为15分钟至20分钟之间)完成碳化;
S302、在第一反应釜开始进行碳化时,通过第二电动换流阀将污泥导入第二反应釜,随后向第二反应釜内注入水,使得第二反应釜内的压力到达预设值;污泥在第二反应釜内保温保压一定时间完成碳化。
本发明工作原理为,污泥经输送车辆输送到污泥池1存储,通过自反冲污泥过滤器3过滤,当过滤器内杂物较多时,将自反冲污泥过滤器3前后的电动截止阀2关闭,开启低压泵26输送清水至自反冲污泥过滤器3,将自反冲污泥过滤器3内的杂物清洗。
当污泥通过自反冲污泥过滤器3过滤器后,依次经污泥输送泵4、经单向阀5、流量计6、进入换热器8预热升温,换热器的热能由碳化后的污泥提供;随后预热后的污泥进入加热器10加热至碳化温度;当污泥温度达到碳化温度时,开启第一电动换流阀18将污泥导入第一反应釜,向第一反应釜内注入水使得第一反应釜内的温度和压力达到碳化条件,随后对第一反应釜进行保温保压一定时长(15分钟至20分钟)进行碳化反应;当第一反应釜进行碳化反应开设时,通过第一电动换流阀18切换至将污泥导入第二反应釜,随后对第二反应釜进行保温保压一定时长(15分钟至20分钟)进行碳化反应;第一反应釜碳化反应完成后,通过控制第二电动换流阀19导出污泥依次进入换热器8、转毂带式过滤器13,最后进入过滤液存储罐15,同理,第二反应釜碳化反应完成后,通过控制第二电动换流阀19导出污泥依次进入换热器8、转毂带式过滤器13,最后进入过滤液存储罐15;在上述工作结束或者开设前,可以通过低压泵26和高压泵27的启停对第一电动换流阀18、第二电动换流阀19进行清洗。
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (10)

1.一种污泥低温碳化系统,其特征在于:包括:
初步过滤部分,该初步过滤部分对污泥进行初步过滤;
加热部分,该加热部分将初步过滤后的污泥加热至碳化所需温度;
碳化部分,该碳化部分将加热后的污泥进行碳化。
2.根据权利要求1所述的污泥低温碳化系统,其特征在于,所述初步过滤部分包括第一过滤器,该第一过滤器的输入端口与污泥源连通,该第一过滤器的输出端口通过输泥管路与加热部分的输入端口连通;在上述输泥管路上安装有污泥输送泵。
3.根据权利要求2所述的污泥低温碳化系统,其特征在于,所述加热部分包括预加热单元和加热器;其中:
所述预加热单元包括换热器,该换热器包括第一介质回路和第二介质回路,所述第一介质回路的一端为加热部分的输入端口;所述第一介质回路的另一端与碳化部分的输入端口连通;所述第二介质回路的一端通过回流管路与碳化部分的输出端口连通;所述第二介质回路的另一端通过第二过滤器与过滤液存储罐连通。
4.根据权利要求3所述的污泥低温碳化系统,其特征在于,所述碳化部分包括反应釜、向反应釜内注水的水容器,上述水容器通过输水管路与反应釜的入口连通。
5.根据权利要求4所述的污泥低温碳化系统,其特征在于,所述反应釜为两个,碳化部分的输入端口处安装有第一电动换流阀,第一电动换流阀的出口分别与两个反应釜的入口连通;碳化部分的输出端口处安装有第二电动换流阀,第二电动换流阀的入口分别与两个反应釜的出口连通,第一电动换流阀的入口为碳化部分的输入端口,第二电动换流阀的出口为碳化部分的输出端口。
6.根据权利要求5所述的污泥低温碳化系统,其特征在于,在每个反应釜内设置有温度传感器和压力传感器,还包括接收每个温度传感器和压力传感器数据的中央控制器。
7.根据权利要求6所述的污泥低温碳化系统,其特征在于,所述水容器通过清洗管路分别与第一电动换流阀、第二电动换流阀和第一过滤器连接。
8.根据权利要求7所述的污泥低温碳化系统,其特征在于,在所述第一过滤器的入口侧和出口侧分别安装有电动阀、在所述污泥输送泵的入口侧安装有电动阀、在所述第二过滤器的两侧安装有电动阀、在每条清洗管路上安装有电动阀;所述中央控制器的I/O端子分别与每个电动阀、第一电动换流阀、第二电动换流阀、污泥输送泵电连接。
9.一种根据权利要求1-8任一项所述污泥低温碳化系统的工艺方法,其特征在于,包括如下步骤:
S1、对污泥进行初步过滤;
S2、将污泥加热至碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化。
10.一种根据权利要求3-8任一项所述污泥低温碳化系统的工艺方法,其特征在于,包括如下步骤:
S1、对污泥进行初步过滤;
S2、将污泥加热至碳化所需温度;具体为:
输泥管路内的污泥首先与反应釜输出的泥水进行热交换,进而实现预热;随后预热后的污泥通过加热器加热后达到碳化所需温度;
S3、将污泥导入反应釜,随后向反应釜内注入水,使得反应釜内的压力到达预设值,最后污泥在反应釜内保温保压一定时间完成碳化;具体为:
S301、通过第一电动换流阀将污泥导入第一反应釜,随后向第一反应釜内注入水,使得第一反应釜内的压力到达预设值;污泥在第一反应釜内保温保压一定时间完成碳化;
S302、在第一反应釜开始进行碳化时,通过第二电动换流阀将污泥导入第二反应釜,随后向第二反应釜内注入水,使得第二反应釜内的压力到达预设值;污泥在第二反应釜内保温保压一定时间完成碳化。
CN201811025376.2A 2018-09-04 2018-09-04 一种污泥低温碳化系统及工艺方法 Pending CN109020133A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811025376.2A CN109020133A (zh) 2018-09-04 2018-09-04 一种污泥低温碳化系统及工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811025376.2A CN109020133A (zh) 2018-09-04 2018-09-04 一种污泥低温碳化系统及工艺方法

Publications (1)

Publication Number Publication Date
CN109020133A true CN109020133A (zh) 2018-12-18

Family

ID=64623206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811025376.2A Pending CN109020133A (zh) 2018-09-04 2018-09-04 一种污泥低温碳化系统及工艺方法

Country Status (1)

Country Link
CN (1) CN109020133A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342165C1 (de) * 1993-12-10 1995-05-11 Umwelt & Energietech Verfahren zur energetischen Nutzung von Biomasse
KR20080108393A (ko) * 2008-11-25 2008-12-15 장승권 상, 하수슬러지를 이용한 경량 탄화골재제조 및 에너지 자원 화 방법
CN102557771A (zh) * 2012-01-18 2012-07-11 广州新滔水质净化有限公司 一种全封闭污泥滚筒制肥设备的除臭供氧及集热保温系统
CN102875005A (zh) * 2012-09-07 2013-01-16 广东省生态环境与土壤研究所 一种基于水热反应的污泥生物炭化工艺
JP2013056982A (ja) * 2011-09-07 2013-03-28 Hideo Takahashi 下水道汚泥および廃棄物の資源化方法および資源化装置
CN103755124A (zh) * 2014-01-23 2014-04-30 杭州互惠环保科技有限公司 基于水热碳化的污泥处理方法
CN203782002U (zh) * 2014-03-19 2014-08-20 潘燕瑜 一种污泥低温碳化系统
CN104355519A (zh) * 2014-10-29 2015-02-18 华南理工大学 基于水热碳化和微波快速热解的污泥综合处理方法
CN103608099B (zh) * 2012-02-09 2017-02-22 同济大学 一种用于进行水热反应的系统和方法
CN107285588A (zh) * 2016-12-05 2017-10-24 潍坊金原微生物肥料有限公司 基于水热碳化的城市污泥处理方法
CN108751628A (zh) * 2018-05-10 2018-11-06 江苏恒丰科技有限公司 一种将污泥转化为生物质燃料的处理方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342165C1 (de) * 1993-12-10 1995-05-11 Umwelt & Energietech Verfahren zur energetischen Nutzung von Biomasse
KR20080108393A (ko) * 2008-11-25 2008-12-15 장승권 상, 하수슬러지를 이용한 경량 탄화골재제조 및 에너지 자원 화 방법
JP2013056982A (ja) * 2011-09-07 2013-03-28 Hideo Takahashi 下水道汚泥および廃棄物の資源化方法および資源化装置
CN102557771A (zh) * 2012-01-18 2012-07-11 广州新滔水质净化有限公司 一种全封闭污泥滚筒制肥设备的除臭供氧及集热保温系统
CN103608099B (zh) * 2012-02-09 2017-02-22 同济大学 一种用于进行水热反应的系统和方法
CN102875005A (zh) * 2012-09-07 2013-01-16 广东省生态环境与土壤研究所 一种基于水热反应的污泥生物炭化工艺
CN103755124A (zh) * 2014-01-23 2014-04-30 杭州互惠环保科技有限公司 基于水热碳化的污泥处理方法
CN203782002U (zh) * 2014-03-19 2014-08-20 潘燕瑜 一种污泥低温碳化系统
CN104355519A (zh) * 2014-10-29 2015-02-18 华南理工大学 基于水热碳化和微波快速热解的污泥综合处理方法
CN107285588A (zh) * 2016-12-05 2017-10-24 潍坊金原微生物肥料有限公司 基于水热碳化的城市污泥处理方法
CN108751628A (zh) * 2018-05-10 2018-11-06 江苏恒丰科技有限公司 一种将污泥转化为生物质燃料的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高莹: "浅析低温污泥碳化技术", 《科技资讯》 *

Similar Documents

Publication Publication Date Title
CN102936089B (zh) 一种污泥深度脱水全过程自动控制系统及处理方法
CA2200164C (en) Process and system for treatment of pig and swine manure for environmental enhancement
CN102249743B (zh) 一种常温下用沼液生产有机浓缩复合液肥的方法
CN108658638A (zh) 一种用厌氧发酵和中温氧化联合操作生产有机肥的装置
CN104818036A (zh) 用自产污泥炭进行污水处理的方法及污泥制炭系统
CN102642877B (zh) 一种多用途超(亚)临界水热处理设备
CN102674592A (zh) 全自动污水、污泥、粪便快速处理系统
CN1957736B (zh) Nsi值=100%的大豆蛋白(肽)粉的生产方法
CN206122120U (zh) 一种大颗粒杂质沉降过滤器
CN109020133A (zh) 一种污泥低温碳化系统及工艺方法
CN108911466A (zh) 一种工业污泥水热反应的高效脱水处理系统及方法
CN111320306B (zh) 一种热网疏水与凝结水协同处理的系统
CN208317769U (zh) 蔬菜无土栽培装置
CN105999754A (zh) 一种芳樟醇蒸馏提取装置及工艺
CN208617680U (zh) 污泥压榨系统
CN110386739A (zh) 一种养殖业污水污泥模块化处理系统及其处理工艺
EP0455889A1 (en) Process and system for reclaiming and concentrating selected or combined waste products of the farming,food and butchering industries
CN102795755A (zh) 污泥深度脱水系统及污泥深度脱水方法
CN201986649U (zh) 一种果汁澄清装置
CN107935354A (zh) 污水污泥连续带式和热泵干化成套处理系统及处理方法
CN202099211U (zh) 一种常温下用沼液生产有机浓缩复合液肥设备
CN110790464B (zh) 一种农用污泥无害化处理装置及方法
CN101560025A (zh) 糠醛废水再利用工艺方法
CN205099565U (zh) 一种污泥深度脱水系统
CN110981555A (zh) 促进蛋白质水解的发酵方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181218