JP3242732B2 - キャパシタ - Google Patents
キャパシタInfo
- Publication number
- JP3242732B2 JP3242732B2 JP05722693A JP5722693A JP3242732B2 JP 3242732 B2 JP3242732 B2 JP 3242732B2 JP 05722693 A JP05722693 A JP 05722693A JP 5722693 A JP5722693 A JP 5722693A JP 3242732 B2 JP3242732 B2 JP 3242732B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- capacitor
- electrode
- oxide film
- polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Description
のキャパシタとして好適なキャパシタに関するものであ
る。
込むキャパシタを、必要とされる容量を維持しつつ小型
化する必要が生じている。しかし、キャパシタ用絶縁膜
として従来から利用されているシリコン酸化膜(SiO
2 膜)やシリコン窒化膜(SiN膜)或いはそれらの積
層膜では、その膜厚を薄くして必要な容量を確保するに
も限界が生じている。そこで、近年、キャパシタ用絶縁
膜として酸化タンタル(Ta2 O5 )膜を用いたキャパ
シタの研究が活発化している。この理由は、酸化タンタ
ル膜が、その誘電率が22とSiO2 膜の数倍あり、か
つ、絶縁耐圧もSiO2 膜より高いなどの利点を有する
からであった。
及びその製造方法としては、例えば文献I(アイディイ
ーエム テクニカル ダイジェスト(IEDM Tech.Di
g.),(1991),pp.827−830)に開示さ
れているキャパシタ及び製造方法がある。以下、この文
献Iに開示のキャパシタ及びその製造方法について製造
手順に従い説明する。図8及び図9はその説明に供する
図である。いずれも試料の断面図によって示したもので
ある。ただし、文献Iではシリンドリカル・スタックド
・キャパシタを得る例が説明されているが、以下の説明
においては、文献Iに開示の技術の原理を説明できれば
良いという意味から、文献Iの技術をスタック型のキャ
パシタの形成に適用した例を示している。また、図8及
び図9では、シリコン基板上に2個のスタックドキャパ
シタを形成する例を示している。
いは化学気相成長法によりSiO2膜13が形成され
る。次に、このSiO2 膜13上にキャパシタ用電極の
一方の電極(以下、下側電極ともいう。)を形成するた
めの薄膜としてポリシリコン膜15がCVD法により形
成される(図8(A))。
を低減するためにこのポリシリコン膜15にリン(P)
が、イオン注入法により或いはこの試料をPOCl3 ガ
ス雰囲気中に置いてリンを熱拡散させる方法により、導
入される。ただし、図においてはリンが導入されたポリ
シリコン膜もそのままポリシリコン膜15として示して
ある。次に、このポリシリコン膜15上に、これを下側
電極の形状にパターニングする際のマスクとなるレジス
トパターン(図示せず)が、形成される。そして、この
レジストパターンをマスクとしポリシリコン膜15の不
要部分がエッチングされ、下側電極としてのポリシリコ
ンから成る電極15aが形成される(図8(B))。
pid Thermal annealing )装置を用いアンモニアガス雰
囲気中で1分間熱処理される。これにより、ポリシリコ
ンから成る電極15aの表面に膜厚が約1.5nmのシ
リコン窒化膜17が形成される(図8(C))。
0℃とし、原料ガスとしてペンタエトキシタンタル[T
a(OC2 H5 )5 ]及び酸素(O2 )ガスを用いたC
VD法により、Ta2 O5 膜19が形成される(図9
(A))。
化のため及び欠陥密度低減のためにこの試料に対し熱処
理が行われる。この熱処理はRTA装置を用いO2 雰囲
気中において700〜900℃の温度で1分間行われ
る。なお、この熱処理においては、ポリシリコンから成
る電極15aの、Ta2 O5 膜19側の部分が酸化され
るので、この部分にシリコン酸化膜21が形成される
(図9(B))。しかし、このポリシリコンから成る電
極15a表面にはシリコン窒化膜17が予め設けられて
いたのでポリシリコンから成る電極15aへのTa2 O
5 膜19側からの酸素の影響は両者15a,19が直接
接している場合に比べ軽減されるから、このシリコン酸
化膜21の膜厚が厚くなるのを防止できる。従って、キ
ャパシタ容量の減少を小さく抑えることができる。
方の電極(以下、上側電極ともいう。)を形成するため
の薄膜として窒化チタン(TiN)膜(図示せず)が反
応性スパッタ法或いはCVD法により形成される。次
に、このTiN膜上に、これを上側電極の形状にパター
ニングする際のマスクとなるレジストパターン(図示せ
ず)が、形成される。そして、このレジストパターンを
マスクとしTiN膜の不要部分がエッチングされ、Ti
N膜から成る上側電極23が形成される。この結果、シ
リコン酸化膜21、シリコン窒化膜17及びTa2 O5
膜19の複数の絶縁膜で構成された積層体25をキャパ
シタ用絶縁膜とし、この積層体25をポリシリコンで構
成した下側電極15a及びTiNで構成した上側電極2
3で挟んだ構造の、キャパシタ27が得られる(図9
(C))。
に接するキャパシタ用電極を従来から良く用いられてい
るタングステン(W)膜で構成した場合及び上述のごと
くTiN膜で構成した場合各々のキャパシタでのリーク
電流の発生具合を調べた結果が開示されている。より詳
細には、Ta2 O5 膜19に接するキャパシタ用電極を
W膜で構成した場合及びTiN膜で構成した場合各々の
キャパシタであって、これらキャパシタの製造において
Ta2 O5 膜19にその緻密化などの目的のためにO2
ガス雰囲気でRTA装置による熱処理を行った場合及び
行わない場合のキャパシタ各々についてのリーク電流の
発生具合について、2つのキャパシタ用電極15a,2
3間へのバイアスのかけ方をパラメータとしそれぞれ調
べた結果が開示されている。図10(A)及び(B)は
この結果を示した特性図である。いずれも文献Iより引
用した特性図である。ここで、図10(A)はTiN膜
やW膜で構成される上側電極23を正としてキャパシタ
に電圧Vg を印加した場合のこの電圧Vg (V)とリー
ク電流密度J(A/cm2 )との関係を示した特性図、
図10(B)はポリシリコンから成る下側電極15aを
正とした場合の同特性図である。両図において、pを付
したグループはTa2 O5 膜19にO2 ガス雰囲気中で
RTA装置による熱処理を行った場合の特性、qを付し
たグループは同熱処理を行わなかった場合の特性であ
り、さらに、p,qの各グループにおいてIはTa2 O
5 膜19に接する電極をTiN膜で構成した場合の特
性、IIは同電極をW膜で構成した場合の特性である。な
お、両図において、その縦軸は実際は対数目盛であるが
その目盛りの記載は省略してある。
に対しO2 ガス雰囲気中でRTA装置により熱処理を行
った方が行わない場合よりリーク電流を低減できること
が判る。また、Ta2 O5 膜19に接するキャパシタ用
電極をTiN膜で構成した方がW膜で構成する場合より
リーク電流を低減できることが判る。
O5 膜に接するキャパシタ用電極(図9(C))の例で
言えば上部電極23)をTiN膜で構成したキャパシタ
では、完成したキャパシタに高温(例えば800℃以
上)を加えた場合この熱処理を例え不活性ガス中で行っ
たとしても、このような熱処理をする前に比べリーク電
流特性が悪化する(リーク電流が増加する)ことが、こ
の出願に係る発明者の詳細な研究により明らかになった
(後述の比較例及び図4〜6参照)。このような現象が
生じる理由は、上記熱処理においてTa2 O5 膜とTi
N膜とが反応するためではないかと考える。半導体装置
の製造においてはキャパシタ形成後においても種々の熱
処理(例えば、キャパシタ形成後に形成される中間絶縁
膜に対しその緻密化のためなされる熱処理など)が行わ
れることが多いことを考えると、上記現象の改善が望ま
れる。
のであり、従ってこの発明の目的はキャパシタ用絶縁膜
としてTa2 O5 膜を用いているキャパシタであって、
キャパシタ完成後に熱処理が行われた場合のこのキャパ
シタでのリーク電流特性の悪化が従来より少ないキャパ
シタを提供することにある。
め、この発明によれば、複数の絶縁膜で構成された積層
体であってその少なくとも一方の最外層が酸化タンタル
膜とされている積層体を2つの電極で挟んだ構造のキャ
パシタにおいて、2つの電極のうちの少なくとも酸化タ
ンタル膜に接している側の電極を窒化タングステンで構
成したことを特徴とする。
構成された前述の積層体とは、積層体の一方の最外層即
ち最下層または最上層を酸化タンタル膜で構成し残りの
層をシリコン酸化膜やシリコン窒化膜などの他の一種ま
たは二種以上の絶縁膜で構成した積層体は勿論、積層体
の最下層及び最上層の双方を酸化タンタル膜で構成し中
間膜を酸化タンタル膜以外の絶縁膜で構成したもの、さ
らには、中間膜にも酸化タンタル膜を含むもの等、種々
のものであることができる。ただし、積層体の最下層及
び最上層の双方を酸化タンタル膜で構成した場合は、2
つの電極いずれもが酸化タンタルと接することになる。
この場合は2つの電極のうちの少なくとも一方を窒化タ
ングステンで構成する。
を半導体装置に適用する場合には、前述のキャパシタ
を、半導体基板と、該半導体基板上に直接または間接的
に設けられた下側電極と、該下側電極上に設けられ複数
の絶縁膜で構成された積層体であってその最上層が酸化
タンタル膜とされている積層体と、該酸化タンタル膜上
に設けられた上側電極とを具えるキャパシタとし、前述
の上側電極を窒化タングステンで構成するのが好適であ
る。なお、ここでいう半導体基板とはシリコン基板や化
合物半導体基板等の半導体基板そのものの場合、これら
基板上にエピタキシャル層を具えたものの場合、これら
基板に他の素子が作り込まれたものの場合等、キャパシ
タが作り込まれる各種の半導体基板をいうものとする。
れた前記積層体の代わりに酸化タンタル膜のみを具えた
キャパシタに対しても適用できると考える。ただし、こ
の場合は、2つの電極いずれもが酸化タンタルと接する
ことになる。この場合は2つの電極のうちの少なくとも
一方を窒化タングステンで構成する。
明らかなように、完成後のキャパシタに対し熱処理を行
った場合のリーク電流が増加する程度が、従来(酸化タ
ンタル膜に接する電極をTiN膜としていた場合)よ
り、少なくなる。この原因は定かではないが、窒化タン
グステンは酸化タンタル膜と反応しないためと考えられ
る。
の実施例について説明する。しかしながら、説明に用い
る各図はこの発明が理解できる程度に各構成成分の寸
法、形状及び配置関係を概略的に示してあるにすぎな
い。また、説明に用いる各図において従来と同様な構成
成分については同一の符号を付して示してある。
法の説明 図1はこの発明をスタックキャパシタに適用した例を示
した断面図である。この例では2つのキャパシタ31を
示してある。
板としてのシリコン基板11上にシリコン酸化膜13を
具え、このシリコン酸化膜13上に下側電極としてポリ
シリコンで構成されリンがドープされた電極15aを具
え、この下側電極15a上にこの下側電極15a側から
シリコン酸化膜21及び酸化タンタル(Ta2 O5 )膜
19をこの順に積層した積層体33をキャパシタ用絶縁
膜として具え、この酸化タンタル膜19上に上側電極と
して窒化タングステン(WN)単層膜で構成した電極3
5を具えている。ただし、この実施例のキャパシタにお
いては、酸化タンタル膜19の膜厚は約11nmとして
ある。そして、積層体33の膜厚はシリコン酸化膜換算
膜厚teff で表わして3.1nmとしている(なお、シ
リコン酸化膜21の膜厚は約1.3nmである。)。さ
らに、窒化タングステン膜で構成した電極35は反応性
スパッタ法により形成したものとしている。そして、反
応性スパッタ法により上側電極35用の窒化タングステ
ンを形成する際にそこで用いる窒素ガスの流量比を種々
に違えて複数の試料を作製する(詳細は下記の形成方法
の項参照。)。シリコン酸化膜13は2つのキャパシタ
を電気的に絶縁するためのものであり、設計によっては
不要となることは理解されたい。
施例の場合以下に説明する方法により形成した。図2〜
図3はその説明に供する工程図である。いずれも主な工
程での試料の様子を図1に対応する断面図によって示し
ている。
いは化学気相成長法によりSiO2膜13を形成し、次
いで、このSiO2 膜13上に下側電極15aを形成す
るための薄膜としてポリシリコン膜15をCVD法によ
り形成する(図2(A))。
を低減するためにこのポリシリコン膜15にリン(P)
を、イオン注入法により或いはこの試料をPOCl3 ガ
ス雰囲気中に置いてリンを熱拡散させる方法により、導
入する。ただし、図においてはリンが導入されたポリシ
リコン膜もそのままポリシリコン膜15として示してあ
る。次に、このポリシリコン膜15上に、これを下側電
極の形状にパターニングする際のマスクとなるレジスト
パターン(図示せず)を、形成する。そして、このレジ
ストパターンをマスクとしポリシリコン膜15の不要部
分をエッチングして、下側電極としてのポリシリコンか
ら成る電極15aを形成する(図2(B))。
温度とし、原料ガスとしてペンタエトキシタンタル[T
a(OC2 H5 )5 ]及び酸素(O2 )ガスを用いたC
VD法により、Ta2 O5 膜19を形成する(図2
(C))。
化のため及び欠陥密度低減のためにこの試料に対し熱処
理を行なう。この熱処理はRTA装置を用いO2 雰囲気
中において800℃の温度で1分間行う。この熱処理に
おいては、ポリシリコンから成る電極15aの、Ta2
O5 膜19側の部分が酸化されるので、この部分にシリ
コン酸化膜21が形成される(図3(A))。
方の電極である上側電極を形成するための薄膜として窒
化タングステン(WN)膜(図示せず)を反応性スパッ
タ法により形成する。この実施例の場合は、アルゴン
(Ar)と窒素(N2 )との流量比(N2 /(N2 +A
r))を0,10,20及び30%とそれぞれ違え窒素
の組成が異なるWN膜を有する複数の試料を作製する。
ただし、成膜時の成膜室の圧力はいずれも5mTorr
とし、また、DCパワーを2KWとしている。なお、こ
のようなN2 ガスを用いた反応性スパッタ法により形成
したタングステン膜についてX線回折解析を行ったとこ
ろ、W2 Nの(111)面及び(200)面並びに(2
20)面のピークがそれぞれ検出された。このことか
ら、N2 ガスを用いた反応性スパッタ法により形成した
タングステン(WN)膜は窒化タングステンになってい
るといえる。
形状にパターニングする際のマスクとなるレジストパタ
ーン(図示せず)を、形成する。そして、このレジスト
パターンをマスクとしWN膜の不要部分をエッチング
し、WN膜から成る電極23を形成する(図3
(B))。この結果、図1に示したキャパシタが得られ
る。
た実施例の手順及び条件と同様な手順及び条件により、
積層体33までの形成を行う。次に、TiN膜で構成し
た上側電極を、反応性スパッタ法及び公知の微細加工技
術により形成し、上側電極がTiN膜で構成されたこと
以外は実施例と同様な構成の比較例のキャパシタを得
る。なお、比較例でのTiN膜は、反応性スパッタ法で
あって、アルゴン(Ar)と窒素(N2 )との流量比
(N2 /(N2 +Ar))を26%とし、成膜時の成膜
室の圧力を5mTorrとし、かつ、DCパワーを2K
Wとした反応性スパッタ法により形成している。
明 3−1.熱処理前のリーク電流特性 実施例のキャパシタであって、上側電極35形成時のア
ルゴンと窒素との流量比(N2 /(N2 +Ar))を2
0%として形成したキャパシタ及び、上記2項の手順で
形成した比較例のキャパシタ各々に対し何らの熱処理も
施さない前に、上側電極及び下側電極間に、上側電極を
正とした状態、下側電極を正とした状態各々の状態で電
圧Vg を印加し、印加電圧Vg の変化に対するリーク電
流を測定する。図4はこの測定結果を、横軸にV
g (V)をとり縦軸にリーク電流密度J(A/cm2 )
をとって示したものである。この図4においてaを付し
たグループは上側電極35側を正として電圧Vg を印加
した特性であり、bを付したグループは下側電極15a
側を正として電圧Vg を印加した特性である。さらに、
図4のaグループにおいて、Iaを付した特性が実施例
のキャパシタのものであり、IIaを付した特性が比較例
のキャパシタののものであり、また、図4のbグループ
において、Ibを付した特性が実施例のキャパシタのも
のであり、IIbを付した特性が比較例のキャパシタのの
ものである。
後でこれに何らの熱処理も施さない前においては、実施
例及び比較例のキャパシタいずれもほぼ同様なリーク電
流特性を示すといえる。
のキャパシタそれぞれを800℃の温度とされている窒
素雰囲気の拡散炉中に30分入れ熱処理する。その後、
上記3−1項と同様な手順で印加電圧Vg の変化に対す
るリーク電流を測定する。図5はこの測定結果を、図4
とほぼ同様な表記方法により示した特性図である。ただ
し、図5のaグループにおいて、図4中のIaxを付し
た特性が実施例のキャパシタのものであり、IIaxを付
した特性が比較例のキャパシタののものであり、また、
図5のbグループにおいて、Ibxを付した特性が実施
例のキャパシタのものであり、IIbxを付した特性が比
較例のキャパシタののものである。また、図6に図4及
び図5に示した各特性をまとめて示した。
を窒化タングステンで構成した実施例のキャパシタの方
が、上側電極をTiN膜で構成した比較例のキャパシタ
に比べ、キャパシタ完成後に熱処理が行われた場合のこ
のキャパシタのリーク電流特性の悪化が少ないことがわ
かる。
流特性との関係について 次に、窒化タングステン膜で構成した上側電極35の組
成と、リーク電流特性の改善具合との関係について説明
する。ただし、完成後のキャパシタの上側電極の組成に
ついては分析していないので、ここでは、反応性スパッ
タ法により上側電極35用の窒化タングステン膜を形成
する際の窒素の流量比(N2 /(N2 +Ar))に着目
して上側電極35の組成と、リーク電流特性の改善具合
との関係について調べている。具体的には、窒素の上記
流量比を0,10,20及び30%として形成した各キ
ャパシタであって上記3−2項の熱処理を終えた各キャ
パシタのリーク電流特性を、上側電極を正極として電圧
Vg を印加した場合、下側電極を正極として電圧Vg を
印加した場合それぞれについて求め、これらの特性より
上側電極35の組成とリーク電流特性の改善具合との関
係を調べた。図7はその結果を整理して示した特性図で
ある。つまり、窒素の上記流量比を0,10,20及び
30%として形成した各キャパシタにおいて1μA/c
m2 のリーク電流が流れたときの上側及び下側電極間に
印加されている電圧の絶対値|VB |(単位ボルト)を
縦軸にとり、窒素の流量比(%)を横軸にとって示した
特性図である。ただし、図7においてaが上側電極35
側を正極として上側及び下側電極間に電圧Vg を印加し
た場合の特性、bが下側電極15a側を正極とした場合
の同特性である。この図7において、|VB |が大きい
程リーク電流が生じにくいキャパシタであることを意味
する。
を正極として上側及び下側電極間に電圧Vg を印加した
場合及びその逆の場合いずれも、反応性スパッタ時の窒
素の流量比を大きくすると、完成後のキャパシタに熱処
理した場合のリーク電流特性の悪化が小さくなることが
わかる。特に、下側電極15aを正極として上側及び下
側電極間に電圧Vg を印加した場合はその逆のバイアス
のときより、リーク電流特性の改善が顕著なことがわか
る。また、Vg の極性にかかわらず、窒化タングステン
膜形成のための反応性スパッタでの窒素流量比が20%
より多くなるとリーク電流の改善効果が飽和することが
わかる。
施例について説明したがこの発明は上述の実施例に限ら
れない。
に形成されるスタックキャパシタであってキャパシタ用
絶縁膜が基板側からシリコン酸化膜21及びTa2 O5
膜19で構成されたスタックキャパシタにこの発明を適
用していた。しかし、この発明を適用できるキャパシタ
の構造、キャパシタ絶縁膜の構成は勿論これに限られな
い。例えば、トレンチ型など他の型のキャパシタにも適
用でき、また、キャパシタ用絶縁膜を例えばシリコン酸
化膜、シリコン窒化膜及びTa2 O5 膜の積層体で構成
したキャパシタ(図9(C)のようなもの)にも適用で
きる。また、下側電極もポリシリコン膜に限られず設計
に応じ変更できる。
ン膜の形成を反応性スパッタ法により行っていたが、他
の方法例えばCVD法や窒素雰囲気でのMBE法などで
も同様な効果が期待できると考える。また、実施例では
酸化タンタル膜の形成をCVD法により行っていたが、
この成膜もこの方法に限られない。例えばTaターゲッ
トを用いO2 雰囲気中でスパッタする方法などで行って
も良い。
明によれば、キャパシタ用絶縁膜として酸化タンタルを
用いたキャパシタにおいて酸化タンタル膜に接している
電極を窒化タングステン単層膜で構成したので、同電極
をTiN膜で構成していた場合に比べ、キャパシタの完
成後に熱処理を行った場合のリーク電流特性の悪化を少
なくできる。このため、キャパシタ用絶縁膜として酸化
タンタルを用いたキャパシタであって従来より耐熱性に
優れるキャパシタが得られる。
る。
る工程図である。
る図2に続く工程図である。
リーク電流特性を示した図である。
リーク電流特性を示した図である。
のリーク電流特性の変化を説明するための図である。
用の窒化タングステンを反応性スパッタ法により形成す
る際の窒素(N2 )の流量比とキャパシタのリーク電流
特性の改善効果との関係を示した特性図である。
する工程図である。
する図8に続く工程図である。
化膜 15a:下側電極(ポリシリコンで構成した電極) 19:酸化タンタル膜 21:シリコン酸
化膜 31:実施例のキャパシタ 33:積層体(キ
ャパシタ用絶縁膜) 35:上側電極(窒化タングステンで構成した電極)
Claims (2)
- 【請求項1】 複数の絶縁膜で構成された積層体であっ
てその少なくとも一方の最外層が酸化タンタル膜とされ
ている積層体を2つの電極で挟んだ構造のキャパシタに
おいて、 前記キャパシタを、半導体基板と、該半導体基板上に直
接または間接的に設けられた下側電極と、該下側電極上
に設けられ複数の絶縁膜で構成された積層体であってそ
の最上層が酸化タンタル膜とされている積層体と、該酸
化タンタル膜上に設けられた上側電極とを具えるキャパ
シタとし、 前記下側電極は、ポリシリコンから構成され、 該ポリシリコンの上にシリコン酸化膜が構成され、 該シリコン酸化膜の上に酸化タンタル膜が構成され、 該酸化タンタル膜の上に、前記上側電極として窒化タン
グステンの単層膜が構成されることを特徴とするキャパ
シタ。 - 【請求項2】 請求項1に記載のキャパシタにおいて、 前記ポリシリコンは、リンがドープされていることを特
徴とするキャパシタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05722693A JP3242732B2 (ja) | 1993-03-17 | 1993-03-17 | キャパシタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05722693A JP3242732B2 (ja) | 1993-03-17 | 1993-03-17 | キャパシタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06275776A JPH06275776A (ja) | 1994-09-30 |
JP3242732B2 true JP3242732B2 (ja) | 2001-12-25 |
Family
ID=13049622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05722693A Expired - Fee Related JP3242732B2 (ja) | 1993-03-17 | 1993-03-17 | キャパシタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3242732B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69517158T2 (de) | 1994-11-30 | 2001-01-25 | Micron Technology, Inc. | Verfahren zum auftragen von wolframnitrid unter verwendung eines silicium enthaltenden gases |
JP3369827B2 (ja) * | 1995-01-30 | 2003-01-20 | 株式会社東芝 | 半導体装置及びその製造方法 |
KR100480574B1 (ko) * | 1997-11-27 | 2005-05-16 | 삼성전자주식회사 | 반도체장치의금속배선형성방법및이를이용한커패시터제조방법 |
TW411615B (en) | 1997-12-04 | 2000-11-11 | Fujitsu Ltd | Semiconductor device and method of manufacturing the same |
KR100365739B1 (ko) * | 1998-06-26 | 2003-02-19 | 주식회사 하이닉스반도체 | 캐패시터의텅스텐상부전극형성방법 |
KR100297722B1 (ko) * | 1998-11-18 | 2001-10-29 | 윤종용 | 반도체소자의커패시터제조방법 |
-
1993
- 1993-03-17 JP JP05722693A patent/JP3242732B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06275776A (ja) | 1994-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6017791A (en) | Multi-layer silicon nitride deposition method for forming low oxidation temperature thermally oxidized silicon nitride/silicon oxide (no) layer | |
JP3092659B2 (ja) | 薄膜キャパシタ及びその製造方法 | |
JP3703373B2 (ja) | Mosfetおよびゲート誘電体の製造方法 | |
JP2761685B2 (ja) | 半導体装置の製造方法 | |
US6218256B1 (en) | Electrode and capacitor structure for a semiconductor device and associated methods of manufacture | |
JP3171170B2 (ja) | 薄膜キャパシタおよびその製造方法 | |
JPH06244364A (ja) | 半導体装置の製造方法 | |
JP2000022111A (ja) | 高温酸化を用いた半導体素子のキャパシタ形成方法 | |
JP3209175B2 (ja) | 薄膜キャパシタの製造方法 | |
JPH1117153A (ja) | 半導体素子のキャパシタ形成方法 | |
JP2006060230A (ja) | 3次元半導体キャパシタおよびその製造方法 | |
JP4925494B2 (ja) | 高誘電率の誘電膜を有する半導体装置のキャパシタ製造方法 | |
JP3242732B2 (ja) | キャパシタ | |
US7064052B2 (en) | Method of processing a transistor gate dielectric film with stem | |
JP2000022105A (ja) | 半導体装置の製造方法 | |
JP2000195956A (ja) | キャパシタの下部電極形成方法 | |
US6303952B1 (en) | Contact structure with an oxide silicidation barrier | |
JPH1154729A (ja) | 半導体素子のコンデンサの製造方法 | |
JP4659436B2 (ja) | 半導体装置の製造方法 | |
JP2001077323A (ja) | 半導体装置の製造方法 | |
JP2001077309A (ja) | キャパシタ及びその製造方法 | |
JP3415476B2 (ja) | 半導体装置の製造方法 | |
JPH0277149A (ja) | 半導体装置およびその製造方法 | |
KR100305719B1 (ko) | 하부 전하저장 전극 형성 방법 | |
JP5608315B2 (ja) | キャパシタ用電極及びその製造方法、キャパシタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |