JP3158027B2 - 太陽電池及びその製造方法 - Google Patents

太陽電池及びその製造方法

Info

Publication number
JP3158027B2
JP3158027B2 JP30725195A JP30725195A JP3158027B2 JP 3158027 B2 JP3158027 B2 JP 3158027B2 JP 30725195 A JP30725195 A JP 30725195A JP 30725195 A JP30725195 A JP 30725195A JP 3158027 B2 JP3158027 B2 JP 3158027B2
Authority
JP
Japan
Prior art keywords
silicon semiconductor
semiconductor layer
solar cell
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30725195A
Other languages
English (en)
Other versions
JPH0969643A (ja
Inventor
誠 西田
実 兼岩
諭 岡本
一郎 山嵜
雄爾 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30725195A priority Critical patent/JP3158027B2/ja
Publication of JPH0969643A publication Critical patent/JPH0969643A/ja
Application granted granted Critical
Publication of JP3158027B2 publication Critical patent/JP3158027B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は太陽電池に関し、高
い光電変換効率を有する太陽電池とその製造方法に関す
るものである。
【0002】
【従来の技術】従来、結晶系シリコン太陽電池の光電変
換効率を高めるために、半導体基板の光入射面側(以
下、「受光面」という)と反対側の裏面(以下、「基板
裏面」という)において、多数キャリアを取り出す部分
では、基板裏面と裏面電極との間に、半導体基板と同一
導電型で、かつ、よりドーパント濃度が高い半導体層を
設ける構造が知られている。これは、半導体基板と半導
体層との間に内部電界が形成され、その内部電界によ
り、基板裏面近傍で光発生したキャリアの内、少数キャ
リアが半導体基板内部へ押し戻され、光電変換効率を高
める働きがある(以後、この働きを「裏面電界効果」と
いう)。例えば、P型シリコン半導体基板の場合に、P
型シリコン半導体基板の裏面にアルミペーストを印刷焼
成する方法、または、ボロンやアルミニウムを拡散する
方法により上記P型シリコン半導体基板よりもドーパン
ト濃度の高い半導体層を形成していた。あるいは、特開
平4−192569号公報または、特開平6−3107
40号公報に示されるように、より高い裏面電界効果を
引き出す目的で、P型シリコン半導体基板の裏面に、水
素化されたP+型微結晶シリコン半導体層をプラズマC
VD法で堆積する方法によりヘテロ接合を形成してい
た。
【0003】また、特開平6−310740号公報に示
されるように、P+型微結晶シリコン半導体層と裏面電
極との間に、開口部を有する透明絶縁膜を形成して、開
口部を介してP+型微結晶シリコン半導体層と裏面電極
とを接続するようになした太陽電池もある。
【0004】
【発明が解決しようとする課題】しかしながら、裏面電
界効果を引き出すための層(以下、「裏面電界層」と記
す)としては、シリコン半導体基板裏面に基板と同じ導
電型の不純物を基板に拡散させて、基板よりも高濃度の
裏面電界層を形成する方法よりも、基板と同じ導電型の
ドーパントを基板よりも高濃度に有する微結晶シリコン
半導体層を裏面電界層として堆積する方法が、裏面電界
効果が高く太陽電池の光電変換効率も高くなるが、その
微結晶シリコン半導体層の抵抗が高いために太陽電池の
曲線因子を下げ、十分な効率の向上に至らなかった。
【0005】また、微結晶シリコン半導体層と裏面電極
との間に透明絶縁膜を形成して開口部を介して電流を取
り出すようにした構造では、電流が開口部に集中し、開
口部の微結晶シリコン半導体層の抵抗により、曲線因子
の低下をもたらしていた。
【0006】本発明は以上の問題点を解決するもので、
曲線因子の低下が抑制された高光電変換効率を有する太
陽電池及びその作製を簡略に行える太陽電池の製造方法
を提供することにある。
【0007】
【課題を解決するための手段】請求項1に記載の太陽電
池は、第1導電型のシリコン半導体基板と、該シリコン
半導体基板の光入射面側に形成された第2導電型のシリ
コン半導体層とを有する太陽電池において、上記シリコ
ン半導体基板の上記光入射面側と反対面上に第1導電型
の微結晶シリコン半導体層が設けられ、第1導電型であ
って上記微結晶シリコン半導体層よりも低抵抗の層が上
記微結晶シリコン半導体層に部分的に設けられ、上記低
抵抗の層が裏面電極と接続している。
【0008】つまり、微結晶シリコン半導体層に部分的
に低抵抗の層を設けているので、曲線因子を向上でき
る。
【0009】請求項2に記載の太陽電池は、請求項1に
記載の太陽電池において、上記低抵抗の層がポリシリコ
ン半導体層であることを特徴とする。
【0010】請求項3に記載の太陽電池は、請求項1に
記載の太陽電池において、上記低抵抗の層が微結晶シリ
コン半導体層であることを特徴とする。
【0011】請求項4に記載の太陽電池は、請求項1〜
3に記載の太陽電池において、上記微結晶シリコン半導
体層と、上記裏面金属との間に開口部を有する透明絶縁
膜を設け、上記低抵抗の層と裏面金属とが上記開口部を
介して接続されていることを特徴とする。
【0012】さらに、光の利用効率を高めるために透明
絶縁膜を設けても、開口部に対応させて微結晶シリコン
半導体層に部分的に低抵抗の層を設けているので、電流
取り出し効率が上がり、曲線因子を向上できる。
【0013】請求項5に記載の太陽電池の製造方法は、
第1導電型のシリコン半導体基板の光入射面側に第2導
電型のシリコン半導体層を形成する工程と、上記シリコ
ン半導体基板の上記光入射面側と反対面上に第1導電型
の微結晶シリコン半導体層を形成する工程と、該微結晶
シリコン半導体層の一部領域にレーザ光を照射すること
により、上記微結晶シリコン半導体層を第1導電型の低
抵抗の層に部分的に変化させる工程と、を含むことを特
徴とする。
【0014】請求項5に記載の太陽電池の製造方法で
は、第1導電型のシリコン半導体基板上に形成した微結
晶シリコン半導体層の一部に、レーザ光照射を行うこと
により、第1導電型の低抵抗層を部分的に得る。従っ
て、基板裏面での処理工程には、フォトエッチング等の
複雑な工程を含まないため、処理を低コストで容易に行
うことができる。
【0015】請求項6に記載の太陽電池の製造方法は、
請求項5に記載の太陽電池の製造方法において、レーザ
光を照射する際の雰囲気に第1導電型の不純物を含ませ
ていることを特徴とする。
【0016】請求項6に記載の太陽電池の製造方法で
は、レーザ光照射を行う際の雰囲気に第1導電型のドー
パントを含んでいるため、形成される低抵抗層の不純物
濃度を高め、低抵抗化することができる。
【0017】
【発明の実施の形態】
(第1の実施例)図1に、本発明の第1の実施例の太陽
電池の断面図を示す。P型シリコン半導体基板11の受
光面側にN型層12が形成されている。N型層12は酸
化シリコン膜層13によって覆われており、酸化シリコ
ン膜層13は反射防止膜層14によって覆われている。
酸化シリコン膜層13は、N型層12の表面の欠陥を不
活性化する働きをしている。電流は、酸化シリコン膜層
13と反射防止膜層14を貫通してN型層12に接続さ
れたグリッド電極15を介して取り出される。P型シリ
コン半導体基板11の裏面には該基板より高濃度のP+
型微結晶シリコン半導体層16が形成されており、この
層に分散してP+型微結晶シリコン半導体層より低抵抗
なP+型ポリシリコン半導体層17が形成されている。
それらは裏面電極18によって覆われている。裏面での
電流は、P型シリコン半導体基板11からP+型微結晶
シリコン半導体層16と、P+型ポリシリコン半導体層
17と裏面電極18を介して取り出される。なお、P+
型微結晶シリコン半導体層16は、P型シリコン半導体
基板11より光学的禁制帯幅が広くなっている。
【0018】上記のような構造では、P+型微結晶シリ
コン半導体層16とP型シリコン半導体基板11との間
には内部電界が存在し、かつ、低抵抗層であるP+型ポ
リシリコン半導体層17が分散して存在するため、P型
シリコン半導体基板11の裏面近傍で発生したキャリア
のうち多数キャリア(正孔)は裏面電極18へ効率良く
導出され、高い光電変換効率を有する太陽電池が実現で
きる。
【0019】図2に、図1の太陽電池の製造方法を示す
製造フローを示す。
【0020】まず、単結晶のP型シリコン半導体基板1
1を洗浄した(ステップS1)後、表面が凹凸になるよ
うに異方性エッチングを行う(ステップS2)。P型シ
リコン半導体基板11は、単結晶のP型シリコン半導体
基板に限らず、多結晶のP型シリコン半導体基板を用い
ることも可能である。
【0021】次に、N型層12を、P型シリコン半導体
基板11の受光面にオキシ塩化リン(POCl3)を用
いた気相拡散によってリンを拡散してPN接合を形成す
る(ステップS3)。続いて、酸化シリコン(Si
2)膜層13を熱酸化法で形成し(ステップS4)、
窒化シリコン(Si34)膜からなる反射防止膜層14
をプラズマCVD法により形成する(ステップS5)。
反射防止膜層14として酸化チタン(TiO2)膜やア
ルミナ(Al23)膜等も使用できる。
【0022】続いて、P型シリコン半導体基板11の裏
面側をエッチングして、裏面に形成したN型シリコン半
導体層と酸化シリコン膜層を除去する(ステップS
6)。N型層12の形成を、リン添加されたシリコン酸
化物ガラス液のような塗布液を用いて受光面だけに拡散
して形成した場合には裏面のN型シリコン半導体の除去
は不要である。
【0023】次に、プラズマCVD法により、膜厚30
0nmのP+型微結晶シリコン半導体層16をP型シリ
コン半導体基板11の裏面上に形成する(ステップS
7)。P+型微結晶シリコン半導体層16は、シラン
(SiH4)と水素(H2)とシボラン(B26)の混合
ガスを用いて、基板温度200℃、入力RFパワー20
0W(13.56MHz)の条件で成膜した。この条件
は、一実施例であり、成膜条件は上記条件に限られるも
のではない。
【0024】次に、P+型微結晶シリコン半導体層16
の一部領域に、レーザ光を照射することにより、その部
分をポリシリコン化することにより、より低抵抗なP+
型ポリシリコン半導体層17を得る(ステップS8)。
レーザ光としては、ArFエキシマレーザ(波長:19
5nm)、KrFエキシマレーザ(波長:248n
m)、XeClエキシマレーザ(波長:308nm)等
が使用できる。照射レーザ光量は、500mJ/cm2
としたが、これに限られるものではない。
【0025】また、レーザ光を照射する雰囲気に、3塩
化ボロン(BCl3)、トリメチルボロン(B(CH3
3)、ジボラン等のP型のドーパントガスを加えておけ
ば、より低抵抗なP+型ポリシリコン半導体層17が得
られ、正孔を効率よく導出することができる。
【0026】続いて、裏面電極18をP+型微結晶シリ
コン半導体層16とP+型ポリシリコン半導体層17を
覆って、真空蒸着法でアルミニウムや銀等の金属を蒸着
することにより形成する。次に、フォトエッチング法を
用いて受光面側の酸化シリコン膜層13および反射防止
膜14の加工を行った後、チタン、パラジウム、銀の順
で金属の蒸着を行う。そして最後に、リフトオフを行う
ことで、グリッド電極15を形成する(ステップS
9)。
【0027】下表に、本発明の第1の実施例の太陽電池
と従来の太陽電池の特性を比較した結果を示す。
【0028】
【表1】
【0029】両者の違いは、本発明の第1の実施例の太
陽電池には前記P+型微結晶シリコン半導体層16と前
記P+型ポリシリコン半導体層17が存在しているのに
対して、従来の太陽電池には前記P+型微結晶シリコン
半導体層16だけが存在している。表1から明らかなよ
うに本発明によって太陽電池の光電変換効率が改善され
ている。
【0030】(第2の実施例)図3に、本発明の第2の
実施例の太陽電池の断面図を示す。図1と同一の部材
は、同一符号を用いて表し、その説明を省略する。ここ
でP+型微結晶シリコン半導体層16を覆って窒化シリ
コン膜19が形成されている点だけが、第1の実施例と
異なっている。この太陽電池では、受光面から入射し、
P型シリコン半導体基板11とP+型微結晶シリコン半
導体層16を透過した光を、窒化シリコン膜19及び裏
面電極18で反射させ、再びP型シリコン半導体基板1
1中へ戻すことにより、更に高い光電変換効率を有する
太陽電池が実現できる。この窒化シリコン膜19は一実
施例であり、酸化チタン、アルミナ等の透明絶縁膜、I
TO、ZnO、SnO等の透明導電膜等が使用できる。
【0031】この太陽電池の製造方法は、第1の実施例
の製造方法において、ステップS7とステップS8の工
程との間に、以下の工程をいれたものである。つまり、
+型微結晶シリコン半導体層16形成後に、プラズマ
CVD法により、窒化シリコン膜からなる透明絶縁膜1
9を膜厚約200nmでP+型微結晶シリコン半導体層
16に形成した。
【0032】次に、フォトエッチングを用いて、透明絶
縁膜19に開口部を設け、その開口部分にレーザ光を照
射することにより、P+型ポリシリコン半導体層17を
得る。その後、裏面電極18を形成する。
【0033】なお、レーザ光を透明絶縁膜19上からP
+型微結晶シリコン半導体層16に照射し、その部分の
透明絶縁膜19を後で開口することも可能である。
【0034】(第3の実施例)図4に、本発明の第3の
実施例の太陽電池の断面図を示す。図3と同一部材は、
同一符号を用いて表し、その説明を省略する。ここで、
+型ポリシリコン半導体層17のかわりに、P+型微結
晶シリコン半導体層16より低抵抗のP+型微結晶シリ
コン層20を設けている点、及びP+型微結晶シリコン
層20が、P型シリコン半導体基板11と接触していな
い点が異なる。
【0035】この太陽電池の製造方法は、第2の実施例
と同じであるので省略するが、レーザ光を照射する際に
第1,第2の実施例よりも光量を少なくして、P+型微
結晶シリコン半導体層16を部分的にP+型微結晶シリ
コン層20とする点だけが異なる。
【0036】下表に、本発明の第3の実施例の太陽電池
と従来の太陽電池の特性を比較した結果を示す。
【0037】
【表2】
【0038】両者の違いは、本発明の第3の実施例の太
陽電池には前記P+型微結晶シリコン半導体層16と前
記P+型微結晶シリコン層20が存在しているのに対し
て、従来の太陽電池には前記P+型微結晶シリコン半導
体層16だけが存在している。表2から明らかなように
本発明によって太陽電池の光電変換効率が改善されてい
る。
【0039】また、第1の実施例において、P+型ポリ
シリコン半導体層のかわりに、P+型微結晶シリコン層
としてもよい。
【0040】尚、上記第1〜3の実施例では、P型のシ
リコン半導体基板を備える太陽電池について説明した
が、本発明はN型のシリコン半導体基板を備える太陽電
池にも適用することができる。その場合、裏面電界層と
しては、N型の微結晶シリコン半導体層が用いられる。
【0041】
【発明の効果】以上のように、本発明の太陽電池によれ
ば、裏面電界層の微結晶シリコン半導体層に低抵抗層を
部分的に設けているため、高い曲線因子を有する太陽電
池が得られ光電変換効率の向上を図ることができる。
【0042】さらに、裏面での反射光を有効に利用する
ため、裏面に透明導電膜を有する太陽電池では、さらに
高い曲線因子を有する太陽電池が得られ、光電変換効率
の向上を図ることができる。
【0043】また、本発明の太陽電池の製造方法によれ
ば、レーザ光照射を行うことにより、第1導電型の微結
晶シリコン半導体層の一部に第1導電型の低抵抗の層を
得ており、別途低抵抗の層を堆積する工程やフォトエッ
チング等の複雑な工程を含まないため、処理を低コスト
で容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る太陽電池の断面構
造を示す図である。
【図2】図1の実施例に係る太陽電池の製造フロー図で
ある。
【図3】本発明の第2の実施例に係る太陽電池の断面構
造を示す図である。
【図4】本発明の第3の実施例に係る太陽電池の断面構
造を示す図である。
【符号の説明】
11 P型シリコン半導体基板 12 N型層 13 酸化シリコン膜層 14 反射防止膜層 15 グリッド電極 16 P+ 型微結晶シリコン半導体層 17 P+ 型ポリシリコン半導体層 18 裏面電極 19 透明絶縁膜 20 P+ 型微結晶シリコン層
フロントページの続き (72)発明者 山嵜 一郎 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 小松 雄爾 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平4−192569(JP,A) 特開 平6−310740(JP,A) 特開 平6−169096(JP,A) 特開 平1−187982(JP,A) 特開 平2−54971(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078

Claims (6)

    (57)【特許請求の範囲】
  1. 【請求項1】 第1導電型のシリコン半導体基板と、該
    シリコン半導体基板の光入射面側に形成された第2導電
    型のシリコン半導体層とを有する太陽電池において、上
    記シリコン半導体基板の上記光入射面側と反対面上に第
    1導電型の微結晶シリコン半導体層が設けられ、第1導
    電型であって上記微結晶シリコン半導体層よりも低抵抗
    の層が上記微結晶シリコン半導体層に部分的に設けら
    れ、上記低抵抗の層が裏面電極と接続していることを特
    徴とする太陽電池。
  2. 【請求項2】 請求項1に記載の太陽電池において、上
    記低抵抗の層がポリシリコン半導体層であることを特徴
    とする太陽電池。
  3. 【請求項3】 請求項1に記載の太陽電池において、上
    記低抵抗の層が微結晶シリコン半導体層であることを特
    徴とする太陽電池。
  4. 【請求項4】 請求項1〜3に記載の太陽電池におい
    て、上記微結晶シリコン半導体層と上記裏面金属との間
    に開口部を有する透明絶縁膜を設け、上記低抵抗の層と
    上記裏面金属とが上記開口部を介して接続されているこ
    とを特徴とする太陽電池。
  5. 【請求項5】 第1導電型のシリコン半導体基板の光入
    射面側に第2導電型のシリコン半導体層を形成する工程
    と、 上記シリコン半導体基板の上記光入射面側と反対面上に
    第1導電型の微結晶シリコン半導体層を形成する工程
    と、 該微結晶シリコン半導体層の一部領域にレーザ光を照射
    することにより、上記微結晶シリコン半導体層を第1導
    電型の低抵抗の層に変化させる工程と、を含むことを特
    徴とする太陽電池の製造方法。
  6. 【請求項6】 請求項5に記載の太陽電池の製造方法に
    おいて、レーザ光を照射する際の雰囲気に第1導電型の
    不純物を含ませていることを特徴とする太陽電池の製造
    方法。
JP30725195A 1995-06-21 1995-11-27 太陽電池及びその製造方法 Expired - Fee Related JP3158027B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30725195A JP3158027B2 (ja) 1995-06-21 1995-11-27 太陽電池及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15445395 1995-06-21
JP7-154453 1995-06-21
JP30725195A JP3158027B2 (ja) 1995-06-21 1995-11-27 太陽電池及びその製造方法

Publications (2)

Publication Number Publication Date
JPH0969643A JPH0969643A (ja) 1997-03-11
JP3158027B2 true JP3158027B2 (ja) 2001-04-23

Family

ID=26482729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30725195A Expired - Fee Related JP3158027B2 (ja) 1995-06-21 1995-11-27 太陽電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP3158027B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102251780B1 (ko) * 2019-04-29 2021-05-13 심규승 다기능 조립식 가구
KR102309325B1 (ko) * 2019-04-29 2021-10-06 심규승 다기능 조립식 가구
KR102345823B1 (ko) 2017-04-13 2021-12-30 김종원 가구용 서랍

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207890B1 (en) 1997-03-21 2001-03-27 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP3468670B2 (ja) * 1997-04-28 2003-11-17 シャープ株式会社 太陽電池セルおよびその製造方法
DE102005032807A1 (de) * 2005-07-12 2007-01-18 Merck Patent Gmbh Kombinierte Ätz- und Dotiermedien für Siliziumdioxidschichten und darunter liegendes Silizium
KR101352034B1 (ko) * 2007-06-29 2014-01-17 주성엔지니어링(주) 결정질 실리콘 태양전지와 그 제조방법 및 제조시스템
US8222516B2 (en) * 2008-02-20 2012-07-17 Sunpower Corporation Front contact solar cell with formed emitter
JP5186673B2 (ja) * 2008-04-03 2013-04-17 信越化学工業株式会社 太陽電池の製造方法
JP5323827B2 (ja) * 2008-06-23 2013-10-23 三菱電機株式会社 光起電力装置およびその製造方法
JP2010153740A (ja) * 2008-12-26 2010-07-08 Ulvac Japan Ltd 結晶太陽電池及び結晶太陽電池の製造方法
JP5927027B2 (ja) 2011-10-05 2016-05-25 株式会社半導体エネルギー研究所 光電変換装置
KR102397002B1 (ko) * 2015-02-10 2022-05-11 엘지전자 주식회사 태양 전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345823B1 (ko) 2017-04-13 2021-12-30 김종원 가구용 서랍
KR102251780B1 (ko) * 2019-04-29 2021-05-13 심규승 다기능 조립식 가구
KR102309325B1 (ko) * 2019-04-29 2021-10-06 심규승 다기능 조립식 가구

Also Published As

Publication number Publication date
JPH0969643A (ja) 1997-03-11

Similar Documents

Publication Publication Date Title
US7842596B2 (en) Method for formation of high quality back contact with screen-printed local back surface field
JP3158027B2 (ja) 太陽電池及びその製造方法
JPH09172196A (ja) アルミニウム合金接合自己整合裏面電極型シリコン太陽電池の構造および製造
JP2010520629A (ja) 太陽電池の製造方法ならびに生成太陽電池
AU2006236984A1 (en) Heterocontact solar cell with inverted geometry of its layer structure
CN103718276A (zh) 使氢化非晶硅和非晶氢化硅合金稳定化的方法
US5648675A (en) Semiconductor device with heterojunction
JP2931498B2 (ja) 太陽電池及びその製造方法
CN110943143A (zh) 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法
JPH11112011A (ja) 光起電力素子の製造方法
JP2808004B2 (ja) 太陽電池
JP3193287B2 (ja) 太陽電池
JP3346907B2 (ja) 太陽電池及びその製造方法
TW201222851A (en) Manufacturing method of bifacial solar cells
JP2896793B2 (ja) 光起電力装置の製造方法
JPH02111080A (ja) 非晶質薄膜太陽電池
KR101321538B1 (ko) 벌크형 실리콘 태양 전지 및 그 제조 방법
JP3158028B2 (ja) 太陽電池及びその製造方法
JP2744680B2 (ja) 薄膜太陽電池の製造方法
JP2000299483A (ja) 太陽電池の製造方法
JP3253449B2 (ja) 光起電力装置の製造方法
JPH0548127A (ja) 非晶質シリコン太陽電池及びその製造方法
JPH0945945A (ja) 太陽電池素子およびその製造方法
JPH11307796A (ja) 太陽電池及びその製造方法
JPH06283732A (ja) 太陽電池及びその製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees