JP3153202B2 - 半導体装置の作製方法 - Google Patents
半導体装置の作製方法Info
- Publication number
- JP3153202B2 JP3153202B2 JP07699399A JP7699399A JP3153202B2 JP 3153202 B2 JP3153202 B2 JP 3153202B2 JP 07699399 A JP07699399 A JP 07699399A JP 7699399 A JP7699399 A JP 7699399A JP 3153202 B2 JP3153202 B2 JP 3153202B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor
- hydrogen
- sputtering
- sputtering method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Description
イクロクリスタル構造の半導体を用いた半導体装置に関
するものである。
を主成分気体( 残りはアルゴン等の不活性気体) 雰囲気
中における不純物濃度5×1018cm-3以下の半導体タ−ゲ
ットをスパッタさせることによって、7×1019cm-3以下
好ましくは1×1019cm-3以下の酸素濃度のアモルファス
半導体を熱結晶化させることにより、7 ×1019cm-3以下
の酸素濃度の格子歪を有するマイクロクリスタル構造の
半導体を用いた半導体装置に関するものである。
によって550 〜900 ℃の温度で形成されることにより多
結晶半導体膜を得て、この多結晶半導体膜を用いて作製
されていた。
タルを形成することが知られている。
体膜を得る場合、大面積基板に均一に成膜するのは困難
であるという問題がある。
スタルを形成した場合、その成膜工程に時間がかかると
いう問題があった。また大気中に放置しておくと自然酸
化がおき、膜そのものが緻密でないという問題があっ
た。
タ法により得られた緻密な自然酸化をしない非単結晶半
導体を熱結晶化させることによって格子歪を有する微結
晶半導体を得ることを発明の目的とする。そしてそれを
絶縁ゲイト型電界効果半導体装置の活性領域、特にチャ
ネル形成領域に用いることを目的としている。
と小さく、かつその中の水素含有量は5原子%以下であ
る。特に不純物としての酸素は7×1019cm-3またはそれ
以下好ましくは1×1019cm-3以下とすることに特長を有
する。そしてそれぞれの微結晶に格子歪をもたせること
により、ミクロにそれの結晶界面が互いに強く密接し、
結晶粒界でのキャリアにとってのバリアを消滅させんと
している。
粒界では、酸素等がそこに偏析し障壁( バリア) がキャ
リアの移動を阻害するが、本発明においては、かかる格
子歪により、バリアがないまたは無視できる程度である
ため、電子の移動度も5〜300cm2/Vsec と桁違いに優れ
た特長を有せしめた。
を水素を主成分として有する雰囲気中における基板上へ
のスパッタ法による非晶質性( アモルファスまたはそれ
にきわめて近い) 半導体膜( 以下a−Siという) の成膜
工程と、前記スパッタ法によって得た非晶質性の半導体
膜を450 〜700 ℃、代表的には600 ℃の温度で結晶化さ
せる工程を有することにより得た。
RF(高周波)スパッタ装置によって作製したa-Si膜を熱
結晶化させて、格子歪を有せしめるとともに、その平均
結晶粒径を5〜400 Åと小さく、また含有水素の量は5
原子%以下であり、かつ不純物としての酸素は7×1019
cm-3以下、好ましくは1×1019cm-3以下の凖結晶( セミ
アモルファス Quasi-crystal またはSemi-amrphasとも
いう) の多結晶珪素半導体層を形成した。この微結晶珪
素半導体層を用い、薄膜ランジスタを作製した。
ンジスタの作製工程を示す。
を以下の条件においてマグネトロン型RFスパッタ法によ
り200nm の厚さに形成した。 O2 100 %雰囲気 成膜温度 150 ℃ RF(13.56MHz)出力 400W 圧力 0.5 Pa 単結晶シリコンをターゲットに使用
スパッタ装置によってチャネル形成領域となるa-Si膜(1
3)を100nm の厚さに成膜する。
下とし、排気はタ−ボ分子ポンプとクライオポンプとを
用いた。供給する気体の量は5N(99.999%) 以上の純度
を有し、添加気体としては必要に応じて用いるアルゴン
4N以上を有せしめた。タ−ゲットの単結晶シリコンも
5×1018cm-3以下の酸素濃度、例えば1×1018cm-3の酸
素濃度とし、形成される被膜中の不純物としての酸素を
きわめて少なくした。
ン含有比80〜0%、例えば水素含有100 %とした。かかる
雰囲気下において、 H2/(H2+Ar)=100%(分圧比) 成膜温度 150 ℃ RF(13.56MHz) 出力 400W 全圧力 0.5Pa とし、ターゲットは高純度Siターゲットを用いた。
度で10時間の時間をかけ、水素または不活性気体中、本
実施例においては水素100%雰囲気中においてa-Si膜(1
3)の熱結晶化を行った。いわゆる微結晶( またはセミア
モルファス) といわれるものであった。
リコン膜および熱処理により結晶化後の被膜中の不純物
純度をSIMS( 二次イオン等量分析) 法により調べた。す
ると成膜中の不純物濃度のうち、酸素8×1018cm-3、炭
素3×1016cm-3であった。また水素は4×1020cm-3を有
し、珪素の密度を4×1022cm-3とすると、1原子%に相
当する量であった。これらをタ−ゲットの単結晶シリコ
ンの酸素濃度1×1018cm-3を基準として調べた。またこ
のSIMS分析は成膜後被膜の深さ方向の分布( デプスプロ
フィル) を調べ、その最小値を基準とした。なぜなら表
面は大気との自然酸化した酸化珪素があるからである。
これらの値は結晶化処理後であっても特に大きな変化は
なく、酸素の不純物濃度は8×1018cm-3であった。この
実施例において、酸素を念のために増やし、例えばN2O
を0.1cc/sec 、10cc/secと添加してみた。すると結晶化
後の酸素濃度は1×1020cm-3、4×1020cm-3と多くなっ
た。しかしかかる被膜を用いた時、同時に、結晶化に必
要な温度を700 ℃以上にするか、または結晶化時間を少
なくとも5倍以上にすることによって、初めて結晶化が
できた。即ち工業的に基板のガラスの軟化温度を考慮す
ると、700 ℃以下好ましくは600 ℃以下での処理は重要
であり、またより結晶化に必要な時間を少なくすること
も重要である。しかし酸素濃度等の不純物をどのように
少なくしても、450 ℃以下では熱アニ−ルによるa-Si半
導体の結晶化は実験的には不可能であった。
のスパッタ装置を用いた結果として、装置からのリ−ク
等により成膜中の酸素濃度が1×1020cm-3またはそれ以
上となった場合は、かかる本発明の特性を期待すること
ができない。
濃度であること、および熱処理温度が450 〜700 ℃であ
ることが決められた。もちろん、ゲルマニウムにおいて
は、またはシリコンとゲルマニウムとの化合物半導体で
ある場合にはアニ−ル温度を約100 ℃下げることができ
た。
4に示されたレ−ザラマン分析デ−タで明らかなよう
に、低波数側に単結晶シリコンに比べてシフトしてい
た。
ト型電解効果トランジスタの作製方法を記す。即ち、本
発明方法によって得られた熱結晶化させた微結晶珪素半
導体に対してデバイス分離パターニングを行い、図1
(a) の形状を得た。
でマグネトロン型RFスパッタ法により50nmの厚さに成
膜した。成膜条件は、水素分圧比20〜99%以上( 本実施
例では80%) 、アルゴン分圧比80〜0%( 本実施例では
19%) 、PH3 分圧比0.1 %〜10%( 実施例では1%) の
雰囲気中において、 成膜温度 150 ℃ RF(13.56MHz) 出力 400W 全圧力 0.5Pa であり、ターゲットとして単結晶( 酸素濃度1×1018cm
-3)Si をターゲットとして用いた。
製のためには、はPCVD法を用いてもよい。さらに、活性
層を形成した後、ソ−スおよびドレインを形成するた
め、不純物(例えばB( ホウ素) 、P( リン) 、As( 砒
素))をイオン注入法により添加してもよい。この後ゲー
ト領域パターニングを行い図1(b)の形状を得た。
さにマグネトロン型RFスパッタ法により以下の条件で
成膜し、図1(c) の形状を得た。 酸素雰囲気 100% 圧力0.5pa, 成膜温度100 ℃ RF(13.56MHz)出力400W 単結晶シリコンのターゲットまたは合成石英のターゲッ
ト使用した。
を行い、図1(d) の形状をえた。最後に真空蒸着により
アルミニウム電極(16)を300nm の厚さに形成し、パター
ニングすることににより図1(e) の形状を得、その後水
素熱アニ−ルを水素100 %雰囲気中において375 ℃の温
度で30min 行い、薄膜トランジスタを完成させた。この
水素熱アニールは多結晶珪素半導体と酸化珪素絶縁膜と
の界面凖位を低減させ、デバイス特性を向上させるため
である。
い て、Sはソ−ス電極、Gはゲイト電極、Dはドレイ
ン電極である。また本実施例において作製した薄膜トラ
ンジスタ図1(e) のチャンネル部(17)の大きさは100
×100μm の大きさである。
素半導体層を用いた薄膜トランジスタの作製方法である
が、本発明の効果を示すためにチャネル形成領域である
図1(a) のa-Si層(13)をマグネトロン型RFスパッタ法
により成膜する際の条件である水素の濃度および不本意
に混入する酸素濃度を変化させた実施例を5例作製した
ので以下にその作製方法を示す。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)=0%(分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。酸素濃度は2×1020cm-3を有していた。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)=20% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は7×1019cm-3を有してい
た。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)=50% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は3×1019cm-3を有してい
た。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)= 80% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は1×1019cm-3を有してい
た。
結果を示す。図2は完成した本実施例1〜5のチャネル
部(第6図eの(17)におけるキャリアの移動度μ(FIELD
MOBILITY)とスパッタ時における水素分圧比( PH /P
TOTA=H2/(H2+Ar))の関係をグラフ化したものである。
図2におけるプロット点と実施例との対応関係を以下に
表1として示す。
が2×1020cm-3もあるため、3×10 -1cm2V/secときわめ
て小さく、また他方、本発明の如く20%以上また酸素濃
度7×1019cm-3以下において顕著に高い移動度2cm2/Vs
ec以上μ(FIELD MOBILITY)が得られていることがわか
る。
ャンバ中での酸素を水とし、それをクライオポンプで積
極的に除去できたためと推定される。図3はしきい値電
圧とスパッタ時における水素分圧比( PH /PTOTAL =H2
/(H2+Ar))の関係をグラフ化したものである。
と実施例番号の対応関係は表1の場合と同じである。し
きい値電圧が低いほど薄膜トランジスタを動作させる動
作電圧、すなわちゲイト電圧が低くてよいことになり、
デバイスとしての良好な特性が得られることを考える
と、図3の結果は、水素の分圧比の高い20%以上条件の
スパッタ法によって、スレッシュホ−ルド電圧8V以下
のノ−マリオフの状態を得ることができる。即ち、チャ
ネル形成領域となる図1(a)の(13)に示されるa-Si膜
を得て、このa-Si膜を再結晶化させることによって得ら
れる微結晶珪素半導体層を用いたデバイス(本実施例で
は薄膜トランジスタ)は良好な電気的特性を示すことが
わかる。
層のレ−ザラマンスペクトルを示したものである。図4
に表された表示記号と実施例番号およびスパッタ時の水
素分圧比との関係を表2に示す。
3)、すなわちチャネル形成領域(図1(e)の(17)) と
なるa-Si半導体層を作製する際のスパッタ時における水
素の分圧比が0%の場合と100 %の場合を比較すると、
熱アニ−ルにより結晶化させた場合は、スパッタ時にお
ける水素の分圧比が100%の場合のラマンスペクトルは顕
著にその結晶性を有し、かつその平均の結晶粒径は半値
幅より5〜400 Å代表的には50〜300 Åである。そして
単結晶シリコンのピ−ク値の520cm -1よりも低波数側に
ずれ、明らかに格子歪を有する。このことは本発明の特
徴を顕著に示している。すなわち水素を添加したスパッ
タ法によるa-Si膜の作製の効果は、そのa-Si膜を熱結晶
化させて初めて現れるものであるということである。
互いが無理に縮んでいるため、互いの結晶粒界での密接
が強くなり、結晶粒界でのキャリアにとってのエネルギ
バリアもそこでの酸素等の不純物の偏析も発生しにく
い。結果として高いキャリア移動度を期待することがで
きる。
ランジスタにおいてドレイン電圧VDが低い場合、ドレイ
ン電流IDとドレイン電圧VDとの関係は以下の式によって
表される。 ID=(W/L) μC(VG-VT)VD (Solid.State electronics.Vol.24.No.11.pp.1059.198
1.Printed in Britain)上式において、Wはチャンネル
幅、Lはチャネル長、μはキャリアの移動度、Cはゲイ
ト酸化膜の静電容量、VGはゲート電圧、VTはしきい値電
圧として定着している。
はArを用いたが、その他Heなどの他の不活性気体、また
はSiH4、Si2H6 などの反応性気体をプラズマ化させたも
のを雰囲気気体の一部に添加して用いても良い。本実施
例のマグネトロン型RFスパッタ法によるa-Si膜の成膜に
おいて、水素濃度は5 〜100 %、成膜温度は室温〜500
℃の範囲、RF出力は500 Hz〜100GHzの範囲において、出
力100W〜10MWの範囲で任意に選ぶことができ、またパル
スエネルギー発信源と組み合わせてもよい。さらに強力
な光照射( 波長100 〜500nm 以下) エネルギーを加えて
光スパッタを行ってもよい。
マ化させ、スパッタリングに必要な正イオンを効率よく
生成させて、スパッタによって成膜される膜中に水素ま
たは水素原子を均一に添加し、結果として酸素の混入を
7×1019cm-3以下、好ましくは1×1019cm-3以下におさ
えた半導体の成膜のためである。
膜を単にa-Si膜として略記した。しかしこれはシリコン
半導体を主な半導体とするが、ゲルマニウム、SixGe1-x
(0<x<1) であってもよい。これは真性半導体のみならず
PまたはN型の半導体であってもよい。
用してもよい。
的に有用なスパッタ法により得られた非単結晶半導体を
熱結晶化させ多結晶半導体を得る工程において、問題と
なる熱結晶化困難の問題を解決することができ、しかも
この多結晶半導体層を用いて高性能な薄膜トランジスタ
を作製することができた。
工程において、チャネル形成領域となるa-Si膜の作製時
に添加する水素の分圧比と本実施例で作製した薄膜トラ
ンジスタにおけるキャリアの移動度との関係を示したも
のである。
程において、チャネル形成領域となるa-Si膜の作製時に
添加する水素の分圧比と、本実施例で作製した薄膜トラ
ンジシタにおけるしきい値との関係を示したものであ
る。
のラマンスペクトルを示したものである。
Claims (5)
- 【請求項1】ガラス基板上にスパッタ法により絶縁膜を
形成し、 前記絶縁膜に接してスパッタ法により半導体膜を形成
し、 前記スパッタ法によって得た半導体膜を450〜700
℃の温度下で結晶化して酸素濃度が7×10 19 atom
s/cm 3 以下である半導体膜を形成することを特徴とす
る半導体装置の作製方法。 - 【請求項2】ガラス基板上にスパッタ法により絶縁膜を
形成し、 前記絶縁膜に接してスパッタ法により半導体膜を形成
し、 前記スパッタ法によって得た半導体膜を450〜700
℃の温度下で結晶化して酸素濃度が7×10 19 atom
s/cm 3 以下である半導体膜を形成し、 前記半導体膜に接してスパッタ法によりゲート絶縁膜を
形成することを特徴とする半導体装置の作製方法。 - 【請求項3】ガラス基板上にスパッタ法により絶縁膜を
形成し、 前記絶縁膜に接してスパッタ法により水素雰囲気中で半
導体膜を形成し、 前記スパッタ法によって得た半導体膜を450〜700
℃の温度下で結晶化して酸素濃度が7×10 19 atom
s/cm 3 以下である半導体膜を形成する ことを特徴とす
る半導体装置の作製方法。 - 【請求項4】ガラス基板上にスパッタ法により絶縁膜を
形成し、 前記絶縁膜に接してスパッタ法により水素雰囲気中で半
導体膜を形成し、 前記スパッタ法によって得た半導体膜を450〜700
℃の温度下で結晶化して酸素濃度が7×10 19 atom
s/cm 3 以下である半導体膜を形成し、 前記半導体膜に接してスパッタ法によりゲート絶縁膜を
形成する ことを特徴とする半導体装置の作製方法。 - 【請求項5】請求項3又は4において、 前記雰囲気の水素の分圧比は、20〜100%であるこ
とを特徴とする半導体装置の作製方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07699399A JP3153202B2 (ja) | 1999-03-23 | 1999-03-23 | 半導体装置の作製方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07699399A JP3153202B2 (ja) | 1999-03-23 | 1999-03-23 | 半導体装置の作製方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8078345A Division JP3065528B2 (ja) | 1996-03-05 | 1996-03-05 | 半導体装置 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000191723A Division JP2001053289A (ja) | 2000-01-01 | 2000-06-26 | 薄膜トランジスタの作製方法 |
JP2000191719A Division JP2001035791A (ja) | 2000-01-01 | 2000-06-26 | 半導体装置の作製方法 |
JP2000191722A Division JP2001053007A (ja) | 2000-01-01 | 2000-06-26 | 半導体装置の作製方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000077405A JP2000077405A (ja) | 2000-03-14 |
JP3153202B2 true JP3153202B2 (ja) | 2001-04-03 |
Family
ID=13621316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07699399A Expired - Lifetime JP3153202B2 (ja) | 1999-03-23 | 1999-03-23 | 半導体装置の作製方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3153202B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100683760B1 (ko) | 2005-02-18 | 2007-02-15 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 구비한 평판 디스플레이 장치 |
-
1999
- 1999-03-23 JP JP07699399A patent/JP3153202B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000077405A (ja) | 2000-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5236850A (en) | Method of manufacturing a semiconductor film and a semiconductor device by sputtering in a hydrogen atmosphere and crystallizing | |
US5744818A (en) | Insulated gate field effect semiconductor device | |
TW515101B (en) | Method for fabrication of field-effect transistor | |
JPH03292741A (ja) | 半導体装置の製造方法 | |
EP0481777B1 (en) | Method of manufacturing gate insulated field effect transistors | |
JP3065528B2 (ja) | 半導体装置 | |
JP3153202B2 (ja) | 半導体装置の作製方法 | |
JP3054186B2 (ja) | 絶縁ゲイト型半導体装置の作製方法 | |
JPH03289140A (ja) | 半導体装置の製造方法 | |
JP4031021B2 (ja) | 薄膜トランジスタの作製方法 | |
JP3142836B2 (ja) | 半導体装置 | |
JP3160269B2 (ja) | 半導体装置の作製方法 | |
JP4001281B2 (ja) | 絶縁ゲイト型電界効果薄膜トランジスタの作製方法 | |
JP3030366B2 (ja) | 半導体作製方法 | |
JP3278237B2 (ja) | 薄膜トランジスタの製造方法 | |
JPH05275448A (ja) | 薄膜半導体装置の製造方法 | |
JP2001053289A (ja) | 薄膜トランジスタの作製方法 | |
JP2001053291A (ja) | 半導体および半導体装置 | |
JP2001035791A (ja) | 半導体装置の作製方法 | |
JP2001053007A (ja) | 半導体装置の作製方法 | |
JP2987987B2 (ja) | 結晶半導体薄膜の形成方法並びに薄膜トランジスタの製造方法 | |
JP2652368B2 (ja) | 絶縁ゲイト型半導体装置の作製方法 | |
JP3614333B2 (ja) | 絶縁ゲイト型電界効果トランジスタ作製方法 | |
JP4138719B2 (ja) | 絶縁ゲイト型電界効果トランジスタの作製方法 | |
JP3241705B2 (ja) | 薄膜トランジスタの作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |