JP2974353B2 - 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子 - Google Patents

強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子

Info

Publication number
JP2974353B2
JP2974353B2 JP2019883A JP1988390A JP2974353B2 JP 2974353 B2 JP2974353 B2 JP 2974353B2 JP 2019883 A JP2019883 A JP 2019883A JP 1988390 A JP1988390 A JP 1988390A JP 2974353 B2 JP2974353 B2 JP 2974353B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal composition
same manner
alignment
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019883A
Other languages
English (en)
Other versions
JPH03221589A (ja
Inventor
眞孝 山下
匡宏 寺田
省誠 森
一春 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019883A priority Critical patent/JP2974353B2/ja
Priority to US07/645,720 priority patent/US5391318A/en
Priority to EP91101076A priority patent/EP0440136B1/en
Priority to DE69125408T priority patent/DE69125408T2/de
Priority to AT91101076T priority patent/ATE151104T1/de
Publication of JPH03221589A publication Critical patent/JPH03221589A/ja
Application granted granted Critical
Publication of JP2974353B2 publication Critical patent/JP2974353B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • C09K19/3463Pyrimidine with a carbon chain containing at least one asymmetric carbon atom, i.e. optically active pyrimidines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶組成物およびそれを使用した表示素子
に関し、さらに詳しくは、電界に対する応答特性が改善
された新規な液晶組成物、およびそれを使用した液晶表
示素子や液晶−光シヤツタ等に利用される液晶素子に関
するものである。
〔従来の技術〕
従来より、液晶は電気光学素子として種々の分野で応
用されている。現在実用化されている液晶素子はほとん
どが、例えばエム シヤツト(M.Schadt)とダブリユ
ヘルフリツヒ(W.Helfrich)著“アプライド フイジツ
クス レターズ”(“Applied Physics Letters")Vo.1
8,No.4(1971.2.15)P.127〜128の“Voltage Dependent
Optical Activity of a Twisted Nematic Liquid Crys
tal"に示されたTN(Twisted Nematic)型の液晶を用い
たものである。
これらは、液晶の誘電的配列効果に基づいており、液
晶分子の誘電異方性のために平均分子軸方向が、加えら
れた電場により特定の方向に向く効果を利用している。
これらの素子の光学的な応答速度の限界はミリ秒である
といわれ、多くの応用のためには遅すぎる。一方、大型
平面デイスプレイへの応用では、価格,生産性などを考
え合わせると、単純マトリクス方式による駆動が最も有
力である。単純マトリクス方式においては、走査電極群
と信号電極群をマトリクス状に構成した電極構成が採用
され、その駆動のためには、走査電極群に順次周期的に
アドレス信号を選択印加し、信号電極群には所定の情報
信号をアドレス信号と同期させて並列的に選択印加する
時分割駆動方式が採用されている。
しかし、この様な駆動方式の素子に前述したTN型の液
晶を採用すると、走査電極が選択され、信号電極が選択
されない領域、或いは走査電極が選択されず、信号電極
が選択される領域(所謂“半選択点”)にも有限に電界
がかかってしまう。
選択点にかかる電圧と、半選択点にかかる電圧の差が
充分に大きく、液晶分子を電界に垂直に配列させるのに
要する電圧閾値がこの中間の電圧値に設定されるなら
ば、表示素子は正常に動作するわけであるが、走査線数
(N)を増加して行なった場合、画面全体(1フレー
ム)を走査する間に一つの選択点に有効な電界がかかっ
ている時間(duty比)が1/Nの割合で減少してしまう。
このために、くり返し走査を行なった場合の選択点と
非選択点にかかる実効値としての電圧差は、走査線数が
増えれば増える程小さくなり、結果的には画像コントラ
ストの低下やクロストークが避け難い欠点となってい
る。
この様な現象は、双安定性を有さない液晶(電極面に
対し、液晶分子が水平に配向しているのが安定状態であ
り、電界が有効に印加されている間のみ垂直に配向す
る)を時間的蓄積効果を利用して駆動する(即ち、繰り
返し走査する)ときに生ずる本質的には避け難い問題点
である。
この点を改良する為に、電圧平均化法、2周波駆動法
や、多重マトリクス法等が既に提案されているが、いず
れの方法でも不充分であり、表示素子の大画面化や高密
度化は走査線数が充分に増やせないことによって頭打ち
になっているのが現状である。
このような従来型の液晶素子の欠点を改善するものと
して、双安定性を有する液晶素子の使用がクラーク(Cl
ark)およびラガウエル(Lagerwall)により提案されて
いる(特開昭56−107216号公報、米国特許第4,367,924
号明細書等)。
双安定性液晶としては、一般にカイラルスメクテイツ
クC相(SmC)又はH相(SmH相)を有する強誘電性
液晶が用いられる。
この強誘電性液晶は電界に対して第1の光学的安定状
態と第2の光学的安定状態からなる双安定状態を有し、
従って前述のTN型の液晶で用いられた光学変調素子とは
異なり、例えば一方の電界ベクトルに対して第1の光学
的安定状態に液晶が配向し、他方の電界ベクトルに対し
ては第2の光学的安定状態に液晶が配向されている。ま
た、この型の液晶は、加えられる電界に応答して、上記
2つの安定状態のいずれかを採り、且つ電界の印加のな
いときはその状態を維持する性質(双安定性)を有す
る。
以上の様な双安定性を有する特徴に加えて、強誘電性
液晶は高速応答性であるという優れた特徴を持つ。それ
は強誘電性液晶の持つ自発分極と印加電場が直接作用し
て配向状態の転移を誘起するためであり、誘電率異方性
と電場の作用による応答速度より3〜4オーダー速い。
このように強誘電性液晶はきわめて優れた特性を潜在
的に有しており、このような性質を利用することによ
り、上述した従来のTN型素子の問題点の多くに対して、
かなり本質的な改善が得られる。特に、高速光学光シヤ
ツターや高密度,大画面デイスプレイへの応用が期待さ
れる。このため強誘電性を持つ液晶材料に関しては広く
研究がなされているが、現在までに開発された強誘電性
液晶材料は、低温作動特性、高速応答性等を含めて液晶
素子に用いる十分な特性を備えているとは云い難い。
応答時間τと自発分極の大きさPsおよび粘度ηの間に
は、下記の式[II] (ただし、Eは印加電界である) の関係が存在する。従って応答速度を速くするには、 (ア)自発分極の大きさPsを大きくする (イ)粘度ηを小さくする (ウ)印加電界Eを大きくする 方法がある。しかし印加電界は、IC等で駆動するため上
限があり、出来るだけ低い方が望ましい。よって、実際
には粘度ηを小さくするか、自発分極の大きさPsの値を
大きくする必要がある。
一般的に自発分極の大きい強誘電性カイラルスメクチ
ツク液晶化合物においては、自発分極のもたらすセルの
内部電界も大きく、双安定状態をとり得る素子構成への
制約が多くなる傾向にある。また、いたずらに自発分極
を大きくしても、それにつれて粘度も大きくなる傾向に
あり、結果的には応答速度はあまり速くならないことが
考えられる。
また、TN型液晶材料は簡単なラビング配向処理が行な
われた配向膜を用いて、ネマチツク相状態に配向され
る。
これに対し、SmC液晶材料は同様な簡便ラビング配
向処理ではジグザグ欠陥や、液晶セル中のギヤツプ保持
材(スペーサービーズ等)周辺で配向欠陥が生じやすい
という特徴がある。
さらには、液晶セル構成要素に由来する配向膜表面の
凹凸などによって生じた、配向膜ラビング状態の差異に
より配向欠陥が容易に生じてしまう。
これらは、SmC相状態が、等法相状態からいくつか
の相転移を経由した相状態である場合が多い、また、ネ
マチツク相と比較し、より結晶相に近い相状態であるこ
とにも起因していると、本発明者らは推察している。
そして、これらの配向欠陥は、SmC液晶材料の特性
である双安定性を低下させ、さらには画質上、コントラ
ストの低下や、クロストークの増大を招く要因となって
しまう。
以上述べた様に、強誘電性液晶素子を実用化するため
には、粘度が低く、高速応答性を有し、かつ簡便なラビ
ング配向処理によって容易に配向し、欠陥のない均一な
モノドメイン配向性を示す強誘電性カイラルスメクチツ
ク液晶組成物が要求される。
〔発明が解決しようとする課題〕
本発明の目的は、強誘電性液晶素子を実用できるよう
にするために、応答速度が速く、しかも良好な均一モノ
ドメイン配向性を示す液晶組成物、特に強誘電性カイラ
ルスメクチツク液晶組成物、および該液晶組成物を使用
する液晶素子を提供することにある。
〔問題を解決するための手段〕 本発明は、下記一般式(I) (ただし、R1,R2は炭素数1〜16の置換基を有しても
よい直鎖状または分岐状のアルキル基であり、Z1は単結
合,−O−, を示し、X1はハロゲン原子を示す。) で表される液晶性化合物の少なくとも1種を含有する強
誘電性カイラルスメクチツク液晶組成物、および前述一
般式(I)で表わされる液晶性化合物の少なくとも1種
と、 下記一般式(II) (ただし、R3,R4は炭素数1〜18の直鎖状または分岐
状のアルキル基を示す。これらは置換基として、炭素数
1〜12のアルコキシ基を有していてもよい。ただし、
R3,R4は非光学活性である。Z2,Z3は単結合,−O−, を示し、p,qは0,1もしくは2である。) で表わされる液晶性化合物の少なくとも一種とを含有す
る強誘電性カイラルスメクチツク液晶組成物、そして、
前記液晶組成物にさらに一般式(III) (但し、R5は置換基を有していてもよい炭素数1〜18の
直鎖状または分岐状のアルキル基である。Yは単結合、 −CH2O−、−OCH2−、−COS−、−SCO−、−CH=CH−CO
O−、Z4は単結合、−O−、 であり、Z5は単結合、−OCH2−、 −O−(CH2)k−O−CH2−(但しkは1〜4の整数で
あり)、 rは1又は2であり、lは1から12の整数である。) で表される液晶性化合物を少なくとも1種含有させた強
誘電性カイラルスメクチツク液晶組成物、および該液晶
組成物を1対の電極基板間に配置してなる液晶素子を提
供するものである。
一般式(I)で表わされる液晶性化合物の代表的な合
成経路を以下に示す。
(式中、R1,R2,X1,Z1は前述の通りである) 次に、一般式(I)で示される液晶性化合物の代表的
な合成例を以下に示す。
一般式(I)で示される液晶性化合物のうち、好まし
い化合物としては、以下(I a)式で示される化合物が
挙げられる。
(R1,R2,Z1,X1は前述の通りである) 又、さらに上記(I a)において、Z1の好ましい例と
しては単結合,−O−であり、X1の好ましい例としては
C,Fであり、特に好ましい例としてはFを挙げること
ができる。
又、一般式(I)で示される液晶性化合物において、
R1,R2の好ましい例として(I−i)〜(I−iii)を挙
げることができる。
(ただし、mは0〜7の整数であり、nは1〜9の整
数であるが、2≦m+n≦14の範囲内にある。) (ただし、rは0〜7の整数であり、sは0もしくは
1である。又、tは1〜14の整数であるが、1≦r+s
+t≦14の範囲内にある。) 又、前述の一般式(II)で示される化合物のうち、好
ましい化合物例としては、下記式(II−a)〜(II−
e)で示される化合物が挙げられる。
(R3,R4,Z2,Z3は前述の通り) 又さらに、上述の(II−a)〜(II−e)式における
Z2,Z3の好ましい例としては(II−i)〜(II−viii)
を挙げることができる。
又、上述の(II−a)〜(II−e)式におけるR3,R4
は好ましくは炭素数4〜14の直鎖状または分岐状のアル
キル基であり、これらは置換基としては炭素数1〜12の
アルキル基を有してもよく、R3,R4のより好ましい例と
しては下記(II−ix)〜(II−xi)を挙げることができ
る。
(II−ix)R3,R4がたがいに独立して炭素数4〜14のn
−アルキル基 (II−x)R3が炭素数4〜14のn−アルキル基, (uは0〜7であり、R6は直鎖状又は分岐状のアルキ
ル基) (II−xi)R3がn−アルキル基, (yは0〜7であり、uは0もしくは1、R6は直鎖状
又は分岐状のアルキル基) また、前述の一般式(III)で示される化合物のう
ち、好ましい化合物例としては、下記式(III−a)〜
(III−f)で示される化合物が挙げられる。
(R5,Z4,Z5,は前述の通り) さらに、上記式(III−a)〜(III−f)で示される
化合物のうち、特に好ましい化合物例としては式(III
−a)、式(III−b)、式(III−c)を挙げることが
できる。
又、さらに上述の式(III−a)〜(III−f)におけ
るZ4,Z5の好ましい例としては、下記(III−i)〜(II
I−v)を挙げることができる。
(III−i) Z4が単結合、 Z5が−O−CH2− (III−ii) Z4が単結合、 Z5が−COO−CH2− (III−iii)Z4が単結合、 Z5が−OCO− (III−iv) Z4が−O−、 Z5が−O−CH2− (III−v) Z4が−O−、 Z5が−COOCH2− 前記一般式(I)で表わされる液晶性化合物の具体的
な化合物例を以下に示す。
一般式(I)で表わされる液晶性化合物の代表的な合
成経路を以下に示す。
(式中、R1,R2,X1,Z1は前述の通りである) 次に、一般式(I)で示される液晶性化合物の代表的
な合成例を以下に示す。
合成例1(No.1−38の化合物の合成) 2−デシル−5−(3−フルオロ−4−ヒドロキシフ
エニル)ピリミジン0.80g(2.42mmole)をピリジン10ml
に溶かし、氷冷撹拌下ヘプタノイルクロライド0.62ml
(4.00mmole)を滴下した。滴下終了後15分間氷冷撹拌
した。その後45〜56℃に保った水浴上で20分間加熱撹拌
した。反応終了後反応物を氷水150ml中に注入し、析出
した結晶を濾取水洗した。この結晶をトルエンに溶か
し、水洗、芒硝乾燥後、溶媒を減圧留去した。残渣をト
ルエンを溶離液としたシリカゲルカラムクロマトで精製
し、アセトン−メタノール混合溶媒で2度再結晶し、2
−デシル−5−(3−フルオロ−4−ヘプタノイルオキ
シフエニル)ピリミジン0.66g(収率61.6%)を得た。
相転移温度(℃) 合成例2(No.1−44の化合物の合成) 2−ウンデシル−5−(3−フルオロ−4−ヒドロキ
シフエニル)ピリミジン2.00g(5.81mmole)、吉草酸0.
60g(5.87mmole)、ジクロルメタン50mlを200mlナスフ
ラスコに入れて溶かし、室温撹拌下N,N′−ジシクロヘ
キシルカルボジイミド1.21g(5.86mmole)、4−ピロリ
シジルピリジン0.10gを順次加え、その後4時間45分室
温で撹拌した。撹拌終了後析出したN,N′−ジシクロヘ
キシル−ウレアを濾去し、濾液を減圧乾固した。残渣を
トルエン/酢酸エチル:100/1の溶離液を用いたシリカゲ
ルカラムクロマトで精製し、アセトン−メタノール混合
溶媒で2度再結晶し、2−ウンデシル−5−(3−フル
オロ−4−ペンタノイルオキシフエニル)ピリミジン1.
91g(収率76.8%)を得た。
相転移温度(℃) 一般式(II)で示される化合物は、例えば東独特許95
892(1973年)、特許公報昭62−5434(1987)に記載の
方法により得ることができる。又、例えば、 で示される化合物は、下記の合成経路で合成することが
できる。
(式中のR3,R4,p,qは前述の通りである) 一般式(II)で示される化合物の代表的な合成例を以
下に示す。
合成例3.(No.2−54の化合物の合成) ピリジン5mlに溶かした5−メトキシヘキサノール1.0
6g(8.0mmol)にピリジン5mlに溶かしたp−トルエンス
ルホン酸クロライド1.83g(9.6mmol)を氷水浴中5℃以
下で滴下した。室温で6時間撹拌後、反応混合物を冷水
100mlに注入した。6N塩酸で酸性側とした後、イソプロ
ピルエーテルで抽出した。有機層を水洗後、無水硫酸マ
グネシウムで乾燥し、その後溶媒留去して、5−メトキ
シヘキシル−p−トルエンスルホネートを得た。
ジメチルホルムアミド10mlに5−デシル−2−(p−
ヒドロキシフエニル)ピリミジン2.0g(6.41mmol)、水
酸化カリウム0.61gを加え、100℃で40分間撹拌した。こ
れに、先に得た5−メトキシヘキシル−p−トルエンス
ルホネートを加え、100℃で4時間加熱撹拌した。反応
終了後、反応混合物を冷水100mlに注入し、ベンゼンに
より抽出した。水洗後、無水硫酸マグネシウムにより乾
燥し、溶媒留去して淡黄色油状物を得た。カラムクロン
トグラフイー(シリカゲル−酢酸エチル/ベンゼン=1/
9)により精製後、ヘキサンより再結晶して5−デシル
−2−{4−(5′−メソキシヘキシルオキシ)フエニ
ル}ピリジン1.35gを得た。
相転移温度 前記一般式(II)で表わされる液晶性化合物の具体的
な化合物例を以下に示す。
一般式(III)で示される化合物は、例えば特開昭63
−22042号公報、特開昭63−122651号公報などに記載の
方法により得ることができる。
代表的な合成例を以下に示す。
合成例4(化合物No.3−28の合成) p−2−フルオロオクチルオキシフエノール1.00g
(4.16mM)をピリジン10ml、トルエン5mlに溶解させ、
トランス−4−n−ペンチルシクロヘキサンカルボン酸
クロライド1.30g(6.00mM)をトルエン5mlに溶解した溶
液を、5℃以下、20〜40分間で滴下した。滴下後、室温
で一晩撹拌し、白色沈殿を得た。
反応終了後、反応物をベンゼンで抽出し、さらにこの
ベンゼン層を蒸留水で洗ったのち、ベンゼン層を硫酸マ
グネシウムで乾燥し、ベンゼンを留去した。さらにシリ
カゲルカラムクロマトグラフイーを用いて精製し、さら
にエタノール/メタノールで再結晶して、トランス−4
−n−ペンチルシクロヘキサンカルボン酸−p−2−フ
ルオロオクチルオキシフエニルエステル1.20g(2.85m
M)を得た。(収率68.6%) NMRデータ(ppm) 0.83〜2.83ppm(34H、m) 4.00〜4.50ppm(2H、q) 7.11ppm (4H、s) IRデータ(cm-1) 3456,2928,2852,1742,1508,1470,1248,1200,1166,1
132,854。
相転移温度(℃) (ここで、S3,S4,S5,S6は、SmCよりも秩序度の高い相
を示す。) 合成例5(化合物No.3−85の合成) 十分に窒素置換された容器に、(−)−2−フルオロ
ヘプタノール0.40g(3.0mmol)と乾燥ピリジン1.00g(1
3mmol)を入れ氷冷下で30分間撹拌した。その溶液にp
−トルエンスルホン酸クロリド0.69g(3.6mmol)を加
え、そのまま5時間撹拌を続けた。反応終了後、1NHC
10mlを加え、塩化メチレン10mlで2回抽出を行った後、
その抽出液を蒸留水10mlで1回洗浄した。得られた塩化
メチレン溶液に無水硫酸ナトリウムを適宜加えて乾燥し
たのち、溶媒を留去し(+)−2−フルオロヘプチルp
−トルエンスルホン酸エステル0.59g(2.0mmol)を得
た。
収率は66%である。生成物の比旋光度およびIRデータ
は以下の通りである。
比旋光度▲[α]26.4 D▼+2.59゜(c=1、CHC
)。
比旋光度▲[α]23.6 435▼+9.58゜(c=1、CHC
)。
IR(cm-1): 2900、2850、1600、1450、1350、1170、1090、980、8
10、660、550。
上記のようにして得られた(+)−2−フルオロヘプ
チルp−トルエンスルホン酸エステル0.43g(1.5mmol)
と5−オクチル−2−(4−ヒドロキシフエニル)ピリ
ミジン0.28g(1.0mmol)に1−ブタノール0.2mlを加え
よく撹拌した。その溶液に、あらかじめ1−ブタノール
1.0mlに水酸化ナトリウム0.048g(1.2mmol)を溶解させ
て調製しておいたアルカリ溶液を速やかに注ぎ5時間
半、加熱還流した。反応終了後蒸留水10mlを加え、ベン
ゼン10mlおよび5mlでそれぞれ1回づつ抽出を行った
後、その抽出液に無水硫酸ナトリウムを適宜加えて乾燥
した。乾燥後、溶媒を留去し、シリカゲルカラム(クロ
ロホルム)により目的物である(+)−5−オクチル−
2−[4−(2−フルオロヘプチルオキシ)フエニル]
ピリミジン0.17g(0.43mmol)を得た。
収率は43%であり、以下のような比旋光度およびIRデ
ータが得られた。
比旋光度▲[α]25.6 D▼+0.44゜(c=1、CHC
)。
比旋光度▲[α]22.4 435▼+4.19゜(c=1、CHC
)。
IR(cm-1): 2900、2850、1600、1580、1420、1250、1160、800、7
20、650、550。
前記一般式(III)で表わされる液晶性化合物の具体
的な化合物を以下に示す。
本発明の一般式(I)で示される液晶性化合物と、1
種以上の後述するその他の液晶性化合物、あるいは液晶
組成物(以下、液晶材料と略す。)との配合割合は液晶
材料100重量部当り、本発明の一般式(I)で示される
液晶性化合物を1〜300重量部、好ましくは2〜200重量
部とすることが望ましい。
また、本発明の一般式(I)で示される液晶性化合物
を2種以上用いる場合も液晶材料との配合割合は、液晶
材料100重量部当り、本発明の一般式(I)で示される
液晶性化合物の2種以上の混合物を1〜500重量部、好
ましくは2〜200重量部とすることが望ましい。
さらに、本発明の一般式(I)と一般式(II)、ある
いは一般式(I)と一般式(III)で示される液晶性化
合物各々と、液晶材料との配合割合は液晶材料100重量
部当り、本発明の一般式(I)と一般式(II)、あるい
は一般式(I)と一般式(III)で示される液晶性化合
物を各々1〜300重量部、好ましくは2〜200重量部とす
ることが望ましい。
さらにまた、本発明の一般式(I)と一般式(II)、
あるいは一般式(I)と一般式(III)で示される液晶
性化合物の一方、もしくは両方を2種以上用いる場合も
液晶材料との配合割合は、液晶材料100重量部当り、本
発明の一般式(I)と一般式(II)、あるいは一般式
(I)と一般式(III)で示される液晶性化合物の一方
もしくは両方の2種以上の混合物を1〜500重量部、好
ましくは2〜200重量部とすることが望ましい。
さらに、本発明の一般式(I)、一般式(II)、およ
び一般式(III)で示される液晶性化合物各々と液晶材
料との配合割合は、液晶材料100重量部当り、本発明の
一般式(I)、一般式(II)、および一般式(III)で
示される液晶性化合物各々を1〜300重量部、より好ま
しくは2〜200重量部とすることが望ましい。
さらにまた、本発明の一般式(I)、一般式(II)、
および一般式(III)で示される液晶性化合物のいずれ
か、あるいは全てを2種以上用いる場合も液晶材料との
配合割合は、液晶材料100重量部当り、本発明の一般式
(I)、一般式(II)、および一般式(III)で示され
る液晶性化合物のいずれか、あるいは全ての2種以上の
混合物を1〜500重量部、より好ましくは2〜200重量部
とすることが望ましい。
又、本発明による液晶組成物は、強誘電性液晶組成
物、特に強誘電性カイラルスメクチツク液晶組成物が好
ましい。
本発明で用いる他の液晶性化合物を一般式(IV)〜
(VIII)で下記に挙げる。
(ただし、R1′,R2′は炭素数1〜18の直鎖状又は分岐
状のアルキル基であり、該アルキル基中の1つもしくは
隣接しない2つ以上の−CH2−基は−CHCN−,−CCH3
CN−,−CHC−,−CHBr−によって置き換えられて
もよく、さらにZ1′,Z2′と直接結合する−CH2−基を除
く1つもしくは2つ以上の−CH2−基は−O−, い置き換えられてもよく、R1′,R2′の少なくとも一方
は光学活性である。Z1′,Z2′は単結合,−O−, であり、a1,b1は0,1又は2であり、a1+b1は1又は2で
ある。) (ただし、R3′,R4′は炭素数1〜18の直鎖状又は分岐
状のアルキル基であり、該アルキル基中の1つもしくは
隣接しない2つ以上の−CH2−基は−CHCN−,−CCH3
CN−,−CHC−,−CHBr−によって置き換えられて
もよく、さらにZ3′,Z4′と直接結合する−CH2−基を除
く1つもしくは2つ以上の−CH2−基は−O−, に置き換えられてもよい。Z3′,Z4′は単結合,−O
−, であり、X1′,X2′は単結合, −CH2O−,−OCH2−であり、X1′,X2′がともに単結合
であることはない。A1′は であり、Y1′は水素原子、ハロゲン原子、CH3又はCF3
ある。) (ただし、R5′,R6′は炭素数1〜18の直鎖状又は分岐
状のアルキル基であり、該アルキル基中の1つもしくは
隣接しない2つ以上の−CH2−基は−CHCN−,−CCH3
CN−,−CHC−,−CHBr−によって置き換えられて
もよく、Z5′,Z6′と直接結合する−CH2−基を除く1つ
もしくは2つ以上の−CH2−基は−O−, に置き換えられてもよい。A2′は 又は単結合であり、A3′は 又は単結合であり、A2′,A3′がともに単結合であるこ
とはない。Z5′,Z6′は単結合,−O−, である。X3′,X4′は単結合, −CH2O−又は−OCH2−であり、A2′が単結合の時X3′は
単結合であり、A3′が単結合の時X4′は単結合である。
Y2′,Y3′,Y4′は水素原子、ハロゲン原子、CH3又はCF3
である。) (ただし、R7′,R8′は炭素数1〜18の直鎖状又は分岐
状のアルキル基であり、該アルキル基中の1つもしくは
隣接しない2つ以上の−CH2−基は−CHCN−,−CCH3
CN−,−CHC−,−CHBr−によって置き換えられて
もよく、Z7′,Z8′と直接結合する−CH2−基を除く1つ
もしくは2つ以上の−CH2−基は−O−, に置き換えられてもよい。A4′は である。Z7′,Z8′は単結合,−O−, であり、X5′,X6′は単結合, −CH2O−,−OCH2−である。a3,b3は0又は1である
が、a3,b3がともに0であることはない。) (ただし、R9′は炭素数1〜18の直鎖状又は分岐状のア
ルキル基であり、R10′は炭素数1〜16の直鎖状又は分
岐状のアルキル基である。A5′は A6′は である。X7′は単結合, −CH2O−,−OCH2−であり、X8′は単結合, である。X9′は単結合,−O−, であり、X10′は −O−CH2CH2−である。Cは光学活性な不斉炭素原子
を示す。) (IV)式〜(VIII)式の好ましい化合物として(IV
a)〜(VIII e)が挙げられる。
さらに、本発明による強誘電性液晶素子における強誘
電性液晶層は、先に示したようにして作製した強誘電性
液晶組成物を真空中、等方性液体温度まで加熱し、素子
セル中に封入し、徐々に冷却して液晶層を形成させ、常
圧にもどすことが好ましい。
第1図は強誘電性液晶素子の構成の説明のために、本
発明の強誘電性液晶層を有する液晶素子の一例の断面概
略図である。
第1図において符号1は強誘電性液晶層、2はガラス
基板、3は透明電極、4は絶縁性配向制御層、5はスペ
ーサー、6はリード線、7は電源、8は偏光板、9は光
源を示している。
2枚のガラス基板2には、それぞれIn2O3,SnO2あるい
はITO(インジウム テイン オキサイド;Indiumu−Tin
Oxide)等の薄膜から成る透明電極3が被覆されてい
る。その上にポリイミドの様な高分子の薄膜をガーゼや
アセテート植毛布等でラビングして、液晶をラビング方
向に並べる絶縁性配向制御層が形成されている。また絶
縁物質として例えばシリコン窒化物、水素を含有するシ
リコン炭化物、シリコン酸化物、硼素窒化物、水素を含
有する硼素窒化物、セリウム酸化物、アルミニウム酸化
物、ジルコニウム酸化物、チタン酸化物やフツ化マグネ
シウムなどの無機物質絶縁層を形成し、その上にポリビ
ニルアルコール、ポリイミド、ポリアミドイミド、ポリ
エステルイミド、ポリパラキシレン、ポリエステル、ポ
リカーボネート、ポリビニルアセタール、ポリ塩化ビニ
ル、ポリ酢酸ビニル、ポリアミド、ポリスチレン、セル
ロース樹脂、メラミン樹脂、ユリヤ樹脂、アクリル樹脂
やフオトレジスト樹脂などの有機絶縁物質を配向制御層
として、2層で絶縁性配向制御層が形成されていてもよ
く、また無機物質絶縁性配向制御層あるいは有機物質絶
縁性配向制御層単層であっても良い。この絶縁性配向制
御層が無機系ならば蒸着法などで形成でき、有機系なら
ば有機絶縁物質を溶解させた溶液、またはその前駆体溶
液(溶剤に0.1〜20重量%、好ましくは0.2〜10重量%)
を用いて、スピンナー塗布法、浸漬塗布法、スクリーン
印刷法、スプレー塗布法、ロール塗布法等で塗布し、所
定の硬化条件下(例えば加熱下)で硬化させ形成させる
ことができる。
絶縁性配向制御層4の層厚は通常50Å〜1μm、好ま
しくは100Å〜3000Å、さらに好ましくは100Å〜1000Å
が適している。
この2枚のガラス基板2はスペーサー5によって任意
の間隔に保たれている。例えば所定の直径を持つシリカ
ビーズ、アルミナビーズをスペーサーとしてガラス基板
2枚で挟持し、周囲をシール材、例えばエポキシ系接着
材を用いて密封する方法がある。その他スペーサーとし
て高分子フイルムやガラスフアイバーを使用しても良
い。この2枚のガラス基板の間に強誘電性液晶が封入さ
れている。
強誘電性液晶が封入された強誘電性液晶層1は、一般
には0.5〜20μm、好ましくは1〜5μmである。
透明電極3からはリード線によって外部電源7に接続
されている。
またガラス基板2の外側には偏光板8が貼り合わせて
ある。
第1図は透過型なので光源9を備えている。
第2図は強誘電性液晶素子の動作説明のために、セル
の例を模式的に描いたものである。21aと21bはそれぞれ
In2O3,SnO2あるいはITO(Indium−Tin Oxide)等の薄膜
からなる透明電極で被覆された基板(ガラス板)であ
り、その間に液晶分子層22がガラス面に垂直になるよう
配向したSmC相又はSmH相の液晶が封入されている。
太線で示した線23が液晶分子を表わしており、この液晶
分子23はその分子に直交した方向に双極子モーメント
(P⊥)24を有している。基板21aと21b上の電極間に一
定の閾値以上の電圧を印加すると、液晶分子23のらせん
構造がほとけ、双極子モーメント(P⊥)24がすべて電
界方向に向くよう、液晶分子23は配向方向を変えること
ができる。液晶分子23は細長い形状を有しており、その
長軸方向と短軸方向で屈折率異方性を示し、従って例え
ばガラス面の上下に互いにクロスニコルの偏光子を置け
ば、電圧印加極性によって光学特性が変わる液晶光学変
調素子となることは、容易に理解される。
本発明における光学変調素子で好ましく用いられる液
晶セルは、その厚さを充分に薄く(例えば10μ以下)す
ることができる。このように液晶層が薄くなるにしたが
い、第3図に示すように電界を印加していない状態でも
液晶分子のらせん構造がほどけ、その双極子モーメント
PaまたはPbは上向き(34a)又は下向き(34b)のどちら
かの状態をとる。このようなセルに、第3図に示す如く
一定の閾値以上の極性の異る電界Ea又はEbを電圧印加手
段31aと31bにより付与すると、双極子モーメントは電界
Ea又はEbの電界ベクトルに対応して上向き34a又は下向
き34bと向きを変え、それに応じて液晶分子は、第1の
安定状態33aかあるいは第2の安定状態33bの何れか一方
に配向する。
このような強誘電性を光学変調素子として用いること
の利点は先にも述べたが2つある。
その第1は、応答速度が極めて速いことであり、第2
は液晶分子の配向が双安定性を有することである。第2
の点を例えば第3図によって更に説明すると、電界Eaを
印加すると液晶分子は第1の安定状態33aに配向する
が、この状態は電界を切っても安定である。又、逆向き
の電界Ebを印加すると、液晶分子は第2の安定状態33b
に配向してその分子の向きを変えるが、やはり電界を切
ってもこの状態に留っている。又与える電界Eaあるいは
Ebが一定の閾値を越えない限り、それぞれ前の配向状態
にやはり維持されている。
以下実施例により本発明について更に詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
実施例1 下記例示化合物を下記の重量部で配合し、液晶組成物
Aを作成した。
さらにこの液晶組成物Aに対して、以下に示す例示化
合物を各々以下に示す重量部で混合し、液晶組成物1−
Aを作成した。
次に、2枚の0.7mm厚のガラス板を用意し、それぞれ
のガラス板上にITO膜を形成し、電圧印加電極を作成
し、さらにこの上にSiO2を蒸着させ絶縁層とした。ガラ
ス板上にシランカツプリング剤[信越化学(株)製KBM
−602]0.2%イソプロピルアルコール溶液を回転数2000
r.p.mのスピンナーで15秒間塗布し、表面処理を施し
た。この後、120℃にて20分間加熱乾燥処理を施した。
さらに表面処理を行なったITO膜付きのガラス板上に
ポリイミド樹脂前駆体[東レ(株)SP−510]1.5%ジメ
チルアセトアミド溶液を回転数2000r.p.mのスピンナー
で15秒間塗布した。成膜後、60分間,300℃加熱縮合焼成
処理を施した。この時の塗膜の膜厚は約250Åであっ
た。
この焼成後の被膜には、アセテート植毛布によるラビ
ング処理がなされ、その後イソプロピルアルコール液で
洗浄し、平均粒径2μmのアルミナビーズを一方のガラ
ス板上に散布した後、それぞれのラビング処理軸が互い
に平行となる様にし、接着シール剤[リクソンボンド
(チツソ(株))]を用いてガラス板をはり合わせ、60
分間,100℃にて加熱乾燥しセルを作成した。このセルの
セル厚をベレツク位相板によって測定したところ約2μ
mであった。
このセルに液晶組成物Bを等方性液体状態で注入し、
等方相から20℃/hで25℃まで徐冷することにより、強誘
電性液晶素子を作成した。
この強誘電性液晶素子を使ってピーク・トウ・ピーク
電圧Vpp=20Vの電圧印加により直交ニコル下での光学的
な応答(透過光量変化0〜90%)を検知して応答速度
(以後光学応答速度という)を測定した。
その結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
さらに、液晶素子内の均一配向性は良好であり、モノ
ドメイン状態が得られ、ギヤツプ保持に用いているアル
ミナビーズ周辺にも欠陥は全く無かった。
比較例1 実施例1で混合した液晶組成物1−Aを混合した際に
使用した液晶組成物Aをセル内に注入する以外は全く実
施例1と同様の方法で強誘電性液晶素子を作成し、光学
応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は均一的で無く、素子内
のジグザグ欠陥が多く残っていた。また、アルミナビー
ズ周辺にもスジ状の配向欠陥が多く発生しており、配向
性の低下は明らかであった。
実施例2 実施例1で用いた液晶材注入セルの作成時において、
ポリイミド樹脂の膜厚を100Å,250Å,350Åと変化させ
た基板を作成し、さらに、アセテート植毛布によるラビ
ング処理の条件、ラビングスピード、ラビング時植毛布
押し込み巾等を変更して、ラビング強度(配向規制力)
に強弱をつけた以外は、全く実施例1と同様の方法で液
晶素子を作成し、素子内の配向性を観察した。
比較例2 実施例1で使用した液晶組成物1−Aに代えて、比較
例1で用いた液晶組成物1−Abを用いた以外は、全く実
施例2と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例1と比較例1及び実施例2と比較例2より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例3 実施例1で使用した例示化合物1−3,1−8,1−17,1−
43,1−85及び液晶組成物Aと以下に示す例示化合物を各
々以下に示す重量部で混合し、液晶組成物3−Aを作成
した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例3 実施例3で混合した液晶組成物3−Aを混合した際に
使用した例示化合物1−3,1−8,1−17,1−43,1−85だけ
を使用せず、他は各々同様の重量部で液晶組成物3−Ab
を混合して、セル内に注入する以外は全く実施例3と同
様の方法で強誘電性液晶素子を作成し、光学応答速度を
測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例4 実施例3で用いた液晶組成物3−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例4 実施例4で使用した液晶組成物3−Aに代えて、比較
例3で用いた液晶組成物3−Abを用いた以外は、全く実
施例4と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例3と比較例3及び実施例4と比較例4より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例5 実施例4で使用した例示化合物2−5,2−14,2−16,2
−54,2−93,2−99に代えて以下に示す例示化合物及び液
晶組成物Aを各々以下に示す重量部で混合し、液晶組成
物5−Aを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例5 実施例5で混合した液晶組成物5−Aを混合した際に
使用した例示化合物1−3,1−8,1−17,1−43,1−85だけ
を使用せず、他は各々同様の重量部で液晶組成物5−Ab
を混合して、セル内に注入する以外は全く実施例5と同
様の方法で強誘電性液晶素子を作成し、光学応答速度を
測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例6 実施例5で用いた液晶組成物5−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例6 実施例5で使用した液晶組成物5−Aに代えて、比較
例5で用いた液晶組成物5−Abを用いた以外は、全く実
施例6と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例5と比較例5及び実施例6と比較例6より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例7 実施例5で使用した例示化合物1−3,1−8,1−17,1−
43,1−85,3−6,3−25,3−84,3−93及び液晶組成物Aに
加えて実施例3で使用した例示化合物2−5,2−14,2−1
6,2−54,2−95,2−99を各々以下に示す重量部で混合
し、液晶組成物7−Aを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例7 実施例7で液晶組成物7−Aを混合した際に使用した
1−3,1−8,1−17,1−43,1−85だけを使用せず、他は各
々同様の重量部で液晶組成物7−Abを混合して、セル内
に注入する以外は全く実施例7と同様の方法で強誘電性
液晶素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例8 実施例7で用いた液晶組成物7−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例8 実施例8で使用した液晶組成物7−Aに代えて、比較
例7で用いた液晶組成物7−Abを用いた以外は、全く実
施例8と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例7と比較例7及び実施例8と比較例8より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例9 下記化合物を下記の重量部で混合し、液晶組成物Cを
作成した。
さらにこの液晶組成物Cに対して、以下に示す例示化
合物を各々以下に示す重量部で混合し、液晶組成物9−
Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例9 実施例9で使用した液晶組成物Cを、セル内に注入す
る以外は全く実施例9と同様の方法で強誘電性液晶素子
を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例10 実施例9で用いた液晶組成物9−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例10 実施例10で使用した液晶組成物9−Cに代えて、比較
例9で用いた液晶組成物9−Cbを用いた以外は、全く実
施例10と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例9と比較例9及び実施例10と比較例10より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例11 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81及び液晶組成物Cと以下に示す例示化合物を
各々以下に示す重量部で混合し、液晶組成物11−Cを作
成した。
この液相組成物11−Cを用いた以外は全く実施例1と
同様の方法で強誘電性液晶素子を作成し、実施例1と同
様の方法で光学応答速度を測定し、スイッチング状態を
観察した。
得られた液晶素子内の配向性は均一で良好であり、モ
ノドメイン状態が得られ、ジグザグ欠陥、スペーサー周
辺のスジ状欠陥も全く認められなかった。
測定結果を以下に示す。
また、駆動時には明瞭なスイッチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例11 実施例11で混合した液晶組成物11−Cを混合した際に
使用した例示化合物1−14,1−19,1−60,1−73,1−81だ
けを使用せず、他は同様の重量部で液晶組成物11−Cbを
混合して、セル内に注入する以外は全く実施例11と同様
の方法で強誘電性液晶素子を作成し、光学応答速度を測
定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例12 実施例11で用いた液晶組成物11−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例12 実施例12で使用した液晶組成物11−Cに代えて、比較
例11で用いた液晶組成物11−Cbを用いた以外は、全く実
施例12と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例11と比較例11及び実施例12と比較例12より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例13 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81及び液晶組成物Cと以下に示す例示化合物を
各々以下に示す重量部で混合し、液晶組成物13−Cを作
成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例13 実施例13で液晶組成物13−Cを混合した際に使用した
例示化合物1−14,1−19,1−60,1−73,1−81だけを使用
せず、他は同様の重量部で液晶組成物13−Cbを混合し
て、セル内に注入する以外は全く実施例13と同様の方法
で強誘電性液晶素子を作成し、光学応答速度を測定し
た。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例14 実施例13で用いた液晶組成物13−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例14 実施例14で使用した液晶組成物13−Cに代えて、比較
例13で用いた液晶組成物13−Cbを用いた以外は、全く実
施例14と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例13と比較例13及び実施例14と比較例14より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例15 実施例13で使用した例示化合物1−14,1−19,1−60,1
−73,1−81,3−30,3−36,3−48,3−80,3−88及び液晶組
成物Cに加えて実施例11で使用した例示化合物2−6,2
−20,2−27,2−49,2−76,2−105を各々以下に示す例示
化合物を各々以下に示す重量部で混合し、液晶組成物15
−Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例15 実施例15で液晶組成物15−Cを混合した際に使用した
1−14,1−19,1−60,1−73,1−81だけを使用せず、他は
同様の重量部で液晶組成物15−Cbを混合して、セル内に
注入する以外は全く実施例15と同様の方法で強誘電性液
晶素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例16 実施例15で用いた液晶組成物15−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例16 実施例16で使用した液晶組成物15−Cに代えて、比較
例15で用いた液晶組成物15−Cbを用いた以外は、全く実
施例16と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例15と比較例15及び実施例16と比較例16より明ら
かな様に、本発明による液晶組成物を含有する強誘電性
液晶素子の方が高速応答性に優れており、また配向性が
良好であり、双安定性等に優れている。
実施例17 実施例1で使用した例示化合物1−3,1−8,1−17,1−
43,1−85に代えて以下に示す例示化合物を各々以下に示
す重量部で混合し、液晶組成物17−Aを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例17 実施例17で混合した液晶組成物17−Aを混合した際に
使用した例示化合物1−11,1−34,1−52,1−68,1−90だ
けを使用せず、他は同様の重量部で液晶組成物17−Abを
混合して、セル内に注入する以外は全く実施例17と同様
の方法で強誘電性液晶素子を作成し、光学応答速度を測
定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例18 実施例17で用いた液晶組成物17−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例18 実施例18で使用した液晶組成物17−Aに代えて、比較
例17で用いた液晶組成物17−Abを用いた以外は、全く実
施例18と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例19 実施例1で使用した例示化合物1−3,1−8,1−17,1−
43,1−85に代えて以下に示す例示化合物を各々以下に示
す重量部で混合し、液晶組成物19−Aを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モンドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例19 実施例19で混合した液晶組成物19−Aを混合した際に
使用した1−10,1−16,1−31,1−64,1−87だけを使用せ
ず、他は同様の重量部で液晶組成物19−Abを混合して、
セル内に注入する以外は全く実施例19と同様の方法で強
誘電性液晶素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例20 実施例19で用いた液晶組成物19−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例20 実施例20で使用した液晶組成物19−Aに代えて、比較
例19で用いた液晶組成物19−Abを用いた以外は、全く実
施例20と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例21 実施例1で使用した例示化合物1−3,1−8,1−17,1−
43,1−85に代えて以下に示す例示化合物を各々以下に示
す重量部で混合し、液晶組成物21−Aを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例21 実施例21で液晶組成物21−Aを混合した際に使用した
例示化合物1−5,1−26,1−38,1−54,1−56だけを使用
せず、他は同様の重量部で液晶組成物21−Abを混合し
て、セル内に注入する以外は全く実施例21と同様の方法
で強誘電性液晶素子を作成し、光学応答速度を測定し
た。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例22 実施例21で用いた液晶組成物21−Aを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例22 実施例22で使用した液晶組成物21−Aに代えて、比較
例21で用いた液晶組成物21−Abを用いた以外は、全く実
施例22と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例23 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81に代えて以下に示す例示化合物を各々以下に
示す重量部で混合し、液晶組成物23−Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スチツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスツチング動作が観察され、
電圧印加を止めた際の双安定性も良好であった。
比較例23 実施例23で液晶組成物23−Aを混合した際に使用した
1−18,1−24,1−80,1−82だけを使用せずに他は各々同
様の重量部で液晶組成物23−Cbを混合して、セル内に注
入する以外は全く実施例23と同様の方法で強誘電性液晶
素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例24 実施例23で用いた液晶組成物23−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例24 実施例24で使用した液晶組成物23−Cに代えて、比較
例23で用いた液晶組成物23−Cbを用いた以外は、全く実
施例24と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例25 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81のかわりに以下に示す例示化合物を各々以下
に示す重量部で混合し、液晶組成物25−Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例25 実施例25で混合した液晶組成物25−Cを混合した際に
使用した1−29,1−37,1−62,1−70だけを使用せずに他
は同様の重量部で液晶組成物25−Cbを混合して、セル内
に注入する以外は全く実施例25と同様の方法で強誘電性
液晶素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例26 実施例25で用いた液晶組成物25−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例26 実施例26で使用した液晶組成物25−Cに代えて、比較
例25で用いた液晶組成物25−Cbを用いた以外は、全く実
施例26と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例27 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81に代えて以下に示す例示化合物を各々以下に
示す重量部で混合し、液晶組成物27−Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイツチング状態を観察し
た。
この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られ、ジグザグ欠陥、スペーサー周辺のス
ジ状配向欠陥も全く無かった。
測定結果を次に示す。
また、駆動時には明瞭なスイツチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
比較例27 実施例27で液晶組成物27−Cを混合した際に使用した
1−22,1−28,1−30,1−41,1−94だけを使用せずに、他
は同様の重量部で液晶組成物27−Cbを混合して、セル内
に注入する以外は全く実施例27と同様の方法で強誘電性
液晶素子を作成し、光学応答速度を測定した。
その結果を次に示す。
駆動時には明瞭なスイツチング動作が観察されず、電
圧印加を止めた際の双安定性も不十分であり、白又は黒
状態を保持することが出来なかった。
さらに、液晶素子内の配向性は非常に不均一で、素子
内のジグザグ欠陥も多く残っていた。また、アルミナビ
ーズ周辺にもスジ状の配向欠陥が多く発生しており、配
向性の低下は明らかであった。
実施例28 実施例27で用いた液晶組成物27−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
比較例28 実施例28で使用した液晶組成物27−Cに代えて、比較
例27で用いた液晶組成物27−Cbを用いた以外は、全く実
施例28と同様の方法で液晶素子を作成し、素子内の配向
性を観察した。
実施例29 実施例9で使用した例示化合物1−14,1−19,1−60,1
−73,1−81のかわりに以下に示す例示化合物を各々以下
に示す重量部で混合し、液晶組成物29−Cを作成した。
この液晶組成物を用いた以外は全く実施例1と同様の
方法で強誘電性液晶素子を作成し、実施例1と同様の方
法で光学応答速度を測定し、スイッチング状態を観察し
た。
得られた液晶素子内の配向性は均一で良好であり、モ
ノドメイン状態が得られ、ジグザグ欠陥、スペーサー周
辺のスジ状欠陥も全く認められなかった。
測定結果を以下に示す。
また、駆動時には明瞭なスイッチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
実施例30 実施例29で用いた液晶組成物29−Cを使用する以外
は、全く実施例2と同様の方法で液晶素子を作成し、素
子内の配向性を観察した。
実施例17〜30と比較例17〜29及び比較例9より明らか
な様に、本発明による液晶組成物を含有する強誘電性液
晶素子の方が高速応答性に優れており、また、配向性が
良好であり、双安定性等に優れている。
実施例31 実施例1で使用したポリイミド樹脂前駆体1.5%ジメ
チルアセトアミド溶液に代えて、ポリビニルアルコール
樹脂[クラレ(株)製PVA−117]2%水溶液を用いた他
は全く同様の方法で強誘電性液晶素子を作成し、実施例
1と同様の方法で光学応答速度を測定した。
その結果を次に示す。
15℃ 25℃ 35℃ 303μsec 205μsec 168μsec 実施例32 実施例1で使用したSiO2を用いずに、ポリイミド樹脂
だけで配向制御層を作成した以外は全く実施例1と同様
の方法で強誘電性液晶素子を作成し、実施例1と同様の
方法で光学応答速度を測定した。
その結果を次に示す。
15℃ 25℃ 35℃ 295μsec 198μsec 162μsec また、素子構成を変えた場合でも、本発明による液晶
組成物を含有する実施例31,32の素子は実施例1と同様
に良好な配向性を示していた。
〔発明の効果〕
以上説明したように、本発明に従う液晶組成物、特に
強誘電性カイラルスメクチツク液晶組成物を使用した強
誘電性液晶素子は、応答速度が速く、かつ良好なスイツ
チング特性を示し、しかも良好な均一モノドメイン配向
性で示す、ジグザグ欠陥等のほとんど無い液晶素子とす
ることができる。
【図面の簡単な説明】
第1図は強誘電性液晶を用いた液晶素子の一例の断面概
略図。 第2図および第3図は強誘電性液晶素子の動作説明のた
めに、素子セルの一例を模式的に表わす斜視図。 第1図において、 1……強誘電性液晶層 2……ガラス基板 3……透明電極 4……絶縁性配向制御層 5……スペーサー 6……リード線 7……電源 8……偏光板 9……光源 I0……入射光 I……透過光 第2図において、 21a……基板 21b……基板 22……強誘電性液晶層 23……液晶分子 24……双極子モーメント(P⊥) 第3図において、 31a……電圧印加手段 31b……電圧印加手段 33a……第1の安定状態 33b……第2の安定状態 34a……上向きの双極子モーメント 34b……下向きの双極子モーメント Ea……上向きの電界 Eb……下向きの電界
フロントページの続き (72)発明者 片桐 一春 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−165345(JP,A) 特開 昭63−122650(JP,A) (58)調査した分野(Int.Cl.6,DB名) C09K 19/42 - 19/46

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】下記一般式(I) (但し、R1、R2は炭素数1〜16の直鎖状または分岐状の
    アルキル基であり、Z1は単結合、−O−、 を示し、X1はハロゲン原子である。)で表される液晶性
    化合物の少なくとも1種と、 下記一般式(II) (但し、R3、R4は炭素数1〜18の直鎖状または分岐状の
    アルキル基を示す。これら置換基として炭素数1〜12の
    アルコキシ基を有していてもよい。R3、R4は非光学活性
    である。Z2、Z3は単結合、−O−、 を示し、p、qは0、1もしくは2である。)で表され
    る液晶性化合物の少なくとも1種と、 更に下記一般式(III) (但し、R5は炭素数1〜18の直鎖状または分岐状のアル
    キル基である。Yは単結合、 −CH2O−、−OCH2−、−COS−、−SCO−、−CH=CH−CO
    O−、Z4は単結合、−O−、 であり、Z5は単結合、−OCH2−、 −O−(CH2)k−O−CH2− (但しkは1〜4の整数)であり、 rは1又は2であり、lは1から12の整数である。)で
    表される液晶性化合物の少なくとも1種を含有する強誘
    電性カイラルスメクチック液晶組成物。
  2. 【請求項2】請求項1に記載の液晶組成物を一対の基板
    間に配置してなることを特徴とする液晶素子。
JP2019883A 1990-01-29 1990-01-29 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子 Expired - Fee Related JP2974353B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019883A JP2974353B2 (ja) 1990-01-29 1990-01-29 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子
US07/645,720 US5391318A (en) 1990-01-29 1991-01-25 Liquid crystal composition and liquid crystal device containing the same
EP91101076A EP0440136B1 (en) 1990-01-29 1991-01-28 Liquid crystal composition and liquid crystal device containing the same
DE69125408T DE69125408T2 (de) 1990-01-29 1991-01-28 Flüssigkristallzusammensetzung und Vorrichtung die diese enthält
AT91101076T ATE151104T1 (de) 1990-01-29 1991-01-28 Flüssigkristallzusammensetzung und vorrichtung die diese enthält

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019883A JP2974353B2 (ja) 1990-01-29 1990-01-29 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子

Publications (2)

Publication Number Publication Date
JPH03221589A JPH03221589A (ja) 1991-09-30
JP2974353B2 true JP2974353B2 (ja) 1999-11-10

Family

ID=12011607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019883A Expired - Fee Related JP2974353B2 (ja) 1990-01-29 1990-01-29 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子

Country Status (5)

Country Link
US (1) US5391318A (ja)
EP (1) EP0440136B1 (ja)
JP (1) JP2974353B2 (ja)
AT (1) ATE151104T1 (ja)
DE (1) DE69125408T2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2069551T3 (es) * 1988-06-24 1995-05-16 Canon Kk Composicion de cristal liquido ferroelectrico quiral esmectico y dispositivo de cristal liquido que lo utiliza.
DE4324630A1 (de) * 1993-07-22 1995-01-26 Hoechst Ag Smektische Flüssigkristallmischung
JP3119342B2 (ja) * 1995-01-31 2000-12-18 キヤノン株式会社 液晶組成物、それを有する液晶素子及びそれらを有する液晶装置
JP3119341B2 (ja) * 1995-01-31 2000-12-18 キヤノン株式会社 液晶組成物、それを有する液晶素子及びそれらを有する液晶装置
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
JP4198221B2 (ja) * 1997-06-13 2008-12-17 株式会社半導体エネルギー研究所 光学活性化合物、反強誘電性液晶組成物、反強誘電性液晶組成物のしきい値を低減する方法及び光学活性化合物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315295A1 (de) * 1983-04-27 1984-10-31 Merck Patent Gmbh, 6100 Darmstadt Fluorhaltige pyrimidinderivate
CA1341038C (en) * 1986-03-10 2000-06-27 Masanao Kamei Fluoroalkaned derivative
EP0267758A3 (en) * 1986-11-10 1989-10-18 Chisso Corporation Alpha-substituted-propionic acid esters
JPS63165344A (ja) * 1986-12-26 1988-07-08 Chisso Corp 光学活性−2−メチルブチレ−ト類およびその利用物
JPH0768518B2 (ja) * 1987-07-08 1995-07-26 チッソ株式会社 強誘電性液晶組成物
EP0347944B1 (en) * 1988-06-24 1995-02-01 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same

Also Published As

Publication number Publication date
EP0440136B1 (en) 1997-04-02
ATE151104T1 (de) 1997-04-15
DE69125408D1 (de) 1997-05-07
DE69125408T2 (de) 1997-10-23
US5391318A (en) 1995-02-21
EP0440136A2 (en) 1991-08-07
EP0440136A3 (en) 1992-03-18
JPH03221589A (ja) 1991-09-30

Similar Documents

Publication Publication Date Title
JP2801279B2 (ja) 化合物およびこれを含む液晶組成物およびこれを使用した液晶素子
JP2941971B2 (ja) 液晶組成物、それを有する液晶素子、それ等を用いた表示方法及び表示装置
JP2941972B2 (ja) 液晶組成物、それを有する液晶素子、それ等を用いた表示方法及び表示装置
JP2691946B2 (ja) 液晶性化合物、それを含有する液晶組成物およびそれを使用した液晶素子
JP2763339B2 (ja) 液晶組成物およびこれを使用した液晶素子
JP2899064B2 (ja) 液晶性化合物、これを含む液晶組成物およびこれを使用した液晶素子
JP3005063B2 (ja) 液晶組成物、それを有する液晶素子、それ等を用いた表示方法及び表示装置
JP2974353B2 (ja) 強誘電性カイラルスメクチック液晶組成物およびこれを含む液晶素子
JP3039750B2 (ja) キノキサリン化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた表示装置及び表示方法
JP3176073B2 (ja) 液晶素子
JP2819332B2 (ja) 液晶性化合物およびそれを含有する液晶組成物
JP3308626B2 (ja) 液晶性化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた表示方法、および表示装置
EP0467260A2 (en) Mesomorphic compound and liquid crystal composition containing same for use in liquid crystal device and display apparatus
JPH03193774A (ja) 光学活性液晶化合物、これを含む液晶組成物およびこれを利用した液晶素子
JPH09151179A (ja) 光学活性化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた液晶装置及び表示方法
EP0301602A2 (en) Ferroelectric liquid crystal composition
JP3060313B2 (ja) 液晶性化合物およびこれを含む液晶組成物およびこれを使用した液晶素子
JP3048166B2 (ja) 強誘電性液晶組成物
JP2984322B2 (ja) 液晶組成物およびこれを含む液晶素子
EP0401522B1 (en) Liquid crystal composition and liquid crystal device using same
JP3093507B2 (ja) 液晶性化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた表示方法および表示装置
JPH0629424B2 (ja) 強誘電性カイラルスメクチツク液晶組成物およびこれを含む液晶素子
JP2749822B2 (ja) 液晶組成物およびこれを含む液晶素子
JPH08151578A (ja) 光学活性化合物、それを含有する液晶組成物、それを有する液晶素子及びそれらを用いた表示方法、液晶装置
JPH0358980A (ja) 液晶性化合物、これを含む液晶組成物、およびこれを使用した液晶素子

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees