JP2970994B2 - 誤り訂正復号回路 - Google Patents

誤り訂正復号回路

Info

Publication number
JP2970994B2
JP2970994B2 JP6110798A JP11079894A JP2970994B2 JP 2970994 B2 JP2970994 B2 JP 2970994B2 JP 6110798 A JP6110798 A JP 6110798A JP 11079894 A JP11079894 A JP 11079894A JP 2970994 B2 JP2970994 B2 JP 2970994B2
Authority
JP
Japan
Prior art keywords
error correction
correction
error
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6110798A
Other languages
English (en)
Other versions
JPH07321669A (ja
Inventor
周悟 山下
義数 富田
政幸 高田
徹 黒田
忠 磯部
宰 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Sanyo Denki Co Ltd filed Critical Nippon Hoso Kyokai NHK
Priority to JP6110798A priority Critical patent/JP2970994B2/ja
Priority to SE9501947A priority patent/SE517805C2/sv
Priority to NO19952062A priority patent/NO316901B1/no
Priority to US08/449,916 priority patent/US5745506A/en
Priority to FR9506245A priority patent/FR2720528B1/fr
Publication of JPH07321669A publication Critical patent/JPH07321669A/ja
Application granted granted Critical
Publication of JP2970994B2 publication Critical patent/JP2970994B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は誤り訂正復号回路に関
し、特にたとえば(272,190)短縮化差集合巡回
符号によって積符号化されている移動体FM多重放送受
信機の多数決論理復号法およびその原理を応用した復号
法による、誤り訂正復号回路に関する。
【0002】
【従来の技術】従来の誤り訂正復号回路が特公平4−3
135号公報に開示されている。特公平4−3135号
公報の第1図を参照して、この従来技術では、まず、デ
ータレジスタ19にデータがロードされ、シンドローム
レジスタ15は、データロードの開始時にリセットされ
た後にパリティパケットをロードする。そして、データ
レジスタ19に272ビットのデータがロードされる
と、データレジスタ19の前段のスイッチ13が切り換
えられデータレジスタ19を巡回させる。
【0003】一方、パリティ信号である82ビットのう
ちの適当なビットがシンドローム和算出回路に相当する
シンドロームレジスタ15からEOR16に入力され、
EOR16で、17個のシンドローム計算式を演算し、
17個のシンドローム値を多数決論理回路に相当する可
変閾値回路17に与える。そして、可変閾値回路17に
おいて、最初に閾値をたとえば「15」に設定してお
き、データレジスタ19の先頭ビットをモジュロ演算し
た結果に応じてデータの誤り訂正とシンドロームレジス
タ15の修正とを行う。この操作を272ビット全てに
ついて行う。このように操作が一巡すると、可変閾値回
路17での閾値を小さくして同様の操作を行い、閾値が
「9」のときまで処理を繰り返す。
【0004】そして、訂正終了後のシンドロームレジス
タ15が全て0でなければ、誤り訂正を失敗したと判断
し、エラーフラグ回路18からエラーフラグを出力す
る。
【0005】
【発明が解決しようとする課題】この従来技術では、誤
訂正確率が高くなり、訂正能力が低くなる。すなわち、
(272,190)短縮化差集合巡回符号の誤り訂正復
号回路に用いられている多数決論理復号法は判定対象と
なるビットの訂正時にシンドロームレジスタにも影響を
及ぼすので、既に正しいと判明したビットに対し多数決
論理判定によって訂正を加えた場合にこの誤った訂正に
よる影響は後のビットに波及するからである。したがっ
て、一旦正しいと判明したビットに対して誤った訂正を
施して、逆に誤訂正確率を高くし、誤り訂正能力が低く
なる恐れがあった。
【0006】それゆえに、この発明の主たる目的は、誤
訂正確率を小さくできる、誤り訂正復号回路を提供する
ことである。この発明の他の目的は、誤り訂正能力を向
上できる、誤り訂正復号回路を提供することである。
【0007】
【課題を解決するための手段】請求項1記載発明は、
数決論理復号可能な巡回符号によって積符号化されたフ
レーム構造を持ちかつフレームを構成する各パケットに
高い誤り検出能力を有する符号または符号の組み合わせ
を含むデータを誤り訂正するために、積符号を構成する
パケットの各々に対して横方向誤り訂正を行った後、各
パケットを構成する各ビットの誤り訂正の要否を多数決
論理回路で判断し、巡回符号の各々に対して多数決論理
回路から出力される誤りビット訂正信号に従って縦方向
誤り訂正を行う誤り訂正復号回路において、各パケット
に対する横方向誤り訂正の結果を示す第1フラグを格納
する第1フラグメモリ、多数決論理回路から出力される
誤りビット訂正信号を強制的に不訂正信号に変換するゲ
ート回路、横方向誤り訂正が失敗したパケットの数をカ
ウントする第1カウント手段、および縦方向誤り訂正に
おいて誤りビット訂正信号に基づいて誤り訂正されたビ
ットの数をカウントする第2カウント手段を備え横方
向誤り訂正後の縦方向巡回符号の各々に対する縦方向誤
り訂正時に第1フラグが横方向誤り訂正が成功したこと
を示す場合にのみゲート回路により縦方向誤り訂正を不
訂正にするとともに、第1カウント手段のカウント値が
第1所定値よりも大きくかつ第2カウント手段のカウン
ト値が第2所定値以上のとき、縦方向誤り訂正を失敗し
たものとみなすことを特徴とする、誤り訂正復号回路で
ある。請求項2記載発明は、多数決論理復号可能な巡回
符号によって積符号化されたフレーム構造を持ちかつフ
レームを構成する各パケットに高い誤り検出能力を有す
る符号または符号の組み合わせを含むデータを誤り訂正
するために、積符号を構成するパケットの各々に対して
横方向誤り訂正を行った後、各パケットを構成する各ビ
ットの誤り訂正の要否を多数決論理回路で判断し、巡回
符号の各々に対して多数決論理回路から出力される誤り
ビット訂正信号に従って縦方向誤り訂正を行う誤り訂正
復号回路において、各パケットに対する横方向誤り訂正
の結果を示す第1フラグを格納する第1フラグメモリ、
多数決論理回路から出力される誤りビット訂正信号を強
制的に不訂正信号に変換するゲート回路、横方向誤り訂
正後の縦方向巡回符号の各々に対する縦方向誤り訂正時
に第1フラグが横方向誤り 訂正が成功したことを示す場
合にのみゲート回路により縦方向誤り訂正を不訂正にす
る不訂正手段、縦方向誤り訂正における誤り訂正結果を
示す第2フラグを格納する第2フラグメモリ手段、およ
び可変閾値を多数決論理回路に設定する可変閾値設定手
段を備え、縦方向誤り訂正の後、横方向誤り訂正が再度
行われ、多数決論理回路は、可変閾値が第3所定値以上
であれば第2フラグを参照して、可変閾値が第3所定値
未満であれば第2フラグを参照することなく、横方向誤
り訂正を施すべきかどうかを判定することを特徴とす
る、誤り訂正復号回路である。
【0008】
【0009】
【作用】請求項1記載発明では、横方向誤り訂正後の縦
方向誤り訂正時に、判定対象とされるビットに対応する
横方向誤り訂正結果(第1フラグ)が横方向誤り訂正が
成功したことを示す場合には、判定対象とされるビット
に対して誤り訂正しない。そのために、多数決論理回路
からの誤りビット訂正信号を強制的に不訂正信号に変換
するゲート回路によって、縦方向誤り訂正を不訂正にす
るともに、縦方向誤り訂正時に、その前の横方向誤り訂
正結果の成功パケット数を第1計測手段でカウントし、
その計数値が第2所定値より少ないときには、さらに第
2計測手段で縦方向誤り訂正の訂正ビット数をカウント
する。この計数値が第3所定値以上であれば、縦方向誤
り訂正を失敗したとみなす。このようにして、誤訂正の
生起確率を抑えた形で縦方向誤り訂正を実行し、復号を
行う。
【0010】
【0011】また、請求項2記載発明では、横方向誤り
訂正後の縦方向誤り訂正時に、判定対象とされるビット
に対応する横方向誤り訂正結果(第1フラグ)が横方向
誤り訂正が成功したことを示す場合には、多数決論理回
路からの誤りビット訂正信号を強制的に不訂正信号に変
換するゲート回路によって、縦方向誤り訂正を不訂正に
するともに、たとえば縦方向誤り訂正後の横方向誤り訂
正時に、多数決論理手段での閾値が第3所定値以上の場
合には縦方向誤り訂正結果(第2フラグ)を参照して誤
り訂正の要否を判定し、多数決論理手段での閾値が第3
所定値未満となる巡回において縦方向誤り訂正を参照し
ないで誤り訂正の要否を判定する。
【0012】
【0013】
【発明の効果】この発明によれば、横方向誤り訂正後の
縦方向誤り訂正時,および縦方向誤り訂正後の横方向誤
り訂正時において、誤り訂正能力が向上する。また、横
方向誤り訂正後の縦方向誤り訂正時において、誤訂正確
率も小さくなる。この発明の上述の目的,その他の目
的,特徴および利点は、図面を参照して行う以下の実施
例の詳細な説明から一層明らかとなろう。
【0014】
【実施例】図1にこの実施例の誤り訂正復号回路10の
構成を示し、図1ないし図5を参照して、この実施例の
構成および動作を説明する。誤り訂正復号回路10で
は、(272,190)短縮化差集合巡回符号の復号法
として多数決論理復号法を用いることによって、符号語
を巡回シフトしながら1ビットずつ訂正できる。
【0015】なお、縦方向の復号動作を行う前に、端子
12から入力されかつ縦方向誤り訂正時にハイレベルと
なる信号jと端子14から入力されかつ最初の横方向誤
り訂正時にローレベルとなる信号kとが、予めタイミン
グジェネレータ16に入力されているものとする。ま
た、スイッチ18は最初の横方向誤り訂正結果を保存し
たフラグメモリ20にアドレスhを渡せるように端子1
8a側に倒されているものとする。フラグメモリ20に
は、最初の横方向誤り訂正結果をフラグとして格納す
る。フラグメモリ20では、誤り訂正とCRCとがとも
に成功した場合に誤り訂正成功(ハイレベル)のフラグ
が立ち、そうでない場合に誤り訂正失敗(ローレベル)
のフラグが立つ。後述のフラグメモリ134においても
同様である。
【0016】まず、端子22から復号開始信号lが入力
されると、図2に示すタイミングジェネレータ16内の
D−FF24および26とゲート28とによって誤り訂
正復号回路10の初期化信号aが発生し、シンドローム
レジスタ30,巡回符号をカウントするカウンタ32,
復号失敗パケット数カウント回路34内のカウンタ3
6,および訂正ビットカウント回路38内のカウンタ4
0は、それぞれゼロクリアされる。
【0017】また、273ビット毎にゼロクリアされる
同期式9ビットのカウンタ42は、端子44から入力さ
れる非常に高速な内部クロックnの立ち上がりエッジで
272をロードする。このロードによって、3入力NA
NDゲート46の出力信号wはローレベルとなり、カウ
ンタ42は内部クロックnの立ち上がりエッジでゼロク
リアされる。また、このクリア信号はNOTゲート48
を通り、カウンタ32をカウントアップする。また、初
期化信号aはNOTゲート50およびD−FF52を経
由して、RS−FF54をセット状態にする。ANDゲ
ート56において、クロックnのインバート信号(NO
Tゲート58を経由)がRS−FF54のQ端子出力に
よってゲートされる。このANDゲート56の出力b
は、立ち上がりエッジにおいてシンドロームレジスタ3
0を右へ1ビットシフトさせる。この処理の後スイッチ
60がオン状態となり、スイッチ62は端子62a側に
倒され、端子64から(272,190)短縮化差集合
巡回符号の符号語が信号bに同期してシンドロームレジ
スタ30にロードされる。データレジスタ66をシフト
させる信号dは、カウンタ42が272を示す際すなわ
ち3入力NANDゲート46の出力信号wがローレベル
となるときは、ANDゲート68および70によってロ
ーレベルとなるが、それ以外は信号bと同じ形状をと
る。
【0018】なお、シンドロームレジスタ30はフィー
ドバック付の割算回路であり、入力データが(272,
190)符号の符号語でない場合は272ビット分のデ
ータロード後の値は0でない特定の値を示す。また、デ
ータレジスタ66は、システム構成によっては190ビ
ットで構成される場合もあるが、この実施例では簡単の
ため272ビットのシフトレジスタで構成する。スイッ
チ72は復号の成功を確認するまではオフ状態を維持す
るものとする。
【0019】この実施例の特徴の1つであるデータロー
ド時の復号失敗パケット数カウント動作について説明す
る前に、カウンタ32,ROM74および76を説明す
る。カウンタ32は、カウンタ42が272を示す毎に
カウントアップするため、データレジスタ66の巡回数
をカウントすることができる。このカウンタ32の値を
アドレスとするROM74は、表1に従い各巡回数に応
じた多数決論理回路78の閾値eとANDゲート80を
経由して多数決論理回路78をアクティブ状態にする信
号iと、さらにANDゲート82を経由してエラーフラ
グ回路84をアクティブ状態にする信号oとを出力す
る。
【0020】
【表1】
【0021】カウンタ32のカウントが「1」のとき端
子64からのデータをこの誤り訂正復号回路10にロー
ドし、カウンタ32からのカウントが「2〜8」で誤り
訂正を実行し、カウントが「9」でスイッチ72をオン
して、端子86から復号後のデータを誤り訂正復号回路
10の外へ出力し、カウントが「10」でゲート90の
出力がハイレベルとなりORゲート92を経由してRS
−FF54をリセットし、復号が終了する。
【0022】なお、この実施例では、次のようにしても
よい。まず、カウンタ32のカウントが「8」未満の値
でも、シンドロームレジスタ30の値が「0」でありか
つCRC検査回路94が誤り訂正が正しいと判断した場
合には、エラーフラグ回路84から出力されかつ復号成
功を示す信号gがハイレベルとなり、D−FF96,N
OTゲート98,ANDゲート100およびORゲート
92を介してRS−FF54をリセットする。そして、
信号gがハイレベルに変わった巡回を終了後、スイッチ
72をオンし復号後のデータを端子86から出力するよ
うにしてもよい。
【0023】縦方向誤り訂正時に行われる以前(最初)
の横方向復号成功パケット数の算出は以下のように行わ
れる。データをデータレジスタ66へロードする際(カ
ウンタ32のカウントが「1」を示す際)にはゲート1
02の出力はハイレベルとなり、3入力ANDゲート1
04からの信号mがハイレベルとなり、復号失敗パケッ
ト数カウント回路34のカウンタ36がアクティブ状態
になる。そして、データレジスタ66へ入力されるビッ
トの属するパケットの横方向誤り訂正結果を参照するた
めのアドレスhがカウンタ42から出力される。このア
ドレスhはスイッチ18を介してフラグメモリ20へ出
力され、それに従って、フラグメモリ20はそのビット
の横方向誤り訂正結果を出力する。この横方向誤り訂正
結果はNOTゲート106を経由し信号pとして復号失
敗パケット数カウント回路34へ与えられる。横方向誤
り訂正結果の信号pが与えられた復号失敗パケット数カ
ウント回路34のANDゲート108には、この信号p
の他、内部クロックnをNOTゲート110で反転した
信号が与えられ、信号pが誤り訂正失敗を示すハイレベ
ルの場合、カウンタ36をカウントアップする。このハ
イレベルの信号pを積算することで1回目の横方向誤り
訂正における誤り訂正失敗パケットの数を計測する。横
方向誤り訂正における復号失敗パケットがカウンタ36
のRCO端子をハイレベルにするほど多い場合には、N
OTゲート112とANDゲート114とによって信号
qはハイレベル状態に保たれる。なお、信号jがローレ
ベルすなわち横方向誤り訂正では、信号qはローレベル
となる。
【0024】そして、データロードの終了後、誤り訂正
動作が実行される。ROM76は、表2に示すように、
信号cを出力する。信号cは、最初の横方向,縦方向,
縦方向後(2回目)の横方向復号後の3つのモードに応
じて多数決論理回路78から出力される訂正信号をゲー
トする機能を果たす。表2からわかるように、最初の横
方向誤り訂正時(j,kともにローレベル)には、カウ
ンタ32のカウントに拘わらず(ゲート116の出力が
ローレベルまたはハイレベル)、ROM76はハイレベ
ルの信号cを出力する。また、縦方向誤り訂正後(2回
目)の横方向誤り訂正時(jはローレベル,kはハイレ
ベル)には、カウンタ32のカウントが「8」以外(ゲ
ート116の出力がローレベル)であればローレベルの
信号cを出力し、カウンタ32のカウントが「8」(ゲ
ート116の出力がハイレベル)であればハイレベルの
信号cを出力する。なお、カウンタ32のカウントが
「8」のときは閾値eは最小値である。また、縦方向誤
り訂正時(jがハイレベル)には、カウンタ32のカウ
ントに拘わらずローレベルの信号cを出力する。なお、
表2に示す「d」は、信号cの決定に何ら関係ないこと
を示す。なお、ゲート116はカウンタ32のカウント
が「8」を示す場合にのみハイレベルを出力する。
【0025】
【表2】
【0026】縦方向誤り訂正は、272ビットのデータ
ロード後にスイッチ60がオフ状態となり、またスイッ
チ62を端子62b側に倒すことから始まる。この操作
の後、信号iがハイレベルとなることによってそれまで
ローレベル(無効化信号)を出力する状態で固定されて
いた多数決論理回路78はアクティブとなり、シンドロ
ーム和算出回路88の出力を用いた多数決判定の結果に
従い、ローレベル以外も出力することが可能となる。
【0027】そして、信号bによってシンドロームレジ
スタ30のみを1ビット右へシフトする。これは、元来
(272,190)短縮化差集合巡回符号が、(27
3,191)差集合巡回符号を1ビット分短縮化させた
符号だからである。最初の横方向誤り訂正において多く
のパケットが誤り訂正を成功した場合(信号qがローレ
ベルの場合)の縦方向誤り訂正では、信号jが常にハイ
レベルでありかつ信号cが常にローレベルである。した
がって、フラグメモリ20から出力されかつ訂正ビット
の属するパケットの(最初の横方向)復号結果はAND
ゲート124,NORゲート126およびORゲート1
28を通過して、多数決論理回路78の出力とANDゲ
ート130でANDされる。したがって、多数決論理回
路78の出力がたとえ訂正を指示するハイレベルであっ
たとしても、フラグメモリ20の出力がハイレベル(訂
正成功)を示す場合には、ANDゲート130の出力は
ローレベルとなり、XORゲート122および132に
はローレベルの出力が与えられるため、シンドロームレ
ジスタ30およびデータレジスタ66は単に巡回をする
のみである。すなわち、フラグメモリ20のフラグが誤
り訂正成功を示す場合にのみ、多数決論理回路78の出
力を強制的に無効化(ローレベル)することによって、
誤り訂正しない状況を実現する。XORゲート122お
よび132における訂正動作は、フラグメモリ20出力
がローレベル(訂正失敗)でありかつ多数決論理回路7
8の出力がハイレベルのときにのみ行われる。
【0028】なお、最初の横方向誤り訂正では信号cが
常にハイレベルとなるため、フラグメモリ134(横方
向誤り訂正ではスイッチ18は端子18a側に倒され
る。)出力には関係なく、多数決論理回路78の出力に
よって訂正動作が実行される。フラグメモリ134に
は、フレームを縦方向からみたビット列に対する縦方向
誤り訂正の個々の訂正結果が保存される。
【0029】一方、最初の横方向誤り訂正において多く
のパケットが誤り訂正を失敗した場合(信号qがハイレ
ベルの場合)の誤り訂正動作は、基本的には、上述の多
くのパケットが誤り訂正を成功した場合と同じである
が、訂正ビット数カウント回路38から出力される信号
sによって復号の成否の条件が変わってくる。訂正ビッ
ト数カウント回路38のANDゲート138に、ハイレ
ベル(訂正指示)の訂正信号rが与えられると、その訂
正信号rは内部クロックnをNOTゲート136によっ
てインバートした信号にゲートされ(AND回路138
によって)、訂正ビット数をカウントするカウンタ40
をカウントアップする。訂正ビット数が所定値となる
と、信号jによって縦方向誤り訂正時にのみカウントア
ップ可能なカウンタ40のRCO端子がハイレベルとな
り、NOTゲート140とANDゲート142とを介し
て信号sはハイレベルを出力し続け、カウンタ40をホ
ールド状態にする。この信号sによって、エラーフラグ
回路84は、その復号成功条件を変化させる。
【0030】従来のエラーフラグ回路は、図5を参照し
て簡単に説明すると、シンドロームレジスタの内容vが
全て0である場合にハイレベルを出力する0検出回路1
44からの出力とCRC検査回路から入力されるCRC
検査結果信号uとによって、復号が成功したか否かを判
断していた。しかし、この実施例で用いられるエラーフ
ラグ回路84は、図5に示すように、横方向,縦方向の
2つのモードに応じてその復号成功条件は変化する。
【0031】すなわち、従来のエラーフラグ回路はシン
ドロームレジスタの出力が0となり、かつCRC検査回
路が正しいと判断すれば復号を成功していたが、この実
施例では、この条件は横方向誤り訂正と最初の横方向誤
り訂正において多くのパケットの復号が成功した場合の
縦方向誤り訂正とにしか適用できない。なぜなら、最初
の横方向誤り訂正において多くのパケットの復号を失敗
した場合の縦方向誤り訂正では、信号qがハイレベルと
なる。そして、縦方向の誤り訂正時に誤り訂正ビットが
所定値より多ければ信号sがハイレベルとなるので、N
ANDゲート146の出力がローレベルとなる。したが
って、従来の復号成功条件が揃ったとしても3入力AN
Dゲート148によって復号は成功していないと判断さ
れるからである。なお、D−FF150は、データロー
ド時や各巡回毎のCRC検査回路94のリセット時に復
号成功信号gが誤ってハイレベルとならないように設け
られている。
【0032】なお、信号gは、横方向誤り訂正時には横
方向誤り訂正用フラグメモリ20の誤り訂正を行ったパ
ケットに対応するビットに、復号動作終了後に保存され
る。同様に、信号gは、縦方向誤り訂正時には縦方向誤
り訂正用フラグ134の誤り訂正を行った列に対応する
ビットに、復号動作終了後に保存される。ここで、CR
C検査回路94について説明する。3入力NANDゲー
ト46の出力信号wがローレベルとなると、ANDゲー
ト118から出力される信号tもローレベルとなり、こ
の信号tの立ち上がりエッジにおいてCRC検査回路9
4がゼロクリアされる。このように信号tによって各巡
回毎にリセットされるCRC検査回路94は、訂正動作
中に比較器120の出力fがハイレベルを示す区間すな
わちカウンタ42のカウントが「0〜189」を示す区
間において、XORゲート122からデータを取り込
み、検査を行う。CRC検査回路94はデータが正しい
と判断すると、エラーフラグ回路84にハイレベルの信
号uを出力する。
【0033】この発明の特徴の1つである縦方向誤り訂
正後(2回目)の横方向誤り訂正は、基本的な動作は縦
方向誤り訂正と変わらないが、以下のような点が異な
る。まず、スイッチ18が端子18b側に倒れフラグメ
モリ134にフラグとして格納される縦方向の訂正結果
がゲート152を介して出力され、その訂正結果に従い
多数決論理回路78から出力される訂正信号rを制御す
る点が異なる。また、復号失敗パケット数カウント回路
34が動作しない点、および閾値eが「9」となる訂正
動作の最終の巡回においてのみ信号cがハイレベルとな
り、以前の訂正結果(フラグメモリ134)を参照しな
いで誤り訂正を行う点が異なる。
【0034】なお、最初の横方向誤り訂正は従来の誤り
訂正と同様に行われ、信号cが常にハイレベルとなるの
で、多数決論理回路78の出力は何ら妨害を受けない。
このような誤り訂正復号回路10の動作を、図6ないし
図8を参照して、より具体的に説明する。まず、図6を
参照して、最初の横方向誤り訂正において復号失敗パケ
ットが少なかった(復号成功パケットが多かった)場合
の縦方向誤り訂正について説明する。
【0035】図6に示すように、この場合信号cは常に
ローレベルであるので、フラグメモリ20に格納される
訂正結果を参照することになる。信号iによって多数決
論理回路78は能動化され、多数決論理回路78からの
ハイレベル(訂正を指示する)の出力は、フラグメモリ
20からの訂正結果に基づく出力との論理和をANDゲ
ート130でとられる。その結果、訂正を指示するハイ
レベルの訂正信号rが出力され、訂正ビット数カウント
回路38のカウンタ40がカウントアップされる。
【0036】また、信号mの出力によって復号失敗パケ
ット数カウント回路34のカウンタ36が能動化され、
カウンタ36はフラグメモリ20から出力される訂正失
敗フラグの数すなわち復号失敗パケット数をカウントア
ップする。図6の場合、カウンタ36の総カウント値は
所定値以下であるので、信号qはローレベルのままエラ
ーフラグ回路84に与えられる。ここで、この実施例で
は、たとえば成功パケット数の閾値を「64」に設定し
ているので、ここでいう所定値は(273−64)=
「209」に設定される。したがって、カウンタ36で
のカウント数が「209」以下であれば成功パケット数
は64個以上あると判断して、ローレベルの信号qを出
力する。図6の場合では、カウント数は「120」であ
るので「209」以下という条件を満たし、縦方向誤り
訂正での誤訂正発生頻度は低いと考えられる。したがっ
て、エラーフラグ回路84での信号oで示される処理期
間において、従来通り、シンドロームレジスタ30から
の信号vとCRC検査回路94からのCRC検査結果信
号uとで検査を行う。この場合には、シンドロームレジ
スタ30の内容が全て0であり、かつCRC検査回路9
4からデータが正しいことを示すCRC検査結果信号u
が出力されており、エラーフラグ回路84から復号の成
功を示すハイレベルの復号成功信号gが出力される。そ
して、復号結果がセーブされる。なお、復号失敗パケッ
ト数をカウントせずに復号成功パケット数をカウントす
ることによって、復号成功パケット数が所定数以上ある
か否かを直接求めてもよい。
【0037】次いで、図7を参照して、最初の横方向誤
り訂正において復号失敗パケットが多かった(復号成功
パケットが少なかった)場合の縦方向誤り訂正について
説明する。図7に示すように、図6の場合と同様に、訂
正を指示するハイレベルの訂正信号rが訂正ビット数カ
ウント回路38に与えられる。この訂正信号rの入力に
伴って、訂正ビット数カウント回路38のカウンタ40
がカウントアップされていく。
【0038】また、信号mによって復号失敗パケット数
カウント回路34のカウンタ36が能動化され、最初の
横方向の復号を失敗したパケット数をカウントすると、
この場合にはカウントが「210」となる。したがっ
て、所定値の「209」を超えているので、ハイレベル
の信号qがエラーフラグ回路84に与えられる。する
と、エラーフラグ回路84は、訂正ビット数カウント回
路38からの信号sによって復号成功条件を変化させ
る。
【0039】すなわち、訂正ビット数カウント回路38
内のカウンタ40が所定値以上を示すか否かによって復
号成功条件が変化する。ここで所定値は、縦方向誤り訂
正時ではたとえば「16」に設定され、カウンタ40が
「16」以上をカウントすれば復号が失敗したと判断さ
れ、「16」未満の場合には従来通り信号vとCRC検
査結果信号mとで処理が施される。図7の場合には、カ
ウンタ40のカウントが「16」であるので、「16」
以上という条件を満たすため、復号が失敗したと判断さ
れ、ローレベルの信号gを出力する。もし、カウンタ4
0のカウント値が「16」未満であれば、エラーフラグ
回路84では従来通りの検査が行われる。なお、所定値
は、縦方向誤り訂正時ではたとえば「16」に設定され
たが、CRC符号のような強力な誤り検出能力を持たな
い符号語に対する横方向誤り訂正時ではたとえば「1
4」に設定され得る。
【0040】さらに、図8を参照して縦方向誤り訂正後
の横方向誤り訂正について説明する。図8において、多
数決論理回路78に与えられる閾値eが所定値になるま
で信号cはローレベルとなる。閾値eの所定値は、たと
えば最小値であり、「9」である。したがって、この実
施例では「15」から「10」までの間は信号cはロー
レベルとなり、この場合、フラグメモリ134に格納さ
れる縦方向の復号結果が参照され、図6や図7の場合と
同様に動作し、訂正ビット数カウント回路38で訂正ビ
ット数がカウントされていく。
【0041】そして、閾値eが最小値すなわち最終の巡
回数になれば(この実施例では「9」)、信号cはハイ
レベルとなり、フラグメモリ134に格納される復号結
果は参照されなくなる。したがって、多数決論理回路7
8からの訂正を指示する訂正信号rはそのまま訂正ビッ
ト数カウント回路38に与えられ、カウンタ40がカウ
ントアップされていく。そして、信号oで示す期間でエ
ラーフラグ回路84において従来と同様の検査が行わ
れ、復号が成功した場合には復号成功信号gがハイレベ
ルとなる。そして、復号が成功したデータはセーブされ
る。
【0042】上述のような誤り訂正復号回路10によれ
ば、従来よりも小さい回路規模で誤訂正の生起確率を低
減できる。さらに、誤訂正の防止に起因する誤り率の低
下のほかに誤り訂正能力をも向上できる。なぜなら、
(272,190)短縮化差集合巡回符号の誤り訂正復
号回路10に用いられている多数決論理復号法は、判定
対象となるビットの訂正時にシンドロームレジスタ30
にも影響を及ぼす。したがって、既に正しいと判明した
ビットに対し多数決論理判定によって訂正を加えた場合
に、この誤った訂正による影響は後のビットに波及す
る。したがって、既に正しいと判明したビットを訂正対
象から除くことによって明らかに誤り訂正能力は向上す
るからである。
【0043】したがって、縦方向誤り訂正時に最初の横
方向誤り訂正の結果を参照して、最初の横方向誤り訂正
が成功している場合にはそのビットを縦方向誤り訂正の
対象から除くことができる。このように最初の横方向誤
り訂正の結果を参照できるのは、移動体FM多重放送の
データ構造では横方向のパケットに14ビットのCRC
が付加されているために、横方向の誤り訂正能力(誤訂
正抑止能力)は縦方向に比べ極めて高くなるからであ
る。このCRCは、高い誤り検出能力を有する符号また
は符号の組み合わせの1つである。それに対して、2回
目の横方向誤り訂正時に縦方向誤り訂正結果を安易に参
照することは逆に誤り訂正能力の低下を招く恐れがあ
り、2回目の横方向誤り訂正時に、縦方向誤り訂正結果
を参照することはできない。
【0044】この縦方向誤り訂正時に誤訂正の影響によ
って生じる誤り率の劣化を抑えるには、縦方向誤り訂正
時に生じる誤訂正の発生頻度そのものを減少させたり、
縦方向誤り訂正後(2回目)の横方向誤り訂正において
予め縦方向誤り訂正に僅かだが誤訂正が発生していると
みなして誤り訂正を行ったりする必要がある。前者は、
ノイズによって付加されている誤りビット数が多いほど
誤訂正が発生し易いという単純な原理を用いている。た
とえば、最初の横方向誤り訂正において100パケット
以上誤り訂正が成功している場合に比べ、最初の横方向
誤り訂正において数パケット程度しか誤り訂正が成功し
ていない場合には、その後の縦方向誤り訂正における誤
訂正発生頻度は極めて大きくなる。したがって、最初の
横方向誤り訂正の成功パケット数が少ない場合には、縦
方向誤り訂正時において誤訂正を抑圧するような誤り訂
正手法が必要となる。
【0045】縦方向誤り訂正時における誤訂正発生を抑
圧する手法としては、上述の実施例のように、縦方向誤
り訂正時の多数決論理復号において誤り訂正ビット数が
多い場合には誤訂正が発生したとみなす手法が有効であ
る。この手法は、訂正ビット数が多い符号語は元々真の
符号語からの距離が遠いため、たとえ誤り訂正が成功し
たとしても、誤訂正によって誤り訂正が成功したとみな
した方がよいという考えに立脚している。しかし、最初
の横方向誤り訂正で復号成功パケット数が多い場合に
は、このような手法は最早必要ではない。なぜなら、最
初の横方向誤り訂正結果を参照して縦方向誤り訂正を施
す場合、横方向誤り訂正結果が成功しているビットは縦
方向誤り訂正における誤り訂正中に変更されないため、
誤り訂正が誤訂正へ向かう可能性は少なくなるからであ
る。
【0046】なお、この誤り訂正ビット数による復号条
件の変化は積符号化されておらずかつ多数決論理復号可
能な符号の復号回路にも適用できる。たとえば、文字放
送等でも誤り訂正ビット数が多い場合、訂正を失敗した
とみなすことによって誤訂正確率は減少する。一方後者
の手法、すなわち縦方向誤り訂正において誤訂正が発生
しているとみなして縦方向誤り訂正後(2回目)の横方
向の誤り訂正を行う手法では、予め縦方向誤り訂正にお
いてごく僅かだが誤訂正が発生し、その他は誤り訂正が
成功もしくは失敗していると仮定して復号を行う。この
ような復号では、誤り訂正開始直後は他の誤りビットの
影響もあり誤訂正ビット(実際には誤っているのに正し
いと判断して訂正をしないビット)であっても、シンド
ロームレジスタ30の内容として「1」の数が半数より
若干多い程度という場合が存在する。また、縦方向誤り
訂正によって誤りがないことが保証されているビットで
ありかつ真に正しいビットでも他のビットの影響によっ
ては多数決論理回路78へ入力されるシンドローム和の
「1」の数は、先頭ビット上で直交するシンドローム和
の個数(17個)の半分を超えることが多々ある。この
ような場合は誤訂正ビットか真に正しいビットかの区別
がつかないため、マスクを行った形で訂正する。すなわ
ち、フラグメモリ134に格納される訂正結果を参照し
て誤り訂正を行う。このようにできるのは、縦方向誤り
訂正されたビットが正しい確率の方が、縦方向誤り訂正
での(272,190)符号の誤訂正生起確率より大き
いからである。なお、もし、縦方向誤り訂正時の誤訂正
生起確率の方が高ければ、2回目の横方向誤り訂正は失
敗する。
【0047】このような手法を用いた場合、誤り訂正が
正常に進むなら他のビットが訂正されるにつれ誤訂正ビ
ットに対するシンドローム和の「1」の数は大きくな
る。すなわち、可変閾値復号法のようにデータレジスタ
66を複数回巡回させて誤り訂正を行う訂正手法では複
数回巡回することによって誤訂正ビットを特定できる可
能性が高くなる。したがって、複数回巡回後にマスク機
能を解除することによって誤訂正ビットを円滑に訂正す
ることができる。なお、この方法によって真に正しいビ
ットを訂正したとしてもパケット内のCRCによって誤
り訂正が失敗したとみなせるため、誤訂正の生起確率は
極めて小さい。したがって、従来では、誤りビットが多
い場合には誤り訂正を十分にできなかったが、この実施
例によればより多くの誤りビットを訂正できる。
【0048】なお、多数決論理復号可能な誤り訂正符号
を1種類もしくは2種類用いて積符号化されたフレーム
構造を用い、かつ横方向の誤り訂正符号の誤訂正生起確
率が縦方向の誤り訂正符号の誤訂正生起確率に比べ極め
て低い転送方式に対しても、この発明を適用できること
は明らかである。また、多数決論理復号可能な誤り訂正
符号を1種類もしくは2種類用いて積符号化されたフレ
ーム構造を持ち、かつ縦方向の誤り訂正符号の誤り訂正
生起確率が横方向の誤り訂正符号の誤り訂正生起確率に
比べ極めて低い伝送方式に対してもこの実施例を適用で
きる。
【0049】また、上述の実施例では、高い誤り検出能
力を有する符号または符号の組み合わせとして、CRC
を用いたが、パリティビットやBerger符号なども用いら
れ得る。
【図面の簡単な説明】
【図1】この発明の一実施例を示すブロック図である。
【図2】タイミングジェネレータの一例を示す回路図で
ある。
【図3】復号失敗パケット数カウント回路の一例を示す
回路図である。
【図4】訂正ビット数カウント回路の一例を示す回路図
である。
【図5】エラーフラグ回路の一例を示す回路図である。
【図6】最初の横方向誤り訂正において復号失敗パケッ
トが少なかった場合の縦方向誤り訂正の動作の一例を示
すタイミング図である。
【図7】最初の横方向誤り訂正において復号失敗パケッ
トが多かった場合の縦方向誤り訂正の動作の一例を示す
タイミング図である。
【図8】縦方向誤り訂正後の横方向誤り訂正の動作の一
例を示すタイミング図である。
【符号の説明】
10 …誤り訂正復号回路 16 …タイミングジェネレータ 20,134 …フラグメモリ 30 …シンドロームレジスタ 34 …復号失敗パケット数カウント回路 38 …訂正ビット数カウント回路 66 …データレジスタ 78 …多数決論理回路 84 …エラーフラグ回路 88 …シンドローム和算出回路 94 …CRC検査回路
フロントページの続き (72)発明者 高田 政幸 東京都世田谷区砧一丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 黒田 徹 東京都世田谷区砧一丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 磯部 忠 東京都世田谷区砧一丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 山田 宰 東京都世田谷区砧一丁目10番11号 日本 放送協会放送技術研究所内 (56)参考文献 特開 昭58−161048(JP,A) 特開 昭57−10557(JP,A) 特開 昭58−161048(JP,A) 特開 昭62−173820(JP,A) 信学論、B−▲II▼、Vol.J77 −B−▲II▼、No.1、p.19−25 (58)調査した分野(Int.Cl.6,DB名) H03M 13/00 - 13/22

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】多数決論理復号可能な巡回符号によって積
    符号化されたフレーム構造を持ちかつフレームを構成す
    る各パケットに高い誤り検出能力を有する符号または符
    号の組み合わせを含むデータを誤り訂正するために、積
    符号を構成するパケットの各々に対して横方向誤り訂正
    を行った後、各パケットを構成する各ビットの誤り訂正
    の要否を多数決論理回路で判断し、前記巡回符号の各々
    に対して前記多数決論理回路から出力される誤りビット
    訂正信号に従って縦方向誤り訂正を行う誤り訂正復号回
    路において、 各パケットに対する横方向誤り訂正の結果を示す第1フ
    ラグを格納する第1フラグメモリ、 前記多数決論理回路から出力される前記誤りビット訂正
    信号を強制的に不訂正信号に変換するゲート回路、 前記横方向誤り訂正が失敗したパケットの数をカウント
    する第1カウント手段、および 前記縦方向誤り訂正にお
    いて前記誤りビット訂正信号に基づいて誤り訂正された
    ビットの数をカウントする第2カウント手段を備え前記横方向誤り訂正後の縦方向巡回符号の各々に対する
    縦方向誤り訂正時に前記第1フラグが前記横方向誤り訂
    正が成功したことを示す場合にのみ前記ゲート回路によ
    り前記縦方向誤り訂正を不訂正にするとともに、前記第
    1カウント手段のカウント値が第1所定値よりも大きく
    かつ前記第2カウント手段のカウント値が第2所定値以
    上のとき、前記縦方向誤り訂正を失敗したものとみなす
    こと を特徴とする、誤り訂正復号回路。
  2. 【請求項2】多数決論理復号可能な巡回符号によって積
    符号化されたフレーム構造を持ちかつフレームを構成す
    る各パケットに高い誤り検出能力を有する符号または符
    号の組み合わせを含むデータを誤り訂正するために、積
    符号を構成するパケットの各々に対して横方向誤り訂正
    を行った後、各パケットを構成する各ビットの誤り訂正
    の要否を多数決論理回路で判断し、前記巡回符号の各々
    に対して前記多数決論 理回路から出力される誤りビット
    訂正信号に従って縦方向誤り訂正を行う誤り訂正復号回
    路において、 各パケットに対する横方向誤り訂正の結果を示す第1フ
    ラグを格納する第1フラグメモリ、 前記多数決論理回路から出力される前記誤りビット訂正
    信号を強制的に不訂正信号に変換するゲート回路、 前記横方向誤り訂正後の縦方向巡回符号の各々に対する
    縦方向誤り訂正時に前記第1フラグが前記横方向誤り訂
    正が成功したことを示す場合にのみ前記ゲート回路によ
    り前記縦方向誤り訂正を不訂正にする不訂正手段、 前記縦方向誤り訂正における誤り訂正結果を示す第2フ
    ラグを格納する第2フラグメモリ手段、および 可変閾値
    を前記多数決論理回路に設定する可変閾値設定手段を備
    え、 前記縦方向誤り訂正の後、前記横方向誤り訂正が再度行
    われ、 前記多数決論理回路は、前記可変閾値が第3所定値以上
    であれば前記第2フラグを参照して、前記可変閾値が第
    3所定値未満であれば前記第2フラグを参照することな
    く、前記横方向誤り訂正を施すべきかどうかを判定する
    ことを特徴とする、 誤り訂正復号回路。
JP6110798A 1994-05-25 1994-05-25 誤り訂正復号回路 Expired - Lifetime JP2970994B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6110798A JP2970994B2 (ja) 1994-05-25 1994-05-25 誤り訂正復号回路
SE9501947A SE517805C2 (sv) 1994-05-25 1995-05-24 Feljusterande avkodare
NO19952062A NO316901B1 (no) 1994-05-25 1995-05-24 Dekoder med feilkorreksjon
US08/449,916 US5745506A (en) 1994-05-25 1995-05-25 Error correcting decoder
FR9506245A FR2720528B1 (fr) 1994-05-25 1995-05-26 Décodeur de correction d'erreur.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6110798A JP2970994B2 (ja) 1994-05-25 1994-05-25 誤り訂正復号回路

Publications (2)

Publication Number Publication Date
JPH07321669A JPH07321669A (ja) 1995-12-08
JP2970994B2 true JP2970994B2 (ja) 1999-11-02

Family

ID=14544919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6110798A Expired - Lifetime JP2970994B2 (ja) 1994-05-25 1994-05-25 誤り訂正復号回路

Country Status (5)

Country Link
US (1) US5745506A (ja)
JP (1) JP2970994B2 (ja)
FR (1) FR2720528B1 (ja)
NO (1) NO316901B1 (ja)
SE (1) SE517805C2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562544B2 (ja) * 1996-08-13 2004-09-08 ソニー株式会社 復号化装置および復号化方法
JPH11112358A (ja) * 1997-09-30 1999-04-23 Fujitsu Ltd データの誤り訂正方法及び誤り訂正装置
EP1517327A3 (en) * 1998-02-25 2005-03-30 Matsushita Electric Industrial Co., Ltd. High-speed error correcting apparatus with efficient data transfer
JP3530388B2 (ja) * 1998-07-22 2004-05-24 三洋電機株式会社 符号誤り訂正装置
US6260082B1 (en) * 1998-12-23 2001-07-10 Bops, Inc. Methods and apparatus for providing data transfer control
US20030079161A1 (en) * 2001-10-22 2003-04-24 Verboom Johannes J. Optimized data storage system and method for optical storage system
US20040059992A1 (en) * 2002-06-17 2004-03-25 Tan Keng Tiong Methods of optimizing the decoding of signals based on a complete majority logic representation
EP1416660A1 (en) * 2002-10-31 2004-05-06 Alcatel Improved FEC decoder and method
JP3930446B2 (ja) * 2003-03-13 2007-06-13 株式会社東芝 半導体装置
JP4908083B2 (ja) * 2006-06-30 2012-04-04 株式会社東芝 メモリコントローラ
US20110258513A1 (en) * 2008-05-08 2011-10-20 Jing Qian SNR-Based Variable-Threshold Majority-Logic Decoder
US20100169742A1 (en) * 2008-12-29 2010-07-01 Texas Instruments Incorporated Flash memory soft error recovery
JP5364737B2 (ja) * 2011-02-15 2013-12-11 株式会社東芝 誤り訂正復号装置及び受信システム
US11934267B1 (en) 2022-08-28 2024-03-19 Micron Technology, Inc. Data inversion and unidirectional error detection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404674A (en) * 1981-07-10 1983-09-13 Communications Satellite Corporation Method and apparatus for weighted majority decoding of FEC codes using soft detection
US4630271A (en) * 1983-01-20 1986-12-16 Nippon Hoso Kyokai Error correction method and apparatus for data broadcasting system
JPS59224926A (ja) * 1983-06-03 1984-12-17 Sony Corp 多数決回路
US4653051A (en) * 1983-09-14 1987-03-24 Matsushita Electric Industrial Co., Ltd. Apparatus for detecting and correcting errors on product codes
JP2740163B2 (ja) * 1986-04-23 1998-04-15 ソニー株式会社 データ伝送方法及びデータ記録媒体
JPS6462027A (en) * 1987-09-01 1989-03-08 Nippon Conlux Co Ltd Error correcting circuit
JPH06120843A (ja) * 1992-10-01 1994-04-28 Fujitsu Ten Ltd 差集合巡回符号による積符号の復号装置
JP3311463B2 (ja) * 1994-02-25 2002-08-05 三洋電機株式会社 誤り訂正装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
信学論、B−▲II▼、Vol.J77−B−▲II▼、No.1、p.19−25

Also Published As

Publication number Publication date
FR2720528B1 (fr) 1996-12-20
NO952062L (no) 1995-11-27
SE9501947D0 (sv) 1995-05-24
SE517805C2 (sv) 2002-07-16
JPH07321669A (ja) 1995-12-08
NO316901B1 (no) 2004-06-21
SE9501947L (sv) 1996-03-22
NO952062D0 (no) 1995-05-24
FR2720528A1 (fr) 1995-12-01
US5745506A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP2970994B2 (ja) 誤り訂正復号回路
KR100321978B1 (ko) 통신시스템에서반복복호장치및방법
US7962837B2 (en) Technique for reducing parity bit-widths for check bit and syndrome generation for data blocks through the use of additional check bits to increase the number of minimum weighted codes in the hamming code H-matrix
US20030033571A1 (en) Encoding apparatus and encoding method for multidimensionally coding and encoding method and decoding apparatus for iterative decoding of multidimensionally coded information
US7418644B2 (en) System for error correction coding and decoding
WO1990010905A1 (en) Programmable error correcting apparatus within a paging receiver
US20100070834A1 (en) Soft output viterbi detector with error event output
US20040133836A1 (en) Method and apparatus for performing error correction code (ECC) conversion
JPH10107650A (ja) 誤り検出回路および誤り訂正回路
EP3477478B1 (en) Memory architecture including response manager for error correction circuit
US4476458A (en) Dual threshold decoder for convolutional self-orthogonal codes
US20040049726A1 (en) Error detection system for a FIFO memory
EP0431576A2 (en) BCH code decoder and method for decoding a BCH code
US5809042A (en) Interleave type error correction method and apparatus
US4521886A (en) Quasi-soft decision decoder for convolutional self-orthogonal codes
JP6552776B1 (ja) 誤り訂正復号装置および誤り訂正復号方法
JPH1022839A (ja) 軟判定誤り訂正復号方法
JPH05235906A (ja) 多元符号の復号装置及びこれを用いた誤り訂正・検出方式
JP2823158B2 (ja) 誤り訂正装置
JPH0636286B2 (ja) 誤り訂正方法及び装置
JP2662457B2 (ja) Bch符号復号回路
KR100407131B1 (ko) 조합회로를 이용한 리드-솔로몬 디코더
JPS6260319A (ja) 誤り訂正回路
JP2500141B2 (ja) 誤り訂正方法及び装置
KR900001066Y1 (ko) 에러 정정용 데코오더 회로의 소거신호 계수회로

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term