JP2762661B2 - 多孔質メタルボンド砥石およびその製造方法 - Google Patents

多孔質メタルボンド砥石およびその製造方法

Info

Publication number
JP2762661B2
JP2762661B2 JP6520990A JP6520990A JP2762661B2 JP 2762661 B2 JP2762661 B2 JP 2762661B2 JP 6520990 A JP6520990 A JP 6520990A JP 6520990 A JP6520990 A JP 6520990A JP 2762661 B2 JP2762661 B2 JP 2762661B2
Authority
JP
Japan
Prior art keywords
calcium silicate
porous
grinding
silicate particles
porous calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6520990A
Other languages
English (en)
Other versions
JPH03264263A (ja
Inventor
尚登 及川
務 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6520990A priority Critical patent/JP2762661B2/ja
Publication of JPH03264263A publication Critical patent/JPH03264263A/ja
Application granted granted Critical
Publication of JP2762661B2 publication Critical patent/JP2762661B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、超硬合金、セラミックス、フェライト、ガ
ラス等の被削材を研摩または研削するためのメタルボン
ド砥石およびその製造方法に係わり、特に、砥粒層の気
孔率を向上し、超砥粒の自生発刃作用を促進するための
改良に関する。
「従来の技術」 通常のメタルボンド砥石は、金属粉末に超砥粒を均一
に分散して合金とともに型込めし、プレス成形および焼
結(またはホットプレス)を経て成形される。
この種のメタルボンド砥石は、レジノイドボンド砥石
やビトリファイド砥石に比して結合相の強度が格段に高
く、砥粒保持力が強い。このため砥石寿命は長い反面、
切刃の摩滅した砥粒が脱落しにくく、研削抵抗が増して
切れ味が比較的早期に低下し、ドレッシング頻度を多く
しなければならない問題があった。
この欠点を改善するため、従来より結合剤中にカーボ
ン粉等をフィラーとして添加し、結合相による砥粒保持
力を適度に低下させ、摩滅した砥粒が脱落して新たな砥
粒が露出する作用、いわゆる自生発刃作用を促進し、切
れ味の低下を防ぐ手段が一部で実施されている。
「発明が解決しようとする課題」 ところで、砥粒層の内部に多数の気孔を形成すること
ができれば、これら気孔に研削液を含浸させて砥石の冷
却性を高めたり、研削面に多数のチップポケットを発生
させ、切粉の排出性を高めるなどの優れた効果が得られ
ると予想される。
しかしながら、従来使用されていたカーボン粉等のフ
ィラーは、いずれもその粒子構造が緻密であり、砥粒層
の内部に気孔を形成する作用は得られず、したがって、
上記のような効果を得ることはできなかった。
「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、
以下、その構成を具体的に説明する。
本発明に係わる多孔質メタルボンド砥石は、金属結合
相中に、超砥粒とともに多孔質ケイ酸カルシウム粒子を
均一に分散させたことを特徴とする。
この多孔質ケイ酸カルシウム粒子は、SiO2:50〜80wt
%、CaO:10〜40wt%、Al23:0.1〜5wt%を含有するも
ので、内部に多数の気孔を有する多弁状をなし、内部気
孔が互いに連通している割合が高い。この多孔質ケイ酸
カルシウム粒子は、例えば徳山曹達株式会社製商品名:
フローライトRとして市販されており、参考までにこの
フローライトRの物性を以下に記す。
平均粒径:20〜30μm、見掛け比重:0.08〜0.12、PH:
8.5〜9.1、吸油量:400〜600(ml/100g)、吸着水分:8wt
%以下。
なお、この種の多孔質ケイ酸カルシウム粒子は、約75
0℃以上に加熱されると短時間で急激に収縮する特徴を
有する。例えば、上記のフローライトRでは770℃を境
に見掛け比重が3倍以上に増し、この収縮体積に相当す
る空孔が砥粒層中に形成される。
多孔質ケイ酸カルシウム粒子の添加量は、砥粒層の3
〜35vol%とされる。実際には砥石の種類によって添加
量を変えることが望ましく、被削材に対し線接触するホ
イール型砥石では3〜20vol%、また被削材に面接触す
るカップ型砥石等では10〜35vol%が最適である。カッ
プ型砥石では面接触のため超砥粒の自生発刃作用が悪
く、目詰まりが生じやすい。そのため、ホイール型砥石
に比して砥粒脱落を促進あるいはチップポケットを形成
しやすくする必要があるからである。添加量が3vol%未
満では十分な自生発刃作用が得られない。また35vol%
を越えると結合相の強度低下が無視できず、砥粒層の型
崩れが生じて研削精度が低下するおそれが生じる。
金属結合剤としては、例えばCu-Sn系、Cu-Sn-Co系、C
u-Sn-Fe-Co系、Cu-Sn-Ni系、またはCu-Sn-Fe-Ni系、あ
るいはこれらにPを添加した結合剤が好適であり、特に
Cu-Sn-Co系およびCu-Sn-Fe-Co系は他に比して焼結性に
優れている利点を有する。
いずれの結合剤の場合も、焼結温度は約400〜700℃が
好ましく、焼結跡に750℃以上に昇温させて多孔質ケイ
酸カルシウム粒子を収縮させれは、気孔の大径化が図れ
る。
砥石を製造するには、多孔質ケイ酸カルシウム粒子
を、金属結合剤粉末と、ダイヤモンドまたはCBN等の超
砥粒とともに混合機で均一に混合し、従来通りプレス装
置に台金とともに型込めして圧粉成形する。
その際、プレス圧力は、コールドプレスまたはホット
プレスのいずれの場合も、10〜500kgf/cm2であることが
望ましい。10kgf/cm2未満では十分な強度の圧粉体が成
形できず、500kgf/cm2を越えると多孔質ケイ酸カルシウ
ム粒子が潰れて気孔形成効果が低減する。上記範囲内で
は、多孔質ケイ酸カルシウム粒子は圧力にほぼ比例して
圧縮される(連続的な圧縮成形性を有する)ため、プレ
ス圧力を調節することにより所望の気孔率を選択でき
る。
コールドプレスを行なった場合には、プレス後、前記
焼結温度で焼結を行ない、多孔質メタンボンド砥石を得
る。第1図および第2図は、この状態での砥粒層を示す
断面拡大図であり、符号1は金属結合相、2は超砥粒、
3は多孔質ケイ酸カルシウム粒子である。一方、ホット
プレスの場合には、成形温度を350〜700℃とすることが
望ましい。
上記構成からなる多孔質メタンボンド砥石およびその
製造方法では、砥粒層の内部に分散された多孔質ケイ酸
カルシウム粒子の内部に多数の気孔が存在し、しかも同
一粒子の内部気孔は互いに連通している割合が大きいた
め、研削液に触れると毛細管作用により気孔内に研削液
が吸い込まれ、砥石の冷却効果が大幅に向上する。また
予め砥粒層を研削液や研削油に浸漬し、気孔に含ませて
おけば、半乾式で研削を行なうことも可能である。
また、上記内部気孔は、多孔質ケイ酸カルシウム粒子
の添加量および成形圧力を調整することにより、分布密
度および大きさを任意に設定できるため、前記の吸液性
を自在に制御することが可能である。
また、多孔質ケイ酸カルシウム粒子3は延性を有しな
いため、カーボン粒子等に比して研削中に被削材に触れ
ると容易に微小破砕を生じて結合相1から脱落し、その
跡にチップポケットが形成される。このようなチップポ
ケットが研削面に多数形成されることにより、切粉の排
出性が著しく向上するとともに、結合相1の強度が適宜
低下して摩耗が促進され、超砥粒2の自生発刃作用が高
められる。
また、多孔質ケイ酸カルシウム粒子の混合量により砥
石の結合相1の強度を無段階に調節できるうえ、砥粒層
に弾性を付与することが可能なので、特定の被削材およ
び研削条件に適合させることができる。また、結合相1
が軟化するため、クラッシャブルホイールとして一般砥
石で砥石整形を行なうことが可能となり、整形コストを
低減できる。さらにまた、砥石の軽量化が図れ、駆動力
を低減できる効果も奏する。
なお、焼結後の砥粒層に750℃以上の再加熱処理を施
し、第3図および第4図に示すように砥粒層の内部で多
孔質ケイ酸カルシウム粒子3を収縮させ(3A)、その後
に多数の空孔4を形成してもよい。こうして形成される
空孔は、多孔質ケイ酸カルシウム粒子の内部気孔よりも
大きいため、上記の効果を一層促進することが可能であ
る。
また、予め多孔質ケイ酸カルシウム粒子に周知の造粒
処理を施し、大径化した後、これら複合粒子を砥石製造
に使用してもよい。こうすれば、粒子が脱落した跡に形
成されるチップポケットが大きくなり、切粉排出性等が
向上する。
また、砥粒層には多孔質ケイ酸カルシウム粒子だけで
なく、必要に応じてグラファイト粉、hBN粉等の固体潤
滑剤や、SiC、Al23等の硬質粒子または硬質繊維を添
加してもよい。
「実施例」 次に、実施例を挙げて本発明の効果を実証する。
(実施例1) 多孔質ケイ酸カルシウム粒子を添加したカップ砥石
(2A2型)を以下の条件で製造した。
砥粒層寸法: 外径300mm×内径20mm×厚さ5mm ダイヤモンド砥粒の粒径:#120 砥粒集中度:50 金属結合剤: 89.5wt%Cu-10wt%Sn−0.5wt%P系 多孔質ケイ酸カルシウム粒子の主組成: SiO2:60wt% CaO:20wt% Al23:0.5wt% 同粒子の平均粒径:25μm 同粒子の添加量:10vol% コールドプレス圧力:200kg/cm2 砥粒層焼結条件: 600℃×10時間、N2雰囲気 (比較例1) 実施例1と同寸法で、多孔質ケイ酸カルシウム粒子を
加えない点以外は、全て上記と同じカップ型砥石を作成
した。
そして上記2つの砥石をそれぞれ2個づつ用いて、以
上の研削条件で両頭研削試験を行ない、研削比および砥
石の駆動に要した研削盤の動力を計測した。なお、対向
する各砥石は逆回転させた。
被削材:Al2392wt% 砥石周速:1500m/min. ワーク送り量:15個/min. 切り込み量:片側0.5mm、両側で1.0mm 被削材寸法:外径50×内径10(リング形) 加工処理数:15000個 研削液:ケミカルソリューション50倍稀釈液 その結果を第1表に示す。
上表から明らかなように、本発明を適用した実施例1
では切刃の自生発刃作用が良好で、良好な切れ味が維持
され、研削抵抗が小さい分、砥石駆動力が大幅に低減で
きた。また、切れ味が良好になった分、研削比の低減も
防止できた。
(実施例2):ストレート砥石 本発明を適用したストレート砥石を以下の条件で製造
した。
砥粒層寸法: 外径200mm×幅15mm×厚さ5mm ダイヤモンド砥粒の粒径:#200 集中度:60 金属結合剤: 70wt%Cu-10wt%Ni−19.5wt%Sn−0.5wt%P 多孔質ケイ酸カルシウム粒子の組成 SiO2:60wt% CaO:20wt% Al23:4wt% 同粒子の平均粒径:25μm 同粒子の添加量:20vol% コールドプレス圧力:150kg/cm2 砥粒層焼結条件: 600℃×10時間、N2雰囲気 (比較例2) 実施例2と同寸法で、多孔質ケイ酸カルシウム粒子を
加えない点以外は、全て実施例2と同じストレート砥石
を作成した。
そして上記2つの砥石をそれぞれ用いて、以下の研削
試験を行ない、研削比、研削盤動力、研削後の被削材の
表面粗さを計測した。その結果を第2表に示す。
被削材:超硬合金(K20)製直方体 100mm×100mm×50mm (100mm×100mm面を研削) 砥石周速:1500m/min テーブル送り速度:5mm/min クロススピード:2mm/pass 砥石切込量:0.010mm 上表から明らかなように、実施例2では砥石駆動電力
が大幅に低減でき、かつ被削材の表面粗さも比較例2に
比して著しく良好であり、切れ味の向上が認められた。
(実施例3):カップ型砥石 本発明を適用したカップ型砥石(6A2型)を以下の条
件で製造した。
砥粒層寸法:外径300mm×幅15mm ダイヤモンド砥粒:粒径#140 金属結合剤:50wt%Cu+50wt%Sn 多孔質ケイ酸カルシウム粒子の組成 SiO2:75wt% CaO:15wt% Al23:2wt% ステアリン酸Zn2vol%添加 同粒子の平均粒径:25μm 同粒子の添加量:30vol% ホットプレス条件: 450℃×100kg/cm2 1時間、N2雰囲気 (比較例3) 実施例3と同寸法で、多孔質ケイ酸カルシウム粒子を
添加しない点以外は全て実施例3と等しくしたカップ型
砥石を作成した。
そして上記2種の砥石をそれぞれ用いて、以下の研削
試験を行い、研削比、研削盤駆動電力、研削後の被削材
の表面粗さを計測した。その結果を第3表に示す。
被削材:TiC系サーメット 12mm×5mm 砥石周速:1000m/min. 切り込み:0.010mm ワーク揺動速度:3m/min. 研削液:ケミカルソリューション50倍希釈液 上表から明らかなように、実施例3は比較例3と同等
以上の研削比を有しながらも非常に切れ味に優れるた
め、駆動電力、表面粗さは比較例3に比して大幅に改善
された。
(実施例4):ストレート砥石 本発明を適用したストレート型砥石の以下の条件で製
造した。
砥粒層寸法:外径200mm×幅15mm ダイヤモンド砥粒:粒径#80 集中度50 金属結合剤: 60wt%Cu-10wt%Ni-10wt%Fe-20wt%Sn 多孔質ケイ酸カルシウム粒子の組成 SiO2:55wt% CaO:30wt% Al23:0.5wt% この多孔質ケイ酸カルシウム粒子(粒径20μm)をア
クリルバインダーと混合し、ほぼ#60の造粒粉を作成し
たうえ、この造粒粉を20wt%添加した。
ホットプレス条件: 600℃×200kg/cm2 1時間、N2雰囲気 この時の多孔質ケイ酸カルシウム粒子の収縮割合は、
初期断面積の1/4だった。
(比較例4) 実施例4と寸法で、多孔質ケイ酸カルシウム粒子を添
加しない点以外は全て実施例4と等しくしたストレート
型砥石を作成した。
そして上記2種の砥石をそれぞれ用いて、以下の研削
試験を行い、研削比、研削盤駆動電力、研削後の被削材
の表面粗さを計測した。その結果を第4表に示す。
被削材:96wt%Al23 75mm×75mm×5mm 砥石周速:1300m/min. テーブル送り速度:10m/min. クロススピード:2mm/pass 切り込み:0.025mm 上表から明らかなように、駆動電力および表面粗さに
おいて、実施例4の砥石は比較例4に比して約2倍に優
れた値を示し、切れ味が大幅に改善できた。また、比較
例4では被削材の加工面にムシレが認められた。比較例
4で研削比が小さくなっているのは、切れ味不足による
研削抵抗の増大によるものと考えられる。
「発明の効果」 以上説明したように、本発明に係わる多孔質メタルボ
ンド砥石およびその製造方法によれば、以下のような優
れた効果が得られる。
砥粒層の内部に分散された多孔質ケイ酸カルシウム
粒子の内部に多数の気孔が存在し、しかも同一粒子の内
部気孔は互いに連通している割合が大きいため、研削液
に触れると毛細管作用により気孔内に研削液が吸い込ま
れ、砥石の冷却効果が大幅に向上する。また予め砥粒層
を研削液や研削油に浸漬し、気孔に含まれておけば、半
乾式で研削を行なうことも可能である。
上記内部気孔は、多孔質ケイ酸カルシウム粒子の添
加量および成形圧力を調整することにより、分布密度お
よび大きさを任意に設定できるため、吸液性を自在に制
御することが可能である。
多孔質ケイ酸カルシウム粒子は延性を有しないた
め、カーボン粒子等に比して研削中に比削材に触れると
容易に結合相から脱落し、その跡にチップポケットが形
成される。このようなチップポケットが研削面に多数生
じることにより、切粉の排出性が著しく向上するととも
に、結合相の強度が適宜低下して摩耗が促進され、超砥
粒の自生発刃作用が高められる。
多孔質ケイ酸カルシウム粒子の混合量により砥石の
結合相の強度を無段階に調節できるうえ、砥粒層に弾性
を付与することが可能なので、特定の被削材および研削
条件に適合させることができる。また、結合相が軟化す
るため、クラッシャブルホイールとして一般砥石で砥石
整形を行なうことが可能となり、整形コストが安く済
む。
砥石の軽量化が図れ、駆動力を低減できる効果も奏
する。
一方、砥石製造工程で750℃以上に加熱した場合に
は、砥粒層中に分散された多孔質ケイ酸カルシウム粒子
が収縮し、その跡に前記気孔よりも大きな空孔が形成さ
れるから、上記の効果を一層促進することが可能であ
る。
【図面の簡単な説明】
第1図および第2図は本発明に係わる多孔質メタルボン
ド砥石の横断面および縦断面の拡大図、第3図および第
4図は高温加熱処理を行なった後の上記砥石を示す第1
図および第2図と同様の図である。 1……金属結合相、2……超砥粒、3……多孔質ケイ酸
カルシウム粒子、3A……収縮物、4……空孔。
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B24D 3/02 B24D 3/06 C04B 38/08

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】金属結合剤粉末中に超砥粒を分散し、圧粉
    成形および焼結してなる砥粒層を有するメタルボンド砥
    石において、 前記砥粒層中に多孔質ケイ酸カルシウム粒子を分散させ
    たことを特徴とする多孔質メタルボンド砥石。
  2. 【請求項2】前記多孔質ケイ酸カルシウム粒子は、 SiO2:50〜80wt%、CaO:10〜40wt%、Al23:0.1〜5wt%
    を含有することを特徴とする請求項1記載の多孔質メタ
    ルボンド砥石。
  3. 【請求項3】前記金属結合剤は、Cu-Sn系、Cu-Sn-Co
    系、Cu-Sn-Fe-Co系、Cu-Sn-Ni系またはCu-Sn-Fe-Ni系の
    いずれかであることを特徴とする請求項1または2記載
    の多孔質メタルボンド砥石。
  4. 【請求項4】前記砥粒層を高温加熱処理することにより
    多孔質ケイ酸カルシウム粒子を収縮させ、その跡に空孔
    を形成したことを特徴とする請求項1、2または3記載
    の多孔質メタルボンド砥石。
  5. 【請求項5】金属結合剤粉末中に超砥粒および多孔質ケ
    イ酸カルシウム粒子を混合し、10〜500kgf/cm2の圧力で
    圧粉および焼結して砥粒層を形成することを特徴とする
    多孔質メタルボンド砥石の製造方法。
  6. 【請求項6】焼結後の砥粒層に750℃以上の再加熱処理
    を施し、砥粉層の内部で多孔質ケイ酸カルシウム粒子を
    収縮させ、その跡に多数の空孔を形成することを特徴と
    する請求項5記載の多孔質メタルボンド砥石の製造方
    法。
  7. 【請求項7】前記多孔質ケイ酸カルシウム粒子を混合す
    るに先立ち、この粒子に予め造粒処理を施して大径化し
    ておくことを特徴とする請求項5または6記載の多孔質
    メタルボンド砥石の製造方法。
JP6520990A 1990-03-15 1990-03-15 多孔質メタルボンド砥石およびその製造方法 Expired - Lifetime JP2762661B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6520990A JP2762661B2 (ja) 1990-03-15 1990-03-15 多孔質メタルボンド砥石およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6520990A JP2762661B2 (ja) 1990-03-15 1990-03-15 多孔質メタルボンド砥石およびその製造方法

Publications (2)

Publication Number Publication Date
JPH03264263A JPH03264263A (ja) 1991-11-25
JP2762661B2 true JP2762661B2 (ja) 1998-06-04

Family

ID=13280299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6520990A Expired - Lifetime JP2762661B2 (ja) 1990-03-15 1990-03-15 多孔質メタルボンド砥石およびその製造方法

Country Status (1)

Country Link
JP (1) JP2762661B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470512A (zh) * 2009-07-21 2012-05-23 本田技研工业株式会社 金属结合剂磨石及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080083566A1 (en) * 2006-10-04 2008-04-10 George Alexander Burnett Reclamation of components of wellbore cuttings material
US9073104B2 (en) 2008-08-14 2015-07-07 National Oilwell Varco, L.P. Drill cuttings treatment systems
US9079222B2 (en) 2008-10-10 2015-07-14 National Oilwell Varco, L.P. Shale shaker
US8556083B2 (en) 2008-10-10 2013-10-15 National Oilwell Varco L.P. Shale shakers with selective series/parallel flow path conversion
TWI613285B (zh) 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法
US9643111B2 (en) 2013-03-08 2017-05-09 National Oilwell Varco, L.P. Vector maximizing screen
DE112014001102T5 (de) 2013-03-31 2015-11-19 Saint-Gobain Abrasifs Gebundener Schleifartikel und Schleifverfahren
JP2014205225A (ja) * 2013-04-15 2014-10-30 株式会社ノリタケカンパニーリミテド 高硬度脆性材料の研削用砥石
CA3067641A1 (en) * 2017-06-19 2018-12-27 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470512A (zh) * 2009-07-21 2012-05-23 本田技研工业株式会社 金属结合剂磨石及其制造方法
CN102470512B (zh) * 2009-07-21 2015-08-26 本田技研工业株式会社 金属结合剂磨石及其制造方法

Also Published As

Publication number Publication date
JPH03264263A (ja) 1991-11-25

Similar Documents

Publication Publication Date Title
JP3336015B2 (ja) 高透過性砥石の製造方法
JPH10113875A (ja) 超砥粒研削砥石
JP2001246566A (ja) 研削用砥石およびその製造方法並びにそれを用いた研削方法
JPH0716881B2 (ja) ビトリファイド超砥粒砥石
JP2762661B2 (ja) 多孔質メタルボンド砥石およびその製造方法
JP3779329B2 (ja) 金属被覆された砥粒を含むガラス質研削工具
JP5316053B2 (ja) 有気孔ビトリファイドボンド砥石及びその製造方法
JP3542520B2 (ja) ビトリファイド砥石
JP2651831B2 (ja) 超砥粒ホイール及びその製造方法
JP3086667B2 (ja) 超砥粒砥石
JP2987485B2 (ja) 超砥粒砥石及びその製造方法
JPH0624700B2 (ja) ビトリファイド砥石
JP3101145B2 (ja) 多孔質鉄系メタルボンドダイヤモンド砥石の製造方法
JPH10138148A (ja) ビトリファイド超砥粒砥石
JPH08229825A (ja) 超砥粒砥石及びその製造方法
JPH0857768A (ja) 重研削用ビトリファイドボンド砥石
JP2000317843A (ja) 多孔質鉄系メタルボンドダイヤモンド砥石
JP2765167B2 (ja) 多孔質レジンボンド砥石およびその製造方法
JP2678288B2 (ja) 超砥粒ビトリファイドボンド砥石及び製造方法
JP3055084B2 (ja) 多孔質メタルボンド砥石およびその製造方法
JPS6257874A (ja) 超砥粒研削砥石
JP2975033B2 (ja) ビトリファイド超砥粒砥石
JP3281605B2 (ja) ビトリファイドボンド砥石及びその製造方法
JPH10562A (ja) ダイヤモンド砥石およびその製造方法
JP2001009732A (ja) ビトリファイドボンド砥石及びその製造方法