JP2738684B2 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法Info
- Publication number
- JP2738684B2 JP2738684B2 JP62135084A JP13508487A JP2738684B2 JP 2738684 B2 JP2738684 B2 JP 2738684B2 JP 62135084 A JP62135084 A JP 62135084A JP 13508487 A JP13508487 A JP 13508487A JP 2738684 B2 JP2738684 B2 JP 2738684B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- source
- silicide
- film
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体装置、特に高集積度・高速の半導体集
積回路の製造方法に関するものである。 従来の技術 半導体集積回路の高密度化に伴って構成要素であるMO
SFETも縮小されるが、かかる装置においては深さ方向の
縮小化も実施しなくては正常なFET動作を維持すること
はできない。このことは高速動作が可能でかつ接合リー
ク電流の少ないMOSFETを構成することと相反する。 以上の問題を解決するために最近注目されているのが
シリコンにおける不純物高濃度層より低抵抗な高融点金
属のシリサイド層を合金反応を用いて自己整合的に形成
する技術(シリサイド化接合法)である。特に素子間分
離用酸化膜上においてアルミ配線とソース/ドレイン拡
散域とのコンタクトを形成するため、概略を第3図に示
すごとくポリシリコンゲート電極の側壁に絶縁物を被着
し、前記ポリシリコンゲート電極の上部ポリシリコンと
ソース/ドレイン域のシリコン基板を露出させた状態で
高融点金属をシリコン基板全面に堆積する。この高融点
金属被膜上に局部的に非晶質シリコン層を形成する際、
後に形成される高融点金属シリサイドのうちゲート電極
上のものとソース/ドレイン域上のものが短絡すること
を防ぐため、非晶質シリコンのゲート電極側の端をゲー
ト電極から有限の距離に設定する方法が例えばアイ・イ
ー・ディー・エム84(1984年)第118頁から第121頁(IE
DM84(1984)pp118〜121)に発表されている。 発明が解決しようとする問題点 基板結晶シリコンに堆積被着した高融点金属の合金反
応により自己整合的に高融点金属シリサイドを形成する
技術においては、これを大規模集積回路に適用する限
り、高融点金属シリサイド膜形成後に為される熱処理
(例えば注入不純物の活性化や層間絶縁膜のフローな
ど)を経ても膜の均一性が維持されることが必要であ
る。しかし現在までのところ、特に前記アイ・イー・デ
ィー・エム84(1984年)第11頁から第121頁(IEDM84(1
984)pp118〜121)のように高融点金属としてチタンを
用いる場合、チタンシリサイド膜形成時には均一性の良
好な膜質が得られても、後の比較的高温・長時間の熱処
理(900℃以上、30分間以上)の際にチタンシリサイド
膜が凝集することによって表面粗れが生じシリサイドの
亀裂部ではシリコン基板が露出するという問題があっ
た。 また第3図に示した従来例の模式のごとく、整形され
た非晶質シリコンの端がソース/ドレイン域の中間部に
ある場合、非晶質シリコン下層のチタン層はその下層に
基板結晶シリコンが存在するにもかかわらず主に上層の
非晶質シリコンと反応することにより大部分はシリコン
基板表面より上側にチタンシリサイド層を形成する。こ
れに対してソース/ドレイン域上にありかつ上層に非晶
質シリコン層のない領域のチタン層は基板結晶シリコン
と反応することにより大部分はシリコン基板表面より下
側にチタンシリサイド層が埋設される。つまりソース/
ドレイン域上で事前に形成された非晶質シリコン層の端
近傍においてチタンシリサイド層に段差が生じる。これ
に起因して、第1にソース/ドレイン域上のチタンシリ
サイドが段差部にて断線する可能性が高くなる。チタン
膜を35nm,非晶質シリコン膜を70nmとした場合、非晶質
シリコン膜の下部のソース/ドレイン域では約95nm,非
晶質シリコンがないソース/ドレインでは約85nmのチタ
ンシリサイド膜が形成されるが、この2領域の接続部の
チタンシリサイド膜厚は35nm程度となる。第2にソース
/ドレイン域への不純物注入をチタンシリサイド膜形成
以前または以後に行うにかかわらず基板結晶シリコンに
段差が生じているため同一拡散層内において形成される
拡散層の深さに不均一性が生じる。このことはDRAMセル
用スイッチングトランジスタなどゲート長のみならずソ
ース/ドレイン域も微細化する必要のあるときデバイス
の正常動作を維持する上で問題となる。 本発明はかかる点に鑑みてなされたもので、耐熱性が
良好であり、微細なソース/ドレイン域に均一なチタン
シリサイド層と浅い拡散深さを有すMOSFETを主体とした
半導体装置を提供することを目的としている。 問題点を解決するための手段 本発明は上記問題を解決するために、ソース又はドレ
イン領域が高融点金属シリサイドにより裏打ちされたMO
SFETをシリコン基板上に形成するに際し、ゲート電極の
上面及び側壁を絶縁膜により予め完全に被覆しておいた
上で、高融点金属であるチタンを前記シリコン基板全面
に被着し、次にこれを大気に晒すことなく連続的に非晶
質シリコン層を被着し、ゲート電極の上面から前記ソー
ス又はドレイン領域を経て素子間分離絶縁膜上にかけて
非晶質シリコン層を局部的に形成した上で熱処理により
チタンのシリサイド化反応を起こし、その後湿式選択エ
ッチによりチタンのシリサイドを残したまま未反応のチ
タン及びチタンシリサイド以外の化合物を除去すること
により、ゲート電極の上面からソース又はドレイン領域
を経て素子間分離絶縁膜まで一様に主に非晶質シリコン
との反応により生成されたチタンシリサイドの被膜を局
部的に形成し、その後チタンシリサイド膜を介してソー
ス、ドレイン領域に不純物をイオン注入することにより
ソース、ドレイン拡散層を形成するものである。 作用 本発明は上記した方法により、たとえば900℃,30分間
以上の熱処理に対する耐性に優れ、ソース又はドレイン
拡散域においてシリサイドの膜質、膜厚及び不純物拡散
深さが均一でありかつ基板結晶シリコン中に生ずる欠陥
が少なく微細に有利なチタンシリサイド化接合を有すMO
SFETを得ることができる。 実 施 例 第1図は本発明の一実施例におけるチタンシリサイド
化接合を有すMOSFETの断面図であり、第2図はこれを形
成するための工程断面図である。第2図Aにおいて、1
はp-型基板結晶シリコン(100)で比抵抗は1〜1.5Ω・
cmとする。2は素子間分離用に形成された酸化膜であ
る。極く薄いゲート酸化膜4(例えば10nm程度)を介し
てn+拡散の施されたポリシリコン8と物理的雰囲気ある
いは化学的雰囲気で堆積されたタングステンシリサイド
7により構成されたポリサイドゲート電極の上部を電気
的に絶縁するためにゲート電極被覆酸化膜5を化学的雰
囲気堆積により約20nm形成しておく。このゲート電極を
マスクとしてnチャンネルMOSFETのLDD領域(n-拡散層1
1)を形成するためリンイオン注入を行う。次にゲート
電極の側壁を電気的に絶縁するためとLDD構造のnチャ
ンネルMOSFETを構成するために通常の方法で約20nmの酸
化膜サイドウォールを形成するがこれはゲート電極上部
の酸化膜と合わせてゲート電極被覆酸化膜5を形成する
(第2図B)。基板結晶シリコン1表面ソース/ドレイ
ン域の自然酸化膜を除去するとともにシリコンの活性面
を露出させるため、アルゴンイオンによる逆スパッタリ
ングを行った。この直後同一真空槽内において基板結晶
シリコン1の全面に、金属チタン層12をDCマグネトロン
スパッタ法により35nm堆積し、さらに真空中における連
続蒸着により非晶質シリコン層13を全面にRFマグネトロ
ンスパッタ法により73nm堆積した(第2図C)。これに
より、金属チタン層内に酸素が混入することを防止でき
るため、シリサイドの耐熱性を向上させることができ
る。この後通常のホトレジストのパターンニングとドラ
イエッチングの方法により金属チタン層12上で非晶質シ
リコン層13の整形を行う。このときのドライエッチング
条件としては非晶質シリコン13の金属チタン12に対する
選択比が充分高いものとし、かつ非晶質シリコン層13の
パターンがゲート電極被覆酸化膜5の上部からその側
壁、ソース/ドレイン域を経て素子間分離用酸化膜2の
上部までに及び、ひとつのソース/ドレイン域全面を覆
うものとする(第2図D)。 次に残留ガスの影響が少なく窒素ガスの導入が可能な
ランプアニーラーにより熱処理し、非晶質シリコン層13
の下部の金属チタン層12のシリサイド化を行う。酸化膜
上の金属チタン層12のうち上層に非晶質シリコン層13が
ない領域では窒化チタンが形成されるかあるいは未反応
の金属チタンが残るがこれらはNH4OH+H2O2+H2O液によ
りチタンシリサイドに対して選択的に除去することがで
きる。こうして第2図Eにおけるごとくチタンシリサイ
ド層6が形成される。この状態で浅いn+接合を形成する
ため高ドーズ量のヒ素イオン注入を行うがこのときの注
入エネルギーは約80keVとし、形成された約80nmのチタ
ンシリサイド層6の上層部2分の1に飛程が収まるよう
にする。化学的雰囲気堆積法により層間絶縁膜3を形成
した後、注入不純物の活性化と層間絶縁膜3の稠密化の
ため電気炉により900℃,30分間の熱処理を行う。次に素
子間分離用酸化膜2の領域のチタンシリサイド層6の上
部にコンタクトホールを開孔した直後、アルミ薄膜をス
パッタリング法により堆積し、パターニングすることに
よりアルミ配線9を形成する(第2図F)。必要に応じ
て水素ガス混入の窒素雰囲気中で450℃程度の熱処理を
行うことによりコンタクトホール開孔時のドライエッチ
ングによるダメージが回復し、良好な電気特性をもつチ
タンシリサイド化接合MOSFETが得られた。またスパッタ
堆積により形成した非晶質シリコン13と金属チタン12の
反応により形成されたチタンシリサイド6は基板結晶シ
リコンとの反応により形成されたものより耐熱性に優
れ、900℃・30分間程度の熱処理を経てもチタンシリサ
イドの凝集による表面粗れが何ら生じない。 なお本実施例においては高融点金属としてチタンを用
いたが、他の材質としてタングステン・モリブテン・タ
ンタル・コバルト・クロム・ニッケル・ジルコニウムを
用いることも可能である。さらにチタンシリサイド層6
を素子間分離用酸化膜2上、ゲート電極被覆酸化膜5上
に配線することによりゲート電極・アルミ配線に次ぐ第
3の配線として使用することも可能である。この配線の
シート抵抗は前記のチタンシリサイド層の厚さ約80nmと
した場合で約3Ω/□となる。 発明の効果 以上のように本発明は半導体装置の高集積化・高速化
に伴い、MOSFETのソース/ドレインなど接合深さが浅く
かつ均一な拡散層上に耐熱性が高く、段差・不均一性の
ない高融点金属シリサイド層を裏打ちするとともに、こ
の延長を素子間分離酸化膜及びゲート電極被覆酸化膜上
の配線としての機能をもたすことを可能にするものであ
り、超微細な半導体装置の製造に大きく寄与するもので
ある。
積回路の製造方法に関するものである。 従来の技術 半導体集積回路の高密度化に伴って構成要素であるMO
SFETも縮小されるが、かかる装置においては深さ方向の
縮小化も実施しなくては正常なFET動作を維持すること
はできない。このことは高速動作が可能でかつ接合リー
ク電流の少ないMOSFETを構成することと相反する。 以上の問題を解決するために最近注目されているのが
シリコンにおける不純物高濃度層より低抵抗な高融点金
属のシリサイド層を合金反応を用いて自己整合的に形成
する技術(シリサイド化接合法)である。特に素子間分
離用酸化膜上においてアルミ配線とソース/ドレイン拡
散域とのコンタクトを形成するため、概略を第3図に示
すごとくポリシリコンゲート電極の側壁に絶縁物を被着
し、前記ポリシリコンゲート電極の上部ポリシリコンと
ソース/ドレイン域のシリコン基板を露出させた状態で
高融点金属をシリコン基板全面に堆積する。この高融点
金属被膜上に局部的に非晶質シリコン層を形成する際、
後に形成される高融点金属シリサイドのうちゲート電極
上のものとソース/ドレイン域上のものが短絡すること
を防ぐため、非晶質シリコンのゲート電極側の端をゲー
ト電極から有限の距離に設定する方法が例えばアイ・イ
ー・ディー・エム84(1984年)第118頁から第121頁(IE
DM84(1984)pp118〜121)に発表されている。 発明が解決しようとする問題点 基板結晶シリコンに堆積被着した高融点金属の合金反
応により自己整合的に高融点金属シリサイドを形成する
技術においては、これを大規模集積回路に適用する限
り、高融点金属シリサイド膜形成後に為される熱処理
(例えば注入不純物の活性化や層間絶縁膜のフローな
ど)を経ても膜の均一性が維持されることが必要であ
る。しかし現在までのところ、特に前記アイ・イー・デ
ィー・エム84(1984年)第11頁から第121頁(IEDM84(1
984)pp118〜121)のように高融点金属としてチタンを
用いる場合、チタンシリサイド膜形成時には均一性の良
好な膜質が得られても、後の比較的高温・長時間の熱処
理(900℃以上、30分間以上)の際にチタンシリサイド
膜が凝集することによって表面粗れが生じシリサイドの
亀裂部ではシリコン基板が露出するという問題があっ
た。 また第3図に示した従来例の模式のごとく、整形され
た非晶質シリコンの端がソース/ドレイン域の中間部に
ある場合、非晶質シリコン下層のチタン層はその下層に
基板結晶シリコンが存在するにもかかわらず主に上層の
非晶質シリコンと反応することにより大部分はシリコン
基板表面より上側にチタンシリサイド層を形成する。こ
れに対してソース/ドレイン域上にありかつ上層に非晶
質シリコン層のない領域のチタン層は基板結晶シリコン
と反応することにより大部分はシリコン基板表面より下
側にチタンシリサイド層が埋設される。つまりソース/
ドレイン域上で事前に形成された非晶質シリコン層の端
近傍においてチタンシリサイド層に段差が生じる。これ
に起因して、第1にソース/ドレイン域上のチタンシリ
サイドが段差部にて断線する可能性が高くなる。チタン
膜を35nm,非晶質シリコン膜を70nmとした場合、非晶質
シリコン膜の下部のソース/ドレイン域では約95nm,非
晶質シリコンがないソース/ドレインでは約85nmのチタ
ンシリサイド膜が形成されるが、この2領域の接続部の
チタンシリサイド膜厚は35nm程度となる。第2にソース
/ドレイン域への不純物注入をチタンシリサイド膜形成
以前または以後に行うにかかわらず基板結晶シリコンに
段差が生じているため同一拡散層内において形成される
拡散層の深さに不均一性が生じる。このことはDRAMセル
用スイッチングトランジスタなどゲート長のみならずソ
ース/ドレイン域も微細化する必要のあるときデバイス
の正常動作を維持する上で問題となる。 本発明はかかる点に鑑みてなされたもので、耐熱性が
良好であり、微細なソース/ドレイン域に均一なチタン
シリサイド層と浅い拡散深さを有すMOSFETを主体とした
半導体装置を提供することを目的としている。 問題点を解決するための手段 本発明は上記問題を解決するために、ソース又はドレ
イン領域が高融点金属シリサイドにより裏打ちされたMO
SFETをシリコン基板上に形成するに際し、ゲート電極の
上面及び側壁を絶縁膜により予め完全に被覆しておいた
上で、高融点金属であるチタンを前記シリコン基板全面
に被着し、次にこれを大気に晒すことなく連続的に非晶
質シリコン層を被着し、ゲート電極の上面から前記ソー
ス又はドレイン領域を経て素子間分離絶縁膜上にかけて
非晶質シリコン層を局部的に形成した上で熱処理により
チタンのシリサイド化反応を起こし、その後湿式選択エ
ッチによりチタンのシリサイドを残したまま未反応のチ
タン及びチタンシリサイド以外の化合物を除去すること
により、ゲート電極の上面からソース又はドレイン領域
を経て素子間分離絶縁膜まで一様に主に非晶質シリコン
との反応により生成されたチタンシリサイドの被膜を局
部的に形成し、その後チタンシリサイド膜を介してソー
ス、ドレイン領域に不純物をイオン注入することにより
ソース、ドレイン拡散層を形成するものである。 作用 本発明は上記した方法により、たとえば900℃,30分間
以上の熱処理に対する耐性に優れ、ソース又はドレイン
拡散域においてシリサイドの膜質、膜厚及び不純物拡散
深さが均一でありかつ基板結晶シリコン中に生ずる欠陥
が少なく微細に有利なチタンシリサイド化接合を有すMO
SFETを得ることができる。 実 施 例 第1図は本発明の一実施例におけるチタンシリサイド
化接合を有すMOSFETの断面図であり、第2図はこれを形
成するための工程断面図である。第2図Aにおいて、1
はp-型基板結晶シリコン(100)で比抵抗は1〜1.5Ω・
cmとする。2は素子間分離用に形成された酸化膜であ
る。極く薄いゲート酸化膜4(例えば10nm程度)を介し
てn+拡散の施されたポリシリコン8と物理的雰囲気ある
いは化学的雰囲気で堆積されたタングステンシリサイド
7により構成されたポリサイドゲート電極の上部を電気
的に絶縁するためにゲート電極被覆酸化膜5を化学的雰
囲気堆積により約20nm形成しておく。このゲート電極を
マスクとしてnチャンネルMOSFETのLDD領域(n-拡散層1
1)を形成するためリンイオン注入を行う。次にゲート
電極の側壁を電気的に絶縁するためとLDD構造のnチャ
ンネルMOSFETを構成するために通常の方法で約20nmの酸
化膜サイドウォールを形成するがこれはゲート電極上部
の酸化膜と合わせてゲート電極被覆酸化膜5を形成する
(第2図B)。基板結晶シリコン1表面ソース/ドレイ
ン域の自然酸化膜を除去するとともにシリコンの活性面
を露出させるため、アルゴンイオンによる逆スパッタリ
ングを行った。この直後同一真空槽内において基板結晶
シリコン1の全面に、金属チタン層12をDCマグネトロン
スパッタ法により35nm堆積し、さらに真空中における連
続蒸着により非晶質シリコン層13を全面にRFマグネトロ
ンスパッタ法により73nm堆積した(第2図C)。これに
より、金属チタン層内に酸素が混入することを防止でき
るため、シリサイドの耐熱性を向上させることができ
る。この後通常のホトレジストのパターンニングとドラ
イエッチングの方法により金属チタン層12上で非晶質シ
リコン層13の整形を行う。このときのドライエッチング
条件としては非晶質シリコン13の金属チタン12に対する
選択比が充分高いものとし、かつ非晶質シリコン層13の
パターンがゲート電極被覆酸化膜5の上部からその側
壁、ソース/ドレイン域を経て素子間分離用酸化膜2の
上部までに及び、ひとつのソース/ドレイン域全面を覆
うものとする(第2図D)。 次に残留ガスの影響が少なく窒素ガスの導入が可能な
ランプアニーラーにより熱処理し、非晶質シリコン層13
の下部の金属チタン層12のシリサイド化を行う。酸化膜
上の金属チタン層12のうち上層に非晶質シリコン層13が
ない領域では窒化チタンが形成されるかあるいは未反応
の金属チタンが残るがこれらはNH4OH+H2O2+H2O液によ
りチタンシリサイドに対して選択的に除去することがで
きる。こうして第2図Eにおけるごとくチタンシリサイ
ド層6が形成される。この状態で浅いn+接合を形成する
ため高ドーズ量のヒ素イオン注入を行うがこのときの注
入エネルギーは約80keVとし、形成された約80nmのチタ
ンシリサイド層6の上層部2分の1に飛程が収まるよう
にする。化学的雰囲気堆積法により層間絶縁膜3を形成
した後、注入不純物の活性化と層間絶縁膜3の稠密化の
ため電気炉により900℃,30分間の熱処理を行う。次に素
子間分離用酸化膜2の領域のチタンシリサイド層6の上
部にコンタクトホールを開孔した直後、アルミ薄膜をス
パッタリング法により堆積し、パターニングすることに
よりアルミ配線9を形成する(第2図F)。必要に応じ
て水素ガス混入の窒素雰囲気中で450℃程度の熱処理を
行うことによりコンタクトホール開孔時のドライエッチ
ングによるダメージが回復し、良好な電気特性をもつチ
タンシリサイド化接合MOSFETが得られた。またスパッタ
堆積により形成した非晶質シリコン13と金属チタン12の
反応により形成されたチタンシリサイド6は基板結晶シ
リコンとの反応により形成されたものより耐熱性に優
れ、900℃・30分間程度の熱処理を経てもチタンシリサ
イドの凝集による表面粗れが何ら生じない。 なお本実施例においては高融点金属としてチタンを用
いたが、他の材質としてタングステン・モリブテン・タ
ンタル・コバルト・クロム・ニッケル・ジルコニウムを
用いることも可能である。さらにチタンシリサイド層6
を素子間分離用酸化膜2上、ゲート電極被覆酸化膜5上
に配線することによりゲート電極・アルミ配線に次ぐ第
3の配線として使用することも可能である。この配線の
シート抵抗は前記のチタンシリサイド層の厚さ約80nmと
した場合で約3Ω/□となる。 発明の効果 以上のように本発明は半導体装置の高集積化・高速化
に伴い、MOSFETのソース/ドレインなど接合深さが浅く
かつ均一な拡散層上に耐熱性が高く、段差・不均一性の
ない高融点金属シリサイド層を裏打ちするとともに、こ
の延長を素子間分離酸化膜及びゲート電極被覆酸化膜上
の配線としての機能をもたすことを可能にするものであ
り、超微細な半導体装置の製造に大きく寄与するもので
ある。
【図面の簡単な説明】
第1図は本発明の一実施例における半導体装置の断面
図、第2図はこれの製造方法を説明するための断面図、
第3図はこの形式における従来の半導体装置の断面図で
ある。 1……P-型基板結晶シリコン、2……素子間分離酸化
膜、3……層間絶縁膜、4……ゲート酸化膜、5……ゲ
ート電極被覆酸化膜、6……チタンシリサイド層、7…
…タングステンシリサイド層、8……n+型ポリシコン、
9……アルミ配線、10……n+拡散層、11……n+拡散層、
12……金属チタン層、13……非晶質シリコン層。
図、第2図はこれの製造方法を説明するための断面図、
第3図はこの形式における従来の半導体装置の断面図で
ある。 1……P-型基板結晶シリコン、2……素子間分離酸化
膜、3……層間絶縁膜、4……ゲート酸化膜、5……ゲ
ート電極被覆酸化膜、6……チタンシリサイド層、7…
…タングステンシリサイド層、8……n+型ポリシコン、
9……アルミ配線、10……n+拡散層、11……n+拡散層、
12……金属チタン層、13……非晶質シリコン層。
Claims (1)
- (57)【特許請求の範囲】 1.ソース又はドレイン領域が高融点金属シリサイドに
より裏打ちされたMOSFETをシリコン基板上に形成するに
際し、ゲート電極の上面及び側壁を絶縁膜により予め完
全に被覆しておいた上で、高融点金属であるチタンを前
記シリコン基板全面に被着し、次にこれを大気に晒すこ
となく連続的に非晶質シリコン層を被着し、前記ゲート
電極の上面から前記ソース又はドレイン領域を経て素子
間分離絶縁膜上にかけて非晶質シリコン層を局部的に形
成した上で熱処理により前記チタンのシリサイド化反応
を起こし、その後湿式選択エッチにより前記チタンのシ
リサイドを残したまま未反応のチタン及びチタンシリサ
イド以外の化合物を除去することにより、前記ゲート電
極の上面からソース又はドレイン領域を経て素子間分離
絶縁膜まで一様に主に非晶質シリコンとの反応により生
成されたチタンシリサイドの被膜を局部的に形成し、そ
の後前記チタンシリサイド膜を介してソース、ドレイン
領域に不純物をイオン注入することによりソース、ドレ
イン拡散層を形成することを特徴とした半導体装置の製
造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62135084A JP2738684B2 (ja) | 1987-05-29 | 1987-05-29 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62135084A JP2738684B2 (ja) | 1987-05-29 | 1987-05-29 | 半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63299377A JPS63299377A (ja) | 1988-12-06 |
JP2738684B2 true JP2738684B2 (ja) | 1998-04-08 |
Family
ID=15143455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62135084A Expired - Fee Related JP2738684B2 (ja) | 1987-05-29 | 1987-05-29 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2738684B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04152633A (ja) * | 1990-10-17 | 1992-05-26 | Sharp Corp | 半導体装置の製造方法 |
JPH04290224A (ja) * | 1991-03-19 | 1992-10-14 | Matsushita Electric Ind Co Ltd | 半導体装置の製造方法 |
KR100198666B1 (ko) * | 1996-09-25 | 1999-06-15 | 구본준 | 반도체 소자의 배선 구조 및 제조 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0831598B2 (ja) * | 1985-07-03 | 1996-03-27 | 株式会社日立製作所 | 半導体装置の製造方法 |
-
1987
- 1987-05-29 JP JP62135084A patent/JP2738684B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63299377A (ja) | 1988-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100402671B1 (ko) | 반도체 장치 및 그 제조 방법 | |
KR100281307B1 (ko) | 선택에피택셜성장을 사용한 반도체장치의 제조방법 | |
US20050130380A1 (en) | Semiconductor device structures including metal silicide interconnects and dielectric layers at substantially the same fabrication level | |
US5599741A (en) | Method for making semiconductor device with metal deposited on electron donating surface of gate electrode | |
EP0051500B1 (en) | Semiconductor devices | |
KR0177534B1 (ko) | 반도체 장치 제조방법 | |
US8034715B2 (en) | Method of fabricating semiconductor integrated circuit device | |
JP2790362B2 (ja) | 半導体装置 | |
JP2738684B2 (ja) | 半導体装置の製造方法 | |
US6693001B2 (en) | Process for producing semiconductor integrated circuit device | |
KR20040104533A (ko) | 실리콘 함유 도전성 영역에 개선된 금속 실리사이드콘택을 형성하는 방법 | |
JP3612157B2 (ja) | 半導体装置の製造方法 | |
JP3827734B2 (ja) | Ldd構造をもつmosトランジスタを有する半導体素子の製造方法 | |
JPH11195619A (ja) | 半導体装置の製造方法 | |
JPH1064898A (ja) | 半導体装置の製造方法 | |
JPH0831598B2 (ja) | 半導体装置の製造方法 | |
KR100299896B1 (ko) | 반도체장치제조방법 | |
JPH0529343A (ja) | 微細半導体装置の製造方法 | |
JPH09186113A (ja) | シリサイド膜の形成方法及びシリサイド膜を有する半導体素子の製造方法 | |
KR100334866B1 (ko) | 반도체소자의트랜지스터형성방법 | |
JP3639745B2 (ja) | 半導体装置の製造方法 | |
KR100260360B1 (ko) | 반도체 소자의 제조방법 | |
JPH07105494B2 (ja) | 半導体装置の製造方法 | |
JPH09326369A (ja) | 半導体装置の製造方法 | |
JPH047824A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |