JP2023017058A - ステータ用接着積層コア - Google Patents

ステータ用接着積層コア Download PDF

Info

Publication number
JP2023017058A
JP2023017058A JP2022197344A JP2022197344A JP2023017058A JP 2023017058 A JP2023017058 A JP 2023017058A JP 2022197344 A JP2022197344 A JP 2022197344A JP 2022197344 A JP2022197344 A JP 2022197344A JP 2023017058 A JP2023017058 A JP 2023017058A
Authority
JP
Japan
Prior art keywords
stator
adhesive
average thickness
core
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022197344A
Other languages
English (en)
Inventor
和年 竹田
Kazutoshi Takeda
隆 平山
Takashi Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2023017058A publication Critical patent/JP2023017058A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】絶縁被膜の剥離防止、及び、接着部が電磁鋼板に与える応力による磁気特性低下の抑制を両立できるステータ用接着積層コアと、このステータ用接着積層コアを備えた回転電機との提供を課題とする。【解決手段】表面にリン酸塩系の絶縁被膜を有してかつ同軸に重ね合わされた複数の電磁鋼板と、前記各電磁鋼板間に設けられた接着部と、を備えるステータ用接着積層コアであって、前記絶縁被膜の平均厚みが0.3μm~1.2μmであり、前記接着部の平均厚みが1.0μm~3.0μmであり、前記絶縁被膜の平均厚みを単位μmでt1、前記接着部の平均厚みを単位μmでt2とした場合に、下記の式1を満たし、前記接着部は、ステータのティース部に対応する位置に配置されている。-4.3×t1+3.6≦t2≦-4.3×t1+6.9・・・(式1)【選択図】図3

Description

本発明は、ステータ用接着積層コアに関する。
本願は、2018年12月17日に、日本国に出願された特願2018-235864号に基づき優先権を主張し、その内容をここに援用する。
従来から、下記特許文献1に記載されているような積層コアが知られている。下記特許文献1には、回転子の内部に同軸配置された固定子を備えるダイレクトドライブモータが開示されている。そして、固定子側の電磁鋼板に絶縁コーティング及び接着コーティングが形成されている。絶縁コーティングは、0.80μmより薄いと充分な絶縁能力が得られず、また、1.20μmより厚いと励磁効率が良くないと記載されている。一方、接着コーティングは、1.80μmより薄いと充分な接着能力が得られず、2.20μmより厚いと励磁効率が良くないと記載されている。
日本国特開2015-12756号公報
接着剤を薄く塗って接着部を薄くすると、積層コアに占める電磁鋼板の割合が上がる。しかし、上記特許文献1にも記載の通り、接着部が薄過ぎると接着強度が下がる。そこで、接着強度を確保した上で柔らかめの接着剤を用いて柔らかめの接着部を形成することが考えられる。しかし、この場合、接着剤が硬化して収縮する際に付与する力によって絶縁被膜に応力集中が生じ、電磁鋼板から剥離しやすくなる。上記特許文献1に開示の技術は、このような課題を認識しておらず、当然、解決もできない。
本発明は、上記事情に鑑みてなされたものであり、絶縁被膜の剥離防止、及び、接着部が電磁鋼板に与える応力による磁気特性低下の抑制を両立できるステータ用接着積層コアと、このステータ用接着積層コアを備えた回転電機との提供を課題とする。
前記課題を解決するために、本発明は以下の手段を採用している。
(1)本発明の一態様は、表面にリン酸塩系の絶縁被膜を有してかつ同軸に重ね合わされた複数の電磁鋼板と、前記各電磁鋼板間に設けられた接着部と、を備えるステータ用接着積層コアであって、前記絶縁被膜の平均厚みが0.3μm~1.2μmであり、前記接着部の平均厚みが1.0μm~3.0μmであり、前記絶縁被膜の平均厚みを単位μmでt1、前記接着部の平均厚みを単位μmでt2とした場合に、下記の式1を満たし、前記接着部は、ステータのティース部に対応する位置に配置されている。
-4.3×t1+3.6≦t2≦-4.3×t1+6.9・・・(式1)
(2)上記(1)に記載の態様において以下の構成を採用してもよい:前記接着部は、前記ティース部の先端位置、及びコアバック部と前記ティース部との境界位置のうち、少なくとも一方の位置に配置されている。
(3)上記(1)または(2)に記載の態様において以下の構成を採用してもよい:隣接する前記接着部同士は互いに離間している。
本発明の上記各態様によれば、絶縁被膜の剥離防止、及び、接着部が電磁鋼板に与える応力による磁気特性低下の抑制を両立できるステータ用接着積層コアと、このステータ用接着積層コアを備えた回転電機とを提供できる。
本発明の一実施形態に係るステータ用接着積層コアを備えた回転電機の断面図である。 同ステータ用積層コアの側面図である。 図2のA-A断面図であって、同ステータ用接着積層コアにおける接着部の形成パターン例を示す図である。 ステータ用接着積層コアの実施例を製造するために用いた製造装置の側面図である。 同実施例における絶縁被膜の平均厚みt1と接着部の平均厚みt2との関係を示すグラフである。 同実施例における絶縁被膜の平均厚みt1と接着部の平均引張弾性率Eとの関係を示すグラフである。
以下、図面を参照し、本発明の一実施形態に係るステータ用接着積層コアと、このステータ用接着積層コアを備えた回転電機とについて説明する。なお、本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50内に収容される。ステータ20は、ケース50内に固定される。
本実施形態では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、極数、スロット数、相数などは、適宜変更することができる。
回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
ステータ20は、ステータ用接着積層コア(以下、ステータコア)21と、図示しない巻線と、を備える。
ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータコア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータコア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
複数のティース部23は、コアバック部22の内周から径方向内側に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
ステータコア21およびロータコア31は、いずれも積層コアである。例えばステータコア21は、図2に示すように、複数の電磁鋼板40が積層方向に積層されることで形成されている。
なお、ステータコア21およびロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば50.0mmとされる。ステータコア21の外径は、例えば250.0mmとされる。ステータコア21の内径は、例えば165.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、およびロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準とする。すなわち、ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
ステータコア21およびロータコア31を形成する各電磁鋼板40は、例えば、母材となる電磁鋼板を打ち抜き加工すること等により形成される。電磁鋼板40としては、公知の電磁鋼板を用いることができる。電磁鋼板40の化学組成は、以下に質量%単位で示すように、質量%で2.5%~3.9%のSiを含有する。化学組成をこの範囲とすることにより、各電磁鋼板40の降伏強度を、380MPa以上540MPa以下に設定することができる。
Si:2.5%~3.9%
Al:0.001%~3.0%
Mn:0.05%~5.0%
残部:Fe及び不純物
本実施形態では、電磁鋼板40として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JISC2552:2014の無方向性電鋼帯を採用できる。しかしながら、電磁鋼板40として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JISC2553:2012の方向性電鋼帯を採用できる。
ステータコア21(以下、単に「積層コア」と言う場合がある)の加工性や、積層コアの鉄損を改善するために、電磁鋼板40の両面は、リン酸塩系の絶縁被膜で被覆されている。絶縁被膜を構成する物質としては、例えば、(1)無機化合物、(2)有機樹脂、(3)無機化合物と有機樹脂との混合物、などが採用できる。無機化合物としては、例えば、(1)重クロム酸塩とホウ酸の複合物、(2)リン酸塩とシリカの複合物、などが挙げられる。有機樹脂としては、エポキシ系樹脂、アクリル系樹脂、アクリルスチレン系樹脂、ポリエステル系樹脂、シリコン系樹脂、フッ素系樹脂などが挙げられる。
互いに積層される電磁鋼板40間での絶縁性能を確保するために、絶縁被膜の平均厚みt1(電磁鋼板40片面あたりの平均厚み)の下限値としては、0.3μm、より好ましくは0.7μmとするのがよい。
一方で、絶縁被膜が厚くなるに連れて絶縁効果が飽和する。また、絶縁被膜が厚くなるに連れて、積層コアにおいて電磁鋼板40の占める割合が低下し、積層コアとしての性能が低下する。したがって、絶縁被膜は、絶縁性能が確保できる範囲で薄い方がよい。絶縁被膜の平均厚み(電磁鋼板40片面あたりの厚さ)の上限値としては、1.2μm、より好ましくは0.9μmとするのがよい。
絶縁被膜の平均厚みt1は、積層コア全体としての平均値である。絶縁被膜の厚みはその積層方向に沿った積層位置や積層コアの中心軸線回りの周方向位置で殆ど変わらないように作り込まれている。そのため、絶縁被膜の平均厚みt1は、積層コアの上端位置で測定した数値をもってその値とすることができる。
電磁鋼板40の板厚が薄くなるに連れて、次第に、積層コアにおける電磁鋼板40の占める割合が低下する。また、電磁鋼板40が薄くなるに連れて電磁鋼板40の製造コストは増す。そのため、積層コアにおいて電磁鋼板40が占める割合の低下および製造コストを考慮すると電磁鋼板40の平均板厚の下限値は、0.15mm、より好ましくは0.18mmとなる。
一方で電磁鋼板40が厚すぎると、製造コストは良好になるが渦電流損が増加してコア鉄損が劣化する。そのため、コア鉄損と製造コストを考慮すると、電磁鋼板40の平均板厚の上限値は、0.35mm、より好ましくは0.30mmとなる。
電磁鋼板40の平均板厚の上記範囲を満たすものとして、0.20mmを例示できる。なお、電磁鋼板40の平均板厚には、絶縁被膜の厚さも含まれる。
ステータコア21を形成する複数の電磁鋼板40は、図3に示すように、複数の点状に配置された接着部41を介して積層されている。各接着部41それぞれは、分断されることなく硬化した接着剤である。接着部41の形成には、例えば重合結合による熱硬化型の接着剤などが用いられる。このような接着剤としては、熱硬化型の接着剤の他、ラジカル重合型の接着剤なども使用可能であり、生産性の観点からは、常温硬化型の接着剤を使用することが望ましい。常温硬化型の接着剤は、20℃~30℃で硬化する。常温硬化型の接着剤としては、アクリル系接着剤が好ましい。代表的なアクリル系接着剤には、SGA(第二世代アクリル系接着剤。Second Generation Acrylic Adhesive)などがある。本発明の効果を損なわない範囲で、嫌気性接着剤、瞬間接着剤、エラストマー含有アクリル系接着剤がいずれも使用可能である。なお、ここで言う接着剤は硬化前の状態を言い、接着剤が硬化した後は接着部41となる。
接着部41の常温(20℃~30℃)における平均引張弾性率Eは、1500MPa~4500MPaの範囲内とされる。接着部41の平均引張弾性率Eは、1500MPa未満であると、積層コアの剛性が低下する不具合が生じる。そのため、接着部41の平均引張弾性率Eの下限値は、1500MPa、より好ましくは1800MPaとされる。逆に、接着部41の平均引張弾性率Eが4500MPaを超えると、電磁鋼板40の表面に形成された絶縁被膜が剥がれる不具合が生じる。そのため、接着部41の平均引張弾性率Eの上限値は、4500MPa、より好ましくは3650MPaとされる。
なお、平均引張弾性率Eは、共振法により測定される。具体的には、JIS R 1602:1995に準拠して引張弾性率を測定する。
より具体的には、まず、測定用のサンプル(不図示)を製作する。このサンプルは、2枚の電磁鋼板40間を、測定対象の接着剤により接着し、硬化させて接着部41を形成することにより、得られる。この硬化は、接着剤が熱硬化型の場合には、実操業上の加熱加圧条件で加熱加圧することで行う。一方、接着剤が常温硬化型の場合には常温下で加圧することで行う。
そして、このサンプルについての引張弾性率を、共振法で測定する。共振法による引張弾性率の測定方法は、上述した通り、JIS R 1602:1995に準拠して行う。その後、サンプルの引張弾性率(測定値)から、電磁鋼板40自体の影響分を計算により除くことで、接着部41単体の引張弾性率が求められる。
このようにしてサンプルから求められた引張弾性率は、積層コア全体としての平均値に等しくなるので、この数値をもって平均引張弾性率Eとみなす。平均引張弾性率Eは、その積層方向に沿った積層位置や積層コアの中心軸線回りの周方向位置で殆ど変わらないよう、組成が設定されている。そのため、平均引張弾性率Eは、積層コアの上端位置にある、硬化後の接着部41を測定した数値をもってその値とすることもできる。
複数の電磁鋼板40間の接着方法としては、電磁鋼板40の下面(一方の面)に接着剤を点状に塗布した後に重ね合わせ、そして加熱および圧着のいずれか一方または両方を行って接着する方法が採用できる。なお、加熱する場合の手段は、例えば高温槽や電気炉内でステータコア21を加熱する手段、または、ステータコア21に直接通電して加熱する方法等、どのような手段でも良い。一方、常温硬化型の接着剤を用いる場合には、加熱を行わずに圧着のみにより接着する。
図3に、接着部41の形成パターンの一例を示す。各接着部41は、ステータ20のティース部23に対応する位置に配置されている。各接着部41は円形をなす複数の点状に形成されている。より具体的に言うと、コアバック部22においては、その周方向に等角度間隔を置いて平均直径が12mmの点状に形成されている。より具体的には、各接着部41は、コアバック部22とティース部23との境界位置に配置されている。さらに、隣接する接着部41同士は互いに離間している。さらに、各ティース部23の先端位置にも、接着部41が平均直径で8mmの点状に形成されている。各接着部41を図3のように配置することで、後述するように、ステータ用接着積層コア21のコア剛性(機械強度)を担保し、磁気特性を高めることができる。図3に示す例では、各接着部41は、ティース部23の先端位置、及びコアバック部22とティース部23との境界位置の双方に配置されているが、いずれか一方の位置に配置されていてもよい。ここで示した平均直径は一例であり、2mm~20mmの範囲内より適宜選定することができる。また、図3の形成パターンは一例であり、各接着部41の数及び配置は必要に応じて適宜変更できる。また、各接着部41の形状は、円形のみに限らず、必要に応じて矩形やその他の多角形状であってもよい。
接着部41の平均厚みt2は、1.0μm以上3.0μm以下とする。接着部41の平均厚みt2が1.0μm未満であると、十分な接着力を確保できない。そのため、接着部41の平均厚みt2の下限値は、1.0μm、より好ましくは1.2μmとされる。逆に、接着部41の平均厚みt2が3.0μmを超えて厚くなると、熱硬化時の収縮による電磁鋼板40の歪み量が大幅に増えるなどの不具合を生じる。そのため、接着部41の平均厚みt2の上限値は、3.0μm、より好ましくは2.6μm、最も好ましくは1.8μmとされる。
接着部41の平均厚みt2は、積層コア全体としての平均値である。接着部41の平均厚みt2はその積層方向に沿った積層位置や積層コアの中心軸線回りの周方向位置で殆ど変わらない。そのため、接着部41の平均厚みt2は、積層コアの上端位置において、円周方向10箇所以上で測定した数値の平均値をもって、その値とすることができる。
そして、接着部41の平均厚みt2(μm)と、前記絶縁被膜の平均厚みt1(μm)は、下記の式1を満たす関係にある。
-4.3×t1+3.6≦t2≦-4.3×t1+6.9・・・(式1)
さらには、接着部41の平均引張弾性率Eが1500MPa~4500MPaであり、前記平均引張弾性率E(MPa)と絶縁被膜の平均厚みt1(μm)が、下記の式2を満たすことが好ましい。
-5000×t1+4500≦E≦-5000×t1+9000・・・(式2)
まず、上記式1について言うと、接着部41の平均厚みt2が-4.3×t1+3.6よりも薄くなると、絶縁被膜との接合が低く接着強度を確保できず、ステータコア21の機械強度が保てない。一方、接着部41の平均厚みt2が-4.3×t1+6.9よりも厚くなると、接着部41が絶縁被膜に及ぼす応力により、絶縁被膜と電磁鋼板40との間の密着性が低下傾向になる。以上より、接着部41の平均厚みt2は式1の範囲内とされる。
続いて上記式2について言うと、接着部41の平均引張弾性率Eが-5000×t1+4500よりも低いと、接着部41と絶縁被膜との接合が低くなって接着強度が保てなくなり、ステータコア21の機械強度が保てない可能性がある。一方、接着部41の平均引張弾性率Eが-5000×t1+9000よりも高いと、接着部41が絶縁被膜に及ぼす応力により、絶縁被膜と電磁鋼板40との間の密着性が低下する可能性がある。以上より、接着部41の平均引張弾性率Eは、式2の範囲内とすることが好ましい。
なお、接着部41の平均厚みは、例えば、接着剤の塗布量を変えて調整することができる。また、接着部41の平均引張弾性率Eは、例えば、熱硬化型の接着剤の場合には、接着時に加える加熱加圧条件及び硬化剤種類の一方もしくは両方を変更することより調整できる。
また、前述の理由により、前記平均厚みt1(μm)及び前記平均厚みt2(μm)としては、さらに下記の式3及び式4を満たすことが、より好ましい。
0.7≦t1≦0.9・・・(式3)
1.2≦t2≦2.6・・・(式4)
本実施形態では、ロータコア31を形成する方の複数の電磁鋼板は、図1に示すかしめ42(ダボ)によって互いに固定されている。しかしながら、ロータコア31を形成する複数の電磁鋼板も、ステータコア21と同様に接着部により固定した積層構造を有してもよい。
また、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
図4に示す製造装置100を用い、各種製造条件を変えながら上記ステータコア21を製造した。
まず先に、製造装置100について説明する。同製造装置100では、コイルC(フープ)から電磁鋼板Pを矢印F方向に向かって送り出しつつ、各ステージに配置された金型により複数回の打ち抜きを行って電磁鋼板40の形状に徐々に形成していく。そして、電磁鋼板40の下面に接着剤を塗布し、打ち抜いた電磁鋼板40を積層して昇温させながら加圧する。その結果、接着剤が硬化して接着部41を形成し、接着が完了する。
図4に示すように、製造装置100は、コイルCに最も近い位置に一段目の打ち抜きステーション110と、この打ち抜きステーション110よりも電磁鋼板Pの搬送方向に沿った下流側に隣接配置された二段目の打ち抜きステーション120と、この打ち抜きステーション120よりもさらに下流側に隣接配置された接着剤塗布ステーション130と、を備えている。
打ち抜きステーション110は、電磁鋼板Pの下方に配置された雌金型111と、電磁鋼板Pの上方に配置された雄金型112とを備える。
打ち抜きステーション120は、電磁鋼板Pの下方に配置された雌金型121と、電磁鋼板Pの上方に配置された雄金型122とを備える。
接着剤塗布ステーション130は、接着剤の塗布パターンに応じて配置された複数本のインジェクターを備える塗布器131を備える。
製造装置100は、さらに、接着剤塗布ステーション130よりも下流位置に積層ステーション140を備える。この積層ステーション140は、加熱装置141と、外周打ち抜き雌金型142と、断熱部材143と、外周打ち抜き雄金型144と、スプリング145と、を備えている。
加熱装置141、外周打ち抜き雌金型142、断熱部材143は、電磁鋼板Pの下方に配置されている。一方、外周打ち抜き雄金型144及びスプリング145は、電磁鋼板Pの上方に配置されている。なお、符号21は、ステータコアを示している。
以上説明の構成を有する製造装置100において、まずコイルCより電磁鋼板Pを図4の矢印F方向に順次送り出す。そして、この電磁鋼板Pに対し、まず打ち抜きステーション110による打ち抜き加工を行う。続いて、この電磁鋼板Pに対し、打ち抜きステーション120による打ち抜き加工を行う。これら打ち抜き加工により、電磁鋼板Pに、図3に示したコアバック部22と複数のティース部23を有する電磁鋼板40の形状を得る。ただし、この時点では完全には打ち抜かれていないので、矢印F方向に沿って次工程へと進む。次工程の接着剤塗布ステーション130では、塗布器131の前記各インジェクターから供給される接着剤が点状に塗布される。ここで、接着剤は、図3に示す位置に塗布される。
そして最後に、電磁鋼板Pは積層ステーション140へと送り出され、外周打ち抜き雄金型144により打ち抜かれて精度良く、積層される。この積層の際、電磁鋼板40はスプリング145により一定の加圧力を受ける。以上説明のような、打ち抜き工程、接着剤塗布工程、積層工程、を順次繰り返すことで、所定枚数の電磁鋼板40を積み重ねることができる。さらに、このようにして電磁鋼板40を積み重ねて形成された積層コアは、加熱装置141によって例えば温度200℃まで加熱される。この加熱により接着剤が硬化して接着部41が形成される。
以上の各工程により、ステータコア21が完成する。
以上説明の製造装置100を用いて、表1A及び表1BのNo.1~No.29に示す各ステータコア21を製造した。各ステータコア21の製造に用いた電磁鋼板40の化学成分は、以下に統一した。なお、各成分値は全て質量%を示す。
Si:3.1%
Al:0.7%
Mn:0.3%
残部:Fe及び不純物
Figure 2023017058000002
Figure 2023017058000003
具体的に説明すると、上記化学成分を持つフープ(コイルC)を複数本、製作した。各フープの地鉄の板厚は0.20mmに統一した。そして、これらフープのそれぞれにリン酸金属塩及びアクリル樹脂エマルジョンを含有する絶縁被膜処理液を塗布し、300℃で焼き付けを行い、絶縁被膜を表裏両面に形成した。その際、フープ毎に絶縁被膜の厚みを変えた。具体的には、表1Aに示すように、絶縁被膜の平均厚みt1(μm)が片面で、0.1μm,0.3μm,0.4μm,0.5μm,0.6μm,0.7μm,0.8μm,0.9μm,1.0μm,1.1μm,1.2μm,1.4μm,1.5μm、となるようにそれぞれ形成した。
そして、製造装置100にセットするフープを変えたり、電磁鋼板40に塗布する接着剤の種類や接着剤に添加した硬化剤、硬化促進剤の種類、塗膜厚みを変えたりすることで、表1Aに示すように、絶縁被膜の平均厚みt1、接着剤種類、接着部41の平均厚みt2、平均引張弾性率E、の組み合わせが互いに異なる複数の積層コア(ステータコア21)を製造した。
具体的には、まず、各フープのうちの一つを、上記製造装置100にセットした。そして、このフープより図4の矢印F方向に沿って電磁鋼板Pを送り出しながら、外径300mm及び内径240mmのリング状を有してかつ、内径側に長さ30mmで幅15mmの長方形のティース部23を18箇所設けた単板コア(電磁鋼板40)に打ち抜いた。
続いて、打ち抜いた単板コアを順次送りながら、図3に示した各位置に接着剤を点状に塗布し、そして積層した上で、所定圧力で加圧しながら加熱して硬化させた。同様の作業を130枚の単板コアに対して繰り返し行うことにより、1つの積層コア(ステータコア21)を製造した。
同様の工程を、各組み合わせ条件を変えつつフープ毎に行うことにより、表1A及び表1BのNo.1~No.29に示す29種類の積層コアが製造された。
なお、接着剤としては、No.1~No.27,No.29ではエラストマー系接着剤として第二世代アクリル系接着剤を用いた。一方、No.28では嫌気性接着剤として汎用嫌気性接着剤を用いた。
また、接着部41の平均厚みt2は、積層コア毎に塗布量を変えて調整した。また、接着部41の平均引張弾性率Eは、積層ステーション140での接着時に加える加熱加圧条件及び硬化剤種類の一方もしくは両方を変更することにより、積層コア毎に調整した。
以上説明の方法により製造された各積層コアを、それらの軸線を含む断面において切断した。そして、絶縁被膜においてはその平均厚みt1(μm)を求めた。また、接着部41においては、その平均厚みt2(μm)と、硬化後の平均引張弾性率Eとを求めた。平均引張弾性率Eは、上述した方法で求めた。また、硬化後の各点状接着剤の外径は平均で5mmであった。
そして、平均厚みt1(μm)、平均厚みt2(μm)、平均引張弾性率E(MPa)を、上述した式1及び式2に代入し、式1,式2を満たすか否かを判定した。その結果を表1Aに示す。
さらに、積層コアとしての剛性(機械強度)も評価した。機械強度の評価は、幅20mm、先端角10°、0.15mmRの刃先を積層コアの積層部(互いに隣接する一対の電磁鋼板40間)に対し、荷重を増しながら押し付けていき、割れたときの荷重の大きさで評価した。この荷重は高いほど好ましく、4MPa以上であるものを良好または優良と判断した。表1Bの積層コアの機械強度において、「優良」は高い機械強度が確保できていることを示し、「良好」は必要十分な機械強度が確保されていることを示し、「不可」は必要最低限の機械強度が足りていないことを示す。
さらに、絶縁被膜の剥がれ有無も評価した。表1Bの絶縁被膜の剥がれ有無において、「無し」は全く剥がれが無い状態を示し、「有り」は所々に剥がれが生じている状態を示す。
さらに、積層コアとしての磁気特性も評価した。磁気特性を評価する際には、積層枚数を20枚とし、絶縁紙で積層コアをカバーしてから巻線を行い、周波数50Hz、磁束密度1.5テスラで、コア鉄損(表1BのW15/50)を測定した。ここで、磁気特性評価に際しての電磁鋼板40の積層枚数としては、130枚の場合とほぼ同じ結果が得られるため、20枚とした。
コア鉄損(表1BのW15/50)は低いほど好ましく、2.70以下であるものを良好または優良と判断した。表1Bの積層コアの磁気特性において、「優良」は高い磁気特性が確保できていることを示し、「良好」は必要十分な磁気特性が確保されていることを示し、「不可」は必要最低限の磁気特性が足りていないことを示す。
また、表1Aに示す、絶縁被膜の平均厚みt1と接着部41の平均厚みt2との関係を、図5に示す。同様に、表1Aに示す、絶縁被膜の平均厚みt1と接着部41の平均引張弾性率Eとの関係を、図6に示す。
表1A及び表1Bに示すように、No.16,17に示す比較例では、絶縁被膜の平均厚みt1が薄く、磁気特性が低下した。
また、No.18に示す比較例では、絶縁被膜の凹凸を埋めきれず、機械強度が低下した。
また、No.19に示す比較例では、接着部41の平均厚みt2が厚く、積層コアにおいて電磁鋼板40の占める割合が低下して磁気特性が低下した。
また、No.20に示す比較例では、絶縁被膜の凹凸を埋めきれず、機械強度が低下した。
また、No.21に示す比較例では、接着部41の平均厚みt2が厚く、積層コアにおいて電磁鋼板40の占める割合が低下して磁気特性が低下した。
また、No.22に示す比較例では、接着部41の平均厚みt2が薄く、接着強度が低下して機械強度が低下した。
また、No.23に示す比較例では、接着部41の平均厚みt2が厚く、積層コアにおいて電磁鋼板40の占める割合が低下して磁気特性が低下した。
また、No.24に示す比較例では、接着部41の平均厚みt2が薄く、接着強度が低下して機械強度が低下した。
また、No.25に示す比較例では、絶縁被膜の平均厚みt1が比較的厚く密着性が低下傾向にあるため、接着部41の平均厚みt2の上限値(平均引張弾性率Eの上限)が実質的に低下し、機械強度が低下した。
また、No.26に示す比較例では、絶縁被膜の平均厚みt1が厚く、密着性が低下して被膜剥離した。
また、No.27に示す比較例では、絶縁被膜の平均厚みt1が厚く、密着性が低下して被膜剥離した。
また、No.28に示す比較例は、図5及び図6のそれぞれに示す領域内にあるものの、接着に用いた接着剤が嫌気性接着剤で海島構造を持たないため、硬化した接着部41が電磁鋼板40に歪みを生じさせた。この電磁鋼板40の歪みにより、磁気特性が低下した。
一方、発明例であるNo.1~15及び29においては、積層コアの剛性(機械強度)が高く、絶縁被膜の剥がれも無く、そして磁気特性(W15/50)も所望の性能を有することが確認された。特に、各接着部が図3に示す位置、すなわちステータのティース部に対応する位置に配置されているので、ステータ用接着積層コアのコア剛性(機械強度)を担保し、磁気特性を高めることができた。
これら発明例のうち、特に、No.3,6,8,10,12,14,15では、接着部41の平均厚みt2が1.8μm以下であるため、その他発明例よりもさらに高い磁気特性が得られた。
さらに言うと、これらのうち、No.6,8,10では、絶縁被膜の平均厚みt1も0.7μm~0.9μmの範囲を満たしている。そのため、絶縁性能の確保と、積層コアとしての性能低下とにおいても最適化されており、全発明例のうちでも最も好ましい。
なお、本実施例では、熱硬化型の接着剤を塗布したが、常温硬化型の接着剤であっても、基本的な傾向に相違はない。
以上、本発明の一実施形態及び実施例について説明した。ただし、本発明の技術的範囲は前記実施形態及び実施例のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、ステータコア21の形状は、上記実施形態で示した形態のみに限定されるものではない。具体的には、ステータコア21の外径および内径の寸法、積厚、スロット数、ティース部23の周方向と径方向の寸法比率、ティース部23とコアバック部22との径方向の寸法比率等は、所望の回転電機の特性に応じて任意に設計可能である。
前記実施形態におけるロータ30では、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこの形態のみに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機10の構造は、以下に例示するようにこれのみに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれのみに限られない。例えば、回転電機10がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
上記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が誘導電動機であってもよい。
上記実施形態では、回転電機10として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が直流電動機であってもよい。
上記実施形態では、回転電機10として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が発電機であってもよい。
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
本発明によれば、絶縁被膜の剥離防止、及び、接着部が電磁鋼板に与える応力による磁気特性低下の抑制を両立できるステータ用接着積層コアと、このステータ用接着積層コアを備えた回転電機とを提供できる。よって、産業上の利用可能性は大である。
10 回転電機
21 積層コア(ステータ用接着積層コア)
40 電磁鋼板
41 接着部

Claims (3)

  1. 表面にリン酸塩系の絶縁被膜を有してかつ同軸に重ね合わされた複数の電磁鋼板と、前記各電磁鋼板間に設けられた接着部と、を備えるステータ用接着積層コアであって、
    前記絶縁被膜の平均厚みが0.3μm~1.2μmであり、
    前記接着部の平均厚みが1.0μm~3.0μmであり、
    前記絶縁被膜の平均厚みを単位μmでt1、前記接着部の平均厚みを単位μmでt2とした場合に、下記の式1を満たし、
    前記接着部は、ステータのティース部に対応する位置に配置されていることを特徴とするステータ用接着積層コア。
    -4.3×t1+3.6≦t2≦-4.3×t1+6.9・・・(式1)
  2. 前記接着部は、前記ティース部の先端位置、及びコアバック部と前記ティース部との境界位置のうち、少なくとも一方の位置に配置されていることを特徴とする、請求項1に記載のステータ用接着積層コア。
  3. 隣接する前記接着部同士は互いに離間していることを特徴とする、請求項1または2に記載のステータ用接着積層コア。
JP2022197344A 2018-12-17 2022-12-09 ステータ用接着積層コア Pending JP2023017058A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018235864 2018-12-17
JP2018235864 2018-12-17
JP2020561426A JP7486434B2 (ja) 2018-12-17 2019-12-17 ステータ用接着積層コアおよび回転電機
PCT/JP2019/049266 WO2020129925A1 (ja) 2018-12-17 2019-12-17 ステータ用接着積層コアおよび回転電機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020561426A Division JP7486434B2 (ja) 2018-12-17 2019-12-17 ステータ用接着積層コアおよび回転電機

Publications (1)

Publication Number Publication Date
JP2023017058A true JP2023017058A (ja) 2023-02-02

Family

ID=71101789

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020561426A Active JP7486434B2 (ja) 2018-12-17 2019-12-17 ステータ用接着積層コアおよび回転電機
JP2022197344A Pending JP2023017058A (ja) 2018-12-17 2022-12-09 ステータ用接着積層コア

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020561426A Active JP7486434B2 (ja) 2018-12-17 2019-12-17 ステータ用接着積層コアおよび回転電機

Country Status (11)

Country Link
US (1) US20220020521A1 (ja)
EP (1) EP3902121A4 (ja)
JP (2) JP7486434B2 (ja)
KR (1) KR102607691B1 (ja)
CN (1) CN113169639A (ja)
BR (1) BR112021008660A2 (ja)
CA (1) CA3131521A1 (ja)
EA (1) EA202192059A1 (ja)
SG (1) SG11202108888RA (ja)
TW (1) TWI717940B (ja)
WO (1) WO2020129925A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129937A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 積層コアおよび回転電機
EP3902110A4 (en) 2018-12-17 2022-10-05 Nippon Steel Corporation LAMINATED CORE AND ELECTRIC LATHE
CA3131693C (en) 2018-12-17 2023-11-14 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
CN113228468A (zh) 2018-12-17 2021-08-06 日本制铁株式会社 定子用粘接层叠铁芯、其制造方法及旋转电机
BR112021008895A2 (pt) 2018-12-17 2021-08-10 Nippon Steel Corporation núcleo laminado e motor elétrico
JP7311791B2 (ja) 2018-12-17 2023-07-20 日本製鉄株式会社 積層コアおよび回転電機
WO2020129948A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 積層コア、その製造方法及び回転電機
JP7288201B2 (ja) 2018-12-17 2023-06-07 日本製鉄株式会社 積層コアおよび回転電機
TWI724690B (zh) 2018-12-17 2021-04-11 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266448B2 (ja) * 1995-03-27 2002-03-18 株式会社リコー ブラシレスモータの回転体装置
JP4665298B2 (ja) * 2000-08-25 2011-04-06 東レ株式会社 半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置
JP4076323B2 (ja) * 2001-05-08 2008-04-16 電気化学工業株式会社 硬化性樹脂組成物、硬化体、接着剤組成物及び接合体
KR100526286B1 (ko) * 2001-08-17 2005-11-08 제이에프이 스틸 가부시키가이샤 적층 철심의 제조장치 및 제조방법
JP2003199303A (ja) * 2001-12-27 2003-07-11 Matsushita Electric Ind Co Ltd モータの製造方法
JP2004088970A (ja) * 2002-08-29 2004-03-18 Hitachi Ltd 積層鉄心とそれを用いた回転電機およびトランス
JP5309431B2 (ja) * 2006-08-04 2013-10-09 新日鐵住金株式会社 鋼板剪断面の鋼板間抵抗が高い電磁鋼の積層鋼板およびそのカシメ方法
JP2011023523A (ja) * 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法
JPWO2011077830A1 (ja) * 2009-12-24 2013-05-02 株式会社安川電機 積層コア、この積層コアを備えた電動機および積層コアの製造方法
CN203368163U (zh) * 2010-08-26 2013-12-25 三菱电机株式会社 旋转电机和用于制造其定子铁芯的定子铁芯制造装置
JP6134497B2 (ja) * 2012-11-08 2017-05-24 京セラ株式会社 積層コアの製造方法
JP2015012756A (ja) 2013-07-01 2015-01-19 日本精工株式会社 ダイレクトドライブモータ
JP6431316B2 (ja) * 2014-08-26 2018-11-28 日東シンコー株式会社 モーター用絶縁シート
CN104454852B (zh) * 2014-11-28 2016-05-18 烟台首钢磁性材料股份有限公司 一种永磁钕铁硼磁钢绝缘粘接的方法及专用挤压工装
JP6266138B2 (ja) * 2015-01-30 2018-01-24 三菱電機株式会社 エレベータ用巻上機のモータおよびアクチュエータ
JP2017011863A (ja) * 2015-06-22 2017-01-12 新日鐵住金株式会社 モータ鉄心用積層電磁鋼板およびその製造方法
CN107925281A (zh) * 2015-08-21 2018-04-17 吉川工业株式会社 定子芯及具备该定子芯的电机
JP6866696B2 (ja) * 2017-03-07 2021-04-28 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法

Also Published As

Publication number Publication date
JPWO2020129925A1 (ja) 2021-09-27
CA3131521A1 (en) 2020-06-25
SG11202108888RA (en) 2021-09-29
EA202192059A1 (ru) 2021-12-31
KR20210083349A (ko) 2021-07-06
CN113169639A (zh) 2021-07-23
TW202037040A (zh) 2020-10-01
BR112021008660A2 (pt) 2021-08-10
EP3902121A1 (en) 2021-10-27
US20220020521A1 (en) 2022-01-20
TWI717940B (zh) 2021-02-01
EP3902121A4 (en) 2022-11-30
WO2020129925A1 (ja) 2020-06-25
JP7486434B2 (ja) 2024-05-17
KR102607691B1 (ko) 2023-11-30

Similar Documents

Publication Publication Date Title
JP2023017058A (ja) ステータ用接着積層コア
JP7418350B2 (ja) ステータ用接着積層コアおよび回転電機
JP7422679B2 (ja) ステータ用接着積層コアおよび回転電機
CA3131661C (en) Laminated core and electric motor
US11915860B2 (en) Laminated core and electric motor
WO2020129935A1 (ja) 積層コアおよび回転電機
JP2022122982A (ja) 積層コアおよび回転電機
WO2020129940A1 (ja) 積層コアおよび回転電機
JP7299527B2 (ja) コアブロック、積層コアおよび回転電機、並びにコアブロックの製造方法
EA042563B1 (ru) Клеено-шихтованный сердечник для статора и электродвигатель

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240329