JP2022534282A - 改変アデノウイルス - Google Patents

改変アデノウイルス Download PDF

Info

Publication number
JP2022534282A
JP2022534282A JP2021570743A JP2021570743A JP2022534282A JP 2022534282 A JP2022534282 A JP 2022534282A JP 2021570743 A JP2021570743 A JP 2021570743A JP 2021570743 A JP2021570743 A JP 2021570743A JP 2022534282 A JP2022534282 A JP 2022534282A
Authority
JP
Japan
Prior art keywords
sequence
nucleic acid
vector
optionally
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021570743A
Other languages
English (en)
Other versions
JPWO2020243719A5 (ja
JP7457733B2 (ja
Inventor
カリン ヨース
シアラン ダニエル スカラン
レオニド ギトリン
Original Assignee
グリットストーン バイオ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グリットストーン バイオ インコーポレイテッド filed Critical グリットストーン バイオ インコーポレイテッド
Publication of JP2022534282A publication Critical patent/JP2022534282A/ja
Publication of JPWO2020243719A5 publication Critical patent/JPWO2020243719A5/ja
Application granted granted Critical
Publication of JP7457733B2 publication Critical patent/JP7457733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001111Immunoglobulin superfamily
    • A61K39/001114CD74, Ii, MHC class II invariant chain or MHC class II gamma chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001189PRAME
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • C12N2710/10352Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10371Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/005Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB
    • C12N2830/006Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB tet repressible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本明細書では、改変アデノウイルスを含む組成物を開示する。ワクチンとしてのそれらの使用を含む、組成物に関連するヌクレオチド、細胞、及び方法も開示する。本明細書では、TETプロモーターシステムを用いたウイルスベクター、及びベクターを有するウイルスを生産する方法も開示する。【選択図】図1

Description

(関連出願の相互参照)
本出願は、その全容を参照により本明細書に援用するところの2019年5月30日出願の米国特許仮出願第62/854,865号の利益を主張する。
配列表
本出願は、ASCIIフォーマットで電子的に提出される配列表を含み、その全容を参照によって本明細書に援用する。2019年5月30日に作成された前記ASCIIコピーは、GSO_033PR_Sequence_Listing.txtの名前が付けられており、そのサイズは422,136バイトである。
腫瘍特異的な抗原に基づいた治療用ワクチンは、次世代の個別化がん免疫療法として極めて有望である。1~3例えば、非小細胞肺癌(NSCLC)及びメラノーマなどの高い遺伝子変異量を有するがんは、新生抗原を生じる可能性が比較的高いことから、かかる治療法の特に有望な標的である。4,5初期の証拠により、新生抗原に基づいたワクチン接種がT細胞応答を誘発し、新生抗原を標的とした細胞療法が、選択された患者において腫瘍退縮を引き起こしうることが示されている。
がん及び感染症の両方の状況における抗原ワクチン設計における疑問の1つは、存在する多くのコーディング変異のどれが、「最良の」治療抗原、例えば、免疫を誘発することができる抗原を生じるかというものである。
現行の抗原予測法の課題に加えて、その多くがヒト由来のものである、ヒトにおける抗原送達に使用することができる既存のベクター系にもやはり特定の課題が存在する。例えば、多くのヒトは、過去の自然の曝露の結果としてヒトウイルスに対する既存の免疫を有しており、この免疫ががん治療または感染症に対するワクチン接種などのワクチン接種戦略における抗原送達用の組換えヒトウイルスの使用にとって大きな障害となりうる。上記の課題を解決するためのワクチン接種戦略には一定の進歩があったものの、ワクチンの効能及び有効性の改善など、特に臨床用途における改良が依然求められている。
アデノウイルスベクターであって、アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含み、アデノウイルス骨格が、アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、場合により、アデノウイルスベクターがさらに、カセットであって、(1)少なくとも1つのペイロード核酸配列であって、場合により少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合によりポリペプチドが抗原を含み、場合により抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含み、場合により少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、少なくとも1つのペイロード核酸配列と、場合により、(2)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、(3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、(4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、(5)場合により、少なくとも1つのポリアデニル化配列と、を含むカセットを含む、アデノウイルスベクターである。
また、本明細書では、改変ChAdV68配列を含むチンパンジーアデノウイルスベクターであって、改変ChAdV68配列が、(a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と、を含み、場合により、チンパンジーアデノウイルスベクターがさらにカセットを含み、カセットが少なくとも1つのペイロード核酸配列を含み、カセットが、少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、チンパンジーアデノウイルスベクターも開示される。
また、本明細書では、改変ChAdV68配列を含むチンパンジーアデノウイルスベクターであって、改変ChAdV68配列が、(a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(b)配列番号1に示される配列のヌクレオチド2~34,916であって、部分欠失E4遺伝子がヌクレオチド2~34,916の3’であり、場合により、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、ヌクレオチド2~34,916と、(c)配列番号1に示される配列のヌクレオチド35,643~36,518であって、部分欠失E4遺伝子がヌクレオチド35,643~36,518の5’である、ヌクレオチド35,643~36,518と、を含み、場合により、チンパンジーアデノウイルスベクターがカセットをさらに含み、カセットが少なくとも1つのペイロード核酸配列を含み、カセットが、少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、チンパンジーアデノウイルスベクターも開示される。
また、本明細書では、チンパンジーアデノウイルスベクターであって、a.改変ChAdV68配列であって、(i)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(ii)配列番号1に示される配列のヌクレオチド2~34,916であって、部分欠失E4遺伝子がヌクレオチド2~34,916の3’であり、場合により、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、ヌクレオチド2~34,916と、(iii)配列番号1に示される配列のヌクレオチド35,643~36,518であって、部分欠失E4遺伝子がヌクレオチド35,643~36,518の5’である、ヌクレオチド35,643~36,518と、を含む改変ChAdV68配列と、b.CMV由来プロモーター配列と、c.SV40ポリアデニル化シグナルヌクレオチド配列と、d.カセットであって、少なくとも1つのMHCクラスIエピトープであって、場合により、少なくとも1つのMHCクラスIエピトープが、互いに直線的に連結された少なくとも2個の異なるMHCクラスIエピトープを含み、異なるMHCクラスIエピトープのそれぞれが場合により、(A)コードされたペプチド配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更であって、異なるMHCクラスIエピトープがアミノ酸7~15個の長さである、少なくとも1つの変更、(B)少なくともアミノ酸3個の長さである異なるMHCクラスIエピトープの天然のN末端アミノ酸配列を含むN末端リンカー、(C)少なくともアミノ酸3個の長さである異なるMHCクラスIエピトープの天然のC末端アミノ酸配列を含むC末端リンカー、または(D)これらの組み合わせ、を含む、少なくとも1つのMHCクラスIエピトープ、少なくとも1つのMHCクラスIIエピトープであって、場合により少なくとも2個の異なるMHCクラスIIエピトープを含む、少なくとも1つのMHCクラスIIエピトープ、B細胞応答を刺激することができる少なくとも1つのエピトープ、または、これらの組み合わせ、をコードする少なくとも1つのペイロード核酸配列を含む、カセットと、を含み、カセットがChAdV68の欠失領域内に挿入され、CMV由来プロモーター配列がカセットに機能的に連結されている、チンパンジーアデノウイルスベクターも開示される。
また、本明細書では、対象の免疫応答を刺激するための方法であって、対象に、アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含むアデノウイルスベクターを投与することを含み、アデノウイルス骨格が、アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、アデノウイルスベクターがカセットをさらに含み、カセットが、(1)少なくとも1つのペイロード核酸配列であって、場合により少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合によりポリペプチドが抗原を含み、場合により抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含み、場合により少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、少なくとも1つのペイロード核酸配列と、場合により、(2)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、(3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、(4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、(5)場合により、少なくとも1つのポリアデニル化配列と、を含む、方法も開示される。
また、本明細書では、場合によりがんまたは感染症である疾患を有する対象を治療するための方法であって、対象に、アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含むアデノウイルスベクターを投与することを含み、アデノウイルス骨格が、アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、アデノウイルスベクターがカセットをさらに含み、カセットが、(1)少なくとも1つのペイロード核酸配列であって、場合により少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合によりポリペプチドが抗原を含み、場合により抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含み、場合により少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、少なくとも1つのペイロード核酸配列と、場合により、(2)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、(3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、(4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、(5)場合により、少なくとも1つのポリアデニル化配列と、を含む、方法も開示される。
また、本明細書では、対象の免疫応答を刺激するための方法であって、対象に、改変ChAdV68配列を含むアデノウイルスベクターを投与することを含み、改変ChAdV68配列が、(a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と、を含み、チンパンジーアデノウイルスベクターがカセットをさらに含み、カセットが少なくとも1つのペイロード核酸配列を含み、カセットが、少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、方法も開示される。
また、本明細書では、がんまたは感染症である疾患を有する対象を治療するための方法であって、対象に、改変ChAdV68配列を含むアデノウイルスベクターを投与することを含み、改変ChAdV68配列が、(a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と、を含み、チンパンジーアデノウイルスベクターがカセットをさらに含み、カセットが少なくとも1つのペイロード核酸配列を含み、カセットが、少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、方法も開示される。
また、本明細書では、ウイルスを生産する方法であって、a.カセットを含むウイルスベクターを与える工程であって、カセットが、(i)少なくとも1つのペイロード核酸配列であって、場合により少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合によりポリペプチドが抗原を含み、場合により抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含み、場合により少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、少なくとも1つのペイロード核酸配列と、場合により、(ii)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列であって、少なくとも1つのプロモーターが、テトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターである、少なくとも1つのプロモーター配列と、(iii)場合により、少なくとも1つのMHCクラスII抗原コード核酸配列と、(iv)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、(v)場合により、少なくとも1つのポリアデニル化配列と、を含む、工程と、b.TETrタンパク質を発現するように操作された細胞を与える工程と、c.ウイルスベクターを、ウイルスの生産に充分な条件下で細胞と接触させる工程と、を含む、方法も開示される。
いくつかの態様では、ウイルスベクターがチンパンジーアデノウイルスベクターを含み、場合によりチンパンジーアデノウイルスベクターがChAdV68ベクターである。いくつかの態様では、ウイルスの生産が、TETr制御プロモーターを含まないベクターを使用して生産されるウイルスの生産に対して、TETr制御プロモーターを含むベクターを使用して増加する。いくつかの態様では、増加した生産が、TETr制御プロモーターを含まないベクターを使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、少なくとも9倍、または少なくとも10倍増加している。いくつかの態様では、増加した生産が、TETr制御プロモーターを含まないベクターを使用した生産に対して少なくとも15倍、少なくとも20倍、少なくとも25倍、少なくとも30倍、少なくとも35倍、少なくとも40倍、少なくとも50倍、少なくとも60倍、少なくとも70倍、少なくとも80倍、少なくとも90倍、または少なくとも100倍増加している。いくつかの態様では、ウイルスの生産が、TETrタンパク質を発現するように操作されていない細胞を使用して生産されるウイルスの生産に対して、TETr制御プロモーターを含むベクターを使用して増加する。いくつかの態様では、増加した生産が、TETrタンパク質を発現するように操作されていない細胞を使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、少なくとも9倍、または少なくとも10倍増加している。
また、本明細書では、カセットを含むウイルスベクターであって、カセットが、(i)少なくとも1つのペイロード核酸配列であって、場合により少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合によりポリペプチドが抗原を含み、場合により抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含み、場合により少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、少なくとも1つのペイロード核酸配列と、場合により、(ii)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列であって、少なくとも1つのプロモーターが、テトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーター配列である、少なくとも1つのプロモーターと、(iii)場合により、少なくとも1つのMHCクラスII抗原コード核酸配列と、(iv)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、(v)場合により、少なくとも1つのポリアデニル化配列と、を含む、ウイルスベクターも提供される。
いくつかの態様では、TETr制御プロモーターが1つ以上のTETオペレーター(TETo)核酸配列を含み、場合により1つ以上のTETo核酸配列が、配列番号60に示されるヌクレオチド配列を含む。いくつかの態様では、1つ以上のTETo核酸配列が、2、3、4、5、6、7、8、9、または10個またはそれ以上のTETo核酸配列を含み、場合によりTETo核酸配列のそれぞれが、配列番号60に示されるヌクレオチド配列を含む。いくつかの態様では、2つ以上のTETo核酸配列が互いに連結されている。いくつかの態様では、2つ以上のTETo核酸配列が互いに直接連結されている。いくつかの態様では、2つ以上のTETo核酸配列がリンカー配列によって互いに連結され、リンカーが、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20個以上のヌクレオチドを含み、場合により、リンカー配列が、配列番号61に示されるリンカーヌクレオチド配列を含む。いくつかの態様では、1つ以上のTETo核酸配列が、プロモーター配列のRNAポリメラーゼ結合配列の5’である。いくつかの態様では、1つ以上のTETo核酸配列が、プロモーター配列のRNAポリメラーゼ結合配列の3’である。いくつかの態様では、少なくとも1つのプロモーター配列は、CMV、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列を含む。いくつかの態様では、少なくとも1つのプロモーター配列が、CMVプロモーター配列であり、場合によりCMV由来プロモーター配列が、配列番号64に示されるCMVプロモーターヌクレオチド配列を含む。いくつかの態様では、CMV由来プロモーター配列が最小CMVプロモーター配列であり、場合により最小CMVプロモーター配列が、配列番号61に示される最小CMVプロモーターヌクレオチド配列を含む。
いくつかの態様では、少なくとも1つのペイロード核酸配列に機能的に連結されたTETr制御プロモーターは、5’から3’に向けて以下を含む式:(T-L-P-N[式中、Nは、少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、Pは、少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結されたプロモーター配列のRNAポリメラーゼ結合配列を含み、Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列を含み、Lは、リンカー配列を含み、ただし各XについてY=0または1であり、X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である]に記述される順序付けられた配列を含む。いくつかの態様では、少なくとも1つのペイロード核酸配列に機能的に連結されたTETr制御プロモーターが、5’から3’に向けて以下を含む式:P-(T-L-N[式中、Nは、少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、Pは、少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結されたプロモーター配列のRNAポリメラーゼ結合配列を含み、Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列を含み、Lは、リンカー配列を含み、ただし各XについてY=0または1であり、X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である]に記述される順序付けられた配列を含む。
いくつかの態様では、TETr制御プロモーターは、(1)最小CMVプロモーター配列と、(2)そのそれぞれが配列番号60に示されるヌクレオチド配列を含む、7個のTETo核酸配列と、を含み、TETo核酸配列のそれぞれがリンカー配列によって互いに連結され、7個のTETo核酸配列が最小CMVプロモーター配列の5’であり、場合によりTETr制御プロモーターが、配列番号61に示されるヌクレオチド配列を含む。いくつかの態様では、TETr制御プロモーターは、(1)CMVプロモーター配列と、(2)そのそれぞれが配列番号60に示されるヌクレオチド配列を含む、2個のTETo核酸配列と、を含み、TETo核酸配列のそれぞれが互いに直接連結され、2個のTETo核酸配列がCMVプロモーター配列の3’であり、場合によりTETr制御プロモーターが、配列番号64に示されるヌクレオチド配列を含む。
いくつかの態様では、ウイルスベクターがベクター骨格を含み、ベクター骨格がチンパンジーアデノウイルスベクターを含み、場合によりチンパンジーアデノウイルスベクターがChAdV68ベクターである。
いくつかの態様では、カセットが、5’から3’に向けて以下を含む式:P-(L5-N-L3-(G5-U-G3-A[式中、Nは、少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、ただしc=1であり、Pは、少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された少なくとも1つのプロモーター配列を含み、ただしa=1であり、L5は、5’リンカー配列を含み、ただしb=0または1であり、L3は、3’リンカー配列を含み、ただしd=0または1であり、G5は、GPGPGアミノ酸リンカーをコードする少なくとも1つの核酸配列のうちの1つを含み、ただしe=0または1であり、G3は、GPGPGアミノ酸リンカーをコードする少なくとも1つの核酸配列のうちの1つを含み、ただしg=0または1であり、Uは、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列のうちの1つを含み、ただしf=1であり、Aは、少なくとも1つのポリアデニル化配列を含み、ただしh=0または1であり、X=2~400であり、各Xについて、対応するNは、ペイロード核酸配列であり、場合により、各Xについて、対応するNは異なるペイロード核酸配列であり、Y=0~2であり、各Yについて、対応するUは、ユニバーサルMHCクラスII抗原コード核酸配列であり、場合により、各Yについて、対応するUは異なるユニバーサルMHCクラスII抗原コード配列である]に示される順序付けられた配列を含む。
いくつかの態様では、カセットは、順序付けられた配列にコードされない少なくとも1つのさらなるペイロード核酸配列を含む。いくつかの態様では、b=1、d=1、e=1、g=1、h=1、X=10、Y=2であり、Pが、CMV由来プロモーター配列であり、各Nが、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、L5が、エピトープの天然のN末端アミノ酸配列をコードし、5’リンカー配列が、少なくともアミノ酸3個の長さであるペプチドをコードし、L3が、エピトープの天然のC末端アミノ酸配列をコードし、3’リンカー配列が、少なくともアミノ酸3個の長さであるペプチドをコードし、Uが、PADREクラスII配列及び破傷風毒素MHCクラスII配列のそれぞれであり、ベクターが改変ChAdV68配列を含み、改変ChAdV68配列が、(a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、(b)配列番号1に示される配列のヌクレオチド2~34,916であって、部分欠失E4遺伝子がヌクレオチド2~34,916の3’であり、場合により、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、ヌクレオチド2~34,916と、(c)配列番号1に示される配列のヌクレオチド35,643~36,518であって、部分欠失E4遺伝子がヌクレオチド35,643~36,518の5’である、ヌクレオチド35,643~36,518と、を含む。
いくつかの態様では、ベクターがチンパンジーアデノウイルスベクターであり、場合によりチンパンジーアデノウイルスベクターがChAdV68ベクターである。
いくつかの態様では、部分欠失E4遺伝子は、A.配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列、B.配列番号1に示される配列の少なくともヌクレオチド34,916~34,942、ヌクレオチド34,952~35,305、配列番号1に示される配列のヌクレオチド35,302~35,642を欠いている、配列番号1に示されるE4遺伝子配列であって、ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、配列番号1に示されるE4遺伝子配列、C.配列番号1に示される配列の少なくともヌクレオチド34,980~36,516を欠いている、配列番号1に示されるE4遺伝子配列であって、ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、配列番号1に示されるE4遺伝子配列、D.配列番号1に示される配列の少なくともヌクレオチド34,979~35,642を欠いている、配列番号1に示されるE4遺伝子配列であって、ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、配列番号1に示されるE4遺伝子配列、E.E4Orf2の少なくとも部分欠失、完全欠失したE4Orf3、及びE4Orf4の少なくとも部分欠失のE4欠失、F.E4Orf2の少なくとも部分欠失、E4Orf3の少なくとも部分欠失、及びE4Orf4の少なくとも部分欠失のE4欠失、G.E4Orf1の少なくとも部分欠失、完全欠失したE4Orf2、及びE4Orf3の少なくとも部分欠失のE4欠失、またはH.E4Orf2の少なくとも部分欠失及びE4Orf3の少なくとも部分欠失のE4欠失を含む。
いくつかの態様では、ベクターは、配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列を含み、場合により、1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルスの末端逆位繰り返し配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子からなる群から選択される。いくつかの態様では、アデノウイルス骨格または改変ChAdV68配列が、アデノウイルスゲノムに関して、または配列番号1に示される配列に関して、アデノウイルスE1A、E1B、E2A、E2B、E3、L1、L2、L3、L4、及びL5遺伝子からなる群から選択される少なくとも1つの遺伝子に機能的欠失をさらに含み、場合により、アデノウイルス骨格もしくは改変ChAdV68配列が完全に欠失しているか、またはアデノウイルスゲノムに関して、もしくは配列番号1に示される配列に関して、(1)E1A及びE1B、または(2)E1A、E1B、及びE3に機能的欠失を有し、場合により、E1遺伝子が、配列番号1に示される配列に関して少なくともヌクレオチド577~3403のE1欠失により機能的に欠失しており、場合により、E3遺伝子が、配列番号1に示される配列に関して少なくともヌクレオチド27,125~31,825のE3欠失により機能的に欠失している。
いくつかの態様では、カセットが、E1領域、E3領域、及び/または、カセットの組み込みが可能な任意の欠失されたAdV領域においてベクター中に存在しかつ挿入されている。
いくつかの態様において、ベクターは、第1世代、第2世代、またはヘルパー依存型のアデノウイルスベクターのうちの1つから生成される。
いくつかの態様では、改変ChAdV68配列が、配列番号1に示される配列のヌクレオチド2~34,916を含み、部分欠失E4遺伝子がヌクレオチド2~34,916の3’である。いくつかの態様では、ヌクレオチド2~34,916が、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いている。いくつかの態様では、ヌクレオチド2~34,916が、配列番号1に示される配列に関してヌクレオチド456~3014を欠いている。いくつかの態様では、ヌクレオチド2~34,916が、E3欠失に相当する、配列番号1に示される配列に関してヌクレオチド27,125~31,825を欠いている。いくつかの態様では、ヌクレオチド2~34,916が、配列番号1に示される配列に関してヌクレオチド27,816~31,333を欠いている。いくつかの態様では、ヌクレオチド2~34,916が、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている。いくつかの態様では、ヌクレオチド2~34,916がさらに、配列番号1に示される配列に関してヌクレオチド3957~10346、ヌクレオチド21787~23370、ヌクレオチド33486~36193、またはこれらの組み合わせを欠いている。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが抗原をコードし、抗原が、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせを含む。いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、エピトープへの抗原のプロセシングを受けることが可能なポリペプチド配列をコードしており、場合により、エピトープが、細胞の表面上のMHCクラスIにより提示されることが知られているかまたは疑われており、場合により、細胞の表面が腫瘍細胞表面または感染細胞表面である。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、細胞の表面上のMHCクラスI及び/またはMHCクラスIIにより提示されるポリペプチド配列またはその部分をコードしており、場合により、細胞の表面が腫瘍細胞表面または感染細胞表面である。いくつかの態様において、腫瘍細胞は、肺がん、メラノーマ、乳がん、卵巣がん、前立腺がん、腎臓がん、胃がん、結腸がん、精巣がん、頭頸部がん、膵臓がん、脳がん、B細胞リンパ腫、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ球性白血病、T細胞リンパ球性白血病、非小細胞肺がん、及び小細胞肺がんからなる群から選択され、または、感染細胞は、病原体感染細胞、ウイルス感染細胞、細菌感染細胞、真菌感染細胞、及び寄生虫感染細胞からなる群から選択され、場合により、ウイルス感染細胞が、HIV感染細胞、重症急性呼吸器症候群関連コロナウイルス(SARS)感染細胞、重症急性呼吸器症候群コロナウイルス2型(SARS-CoV-2)感染細胞、エボラ感染細胞、B型肝炎ウイルス(HBV)感染細胞、インフルエンザ感染細胞、及びC型肝炎ウイルス(HCV)感染細胞からなる群から選択される。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、B細胞応答を刺激することができるエピトープを含むポリペプチド配列またはその部分をコードし、場合により、ポリペプチド配列またはその部分が、完全長タンパク質、タンパク質ドメイン、タンパク質サブユニット、または抗原が結合できることが予測されるかまたは知られている抗原性フラグメントを含む。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、病原体由来ペプチド、ウイルス由来ペプチド、細菌由来ペプチド、真菌由来ペプチド、及び寄生虫由来ペプチドからなる群から選択される感染症生物ペプチドをコードする。いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有するエピトープをコードする。いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有するMHCクラスIエピトープまたはMHCクラスIIエピトープをコードし、場合により、コードされたポリペプチド配列またはその部分が、翻訳された対応する野生型核酸配列と比較してその対応するMHCアレルに対する増加した結合親和性、MHCアレルに対する増加した結合安定性、及び/またはMHCアレル上への提示の増加した尤度を有する。いくつかの態様では、少なくとも1つの変更は、点変異、フレームシフト変異、非フレームシフト変異、欠失変異、挿入変異、スプライスバリアント、ゲノム再編成、またはプロテアソームにより生成されたスプライス抗原を含む。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、完全長タンパク質、タンパク質ドメイン、またはタンパク質サブユニットをコードする。いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、抗体、サイトカイン、キメラ抗原受容体(CAR)、T細胞受容体、及びゲノム編集システムのヌクレアーゼをコードする。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、非コード核酸配列を含む。いくつかの態様では、非コード核酸配列が、RNA干渉(RNAi)ポリヌクレオチドまたはゲノム編集システムのポリヌクレオチドを含む。
いくつかの態様では、少なくとも1つのペイロード核酸配列のそれぞれは互いに直接連結される。いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、リンカーをコードする核酸配列によって、異なるペイロード核酸配列と連結されている。いくつかの態様では、リンカーが、MHCクラスIエピトープをコードする2個のペイロード核酸配列同士を連結するか、またはMHCクラスIエピトープをコードする第1のペイロード核酸配列とMHCクラスIIエピトープをコードするかもしくはB細胞応答を刺激することができるエピトープ配列をコードする第2のペイロード核酸配列とを連結する。いくつかの態様では、リンカーは、(1)少なくとも残基2、3、4、5、6、7、8、9、または10個の長さの連続したグリシン残基、(2)少なくとも残基2、3、4、5、6、7、8、9、または10個の長さの連続したアラニン残基、(3)2個のアルギニン残基(RR)、(4)アラニン、アラニン、チロシン(AAY)、(5)哺乳動物プロテアソームによって効率的にプロセシングされる、少なくともアミノ酸残基2、3、4、5、6、7、8、9、または10個の長さのコンセンサス配列、及び(6)同種由来タンパク質に由来する抗原に隣接する、少なくともアミノ酸残基2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、または2~20個の長さの1つ以上の天然配列からなる群から選択される。いくつかの態様では、リンカーが、MHCクラスIエピトープをコードする2個のペイロード核酸配列同士を連結するか、またはMHCクラスIエピトープをコードする第1のペイロード核酸配列とMHCクラスIエピトープをコードするかもしくはB細胞応答を刺激することができるエピトープ配列をコードする第2のペイロード核酸配列とを連結する。いくつかの態様では、リンカーは、配列GPGPGを含む。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、少なくとも1つのペイロード核酸配列の発現、安定性、細胞トラフィッキング、プロセシング及び提示、ならびに/または免疫原性を高める、かつ、場合により、少なくとも1つのペイロード核酸配列によってコードされるポリペプチドの発現、安定性、細胞トラフィッキング、プロセシング及び提示、ならびに/または免疫原性を高める、分離したまたは連続した配列に機能的または直接的に連結されている。いくつかの態様では、分離したまたは連続した配列が、ユビキチン配列、プロテアソームターゲティング性を高めるように改変され、場合により、76位にGly→Ala置換を有するユビキチン配列、場合によりIgKを含む、免疫グロブリンシグナル配列、主要組織適合性クラスI配列、リソソーム関連膜タンパク質(LAMP)-1、ヒト樹状細胞リソソーム関連膜タンパク質、及び主要組織適合性クラスII配列のうちの少なくとも1つを含み、場合により、プロテアソームターゲティング性を高めるように改変されたユビキチン配列がA76である。
いくつかの態様では、少なくとも1つのペイロード核酸配列のそれぞれの発現が、少なくとも1つのプロモーターによって駆動される。
いくつかの態様では、少なくとも1つのペイロード核酸配列が、少なくとも2、3、4、5、6、7、8、9、または10個のペイロード核酸配列を含む。いくつかの態様では、少なくとも1つのペイロード核酸配列が、少なくとも11、12、13、14、15、16、17、18、19、20、または最大400個のペイロード核酸配列を含む。いくつかの態様では、少なくとも1つのペイロード核酸配列が、少なくとも2~400個のペイロード核酸配列を含み、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはそれらの組み合わせをコードする。いくつかの態様では、少なくとも1つのペイロード核酸配列が少なくとも2~400個のペイロード核酸配列を含み、対象に投与されて翻訳された場合、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが抗原提示細胞上に提示される抗原をコードし、抗原を標的とする免疫応答をもたらす。いくつかの態様では、少なくとも1つのペイロード核酸配列が少なくとも2~400個のMHCクラスI及び/またはMHCクラスII抗原コード核酸配列を含み、対象に投与されて翻訳された場合、MHCクラスIまたはMHCクラスII抗原のうちの少なくとも1つが抗原提示細胞上に提示され、細胞表面上の抗原のうちの少なくとも1つを標的とする免疫応答をもたらし、場合により、少なくとも2~400個のMHCクラスIまたはMHCクラスII抗原コード核酸配列のそれぞれの発現が、少なくとも1つのプロモーターによって駆動される。
いくつかの態様では、各MHCクラスIエピトープが独立して、アミノ酸8~35個の長さ、場合により、アミノ酸7~15個、9~17個、9~25個、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34または35個の長さである。いくつかの態様では、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在する。いくつかの態様では、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在し、かつこれが、コードされたペプチド配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を含む少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列を含む。いくつかの態様では、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列は、アミノ酸12~20個、12、13、14、15、16、17、18、19、20,または20~40個の長さである。いくつかの態様では、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在し、少なくとも1つのユニバーサル配列が、破傷風毒素及びPADREの少なくとも一方を含む。
いくつかの態様では、少なくとも1つのプロモーター配列が、調節可能なプロモーターであり、場合により、調節可能なプロモーターがテトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターであり、場合により、調節可能なプロモーターが、プロモーターのRNAポリメラーゼ結合配列の5’または3’に複数のTETオペレーター(TETo)配列を含む。複数のTETオペレーター(TETo)配列がRNAの5’または3’にある。少なくとも1つのプロモーター配列は、構成的である。複数のTETオペレーター(TETo)配列がRNAの5’または3’にある。少なくとも1つのプロモーター配列は、CMV、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列である。
いくつかの態様では、カセットが、少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された少なくとも1つのポリアデニル化(ポリA)配列をさらに含み、場合により、ポリA配列が、少なくとも1つのペイロード核酸配列の3’に位置する。いくつかの態様において、ポリA配列は、SV40またはウシ成長ホルモン(BGH)ポリA配列を含む。
いくつかの態様では、カセットが、イントロン配列、ウッドチャック肝炎ウイルス転写後調節因子(WPRE)配列、内部リボソーム進入配列(IRES)配列、2A自己切断ペプチド配列をコードするヌクレオチド配列、フーリン切断部位をコードするヌクレオチド配列、TEV切断部位をコードするヌクレオチド配列、または、少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された、mRNAの核輸送、安定性、または翻訳効率を向上させることが知られている5’または3’の非コード領域内の配列のうちの少なくとも1つをさらに含む。
いくつかの態様では、カセットが、緑色蛍光タンパク質(GFP)、GFP変異体、分泌型アルカリホスファターゼ、ルシフェラーゼ、またはルシフェラーゼ変異体を含むがこれらに限定されないレポーター遺伝子を含む。
いくつかの態様では、ベクターが、少なくとも1つの免疫調節物質をコードする1つ以上のペイロード核酸配列をさらに、場合により、少なくとも1つの免疫調節物質が免疫チェックポイント分子を阻害する。いくつかの態様では、免疫調節物質は、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである。いくつかの態様では、抗体またはその抗原結合フラグメントは、Fabフラグメント、Fab’フラグメント、一本鎖Fv(scFv)、単一特異性抗体もしくは互いに連結された多重特異性抗体としての単一ドメイン抗体(sdAb)(例えば、ラクダ科動物の抗体ドメイン)、または完全長の一本鎖抗体(例えば、柔軟なリンカーによって重鎖と軽鎖が連結された完全長IgG)である。いくつかの態様では、抗体の重鎖配列と軽鎖配列とは、2Aなどの自己切断配列またはIRES配列によって分離された連続的配列であり、場合により、自己切断配列は自己切断配列の5’にフーリン切断部位配列を有し、あるいは、抗体の重鎖配列と軽鎖配列とが、連続したグリシン残基のような柔軟なリンカーによって連結されている。いくつかの態様では、免疫調節物質はサイトカインである。いくつかの態様では、サイトカインは、IL-2、IL-7、IL-12、IL-15、もしくはIL-21、またはそれぞれのその変異体である。
いくつかの態様では、少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、(a)腫瘍細胞、感染細胞、または感染症生物からエクソーム、トランスクリプトーム、または全ゲノムヌクレオチドシークエンシングデータのうちの少なくとも1つを取得する工程であって、ヌクレオチドシークエンシングデータが、抗原のセットのそれぞれのペプチド配列を表すデータを取得するために用いられる、工程と、(b)各抗原のペプチド配列を提示モデルに入力して、抗原のそれぞれが細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上のMHCアレルのうちの1つ以上によって提示される数値的尤度のセットを生成する工程であって、数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、工程と、(c)抗原のセットのサブセットを数値的尤度のセットに基づいて選択して、少なくとも1つのペイロード核酸配列を生成するために用いられる選択された抗原のセットを生成する工程と、を実施することによって選択される。
いくつかの態様では、少なくとも1つのペイロード核酸配列のそれぞれが、(a)腫瘍細胞、感染細胞、または感染症生物からエクソーム、トランスクリプトーム、または全ゲノムヌクレオチドシークエンシングデータのうちの少なくとも1つを取得する工程であって、ヌクレオチドシークエンシングデータが、抗原のセットのそれぞれのペプチド配列を表すデータを取得するために用いられる、工程と、(b)各抗原のペプチド配列を提示モデルに入力して、抗原のそれぞれが細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上のMHCアレルのうちの1つ以上によって提示される数値的尤度のセットを生成する工程であって、数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、工程と、(c)抗原のセットのサブセットを数値的尤度のセットに基づいて選択して、少なくとも1つのペイロード核酸配列のそれぞれを生成するために用いられる選択された抗原のセットを生成する工程と、を実施することによって選択される。いくつかの態様では、選択された抗原のセットの数は、2~20である。いくつかの態様では、提示モデルは、(a)MHCアレルのうちの特定の1つとペプチド配列の特定の位置の特定のアミノ酸とのペアの存在と、(b)ペアのMHCアレルのうちの特定の1つによる、特定の位置に特定のアミノ酸を含むそのようなペプチド配列の細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上での提示の尤度との間の依存性を表す。いくつかの態様では、選択された抗原のセットを選択することが、提示モデルに基づいて選択されない抗原に対して、細胞表面上に提示される尤度が増大している抗原を選択することを含む。いくつかの態様では、選択された抗原のセットを選択することは、提示モデルに基づいて選択されない抗原に対して、対象における細胞特異的な免疫応答を誘導することができる尤度が増大している抗原を選択することを含む。いくつかの態様では、選択された抗原のセットを選択することは、提示モデルに基づいて選択されない抗原に対して、プロフェッショナル抗原提示細胞(APC)によってナイーブT細胞に対して提示されることができる尤度が増大している抗原を選択することを含み、場合により、APCは樹状細胞(DC)である。いくつかの態様では、選択された抗原のセットを選択することは、提示モデルに基づいて選択されない抗原に対して、中枢性寛容または末梢性寛容による阻害に供される尤度が減少している抗原を選択することを含む。いくつかの態様では、選択された抗原のセットを選択することは、提示モデルに基づいて選択されない抗原に対して、対象における正常組織に対する自己免疫応答を誘導することができる尤度が減少している抗原を選択することを含む。いくつかの態様では、エクソームまたはトランスクリプトームのヌクレオチドシークエンシングデータが、腫瘍細胞もしくは組織、感染細胞、または感染症生物でシークエンシングを行うことによって取得される。いくつかの態様では、シークエンシングは、次世代シークエンシング(NGS)または任意の大規模並列処理シークエンシングアプローチである。
いくつかの態様では、カセットは、抗原カセット内の隣接配列によって形成されたジャンクションエピトープ配列を含む。いくつかの態様では、少なくとも1つのまたはそれぞれのジャンクションエピトープ配列は、MHCに対して500nMよりも高い親和性を有する。いくつかの態様では、それぞれのジャンクションエピトープ配列は、非自己である。いくつかの態様では、カセットが、非治療的なMHCクラスIまたはクラスIIエピトープをコードしておらず、非治療的エピトープが、対象のMHCアレル上に提示されると予測される。いくつかの態様では、非治療的な予測されたMHCクラスIまたはクラスIIエピトープ配列は、カセット内の隣接配列によって形成されたジャンクションエピトープ配列である。いくつかの態様では、予測は、非治療的エピトープの配列を提示モデルに入力することによって生成される提示尤度に基づいたものである。いくつかの態様では、カセット内における少なくとも1つのペイロード核酸配列の順序は、i.少なくとも1つのペイロード核酸配列の異なる順序に対応した候補カセット配列のセットを生成する工程と、ii.各候補カセット配列について、候補カセット配列内の非治療的エピトープの提示に基づいた提示スコアを決定する工程と、iii.所定の閾値を下回る提示スコアに関連する候補カセット配列をカセット配列として選択する工程と、を含む一連の工程によって決定される。
いくつかの態様では、MHCクラスI及び/またはクラスIIエピトープのそれぞれが、ヒト集団の少なくとも5%に存在する少なくとも1つのHLAアレルによって提示可能であると予測または検証されている。いくつかの態様では、MHCクラスI及び/またはクラスIIエピトープのそれぞれが、少なくとも1つのHLAアレルによって提示可能であると予測または検証されており、各抗原/HLAペアが、ヒト集団において少なくとも0.01%の抗原/HLA存在率(prevalence)を有する。いくつかの態様では、MHCクラスI及び/またはクラスIIエピトープのそれぞれが、少なくとも1つのHLAアレルによって提示可能であると予測または検証されており、各抗原/HLAペアが、ヒト集団において少なくとも0.1%の抗原/HLA存在率を有する。いくつかの態様では、ポリペプチドをコードする少なくとも1つのペイロード核酸配列が、対象の組織または試料から直接抽出された天然核酸配列に対してコドン最適化されている。
また、本明細書では、本明細書に記載されるベクターのいずれかと、薬学的に許容される担体とを含む医薬組成物も提供される。いくつかの態様では、組成物は、アジュバントをさらに含む。いくつかの態様では、組成物は、免疫調節物質をさらに含む。いくつかの態様では、免疫調節物質は、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである。
また、本明細書では、本明細書に記載されるベクターのいずれかのカセットと、配列番号1の配列の遺伝子と、を含む単離ヌクレオチド配列であって、場合により、遺伝子が、配列番号1に示される配列のチンパンジーアデノウイルスのITR、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子からなる群から選択され、場合により、ヌクレオチド配列がcDNAである、単離ヌクレオチド配列も開示される。
また、本明細書では、本明細書に記載される単離ヌクレオチド配列のいずれかを含む単離細胞であって、場合により細胞が、CHO、HEK293もしくはその変異体、911、HeLa、A549、LP-293、PER.C6、またはAE1-2a細胞である、単離細胞も開示される。
また、本明細書に記載される単離ヌクレオチド配列のいずれかを含むベクターも開示される。
また、本明細書では、本明細書に記載されるベクターまたは組成物のいずれかと、使用説明書と、を含むキットも開示される。
また、本明細書では、対象の免疫応答を刺激するための方法であって、対象に、本明細書に記載されるベクターまたは組成物のいずれかを投与することを含む方法も開示される。いくつかの態様では、ベクターまたは組成物は、筋肉内(IM)、皮内(ID)、または皮下(SC)に投与される。いくつかの態様では、方法は、対象に免疫調節物質を投与することをさらに含み、場合により、免疫調節物質はベクターまたは医薬組成物の投与前、投与と同時、または投与後に投与される。いくつかの態様では、免疫調節物質は、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである。いくつかの態様では、免疫調節物質は、静脈内(IV)、筋肉内(IM)、皮内(ID)、または皮下(SC)に投与される。いくつかの態様では、皮下投与は、ベクターもしくは組成物の投与部位の近くであるか、または1つ以上のベクターもしくは組成物の流入領域リンパ節に近接している。
いくつかの態様では、方法は、対象に第2のワクチン組成物を投与することをさらに含む。いくつかの態様では、第2のワクチン組成物は、本明細書に記載されるベクターまたは組成物のいずれかの投与の前に投与される。いくつかの態様では、第2のワクチン組成物は、本明細書に記載されるベクターまたは組成物のいずれかの投与の後に投与される。いくつかの態様では、第2のワクチン組成物は、本明細書に記載されるベクターまたは組成物のいずれかと同じである。いくつかの態様では、第2のワクチン組成物は、本明細書に記載されるベクターまたは組成物のいずれとも異なる。いくつかの態様では、第2のワクチン組成物が、少なくとも1つのペイロード核酸配列をコードする自己複製RNA(samRNA)ベクターを含む。いくつかの態様では、samRNAベクターによってコードされる少なくとも1つのペイロード核酸配列が、先行するベクターの請求項のいずれかに記載の少なくとも1つのペイロード核酸配列のうちの少なくとも1つと同じである。
また、本明細書では、先行するベクターの請求項のいずれかに記載のベクターを製造する方法であって、アデノウイルスベクターまたはチンパンジーアデノウイルスベクターを含むプラスミド配列を得ることと、プラスミド配列を1つ以上の宿主細胞にトランスフェクトすることと、1つ以上の宿主細胞からベクターを単離することと、を含む、方法も提供される。いくつかの態様では、単離することは、1つ以上の宿主細胞を溶解させてベクターを含む細胞ライセートを得ることと、細胞ライセートから、および、場合により1つ以上の宿主細胞を培養するために用いた培地からも、ベクターを精製することと、を含む。いくつかの態様では、プラスミド配列は、DNA組換え、または細菌組換え、または全ゲノムDNA合成、または細菌細胞内で合成されたDNAの増幅を伴う全ゲノムDNA合成、のうちの1つを用いて生成される。いくつかの態様では、1つ以上の宿主細胞は、CHO、HEK293もしくはその変異体、911、HeLa、A549、LP-293、PER.C6、及びAE1-2a細胞のうちの少なくとも1つである。いくつかの態様では、細胞ライセートからベクターを精製することは、クロマトグラフィー分離、遠心分離、ウイルス沈殿、及び濾過のうちの1つ以上を伴う。
また、本明細書では、ウイルスを生産する方法であって、ウイルスが本明細書に記載されるベクターのいずれかを用いて生産される、方法も提供される。いくつかの態様では、ウイルスの生産が、部分欠失E4遺伝子を含まないベクターを使用して生産されるウイルスの生産に対して、部分欠失E4遺伝子を含むベクターを使用して増加する。いくつかの態様では、ウイルスの感染単位の力価が、部分欠失E4遺伝子を含まないベクターを使用して生産されるウイルスの感染単位の力価に対して、部分欠失E4遺伝子を含むベクターを使用して増加する。いくつかの態様では、増加した生産が、部分欠失E4遺伝子を含まないベクターを使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、または少なくとも9倍増加している。いくつかの態様では、増加した生産が、部分欠失E4遺伝子を含まないベクターを使用した生産に対して少なくとも10倍、少なくとも18倍、少なくとも20倍、少なくとも25倍、または少なくとも27倍増加している。
本発明のこれらの、ならびに他の特徴、態様、及び利点は、以下の説明文、及び添付図面を参照することでより深い理解がなされるであろう。
インビトロT細胞活性化合物アッセイの開発を説明する。抗原提示細胞へのワクチンカセットの送達が、異なるペプチド抗原の発現、プロセシング、及びMHC制限提示につながるアッセイの概略。特異的なペプチド-MHCの組み合わせに一致するT細胞受容体を有するように操作されたレポーターT細胞が活性化され、ルシフェラーゼが発現される。 (A)短いカセット内のリンカー配列の評価を説明し、互いに対して同じ位置で連結された5個のクラスI MHCクラス制限エピトープ(エピトープ1~5)に2個の普遍的クラスII MHCエピトープ(MHC-II)が繋げられたものを示す。異なるリンカーを用いて種々の繰り返しが生成された。場合によっては、T細胞エピトープは互いに直接連結される。他の場合では、T細胞エピトープの片側または両側にその天然配列が隣接する。他の繰り返しでは、T細胞エピトープは、非天然配列AAY、RR、及びDPPにより連結される。(B)短いカセット内のリンカー配列の評価を説明し、短いカセット内に埋め込まれたT細胞エピトープの配列情報を示す。図は、示される順に、配列番号29365~29366、29369、29368、29367、及び、29494~29495をそれぞれ開示する。 モデルワクチンカセットに付加された細胞ターゲティング配列の評価を説明する。ターゲティングカセットは、短いカセット設計を、ユビキチン(Ub)、シグナルペプチド(SP)及び膜貫通(TM)ドメインによって延長し、5個のマーカーヒトT細胞エピトープ(エピトープ1~5)の隣に2個のマウスT細胞エピトープSIINFEKL(配列番号29362)(SII)及びSPSYAYHQF(配列番号29363)(A5)をさらに有し、T細胞エピトープの両側に隣接する非天然リンカーAAY-または天然リンカー配列を用いている(25マー)。 短いカセット内のリンカー配列のインビボ評価を説明する。A)HLA-A2トランスジェニックマウスを使用したワクチンカセットのインビボ評価の実験計画。 長い21merカセット内のエピトープ位置の影響のインビボ評価を説明し、長いカセットの設計が、それらの25マー天然配列(リンカー=天然フランキング配列)に含まれる5個のマーカークラスIエピトープ(エピトープ1~5)であって、それらの25マー天然配列に含まれるさらなる周知のT細胞クラスIエピトープ(エピトープ6~21)によって隔てられたマーカークラスIエピトープと、2個の普遍的クラスエピトープII(MHC-II0)とを含み、各クラスIエピトープの相対位置のみが異なることを示す。 長い21merカセット内のエピトープ位置の影響のインビボ評価を説明し、使用されるT細胞エピトープの配列情報を示す。図は、示される順に、配列番号29365~29366、29369、29368、29367、29496~29498、29370、及び29499~29510をそれぞれ開示する。 前臨床的IND申請実験用の最終カセット設計を説明し、最終カセットの設計が、それらの25マー天然配列(リンカー=天然フランキング配列)に含まれる20個のMHCIエピトープを含み、6個の非ヒト霊長類(NHP)エピトープ、5個のヒトエピトープ、9個のマウスエピトープ、及び2個の普遍的MHCクラスIIエピトープで構成されることを示す。 前臨床的IND申請実験用の最終カセット設計を説明し、非ヒト霊長類、マウス、及びヒト由来のクラスI MHC上に提示される、使用されるT細胞エピトープの配列情報、ならびに2個の普遍的MHCクラスIIエピトープPADRE及び破傷風毒素の配列を示す。図は、示される順に、配列番号29426~29431、29362~29363、29456、29511、29460~29462、29458~29459、29367~29369、29365~29366、29494、及び29512をそれぞれ開示する。 (A)トランスフェクション後のChAdV68.4WTnt.GFPウイルスの生成を説明する。リン酸カルシウムプロトコールを用いてHEK293A細胞にChAdV68.4WTnt.GFP DNAをトランスフェクトした。ウイルス複製がトランスフェクションの10日後に観察され、ChAdV68.4WTnt.GFPウイルスプラークを光学顕微鏡(倍率40倍)を使用して可視化した。(B)トランスフェクション後のChAdV68.4WTnt.GFPウイルスの生成を説明する。リン酸カルシウムプロトコールを用いてHEK293A細胞にChAdV68.4WTnt.GFP DNAをトランスフェクトする。ウイルス複製がトランスフェクションの10日後に観察され、ChAdV68.4WTnt.GFPウイルスプラークを蛍光顕微鏡(倍率40倍)を使用して可視化した。(C)トランスフェクション後のChAdV68.4WTnt.GFPウイルスの生成を説明する。リン酸カルシウムプロトコールを用いてHEK293A細胞にChAdV68.4WTnt.GFP DNAをトランスフェクトする。ウイルス複製がトランスフェクションの10日後に観察され、ChAdV68.4WTnt.GFPウイルスプラークを蛍光顕微鏡を使用して倍率100倍で可視化した。 (A)トランスフェクション後のChAdV68.5WTnt.GFPウイルスの生成を説明する。リポフェクタミンプロトコールを用いてHEK293A細胞にChAdV68.5WTnt.GFP DNAをトランスフェクトした。ウイルス複製(プラーク)がトランスフェクションの10日後に観察された。ライセートを調製し、T25フラスコの293A細胞に再感染させるのに用いた。ChAdV68.5WTnt.GFPウイルスプラークを可視化し、光学顕微鏡(倍率40倍)を使用して3日後に撮影した。(B)トランスフェクション後のChAdV68.5WTnt.GFPウイルスの生成を説明する。リポフェクタミンプロトコールを用いてHEK293A細胞にChAdV68.5WTnt.GFP DNAをトランスフェクトした。ウイルス複製(プラーク)がトランスフェクションの10日後に観察された。ライセートを調製し、T25フラスコの293A細胞に再感染させるのに用いた。ChAdV68.5WTnt.GFPウイルスプラークを可視化し、蛍光顕微鏡を倍率40倍で使用して3日後に撮影した。(C)トランスフェクション後のChAdV68.5WTnt.GFPウイルスの生成を説明する。リポフェクタミンプロトコールを用いてHEK293A細胞にChAdV68.5WTnt.GFP DNAをトランスフェクトした。ウイルス複製(プラーク)がトランスフェクションの10日後に観察された。ライセートを調製し、T25フラスコの293A細胞に再感染させるのに用いた。ChAdV68.5WTnt.GFPウイルスプラークを可視化し、蛍光顕微鏡を倍率100倍で使用して3日後に撮影した。 ウイルス粒子の生成スキームを説明する。 アルファウイルス由来VEE自己複製RNA(srRNA)ベクターを説明する。 C57BL/6J系マウスにVEE-ルシフェラーゼsrRNAを接種した後のインビボのレポーター発現を説明する。異なる時点でVEE-ルシフェラーゼsrRNAでC57BL/6J系マウスを免疫した(MC3に封入したものを10ug/マウスで両側性に筋肉内注射)後のルシフェラーゼシグナルの代表的イメージを示す。 B16-OVA腫瘍保有マウスにおける、MC3 LNPにより製剤化したVEE srRNAで免疫した14日後に測定されたT細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、10ugのVEE-ルシフェラーゼsrRNA(コントロール)、VEE-UbAAY srRNA(Vax)、VEE-ルシフェラーゼsrRNAと抗CTLA-4(aCTLA-4)、またはVEE-UbAAY srRNAと抗CTLA-4(Vax+aCTLA-4)を注射した。さらに、すべてのマウスを7日目に開始して抗PD-1 mAbで処置した。各グループは8匹のマウスで構成した。免疫の14日後にマウスを屠殺し、脾臓及びリンパ節を採取した。SIINFEKL(配列番号29362)特異的T細胞応答をIFN-γ ELISPOTにより評価し、脾細胞10個当たりのスポット形成細胞(SFC)として報告する。各線は中央値を示す。 B16-OVA腫瘍保有マウスにおける、MC3 LNPにより製剤化したVEE srRNAで免疫した14日後に測定されたT細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、10ugのVEE-ルシフェラーゼsrRNA(コントロール)、VEE-UbAAY srRNA(Vax)、VEE-ルシフェラーゼsrRNAと抗CTLA-4(aCTLA-4)、またはVEE-UbAAY srRNAと抗CTLA-4(Vax+aCTLA-4)を注射した。さらに、すべてのマウスを7日目に開始して抗PD-1mAbで処置した。各グループは8匹のマウスで構成した。免疫の14日後にマウスを屠殺し、脾臓及びリンパ節を採取した。SIINFEKL(配列番号29362)特異的T細胞応答をMHCIペンタマー染色により評価し、ペンタマー陽性細胞としてCD8陽性細胞の割合(%)として報告する。各線は中央値を示す。 B16-OVA腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、アデノウイルス発現GFP(Ad5-GFP)を注射し、MC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYを注射し、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。第3のグループは、Ad5-GFPプライム/VEE-ルシフェラーゼsrRNAブーストと抗CTLA-4(aCTLA-4)との組み合わせで処置し、第4のグループは、Ad5-UbAAYプライム/VEE-UbAAYブーストと抗CTLA-4(Vax+aCTLA-4)との組み合わせで処置した。さらに、すべてのマウスを21日目に開始して抗PD-1 mAbで処置した。T細胞応答をIFN-γ ELISPOTにより測定した。アデノウイルスによる免疫の14日後にマウスを屠殺し、脾臓及びリンパ節を採取した。 B16-OVA腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、アデノウイルス発現GFP(Ad5-GFP)を注射し、MC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYを注射し、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。第3のグループは、Ad5-GFPプライム/VEE-ルシフェラーゼsrRNAブーストと抗CTLA-4(aCTLA-4)との組み合わせで処置し、第4のグループは、Ad5-UbAAYプライム/VEE-UbAAYブーストと抗CTLA-4(Vax+aCTLA-4)との組み合わせで処置した。さらに、すべてのマウスを21日目に開始して抗PD-1mAbで処置した。T細胞応答をIFN-γ ELISPOTにより測定した。アデノウイルスによる免疫の14日後及びsrRNAによるブーストの14日後(プライムの28日後)にマウスを屠殺し、脾臓及びリンパ節を採取した。 B16-OVA腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、アデノウイルス発現GFP(Ad5-GFP)を注射し、MC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYを注射し、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。第3のグループは、Ad5-GFPプライム/VEE-ルシフェラーゼsrRNAブーストと抗CTLA-4(aCTLA-4)との組み合わせで処置し、第4のグループは、Ad5-UbAAYプライム/VEE-UbAAYブーストと抗CTLA-4(Vax+aCTLA-4)との組み合わせで処置した。さらに、すべてのマウスを21日目に開始して抗PD-1mAbで処置した。T細胞応答をMHCクラスIペンタマー染色により測定した。アデノウイルスによる免疫の14日後にマウスを屠殺し、脾臓及びリンパ節を採取した。 B16-OVA腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。B16-OVA腫瘍保有C57BL/6J系マウスに、アデノウイルス発現GFP(Ad5-GFP)を注射し、MC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYを注射し、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。第3のグループは、Ad5-GFPプライム/VEE-ルシフェラーゼsrRNAブーストと抗CTLA-4(aCTLA-4)との組み合わせで処置し、第4のグループは、Ad5-UbAAYプライム/VEE-UbAAYブーストと抗CTLA-4(Vax+aCTLA-4)との組み合わせで処置した。さらに、すべてのマウスを21日目に開始して抗PD-1mAbで処置した。T細胞応答をMHCクラスIペンタマー染色により測定した。アデノウイルスによる免疫の14日後及びsrRNAによるブーストの14日後(プライムの28日後)にマウスを屠殺し、脾臓及びリンパ節を採取した。 CT26(Balb/c系)腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。マウスを、Ad5-GFPで免疫し、アデノウイルスプライムの15日後にMC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYでプライムし、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。別のグループに、Ad5-GFP/VEE-ルシフェラーゼsrRNAプライム/ブーストと抗抗PD-1(aPD1)との組み合わせを投与し、第4のグループに、Ad5-UbAAY/VEE-UbAAYプライム/ブーストと抗抗PD-1(Vax+aPD1)との組み合わせを投与した。AH1ペプチドに対するT細胞応答をIFN-γ ELISPOTを用いて測定した。アデノウイルスによる免疫の12日後にマウスを屠殺し、脾臓及びリンパ節を採取した。 CT26(Balb/c系)腫瘍保有マウスにおける異種プライム/ブースト後の抗原特異的T細胞応答を説明する。マウスを、Ad5-GFPで免疫し、アデノウイルスプライムの15日後にMC3 LNPで製剤化したVEE-ルシフェラーゼsrRNAでブーストする(コントロール)か、またはAd5-UbAAYでプライムし、VEE-UbAAY srRNAでブーストした(Vax)。コントロール及びVaxのグループの両方を、IgGコントロールmAbでも処置した。別のグループに、Ad5-GFP/VEE-ルシフェラーゼsrRNAプライム/ブーストと抗抗PD-1(aPD1)との組み合わせを投与し、第4のグループに、Ad5-UbAAY/VEE-UbAAYプライム/ブーストと抗抗PD-1(Vax+aPD1)との組み合わせを投与した。AH1ペプチドに対するT細胞応答をIFN-γ ELISPOTを用いて測定した。アデノウイルスによる免疫の12日後及びsrRNAによるブーストの6日後(プライムの21日後)にマウスを屠殺し、脾臓及びリンパ節を採取した。 マウスにおけるマウス腫瘍抗原に対するChAdV68誘発T細胞応答を説明する。マウスをChAdV68.5WTnt.MAG25マーで免疫し、MHCクラスIエピトープSIINFEKL(配列番号29362)(OVA)に対するT細胞応答をC57BL/6J系雌性マウスで測定し、MHCクラスIエピトープAH1-A5をBalb/c系マウスで測定した。ELISpotアッセイで測定された脾細胞10個当たりの平均のスポット形成細胞(SFC)を示した。エラーバーは、標準偏差を示す。 ChAdV6、ChAdV+抗PD-1、srRNA、srRNA+抗PD-1、または抗PD-1単独のいずれかによる1回の免疫後のCT26腫瘍モデルにおける細胞性免疫応答を説明する。抗原特異的IFN-γ産生を、ELISpotを用い、各グループから6匹のマウスの脾細胞で測定した。結果を、脾細胞10個当たりのスポット形成細胞(SFC)で示す。各グループの中央値を横線で示す。P値は、ダネット多重比較検定を用いて求めた。すなわち、***P<0.0001、**P<0.001、*P<0.05。ChAdV=ChAdV68.5WTnt.MAG25マー、srRNA=VEE-MAG25マーsrRNA。 ChAdV6、ChAdV+抗PD-1、srRNA、srRNA+抗PD-1、または抗PD-1単独のいずれかによる1回の免疫後のCT26腫瘍モデルにおけるCD8 T細胞免疫応答を説明する。CD8 T細胞の抗原特異的IFN-γ産生をICSを用いて測定し、結果を、抗原特異的CD8 T細胞として全CD8 T細胞の割合(%)として示す。各グループの中間値を横線で示す。P値は、ダネット多重比較検定を用いて求めた。すなわち、***P<0.0001、**P<0.001、*P<0.05。ChAdV=ChAdV68.5WTnt.MAG25マー、srRNA=VEE-MAG25マーsrRNA。 ChAdV/srRNA異種プライム/ブースト、srRNA/ChAdV異種プライム/ブースト、またはsrRNA/srRNA同種プライマー/ブーストによる免疫後のCT26腫瘍モデルにおける腫瘍増殖を説明する。プライム及びブーストにおいて抗PD-1の投与を行った、または行わない場合のプライム/ブースト免疫も比較として示す。腫瘍体積を週2回測定し、平均腫瘍体積を実験の最初の21日間について示す。実験開始時に各グループは22~28匹のマウスで構成された。エラーバーは平均の標準誤差(SEM)を示す。P値は、ダネット検定を用いて求めた。すなわち、***P<0.0001、**P<0.001、*P<0.05。ChAdV=ChAdV68.5WTnt.MAG25マー、srRNA=VEE-MAG25マーsrRNA。 ChAdV/srRNA異種プライム/ブースト、srRNA/ChAdV異種プライム/ブースト、またはsrRNA/srRNA同種プライマー/ブーストによる免疫後のCT26腫瘍モデルにおける生存率を説明する。プライム及びブーストにおいて抗PD-1の投与を行った、または行わない場合のプライム/ブースト免疫も比較として示す。P値は、ログランク検定を用いて求めた。すなわち、***P<0.0001、**P<0.001、*P<0.01。ChAdV=ChAdV68.5WTnt.MAG25マー、srRNA=VEE-MAG25マーsrRNA。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、初期免疫化の1、2、3、4、5、6、8、9、または10週間後にELISpotを用いてVEE-MAG25マー srRNA-LNP1(30μg)についてPBMC中で測定した(各群6匹のアカゲザル)。結果を、積み上げバーグラフフォーマットで、各エピトープについて、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。各動物の値は、プレブリード(0週目)のレベルに対して正規化した。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、初期免疫化の1、2、3、4、5、6、8、9、または10週間後にELISpotを用いてVEE-MAG25マー srRNA-LNP1(100μg)についてPBMC中で測定した(各群6匹のアカゲザル)。結果を、積み上げバーグラフフォーマットで、各エピトープについて、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。各動物の値は、プレブリード(0週目)のレベルに対して正規化した。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、初期免疫化の1、2、3、4、5、6、8、9、または10週間後にELISpotを用いてVEE-MAG25マー srRNA-LNP2(100μg)による同種プライム/ブーストについてPBMC中で測定した(各群6匹のアカゲザル)。結果を、積み上げバーグラフフォーマットで、各エピトープについて、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。各動物の値は、プレブリード(0週目)のレベルに対して正規化した。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、初期免疫化の1、2、3、4、5、6、8、9、または10週間後にELISpotを用いてChAdV68.5WTnt.MAG25マー/VEE-MAG25マー srRNAによる異種プライム/ブースト群についてPBMC中で測定した(各群6匹のアカゲザル)。結果を、積み上げバーグラフフォーマットで、各エピトープについて、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。各動物の値は、プレブリード(0週目)のレベルに対して正規化した。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、免疫化の前、及び初期免疫化の4、5、6、7、8、10、11、12、13、14、15、16、17、18、19、20、21、22、23または24週後にELISpotを用いて、ChAdV68.5WTnt.MAG25マー/VEE-MAG25マー srRNAによる異種プライム/ブーストレジメンによる免疫化後にPBMC中で測定した。結果を、積み上げバーグラフフォーマットで、各エピトープ(各群6匹のアカゲザル)について、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、免疫化の前、及び初期免疫化の4、5、6、7、8、10、11、12、13、14、または15週後にELISpotを用いて、VEE-MAG25マー srRNA LNP2による同種プライム/ブーストレジメンによる免疫化後にPBMC中で測定した。結果を、積み上げバーグラフフォーマットで、各エピトープ(各群6匹のアカゲザル)について、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。 ELISpotを用いて測定した抗原特異的細胞性免疫応答を示す。6種類の異なるmamuA01制限エピトープに対する抗原特異的IFN-γ産生を、免疫化の前、及び初期免疫化の4、5、6、7、8、10、11、12、13、14、または15週後にELISpotを用いて、VEE-MAG25マー srRNA LNP1による同種プライム/ブーストレジメンによる免疫化後にPBMC中で測定した。結果を、積み上げバーグラフフォーマットで、各エピトープ(各群6匹のアカゲザル)について、PBMC10個当たりの平均スポット形成細胞(SFC)として示す。 Promega社のダイナミックレンジ標準から生成された、例示的なペプチドスペクトルを示す。 Promega社のダイナミックレンジ標準から生成された、例示的なペプチドスペクトルを示す。 8個の選択されたChAdV68-MAG急速増殖プラークのIU力価により評価した生産性を未精製のプールされたウイルスと比較して示す。グラフの柱の上に示された数字は、MOI=0.1での制御された感染におけるプールされたウイルスに対する改善倍率を示す。 E4遺伝子座及びクローン1Aで特定されたE4Orf2~E4Orf4間の727bpの欠失の概略図を示す。 E4欠失を有するウイルス及び有さないウイルスによるウイルス生産性を示す。棒の上に示された数字は、E4欠失のないウイルスに対する改善倍率を示す。ChAdV68-MAG-E4に対するChAdV68-MAGの比較を3つの別々の場合で行った。それぞれの場合で両方のウイルスを用いた400mLの生産ランをMOI=1.0で行った。ウイルス粒子(VP)の力価(左パネル)及び感染単位(IU)の力価(右パネル)を示す。 ChAdV68.5WTnt.MAG25マー(「MAG」)及びChAdV68-MAG-E4欠失(「MAG-E4」)ウイルスを感染させた細胞におけるウサギ抗クラスIIエピトープ抗体を使用したMAG発現のウェスタンブロット分析を示す。各試料は、+及び-符合で示されるようにプロテアーゼ阻害剤MG-132の存在下及び非存在下で処理した。 30個(L)、40個(XL)または50(XXL)個のエピトープを有する大きな抗原カセットにおける異なる腫瘍由来のモデルエピトープの一般的な編成を示す。 ChAdベクターが、すべてのカセットに共通の配列を認識する抗クラスII(PADRE)抗体を使用した上記のウェスタンブロットによって示されるように長いカセットを発現することを示す。HEK細胞に異なるサイズの大きなカセット(ChAdV68-50XXL、ChAdV68-40XL及びChAdV68-30L)を発現するChAdV68ベクターを感染させた。感染はMOI=0.2に設定した。感染24時間後にプロテアソーム阻害剤であるMG132を、感染させたウェルのセットに加えた(+符合で示す)。ウイルス処理したウェルの別のセットはMG132で処理しなかった(-符合で示す)。非感染HEK293細胞(293F)をネガティブコントロールとして用いた。感染48時間後に細胞ペレットを回収し、SDS/PAGE電気泳動で分析し、ウサギ抗クラスII PADRE抗体を用いてイムノブロッティングした。HRP抗ラビット抗体及びECL化学発光基質を検出に用いた。 ICSによりAH1(上図)及びSIINFEKL(配列番号29362)(下図)に対して検出された、ChAdV68の大きなカセットで免疫したマウスにおけるCD8+免疫反応を示す。データは、全CD8細胞の%としてモデルエピトープに対するIFNg+細胞として示す。 ChAdV68の大きなカセットによるワクチン接種後のLD-AH1+ (上図)及びKb-SIINFEKL(配列番号29362)+(下図)テトラマーに対するCD8+応答を示す。データは、モデルテトラマーペプチド複合体に対する反応性を有する全CD8細胞の%として示す。テューキー検定を用いたANOVAによる*p<0.05、**p<0.01。すべてのp値をMAG20抗原カセットと比較した。 ICSによりAH1(上図)及びSIINFEKL(配列番号29362)(下図)に対して検出された、アルファウイルスの大きなカセットで処置したマウスにおけるCD8+免疫反応を示す。データは、全CD8細胞の%としてモデルエピトープに対するIFNg+細胞として示す。テューキー検定を用いたANOVAによる*p<0.05、**P<0.01、**P<0.01。すべてのp値をMAG20抗原カセットと比較した。 アカゲザルにおける抗原カセット含有ベクターの免疫原性を評価するためのワクチン接種手法を示す。三角は、0及び32週目におけるChAdV68によるワクチン接種(1e12vp/動物)を示す。丸は、0、4、12、12、20、28、及び32週目におけるアルファウイルスワクチン接種を表す。四角は、抗CTLA-4抗体の投与を表す。 chAd-MAGを投与したアカゲザル単独(グループ4)におけるCD8+抗エピトープ応答の時間的推移を示す。平均のSFC/1e6脾細胞を示す。 chAd-MAG及びIV投与により抗CTLA4抗体(イピリムマブ)を投与したアカゲザル(グループ5)におけるCD8+抗エピトープ応答の時間的推移を示す。平均のSFC/1e6脾細胞を示す。 chAd-MAG及びSC投与により抗CTLA4抗体(イピリムマブ)を投与したアカゲザル(グループ6)におけるCD8+抗エピトープ応答の時間的推移を示す。平均のSFC/1e6脾細胞を示す。 ELISpotにより測定したchAdV68/samRNAワクチンプロトコールによって生じた抗原特異的メモリー応答を示す。結果は各ドットが1匹の動物を表す個別のドットプロットとして示す。免疫前のベースライン(左パネル)及びプライム18ヶ月後のメモリー反応(右パネル)を示す。 コンビナトリアルテトラマー染色及びCD45RA/CCR7共染色を用いたフローサイトメトリーによる抗原特異的CD8+T細胞のメモリー細胞表現型判定を示す。 実験18ヶ月目における4種類のMamu-A*01テトラマー+CD8+T細胞集団の総和中のメモリー細胞タイプの分布を示す。メモリー細胞は以下のようにキャラクタライズした。CD45RA+CCR7+=ナイーブ、CD45RA+CCR7-=エフェクター(Teff)、CD45RA-CCR7+=セントラルメモリー(Tcm)、CD45RA-CCR7-=エフェクターメモリー(Tem)。 CT26腫瘍保有マウスにおけるCT26腫瘍抗原AH1を認識するCD8+T細胞の頻度を示す。テューキーの多重比較検定による1元配置ANOVAを用いてP値を求めた(**P<0.001、*P<0.05)。ChAdV= ChAdV68.5WTnt.MAG25マー;aCTLA4=抗CTLA4抗体、クローン9D9。 ChAdV68-MAG及びChAdV68-E4Δ-MAGベクターで処理したBalb/c系マウスでAH1(マウス白血病ウイルスエンベロープタンパク質gp70からの主要エピトープ)による刺激後にICSによってIFN-γ産生を評価することによるCD8+免疫応答を示す。Balb/c系マウスを、大腿四頭筋への50μLのウイルスの両側注射によって免疫した(合計100μL、50μL/脚)。 ChAdV68-MAG(左パネル)及びChAdV68-E4Δ-MAG(右パネル)で免疫し、どちらの条件も抗CTLA4抗体(イピリムマブ)を投与したアカゲザルにおいて2週目に6種類の異なるアカゲザルMamu-A*01クラスIエピトープで刺激した後、ELISpotによってIFN-γ産生を評価することによるT細胞応答を示す。 ChAdV68-MAG(左パネル)及びChAdV68-E4Δ-MAG(右パネル)で免疫し、どちらの条件も抗CTLA4抗体(イピリムマブ)を投与したアカゲザルにおいて一定期間にわたって6種類の異なるアカゲザルMamu-A*01クラスIエピトープで刺激した後、ELISpotによってIFN-γ産生を評価することによるT細胞応答を示す。 抗原コードワクチンの例を使用したテトラサイクリン制御ウイルス生産システムの一般的なストラテジーを示す。 プロモーター及び発現させようとするカセットに関して、「TETo」応答領域の配置を示す概略図を示す。 プロモーター及び発現させようとするカセットに関して、「CMT」応答領域の配置を示す概略図を示す。 TETo配列を有するChAdV68ベクターから発現されたGFPのTETr介在調節を示す。GFPは、親293F細胞株(左パネル)と比較してTETrを発現する293F細胞(クローン17、右パネル)で有意に減少している。細胞をChAdV68-TETo-GFPにMOI=1で感染させ、24時間後にGFPを対物レンズ10倍の蛍光顕微鏡によって評価した。 CMT配列を有するChAdV68ベクターから発現されたSEAPのTETr介在調節を示す。SEAPは、親293F細胞株(左の柱)と比較してTETrを発現する293F細胞(クローン17、左から2番目の柱)で有意に減少している。コントロール発現カセットを発現するChAdV68ベクターを使用してバックグラウンドシグナルを確立した(右の2本の柱)。293F細胞に0.3のMOIで感染させ、24時間後に培地を収穫して製造者の記載に従ってSEAPアッセイを行った(分泌されたアルカリホスファターゼの検出用に化学発光基質を使用するPhospha-Light(商標)System (Applied Biosystems))。 親293F株における生産に対する、293F TETrリプレッサー株(クローン17)におけるChAdV68-TETo-MAGベクターのウイルス生産を示す。実験は3重に行った(実験1~3)。各実験で、400mLの293F細胞をMOI=約3で感染させ、48~72時間インキュベートした後、収穫した。ウイルスを2回の断続的なCsCl超遠心分離工程により精製し、保存バッファー中に透析した。ウイルス粒子を260nmの吸光度で測定した。ウイルス粒子(VP、上のパネル)及び感染単位(IU、下のパネル)の力価を示す。 293F TETr株(クローン17)におけるTet調節ウイルス(「TETo-MAG」)の全体の生産性を、通常の293F細胞株で同じカセットを用いた非調節ウイルス(「MAG」)に対して示す。複数の400mL生産実験後に遠心分離を行ったデータを示す。Tet調節ウイルスによる改善倍率をグラフの上に数字で示す。 ChAdV68-CMV-TSNAに対するChAdV68-CT-TSNA、ChAdV68-TETo-TSNA、ChAdV68-CMT-TSNA、及びChAdV68-E4d-CMT-TSNAウイルスのウイルス生産を示す。 tTs発現細胞株でCMT応答領域を有するアデノウイルスベクターを使用した、モデル抗原カセット50XXL及びM2.2のウイルス生産を示す。 非調節ベクターに対する調節ベクターによるワクチン接種後の抗原特異的T細胞応答を示す。CD8 T細胞の抗原特異的IFN-γ産生をICSを用いて測定し、結果を、抗原特異的CD8 T細胞として全CD8 T細胞の割合(%)として示す。各グループの中央値を横線で示す。Balb/c系マウスを、通常のCMVプロモーター(ChAdV-MAG)またはTETo調節されたプロモーター(TET-ChAdV-MAG)の制御下でモデル抗原カセットを発現する1×1010VPのChAdV68ワクチンで免疫した。ワクチン接種の12日後に脾臓を収穫し、単一の細胞懸濁液を調製した。
I.定義
一般に、特許請求の範囲及び明細書において使用される用語は、当業者により理解される通常の意味を有するものとして解釈されるものとする。特定の用語を、さらなる明確性を与えるために下記に定義する。通常の意味と与えられる定義との間に矛盾が存在する場合、与えられる定義が用いられるものとする。
本明細書で使用するところの「抗原」という用語は、免疫反応を誘導する物質のことである。抗原は新生抗原であってよい。抗原は、特定の集団、例えば、がん患者または感染した対象の特定の集団間にみられる抗原である「共有抗原」であってよい。抗原は、感染症生物に関連したもの、またはそれに由来するものであってよい。
本明細書で使用するところの「新生抗原」という用語は、例えば、腫瘍細胞の変異、または腫瘍細胞に特異的な翻訳後修飾によって、抗原を対応する野生型抗原とは異なるものとする少なくとも1つの変更を有する抗原のことである。新生抗原は、ポリペプチド配列または核酸配列を含んでよい。変異は、フレームシフトもしくは非フレームシフト挿入欠失(indel)、ミスセンスもしくはナンセンス置換、スプライス部位改変、ゲノム再編成もしくは遺伝子融合、または、新生ORFを生じる任意のゲノム改変もしくは発現改変を含むことができる。変異はまた、スプライス変異体も含むことができる。腫瘍細胞に特異的な翻訳後修飾は、異常リン酸化を含むことができる。腫瘍細胞に特異的な翻訳後修飾はまた、プロテアソームによって生成されるスプライス抗原も含むことができる。Liepe et al.,A large fraction ofHLAclass I ligandsare proteasome- generated spliced peptides;Science.2016 Oct 21;354(6310):354-358を参照されたい。対象は、例えば下記にさらに述べる患者選択方法のようなさまざまな診断法によって投与を行うために特定することができる。
本明細書で使用するところの「腫瘍抗原」という用語は、対象の腫瘍細胞もしくは組織中に存在するが、対象の対応する正常細胞もしくは組織中には存在しない抗原、または正常細胞もしくは組織と比較して腫瘍細胞もしくはがん性組織中で発現が変更されていることが知られているかまたは見出されているポリペプチドに由来する抗原である。
本明細書において使用するところの「抗原ベースワクチン」という用語は、1つ以上の抗原、例えば複数の抗原に基づいたワクチン組成物のことである。ワクチンは、ヌクレオチドベース(例えば、ウイルスベース、RNAベース、またはDNAベース)、タンパク質ベース(例えば、ペプチドベース)、またはこれらの組み合わせであってよい。
本明細書において使用される場合、「候補抗原」という用語は、抗原を表しうる配列を生じる変異、または他の異常のことである。
本明細書において使用される場合、「コード領域」という用語は、タンパク質をコードする遺伝子の部分のことである。
本明細書において使用される場合、「コード変異」という用語は、コード領域で生じる変異のことである。
本明細書において使用される場合、「ORF」という用語は、オープンリーディングフレームを意味する。
本明細書において使用される場合、「新生ORF」という用語は、変異またはスプライシングなどの他の異常により生じる腫瘍特異的なORFのことである。
本明細書において使用される場合、「ミスセンス変異」という用語は、1つのアミノ酸から別のアミノ酸への置換を引き起こす変異である。
本明細書において使用される場合、「ナンセンス変異」という用語は、アミノ酸から終止コドンへの置換を引き起こすか、または基準開始コドンの除去を引き起こす変異である。
本明細書において使用される場合、「フレームシフト変異」という用語は、タンパク質のフレームに変化を引き起こす変異である。
本明細書において使用される場合、「挿入欠失」という用語は、1つ以上の核酸の挿入または欠失である。
本明細書において使用される場合、2つ以上の核酸またはポリペプチドの配列との関連での「同一率」(%)という用語は、下記の配列比較アルゴリズム(例えば、BLASTP及びBLASTN、または当業者が利用可能な他のアルゴリズム)のうちの1つを用いて、または目視検査により測定される、最大の一致について比較し、整列させた場合に、ヌクレオチドまたはアミノ酸残基の特定の比率(%)が同じである2つ以上の配列または部分配列のことを指す。用途に応じて、「同一率」(%)は、比較される配列の領域にわたって、例えば、機能ドメインにわたって存在するか、あるいは、比較される2つの配列の完全長にわたって存在することができる。
配列比較では、一般的に、1つの配列が、試験配列が比較される参照配列として機能する。配列比較アルゴリズムを用いる場合、試験配列及び参照配列をコンピュータに入力し、必要な場合には部分配列座標を指定し、配列アルゴリズムプログラムのパラメータを指定する。次いで、配列比較アルゴリズムが、指定されたプログラムパラメータに基づいて、参照配列に対する試験配列の配列同一率(%)を算出する。あるいは、配列の類似性または相違性は、選択された配列位置(例えば、配列モチーフ)における特定のヌクレオチドの、または翻訳後の配列ではアミノ酸の有無の組み合わせによって確立することもできる。
比較を行うための配列の最適なアラインメントは、例えば、Smith & Waterman,Adv.Appl.Math.2:482(1981)の局所相同性アルゴリズムによって、Needleman & Wunsch,J.Mol.Biol.48:443(1970)の相同性アラインメントアルゴリズムによって、Pearson & Lipman,Proc.Nat’l.Acad.Sci.USA 85:2444(1988)の類似性の探索法によって、これらのアルゴリズムのコンピュータ処理による実行(Wisconsin Genetics Software Package,Genetics Computer Group,575 Science Dr.,Madison,Wis.におけるGAP、BESTFIT、FASTA、及びTFASTA)によって、または目視検査によって実施することができる(一般的には、下記のAusubel et al.を参照)。
配列同一率(%)及び配列類似率(%)を決定するのに適したアルゴリズムの1つの例として、Altschul et al.,J.Mol.Biol.215:403-410(1990)に記載されるBLASTアルゴリズムがある。BLAST解析を行うためのソフトウェアは、National Center for Biotechnology Informationを通して公に入手可能である。
本明細書において使用される場合、「ノンストップまたはリードスルー」という用語は、天然の終止コドンの除去を引き起こす変異のことである。
本明細書において使用される場合、「エピトープ」という用語は、抗体またはT細胞受容体が一般的に結合する、抗原の特異的な部分のことである。
本明細書において使用される場合、「免疫原性」という用語は、例えば、T細胞、B細胞、またはその両方を介して免疫応答を誘発する能力のことである。
本明細書において使用される場合、「HLA結合親和性」、「MHC結合親和性」という用語は、特異的な抗原と特異的なMHCアレルとの結合の親和性を意味する。
本明細書において使用される場合、「ベイト」という用語は、DNAまたはRNAの特異的な配列を試料から濃縮するために使用される核酸プローブのことである。
本明細書において使用される場合、「変異」という用語は、対象の核酸と、対照として使用される参照ヒトゲノムとの差である。
本明細書において使用される場合、「変異コール」という用語は、典型的にはシークエンシングからの、変異の存在のアルゴリズム的決定である。
本明細書において使用される場合、「多型」という用語は、生殖細胞系列変異、すなわち、個体のすべてのDNA保有細胞において見出される変異である。
本明細書において使用される場合、「体細胞変異」という用語は、個体の非生殖系列細胞において生じる変異である。
本明細書において使用される場合、「アレル」という用語は、遺伝子の1つのバージョンまたは遺伝子配列の1つのバージョンまたはタンパク質の1つのバージョンのことである。
本明細書において使用される場合、「HLA型」という用語は、HLA遺伝子アレルの相補体のことである。
本明細書において使用される場合、「ナンセンス変異依存分解機構」または「NMD」という用語は、未成熟な終止コドンに起因する細胞によるmRNAの分解のことである。
本明細書において使用される場合、「トランカル変異(truncal mutation)」という用語は、腫瘍の発生の初期に生じ、腫瘍の細胞の大部分に存在する変異である。
本明細書において使用される場合、「サブクローナル変異」という用語は、腫瘍の発生において後期に生じ、腫瘍の細胞の一部のみに存在する変異である。
本明細書において使用される場合、「エクソーム」という用語は、タンパク質をコードするゲノムのサブセットである。エクソームは、ゲノムの集合的なエクソンでありうる。
本明細書において使用される場合、「ロジスティック回帰」という用語は、従属変数が1に等しい確率のロジットが従属変数の線形関数としてモデル化される、統計からのバイナリデータ用の回帰モデルである。
本明細書において使用される場合、「ニューラルネットワーク」という用語は、多層の線形変換に続いて一般的に確率的勾配降下法及び逆伝搬により訓練された要素ごとの非線形変換を行うことからなる分類または回帰のための機械学習モデルである。
本明細書において使用される場合、「プロテオーム」という用語は、細胞、細胞の群、または個体によって発現される、及び/または翻訳されるすべてのタンパク質のセットのことである。
本明細書において使用される場合、「ペプチドーム」という用語は、細胞表面上のMHC-IまたはMHC-IIによって提示されるすべてのペプチドのセットのことである。ペプチドームは、細胞または細胞の集合の性質を指す場合もある(例えば、腫瘍ペプチドームは、腫瘍を含むすべての細胞のペプチドームの和集合を意味する)。
本明細書において使用される場合、「ELISPOT」という用語は、ヒト及び動物において免疫応答を観察するための一般的な方法である、酵素結合免疫吸着スポットアッセイを意味する。
本明細書において使用される場合、「デキサトラマー」という用語は、フローサイトメトリーにおいて抗原特異的T細胞染色に使用される、デキストランベースのペプチド-MHCマルチマーである。
本明細書において使用される場合、「寛容または免疫寛容」という用語は、1つ以上の抗原、例えば、自己抗原に対する免疫不応答の状態のことである。
本明細書において使用される場合、「中枢性寛容」という用語は、自己反応性T細胞クローンを欠失させること、または自己反応性T細胞クローンの免疫抑制性制御性T細胞(Treg)への分化を促進することのいずれかにより、胸腺において与えられる寛容である。
本明細書において使用される場合、「末梢性寛容」という用語は、中枢性寛容を生き延びた自己反応性T細胞を下方制御もしくはアネルギー化すること、またはこれらのT細胞のTregへの分化を促進することにより、末梢系において与えられる寛容である。
「試料」という用語は、静脈穿刺、排泄、射精、マッサージ、生検、針吸引、洗浄試料、擦過、外科的切開、もしくは介入、または当技術分野において公知の他の手段を含む手段によって対象から採取された、単一細胞、または複数の細胞、または細胞の断片、または体液のアリコートを含むことができる。
「対象」という用語は、インビボ、エクスビボ、またはインビトロ、雄または雌のいずれかの、細胞、組織、または生物体、ヒトまたは非ヒトを包含する。対象という用語は、ヒトを含む哺乳動物を含める。
「哺乳動物」という用語は、ヒト及び非ヒトの両方を包含し、ヒト、非ヒト霊長類、イヌ、ネコ、マウス、ウシ、ウマ、及びブタを含むが、それらに限定されない。
「臨床的因子」という用語は、対象の状態、例えば、疾患の活性または重症度の測定を指す。「臨床的因子」は、非試料マーカーを含む、対象の健康状態のすべてのマーカー、ならびに/または、非限定的に年齢及び性別などの、対象の他の特徴を包含する。臨床的因子は、対象または所定の条件下の対象由来の試料(または試料の集団)の評定から取得され得るスコア、値、または値のセットであることができる。臨床的因子はまた、マーカー、及び/または遺伝子発現代替物などの他のパラメータによっても予測することができる。臨床的因子は、腫瘍タイプ、腫瘍サブタイプ、及び喫煙歴を含むことができる。
「由来する」という用語は、対象の組織または試料(例えば、腫瘍、細胞、感染細胞、または感染症生物)から例えばRT-PCRにより直接抽出された配列、または対象の組織または試料をシークエンシングした後、シークエンシングデータを用いて、例えば当該技術分野では周知の各種の合成またはPCRベースの方法によって核酸配列を合成することにより得られる配列データを指す。「由来する」は、例えば対応する天然の感染症生物の核酸配列などの対応する天然核酸配列と同じポリペプチド配列をコードする、コドン最適化された核酸配列変異体などの核酸配列変異体を含む場合もある。「由来する」には、天然の感染症生物のポリペプチド配列などの天然ポリペプチド配列に対して1つ以上の(例えば、1、2、3、4、または5個の)変異を有する、感染症生物のポリペプチド配列などの改変ポリペプチド配列をコードする変異体も含まれる場合がある。例えば、改変ポリペプチド配列は、天然ポリペプチド配列に対して1つ以上のミスセンス変異(例えば、遺伝子操作により導入された変異)を有することができる。
「アルファウイルス」という用語は、トガウイルス科のメンバーのことを指し、一本鎖プラス鎖RNAウイルスである。アルファウイルスは、一般的に、シンドビス、ロスリバー、マヤロ、チクングニア、及びセムリキ森林ウイルスなどの旧世界型、または、東部ウマ脳炎ウイルス、アウラ、フォートモルガン、もしくはベネズエラウマ脳炎ウイルス及びその誘導株TC-83などの新世界型に分類される。アルファウイルスは一般的には自己複製RNAウイルスである。
「アルファウイルス骨格」という用語は、ウイルスゲノムの自己複製を可能とするアルファウイルスの最小配列(複数可)のことを指す。最小配列としては、非構造タンパク質媒介増幅用の保存配列、非構造タンパク質1(nsP1)遺伝子、nsP2遺伝子、nsP3遺伝子、nsP4遺伝子、及びポリA配列、ならびに、26Sプロモーター因子をはじめとするサブゲノミックウイルスRNAの発現用の配列を挙げることができる。
「非構造タンパク質媒介増幅用の保存配列」という用語には、当該技術分野では周知のアルファウイルス保存配列因子(CSE)が含まれる。CSEとしては、これらに限定されるものではないが、アルファウイルス5’UTR、51-nt CSE、24-nt CSE、または他の26Sサブゲノミックプロモーター配列、19-nt CSE、及びアルファウイルス3’UTRが挙げられる。
「RNAポリメラーゼ」という用語には、DNA鋳型からのRNAポリヌクレオチドの生成を触媒するポリメラーゼが含まれる。RNAポリメラーゼとしては、これらに限定されるものではないが、T3、T7、及びSP6を含むバクテリオファージ由来ポリメラーゼが挙げられる。
「脂質」という用語には、疎水性及び/または両親媒性分子が含まれる。脂質は、カチオン性、アニオン性、または中性であってよい。脂質は、合成または天然由来のものであってよく、特定の例では生分解性であってよい。脂質は、コレステロール、リン脂質、ポリエチレングリコール(PEG)複合体(PEG化脂質)を含む(ただしこれに限定されない)脂質複合体、ワックス、油類、グリセリド、脂肪、及び脂溶性ビタミンを含みうる。脂質には、ジリノレイルメチル-4-ジメチルアミノブチレート(MC3)及びMC3様分子も含まれうる。
「脂質ナノ粒子」または「LNP」という用語には、リポソームとも呼ばれる、水性の内部を包囲する脂質含有膜を用いて形成された小胞様構造が含まれる。脂質ナノ粒子は、界面活性剤により安定化された固体脂質コアを有する脂質ベースの組成物を含む。コア脂質は、脂肪酸、アシルグリセロール、ワックス、及びこれらの界面活性剤の混合物であってよい。リン脂質、スフィンゴミエリン、胆汁酸(タウロコール酸)、及びステロール類(コレステロール)のような生体膜脂質を安定化剤として用いることができる。脂質ナノ粒子は、1種類以上のカチオン性、アニオン性、または中性脂質の規定の比率を含む(ただし、これに限定されない)、規定の比率の異なる脂質分子を用いて形成することができる。脂質ナノ粒子は、外膜シェル内に分子を封入することができ、その後、標的細胞と接触させて封入分子を宿主細胞のサイトゾルに送達することができる。脂質ナノ粒子は、それらの表面などを非脂質分子で修飾または官能化することができる。脂質ナノ粒子は、単一層(単層)または多層(複層)とすることができる。脂質ナノ粒子は、核酸と複合体化することができる。単層脂質ナノ粒子を核酸と複合体化することができ、その場合、核酸は水性の内部となる。複層脂質ナノ粒子を核酸と複合体化することができ、その場合、核酸は水性の内部となるか、またはその間を形成するかまたはその間に挟まれる。
略語:MHC:主要組織適合性複合体;HLA:ヒト白血球抗原、またはヒトMHC遺伝子座;NGS:次世代シークエンシング;PPV:陽性適中率;TSNA:腫瘍特異的新生抗原;FFPE:ホルマリン固定パラフィン包埋;NMD:ナンセンス変異依存分解機構;NSCLC:非小細胞肺癌;DC:樹状細胞。
本明細書及び添付の特許請求の範囲において使用される場合、単数形「a」、「an」、及び「the」は、文脈によってそうでない旨が明示されない限り、複数の指示物を含む点に留意されたい。
特に断らない限り、または文脈から明らかでない限り、本明細書において使用される「約」という用語は、例えば、平均から標準偏差2つ分以内など、当該技術分野における公称公差の範囲内にあるものとして理解される。「約」は、記載される値の10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%、または0.01%以内として理解することができる。文脈から明らかでない限り、本明細書に示される全ての数値は「約」という語によって修飾されている。
本明細書において直接定義されていない用語は、本発明の技術分野の範囲内で理解されるような、一般的にそれらに付随する意味を有するものとして理解されるべきである。本発明の態様の組成物、装置、方法など、ならびにそれらの製造または使用法を説明するうえで実施者にさらなる手引きを与える目的で特定の用語が本明細書で検討される。同じものについて複数の言い方がなされうる点は認識されるであろう。したがって、代替的な語及び同義語が、本明細書で検討される用語の任意の1つ以上について用いられる場合がある。本明細書においてある用語が詳述または検討されているか否かに重きが置かれるべきではない。いくつかの同義語または代用可能な方法、材料などが提供される。1つまたは数個の同義語または均等物の記載は、明確に述べられない限り、他の同義語または均等物の使用を除外しない。用語の例を含む例の使用は、あくまで説明を目的としたものにすぎず、本明細書における発明の態様の範囲及び意味を限定しない。
本明細書の本文において引用されるすべての参照文献、発行特許、及び特許出願は、あらゆる目的でそれらの全容を参照により本明細書に援用するものである。
II.抗原を特定する方法
抗原(例えば、腫瘍または感染症生物に由来する抗原)を特定するための方法は、細胞表面上に提示される(例えば、腫瘍細胞、感染細胞、または、樹状細胞などのプロフェッショナル抗原提示細胞を含む免疫細胞上のMHCにより提示される)可能性が高い、及び/または免疫原性を有する可能性が高い抗原を特定することを含む。例として、かかる方法の1つは、腫瘍、感染細胞、または感染症生物からエクソーム、トランスクリプトーム、または全ゲノムのヌクレオチドシークエンシング及び/または発現データのうちの少なくとも1つを取得する工程であって、前記ヌクレオチドシークエンシング及び/または発現データを用いて抗原(例えば、腫瘍または感染症生物に由来する抗原)のセットのそれぞれのペプチド配列を表すデータが得られる、前記工程と、各抗原のペプチド配列を1つ以上の提示モデルに入力して抗原のそれぞれが、対象の腫瘍細胞または感染細胞などの細胞表面の1つ以上のMHCアレルによって提示される数値的尤度のセットを生成する工程であって、前記数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、前記工程と、前記数値的尤度のセットに基づいて抗原のセットのサブセットを選択して、選択された抗原のセットを生成する工程と、を含む。
腫瘍ワクチンに関し、また、感染症ワクチンに適用することができる1つの例において、提示モデルは、対応するラベルのセットを含む参照データのセット(訓練データセットとも呼ばれる)で訓練された、統計学的回帰または機械学習(例えば、ディープラーニング)モデルを含むことができ、前記参照データのセットは、場合により一部の対象が腫瘍を有しうる複数の別個の対象の各々から取得され、また、前記参照データのセットは、腫瘍組織由来のエクソーム核酸配列を表すデータ、正常組織由来のエクソーム核酸配列を表すデータ、腫瘍組織由来のトランスクリプトーム核酸配列を表すデータ、腫瘍組織由来のプロテオーム配列を表すデータ、及び腫瘍組織由来のMHCペプチドーム配列を表すデータ、及び正常組織由来のMHCペプチドーム配列を表すデータのうちの少なくとも1つを含む。参照データは、合成タンパク質、正常及び腫瘍ヒト細胞株、ならびに新鮮な及び凍結された初代試料に対してその後曝露される所定のMHCアレルを発現するように操作された単一アレル細胞株の質量分析データ、シークエンシングデータ、RNAシークエンシングデータ、発現プロファイリングデータ、及びプロテオミクスデータ、ならびにT細胞アッセイ(例えば、ELISPOT)をさらに含むことができる。特定の態様では、参照データのセットは、参照データの各形態を含む。
提示モデルは、参照データのセットに少なくとも一部由来する特性のセットを含むことができ、前記特性のセットは、アレル依存的特性及びアレル非依存的特性のうちの少なくとも1つを含む。特定の態様では、各特性が含まれる。
抗原を特定するための方法はまた、腫瘍細胞または感染細胞などの対象の細胞の表面上に提示される可能性が高い1つ以上の抗原を特定することにより、個別化ワクチンを構築するための出力を生成することを含む。腫瘍ワクチンに関し、また、感染症ワクチンに適用することができる1つの例として、かかる方法の1つは、対象の腫瘍細胞及び正常細胞からエクソーム、トランスクリプトーム、または全ゲノムヌクレオチドシークエンシング及び/または発現データのうちの少なくとも1つを取得する工程であって、前記ヌクレオチドシークエンシング及び/または発現データが、腫瘍細胞からのヌクレオチドシークエンシング及び/または発現データと正常細胞からのヌクレオチドシークエンシング及び/または発現データとを比較することにより特定された抗原のセットのそれぞれのペプチド配列(例えば、新生抗原の場合では、各新生抗原のペプチド配列はペプチド配列を対応する野生型の親ペプチド配列とは異なるものにする少なくとも1つの変更を含み、または変異のない抗原の場合では、ペプチドは正常細胞または組織と比較して腫瘍細胞またはがん性組織中で発現が変更されていることが知られているかまたは見出されている任意のポリペプチドに由来する)、対象の正常細胞から特定されたペプチド配列を表すデータを取得するために用いられる、前記工程と、前記抗原のそれぞれのペプチド配列を対応する数値ベクトルにコード化する工程であって、各数値ベクトルはペプチド配列を構成する複数のアミノ酸及びペプチド配列内のアミノ酸の位置のセットに関する情報を含む、前記工程と、コンピュータプロセッサを使用して前記数値ベクトルを深層学習提示モデルに入力して前記抗原のセットについて提示尤度のセットを生成する工程であって、前記セット内の各提示尤度が対応する抗原が1つ以上のクラスII MHCアレルによって対象の腫瘍細胞の表面上に提示される尤度を表す、前記工程と、前記提示尤度のセットに基づいて前記抗原のセットのサブセットを選択して、選択された抗原のセットを生成する工程と、前記選択された抗原のセットに基づいて個別化がんワクチンを構築するための出力を生成する工程と、を含む
新生抗原を含む抗原を同定するための具体的な方法は当業者には周知のものであり、こうした方法は、例えば、あらゆる目的で本明細書に参照によりその全容をそれぞれ援用する国際特許出願公開第WO/2017/106638号、同第WO/2018/195357号、及び同第WO/2018/208856号により詳細に記載されている。
本明細書では、本明細書に記載される抗原の特定方法のいずれかの工程を行うことを含み、選択された抗原のセットを含む腫瘍ワクチンを得る工程と、腫瘍ワクチンを対象に投与する工程と、をさらに含む、腫瘍を有する対象を治療する方法が開示される。
本明細書に開示される方法はまた、サブセットの中の抗原のうちの少なくとも1つに対して抗原特異的な1つ以上のT細胞を同定することをさらに含むことができる。いくつかの実施形態では、同定は、1つ以上の抗原特異的T細胞を増殖させる条件下で1つ以上のT細胞をサブセットの中の抗原のうちの1つ以上と共培養することを含む。さらなる実施形態では、同定は、1つ以上のT細胞を、サブセットの中の抗原のうちの1つ以上を含むテトラマーと、T細胞とテトラマーとの結合が可能な条件下で接触させることを含む。いっそうさらなる実施形態では、本明細書に開示される方法はまた、前記1つ以上の同定されたT細胞の1つ以上のT細胞受容体(TCR)を同定することをさらに含むことができる。特定の実施形態では、1つ以上のT細胞受容体を同定することは、前記1つ以上の同定されたT細胞のT細胞受容体配列をシークエンシングすることを含む。本明細書に開示される方法は、前記1つ以上の同定されたT細胞受容体のうちの少なくとも1つを発現するように複数のT細胞を遺伝子操作することと、前記複数のT細胞を増殖させる条件下で前記複数のT細胞を培養することと、増殖させたT細胞を対象に注入することと、をさらに含むことができる。いくつかの実施形態では、1つ以上の同定されたT細胞受容体の少なくとも1つを発現するように複数のT細胞を遺伝子操作することは、前記1つ以上の同定されたT細胞の前記T細胞受容体配列を発現ベクターにクローニングすることと、前記複数のT細胞のそれぞれに発現ベクターをトランスフェクトすることと、を含む。特定の実施形態では、本明細書に開示される方法は、さらに、前記1つ以上のT細胞を増殖させる条件下で前記1つ以上の同定されたT細胞を培養することと、増殖させたT細胞を対象に注入することと、をさらに含む。
本明細書ではまた、前記サブセットの中の少なくとも1つの選択された抗原に対して抗原特異的である単離T細胞も開示される。
本明細書ではまた、腫瘍ワクチンを製造するための方法であって、対象の腫瘍細胞から、エクソーム、トランスクリプトーム、または全ゲノムの腫瘍ヌクレオチドシークエンシング及び/または発現データのうちの少なくとも1つを取得する工程であって、前記腫瘍ヌクレオチドシークエンシング及び/または発現データが、抗原のセット(例えば、新生抗原の場合では各新生抗原のペプチド配列がペプチド配列を対応する野生型の親ペプチド配列とは異なるものにする少なくとも1つの変更を含み、または変異のない共有抗原の場合では、ペプチドは正常細胞または組織と比較して腫瘍細胞またはがん性組織中で発現が変更されていることが知られているかまたは見出されている任意のポリペプチドに由来する)のそれぞれのペプチド配列を表すデータを取得するために用いられる、前記工程と、各抗原のペプチド配列を1つ以上の提示モデルに入力して、前記抗原のそれぞれが前記対象の前記腫瘍細胞の前記腫瘍細胞表面上の1つ以上のMHCアレルによって提示される数値的尤度のセットを生成する工程であって、前記数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、前記工程と、前記抗原のセットのサブセットを、前記数値的尤度のセットに基づいて選択して、選択された抗原のセットを生成する工程と、前記選択された抗原のセットを含む腫瘍ワクチンを生産するか、またはこれまでに生産している工程と、を含む方法も開示される。
本明細書ではまた、対象の腫瘍細胞からエクソーム、トランスクリプトーム、または全ゲノム腫瘍ヌクレオチドシークエンシング及び/または発現データのうちの少なくとも1つを取得する工程であって、腫瘍ヌクレオチドシークエンシング及び/または発現データが、抗原のセットのそれぞれのペプチド配列を表すデータを取得するために用いられ、各抗原のペプチド配列(例えば、新生抗原の場合では、各新生抗原のペプチド配列がペプチド配列を対応する野生型の親ペプチド配列とは異なるものにする少なくとも1つの変更を含み、または変異のない共有抗原の場合では、ペプチドは正常細胞または組織と比較して腫瘍細胞またはがん性組織中で発現が変更されていることが知られているかまたは見出されている任意のポリペプチドに由来する)、工程と、各抗原のペプチド配列を1つ以上の提示モデルに入力して、前記抗原のそれぞれが前記対象の前記腫瘍細胞の前記腫瘍細胞表面上の1つ以上のMHCアレルによって提示される数値的尤度のセットを生成する工程であって、前記数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、前記工程と、前記抗原のセットのサブセットを、前記数値的尤度のセットに基づいて選択して、選択された抗原のセットを生成する工程と、前記選択された抗原のセットを含む腫瘍ワクチンを生産するか、またはこれまでに生産している工程と、を含む方法を実行することによって選択される、選択された抗原のセットを含む腫瘍ワクチンも開示される。
腫瘍ワクチンは、核酸配列、ポリペプチド配列、RNA、DNA、細胞、プラスミド、またはベクターのうちの1つ以上を含んでもよい。
腫瘍ワクチンは、腫瘍細胞表面上に提示された1つ以上の抗原を含んでもよい。
腫瘍ワクチンは、対象において免疫原性を示す1つ以上の抗原を含んでもよい。
腫瘍ワクチンは、対象において正常組織に対する自己免疫応答を誘導する、1つ以上の抗原を含まなくともよい。
腫瘍ワクチンは、アジュバントを含んでもよい。
腫瘍ワクチンは、賦形剤を含んでもよい。
本明細書に開示される方法はまた、提示モデルに基づいて選択されない抗原に対して、腫瘍細胞表面上に提示される尤度が増大している抗原を選択することを含んでもよい。
本明細書に開示される方法はまた、提示モデルに基づいて選択されない抗原に対して、対象に腫瘍特異的な免疫応答を誘導することができる尤度が増大している抗原を選択することを含んでもよい。
本明細書に開示される方法はまた、提示モデルに基づいて選択されない抗原に対して、プロフェッショナル抗原提示細胞(APC)によってナイーブT細胞に対して提示されることができる尤度が増大している抗原を選択することを含んでもよく、場合により、APCは樹状細胞(DC)である。
本明細書に開示される方法はまた、提示モデルに基づいて選択されない抗原に対して、中枢性寛容または末梢性寛容による阻害に供される尤度が減少している抗原を選択することを含んでもよい。
本明細書に開示される方法はまた、提示モデルに基づいて選択されない抗原に対して、対象における正常組織に対する自己免疫応答を誘導することができる尤度が減少している抗原を選択することを含んでもよい。
エクソームまたはトランスクリプトームのヌクレオチドシークエンシング及び/または発現データは、腫瘍組織でシークエンシングを行うことによって取得することができる。
シークエンシングは、次世代シークエンシング(NGS)または任意の大規模並列処理シークエンシングアプローチであってもよい。
数値的尤度のセットは、以下のうちの少なくとも1つを含む少なくともMHCアレル相互作用特性によってさらに特定することができる。すなわち、MHCアレルと抗原コード化ペプチドとが結合する予測親和性;抗原コード化ペプチド-MHC複合体の予測安定性;抗原コード化ペプチドの配列及び長さ;質量分析プロテオミクスまたは他の手段によって評価される、特定のMHCアレルを発現する他の個体由来の細胞の類似した配列を有する抗原コード化ペプチドの提示の確率;対象とされる対象の特定のMHCアレルの発現レベル(例えば、RNA-seqまたは質量分析によって測定される);特定のMHCアレルを発現する他の別個の個体における、特定のMHCアレルによる提示の、全体的な新生抗原コード化ペプチド配列とは独立した確率;他の別個の対象における、同じ分子のファミリー(例えば、HLA-A、HLA-B、HLA-C、HLA-DQ、HLA-DR、HLA-DP)のMHCアレルによる提示の、全体的な新生抗原コード化ペプチド配列とは独立した確率。
数値的尤度のセットは、以下のうちの少なくとも1つを含む少なくともMHCアレル非相互作用特性によってさらに特定される。すなわち、その由来源タンパク質配列内の、新生抗原コード化ペプチドに隣接するC末端及びN末端配列;場合により、腫瘍細胞内の対応するプロテアーゼの発現(RNA-seqまたは質量分析によって測定される)にしたがって重み付けされる、新生抗原コード化ペプチド内のプロテアーゼ切断モチーフの存在;適切な細胞タイプにおいて測定される由来源タンパク質の代謝回転速度;RNA-seqもしくはプロテオーム質量分析によって測定される、または、DNAもしくはRNA配列データにおいて検出される生殖細胞系列もしくは体細胞系列スプライシング変異のアノテーションから予測される、腫瘍細胞に最も高発現している特定のスプライス変異体(「アイソフォーム」)を場合により考慮した、由来源タンパク質の長さ;腫瘍細胞におけるプロテアソーム、イムノプロテアソーム、胸腺プロテアソーム、または他のプロテアーゼの発現のレベル(RNA-seq、プロテオーム質量分析、または免疫組織化学によって測定することができる);新生抗原コード化ペプチドの由来源遺伝子の発現(例えば、RNA-seqまたは質量分析によって測定される);細胞周期の異なる段階における新生抗原コード化ペプチドの由来源遺伝子の典型的な組織特異的発現;例えば、uniProtまたはPDB http://www.rcsb.org/pdb/home/home.doにみることができるような、由来源タンパク質及び/またはそのドメインの特性の包括的なカタログ;ペプチドを含む由来源タンパク質のドメインの性質を説明する特性、例えば、二次構造または三次構造(例えば、βシートに対するαヘリックス);選択的スプライシング;他の別個の対象における、対象とされる新生抗原コード化ペプチドの由来源タンパク質に由来するペプチドの提示の確率;ペプチドが、技術的バイアスのために質量分析によって検出されないか、または過剰に表現される確率;腫瘍細胞、間質、または腫瘍浸潤リンパ球(TIL)の状態について情報を与える、RNASeqによって測定される、種々の遺伝子モジュール/経路の発現(ペプチドの由来源タンパク質を含む必要はない);腫瘍細胞内の新生抗原コード化ペプチドの由来源遺伝子のコピー数;ペプチドがTAPに結合する確率、またはTAPに対するペプチドの測定または予測される結合親和性;腫瘍細胞におけるTAPの発現レベル(RNA-seq、プロテオーム質量分析、免疫組織化学によって測定することができる);以下を含むがただしこれらに限定されない、腫瘍変異の有無:EGFR、KRAS、ALK、RET、ROS1、TP53、CDKN2A、CDKN2B、NTRK1、NTRK2、NTRK3などの公知のがんドライバー遺伝子におけるドライバー変異、及び抗原提示マシナリーに関与するタンパク質をコードする遺伝子(例えば、B2M、HLA-A、HLA-B、HLA-C、TAP-1、TAP-2、TAPBP、CALR、CNX、ERP57、HLA-DM、HLA-DMA、HLA-DMB、HLA-DO、HLA-DOA、HLA-DOB、HLA-DP、HLA-DPA1、HLA-DPB1、HLA-DQ、HLA-DQA1、HLA-DQA2、HLA-DQB1、HLA-DQB2、HLA-DR、HLA-DRA、HLA-DRB1、HLA-DRB3、HLA-DRB4、HLA-DRB5、または、プロテアソームもしくはイムノプロテアソームの構成要素をコードする遺伝子のいずれか)における変異。その提示が、腫瘍において機能喪失変異を生ずる抗原提示マシナリーの構成要素に依存するペプチドは、提示の確率が低い;以下を含むがただしこれらに限定されない、機能的生殖細胞系列多型の有無:抗原提示マシナリーに関与するタンパク質をコードする遺伝子(例えば、B2M、HLA-A、HLA-B、HLA-C、TAP-1、TAP-2、TAPBP、CALR、CNX、ERP57、HLA-DM、HLA-DMA、HLA-DMB、HLA-DO、HLA-DOA、HLA-DOB、HLA-DP、HLA-DPA1、HLA-DPB1、HLA-DQ、HLA-DQA1、HLA-DQA2、HLA-DQB1、HLA-DQB2、HLA-DR、HLA-DRA、HLA-DRB1、HLA-DRB3、HLA-DRB4、HLA-DRB5、または、プロテアソームもしくはイムノプロテアソームの構成要素をコードする遺伝子のいずれか)における多型;腫瘍タイプ(例えば、NSCLC、メラノーマ);臨床的腫瘍サブタイプ(例えば、扁平上皮肺癌対非扁平上皮);喫煙歴;場合によりドライバー変異によって層別化される、関連する腫瘍タイプまたは臨床的サブタイプにおけるペプチドの由来源遺伝子の典型的な発現。
少なくとも1つの変異は、フレームシフトもしくは非フレームシフト挿入欠失、ミスセンスもしくはナンセンス置換、スプライス部位改変、ゲノム再編成もしくは遺伝子融合、または、新生ORFを生じる任意のゲノム改変もしくは発現改変であってよい。
腫瘍細胞は、肺癌、メラノーマ、乳癌、卵巣癌、前立腺癌、腎臓癌、胃癌、結腸癌、精巣癌、頭頸部癌、膵臓癌、脳癌、B細胞リンパ腫、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ球性白血病、及びT細胞リンパ球性白血病、非小細胞肺癌、及び小細胞肺癌からなる群から選択することができる。
本明細書に開示される方法はまた、選択された新生抗原のセットまたはそのサブセットを含む腫瘍ワクチンを得ることを含んでもよく、場合により腫瘍ワクチンを対象に投与することをさらに含む。
選択された新生抗原のセット内の新生抗原の少なくとも1つは、ポリペプチド形態である場合、以下のうちの少なくとも1つを含んでもよい:IC50値が1000nM未満のMHCとの結合親和性、MHCクラスIのポリペプチドではアミノ酸8~15個、8、9、10、11、12、13、14、または15個の長さ、MHCクラスIIのポリペプチドではアミノ酸6~30個、6、7、8、9、10、11、12、13、14、15、16、17、18,19、20、21、22、23、24、25、26、27、28、29、または30個の長さ、プロテアソーム切断を促進する、親タンパク質配列中のポリペプチド内またはその近くの配列モチーフの存在、及び、TAP輸送を促進する配列モチーフの存在、MHCクラスIIでは、細胞外もしくはリソソームプロテアーゼ(例えば、カテプシン)によるペプチド促進切断部位またはHLA-DMにより触媒されるHLA結合部位内またはその近くの配列モチーフの存在。
本明細書では、腫瘍細胞の腫瘍細胞表面上に提示される可能性が高い1つ以上の新生抗原を特定するための方法であって、複数の新鮮なまたは凍結得様試料に由来する主要組織適合性複合体(MHC)から溶出された複数の単離ペプチドに関連するデータを含む質量分析データを受け取る工程と、腫瘍試料中に存在し、各訓練ペプチド配列に関連する1つ以上のMHCアレル上に提示される訓練ペプチド配列のセットを少なくとも特定することにより、訓練データセットを取得する工程と、前記訓練ペプチド配列に基づいて、訓練タンパク質配列のセットを取得する工程と、前記訓練タンパク質配列及び前記訓練ペプチド配列を用いて、提示モデルの数値的パラメータのセットを訓練する工程であって、前記提示モデルが、腫瘍細胞表面上の1つ以上のMHCアレルによって腫瘍細胞由来のペプチド配列が提示される複数の数値的尤度を与える、工程と、を含む方法が開示される。
提示モデルは、MHCアレルのうちの特定の1つとペプチド配列の特定の位置の特定のアミノ酸とのペアの存在と、前記ペアの前記MHCアレルのうちの特定の1つによる、前記特定の位置に前記特定のアミノ酸を含むそのようなペプチド配列の腫瘍細胞表面上での提示の尤度と、の間の依存性を表すことができる。
本明細書に開示される方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれが1つ以上の別個の腫瘍新生抗原に対して、腫瘍の細胞表面上に提示される尤度が増大していることから選択される。
本明細書に開示される方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれが1つ以上の別個の腫瘍新生抗原に対して、対象に腫瘍特異的な免疫応答を誘導することができる尤度が増大していることから選択される。
本明細書に開示される方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれが1つ以上の別個の腫瘍新生抗原に対して、プロフェッショナル抗原提示細胞(APC)によってナイーブT細胞に対して提示されることができる尤度が増大していることから選択され、場合により、APCは樹状細胞(DC)である。
本明細書に開示される方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれが1つ以上の別個の腫瘍新生抗原に対して、中枢性寛容または末梢性寛容により阻害される尤度が減少していることから選択される。
本明細書に開示する方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれが1つ以上の別個の腫瘍新生抗原に対して、対象における正常組織に対する自己免疫応答を誘導することができる尤度が減少していることから選択される。
本明細書に開示する方法はまた、新生抗原のサブセットを選択することを含んでもよく、新生抗原のサブセットは、それぞれがAPCに対して腫瘍細胞において差次的に翻訳後修飾される尤度が減少していることから選択され、場合により、APCは樹状細胞(DC)である。
本明細書における方法の実施においては、特に断らない限り、当該技術分野における技能の範囲内のタンパク質化学、生化学、組換えDNA技術及び薬理学の従来の方法を使用する。かかる技術は文献に充分な説明がなされている。例えば、T.E.Creighton,Proteins:Structures and Molecular Properties(W.H.Freeman and Company,1993);A.L.Lehninger,Biochemistry(Worth Publishers,Inc.,current addition);Sambrook,et al.,Molecular Cloning:A Laboratory Manual(2nd Edition,1989);Methods In Enzymology(S.Colowick and N.Kaplan eds.,Academic Press,Inc.);Remington’s Pharmaceutical Sciences,18th Edition(Easton,Pennsylvania:Mack Publishing Company,1990);Carey and Sundberg Advanced Organic Chemistry 3rd Ed.(Plenum Press)Vols A and B(1992)を参照されたい。
III.新生抗原における腫瘍特異的変異の特定
また、ある特定の変異(例えば、がん細胞中に存在する変異またはアレル)の特定のための方法も、本明細書に開示する。特に、これらの変異は、がんを有する対象のがん細胞のゲノム、トランスクリプトーム、プロテオーム、またはエクソーム中に存在し得るが、対象由来の正常組織には存在し得ない。腫瘍に特異的な、共有新生抗原を含む抗原を同定するための具体的な方法は当業者には周知のものであり、こうした方法は、例えば、あらゆる目的で本明細書に参照によりその全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際公開第WO/2018/195357号、及び同第WO/2018/208856号により詳細に記載されている。
腫瘍における遺伝子変異は、それらが腫瘍において排他的にタンパク質のアミノ酸配列における変化をもたらす場合、腫瘍の免疫学的ターゲティングに有用と考えることができる。有用な変異は、以下を含む:(1)タンパク質において異なるアミノ酸をもたらす非同義変異;(2)C末端に新規の腫瘍特異的配列を有する、より長いタンパク質の翻訳をもたらす、終止コドンが修飾されているかまたは欠失しているリードスルー変異;(3)成熟mRNAにおけるイントロンの包含、したがって固有の腫瘍特異的タンパク質配列をもたらす、スプライス部位変異;(4)2種類のタンパク質の接合部に腫瘍特異的配列を有するキメラタンパク質を生じる、染色体再編成(すなわち、遺伝子融合);(5)新規の腫瘍特異的タンパク質配列を有する新たなオープンリーディングフレームをもたらす、フレームシフト変異または欠失。変異はまた、非フレームシフト挿入欠失、ミスセンスもしくはナンセンス置換、スプライス部位改変、ゲノム再編成もしくは遺伝子融合、または、新生ORFを生じる任意のゲノム改変もしくは発現改変のうちの1つ以上も含むことができる。
例えば、腫瘍細胞におけるスプライス部位、フレームシフト、リードスルー、または遺伝子融合の変異から生じた、変異を有するペプチドまたは変異したポリペプチドは、腫瘍対正常細胞において、DNA、RNA、またはタンパク質をシークエンシングすることによって特定することができる。
また、変異は、以前に特定された腫瘍特異的変異を含むことができる。公知の腫瘍変異は、Catalogue of Somatic Mutations in Cancer(COSMIC)データベースで見出すことができる。
様々な方法を、個体のDNAまたはRNAにおいて特定の変異またはアレルの存在を検出するために利用可能である。この分野における進歩は、正確で、容易な、かつ安価な大規模SNP遺伝子型判定を提供している。例えば、動的アレル特異的ハイブリダイゼーション(DASH)、マイクロプレートアレイ対角線ゲル電気泳動(MADGE)、パイロシークエンシング、オリゴヌクレオチド特異的ライゲーション、TaqManシステム、及びAffymetrix SNPチップなどの種々のDNA「チップ」技術を含むいくつかの技法が、記載されている。これらの方法は、典型的にはPCRによる、標的遺伝子領域の増幅を利用する。さらに他の方法は、侵襲性切断による小さなシグナル分子の生成及びその後の質量分析、または、固定化されたパッドロックプローブ及びローリングサークル増幅に基づく。特異的な変異を検出するための、当技術分野において公知の方法のいくつかを、下記に要約する。
PCRベースの検出手段は、多数のマーカーの多重増幅を同時に含むことができる。例えば、サイズがオーバーラップせず、同時に解析することができるPCR産物を生成するようにPCRプライマーを選択することが、当技術分野において周知である。あるいは、差次的にラベル化され、したがって、各々を差次的に検出することができるプライマーで異なるマーカーを増幅することが可能である。当然、ハイブリダイゼーションベースの検出手段により、試料における複数のPCR産物の差次的な検出が可能になる。複数のマーカーの多重解析を可能にする他の技法が、当技術分野において公知である。
いくつかの方法が、ゲノムDNAまたは細胞RNAにおける単一ヌクレオチド多型の解析を容易にするために開発されている。例えば、一塩基多型は、例えば、Mundy,C.R.(米国特許第4,656,127号)において開示されているような、特化されたエキソヌクレアーゼ抵抗性ヌクレオチドを用いることによって検出することができる。この方法にしたがって、多型部位のすぐ3’のアレル配列に対して相補的なプライマーを、特定の動物またはヒトから取得された標的分子に対してハイブリダイズさせる。標的分子上の多型部位が、存在する特定のエキソヌクレアーゼ抵抗性ヌクレオチド誘導体に対して相補的であるヌクレオチドを含有する場合、その誘導体は、ハイブリダイズされたプライマーの末端上に組み込まれる。そのような組み込みのために、プライマーはエキソヌクレアーゼに対して抵抗性になり、それによりその検出が可能になる。試料のエキソヌクレアーゼ抵抗性誘導体の同一性は既知であるため、プライマーがエキソヌクレアーゼに対して抵抗性になったという知見により、標的分子の多型部位に存在するヌクレオチドが、反応において使用されたヌクレオチド誘導体のものに対して相補的であることが明らかになる。この方法は、多量の外来性配列データの決定を必要としないという利点を有する。
多型部位のヌクレオチドの同一性を決定するために、溶液ベースの方法を使用することができる(Cohen,D.et al.(フランス国特許第2,650,840号;PCT出願第WO91/02087号)。米国特許第4,656,127号のMundyの方法におけるように、多型部位のすぐ3’のアレル配列に対して相補的であるプライマーを使用する。この方法は、多型部位のヌクレオチドに対して相補的である場合は、プライマーの末端上に組み込まれるようになる、ラベル化ジデオキシヌクレオチド誘導体を用いて、その部位のヌクレオチドの同一性を決定する。
Genetic Bit AnalysisまたはGBAとして公知である代替的な方法が、Goelet,P.et al.(PCT出願第92/15712号)により記載されている。Goelet,P.et al.の方法は、ラベル化ターミネーターと、多型部位の3’の配列に対して相補的であるプライマーとの混合物を使用する。Goelet,P.et al.の方法は、ラベル化ターミネーターと、多型部位の3’の配列に対して相補的であるプライマーとの混合物を使用する。Cohen et al.(フランス国特許第2,650,840号;PCT出願第WO91/02087号)の方法とは対照的に、Goelet,P.et al.の方法は、プライマーまたは標的分子が固相に固定化される、不均一相アッセイであることができる。
DNAにおいて多型部位をアッセイするための、いくつかのプライマーガイドヌクレオチド組み込み手順が、記載されている(Komher,J.S.et al.,Nucl.Acids.Res.17:7779-7784(1989);Sokolov,B.P.,Nucl.Acids Res.18:3671(1990);Syvanen,A.-C.,et al.,Genomics 8:684-692(1990);Kuppuswamy,M.N.et al.,Proc.Natl.Acad.Sci.(U.S.A.)88:1143-1147(1991);Prezant,T.R.et al.,Hum.Mutat.1:159-164(1992);Ugozzoli,L.et al.,GATA 9:107-112(1992);Nyren,P.et al.,Anal.Biochem.208:171-175(1993))。これらの方法は、それらが、多型部位で塩基間を識別するためにラベル化デオキシヌクレオチドの組み込みを利用する点で、GBAとは異なる。そのような形式において、シグナルは、組み込まれたデオキシヌクレオチドの数に比例するため、同じヌクレオチドのランにおいて起こる多型は、ランの長さに比例するシグナルを結果としてもたらすことができる(Syvanen,A.-C.,et al.,Amer.J.Hum.Genet.52:46-59(1993))。
数多くのイニシアティブは、DNAまたはRNAの何百万もの個々の分子から並行して直接、配列情報を取得する。リアルタイムの単一分子の合成によるシークエンシング技術は、シークエンシングされる鋳型に対して相補的であるDNAの新生鎖の中に組み込まれる際の、蛍光ヌクレオチドの検出に依拠する。1つの方法において、長さが30~50塩基のオリゴヌクレオチドを、ガラスのカバーガラスに、5’端で共有結合性に固着させる。これらの固着した鎖は、2つの機能を果たす。第1に、それらは、鋳型が、表面結合オリゴヌクレオチドに対して相補的な捕捉尾部を有して構成されている場合に、標的鋳型鎖の捕捉部位として作用する。それらはまた、配列読み取りの基礎を形成する、鋳型指向性プライマー伸長のためのプライマーとしても作用する。捕捉プライマーは、複数サイクルの合成、検出、及び、色素を除去するための色素-リンカーの化学的切断を用いた、配列決定のための、固定された位置部位として機能する。各サイクルは、ポリメラーゼ/ラベル化ヌクレオチド混合物の添加、リンス、画像化、及び色素の切断からなる。代替的な方法において、ポリメラーゼは、蛍光ドナー分子で修飾されてスライドガラス上に固定化され、他方、各ヌクレオチドは、γ-ホスファートに付着したアクセプター蛍光部分で色分けされている。ヌクレオチドが、新規の鎖の中に組み込まれるようになる際に、システムが、蛍光タグ付加されたポリメラーゼと蛍光修飾されたヌクレオチドとの間の相互作用を検出する。他の合成によるシークエンシング技術もまた、存在する。
任意の適している合成によるシークエンシングプラットフォームを、変異を特定するために使用することができる。上記のように、4種類の主要な合成によるシークエンシングプラットフォームを、現在利用可能である:Roche/454 Life Sciencesより販売されるGenome Sequencer、Illumina/Solexaより販売される1G Analyzer、Applied BioSystemsより販売されるSOLiDシステム、及びHelicos Bioscienceより販売されるHeliscopeシステム。合成によるシークエンシングプラットフォームはまた、Pacific BioSciences及びVisiGen Biotechnologiesによっても記載されている。いくつかの実施形態において、シークエンシングされる多数の核酸分子は、支持体(例えば、固体支持体)に結合している。核酸を支持体上に固定化するために、捕捉配列/万能プライミング部位を、鋳型の3’端及び/または5’端に付加することができる。核酸は、支持体に共有結合性に付着した相補的配列に対して捕捉配列をハイブリダイズすることによって、支持体に結合させることができる。捕捉配列(万能捕捉配列とも呼ばれる)は、万能プライマーとして二重に働き得る、支持体に付着した配列に対して相補的な核酸配列である。
捕捉配列に対する代替物として、カップリングペア(例えば、抗体/抗原、受容体/リガンド、または、例えば米国特許出願第2006/0252077号に記載されているようなアビジン-ビオチンペアなど)のメンバーを、各断片に連結させて、そのカップリングペアのそれぞれの第2のメンバーでコーティングされた表面上に捕捉させることができる。
捕捉に続いて、配列を、例えば、鋳型依存性の合成によるシークエンシングを含む、例えば、実施例及び米国特許第7,283,337号に記載されているような、単一分子検出/シークエンシングによって解析することができる。合成によるシークエンシングにおいて、表面に結合した分子は、ポリメラーゼの存在下で、多数のラベル化ヌクレオチド三リン酸に曝露される。鋳型の配列は、成長する鎖の3’端の中に組み込まれるラベル化ヌクレオチドの順序によって決定される。これは、リアルタイムで行うことができ、ステップ・アンド・リピートモードで行うことができる。リアルタイム解析のために、各ヌクレオチドに対して異なる光ラベルを組み込むことができ、複数のレーザーを、組み込まれたヌクレオチドの刺激のために利用することができる。
シークエンシングはまた、他の大規模並列処理シークエンシング、または次世代シークエンシング(NGS)技法及びプラットフォームも含むことができる。大規模並列処理シークエンシング技法及びプラットフォームの追加的な例は、Illumina HiSeqまたはMiSeq、ThermoPGMまたはProton、Pac Bio RS IIまたはSequel、QiagenのGene Reader、及びOxford Nanopore MinIONである。追加的な類似した現在の大規模並列処理シークエンシング技術、及びこれらの技術の将来世代を、使用することができる。
任意の細胞タイプまたは組織を利用して、本明細書に記載した方法における使用のための核酸試料を取得することができる。例えば、DNAまたはRNA試料を、腫瘍または体液、例えば、公知の技法(例えば、静脈穿刺)によって取得された血液、もしくは唾液から取得することができる。あるいは、核酸試験を、乾燥試料(例えば、髪または皮膚)に対して行うことができる。加えて、試料を、シークエンシングのために腫瘍から取得することができ、別の試料を、正常組織が腫瘍と同じ組織タイプのものである場合に、シークエンシングのために正常組織から取得することができる。試料を、シークエンシングのために腫瘍から取得することができ、別の試料を、正常試料が腫瘍とは別個の組織タイプのものである場合に、シークエンシングのために正常組織から取得することができる。
腫瘍は、肺癌、黒色腫、乳癌、卵巣癌、前立腺癌、腎臓癌、胃癌、結腸癌、精巣癌、頭頸部癌、膵臓癌、脳癌、B細胞リンパ腫、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ球性白血病、及びT細胞リンパ球性白血病、非小細胞肺癌、及び小細胞肺癌のうちの1つ以上を含むことができる。
あるいは、タンパク質質量分析を使用して、腫瘍細胞上のMHCタンパク質に結合した変異したペプチドの存在を特定または実証することができる。ペプチドは、腫瘍細胞から、または腫瘍から免疫沈降させたHLA分子から酸溶出することができ、次いで、質量分析を用いて特定することができる。
IV.抗原
抗原は、ヌクレオチドまたはポリヌクレオチドを含むことができる。例えば、抗原は、ポリペプチド配列をコードするRNA配列であることができる。ワクチンにおいて有用な抗原は、したがって、核酸配列またはポリペプチド配列を含むことができる。
本明細書に開示する方法によって特定された腫瘍特異的変異を含む単離されたペプチド、公知の腫瘍特異的変異を含むペプチド、及び、本明細書に開示する方法によって特定された変異ポリペプチドまたはその断片を、本明細書に開示する。新生抗原ペプチドは、新生抗原が関連するポリペプチド配列をコードする核酸配列(例えば、DNAまたはRNA)を含む場合に、それらのコード配列の文脈において記載することができる。
本明細書はまた、正常細胞または組織と比較して腫瘍細胞またはがん性組織中で発現が変更されていることが知られているかまたは見出されている任意のポリペプチド、例えば、正常細胞または組織と比較して腫瘍細胞またはがん性組織中で異常に発現することが知られているかまたは見出されている任意のポリペプチドに由来するペプチドも開示する。抗原性ペプチドが由来しうる適当なポリペプチドは、例えば、COSMICデータベースに見出すことができる。COSMICは、ヒトのがんにおける体細胞変異に関する包括的な情報をキュレートしたものである。ペプチドは、腫瘍特異的変異を含む。
本明細書に記載される改変アデノウイルスベクター及び他のコンストラクトを使用して、それらの毒素または他の副産物を含む任意の生物由来の抗原を送達して感染症またはその生物またはその副産物に関連する他の有害反応を予防及び/または治療することができる。
ワクチンに組み込む(例えば、カセットにコードする)ことができる抗原には、ヒト及び非ヒト脊椎動物に感染する病原性ウイルスなどのウイルスに対してヒトまたは非ヒト動物を免疫化するうえで有用な免疫原が含まれる。抗原はさまざまなウイルス科から選択することができる。それに対する免疫応答が望ましい所望のウイルス科の例としては、一般的な風邪の症例の約50%の原因であるライノウイルス属;ポリオウイルス、コクサッキーウイルス、エコーウイルス、及びA型肝炎ウイルスなどのヒトエンテロウイルスを含むエンテロウイルス属;ならびに、主に非ヒト動物における手足口病の原因であるアフトウイルス属を含むピコルナウイルス科が挙げられる。ピコルナウイルス科のウイルスの中では、標的抗原として、VP1、VP2、VP3、VP4、及びVPGが挙げられる。別のウイルス科としてカリシウイルス科が挙げられ、流行胃腸炎の重要な病原体であるノーウォークウイルス群を含む。ヒト及び非ヒト動物に免疫応答を誘発するために抗原を標的化するうえでの使用に望ましい更に別のウイルス科としてトガウイルス科があり、アルファウイルス属を含み、アルファウイルス属には、シンドビスウイルス、ロスリバーウイルス、ならびにベネズエラウマ脳炎、東部ウマ脳炎及び西部ウマ脳炎ウイルス、ならびに風疹ウイルスを含むルビウイルスが含まれる。フラビウイルス科は、デング熱、黄熱、日本脳炎、セントルイス脳炎及びダニ媒介性脳炎ウイルスを含む。他の標的抗原がC型肝炎及びコロナウイルス科から生成されうるが、これらのウイルスには、多くの非ヒトウイルス、例えば、伝染性気管支炎ウイルス(家禽)、ブタ伝染性胃腸炎ウイルス(ブタ)、ブタ血球凝集脳脊髄炎ウイルス(ブタ)、ネコ伝染性腹膜炎ウイルス(ネコ)、ネコ腸コロナウイルス(ネコ)、イヌコロナウイルス(イヌ)、及びヒト呼吸器コロナウイルスが含まれ、これらは風邪及び/又は非A、B又はC型肝炎を引き起こすことがある。コロナウイルス科内では、標的抗原には、E1(M又はマトリックスタンパク質とも呼ばれる)、E2(S又はスパイクタンパク質とも呼ばれる)、E3(HE又はヘマグルチン-エルテロースとも呼ばれる)糖タンパク質(すべてのコロナウイルスに存在するわけではない)またはN(ヌクレオキャプシド)が含まれる。更に他の抗原をラブドウイルス科に対して標的化することができるが、ラブドウイルス科にはベシキュロウイルス属(例えば、水泡性口内炎ウイルス)及び狂犬病ウイルス属(例えば、狂犬病)が含まれる。ラブドウイルス科内では、適当な抗原はGタンパク質又はNタンパク質由来のものとすることができる。マールブルグウイルス及びエボラウイルスなどの出血熱ウイルスを包含するフィロウイルス科は適当な抗原のソースとなりうる。パラミクソウイルス科には、パラインフルエンザウイルス1型、パラインフルエンザウイルス3型、ウシパラインフルエンザウイルス3型、ルブラウイルス(ムンプスウイルス)、パラインフルエンザウイルス2型、パラインフルエンザウイルス4型、ニューカッスル病ウイルス(ニワトリ)、牛疫、モルビリウイルス(はしか及びイヌジステンバーを包含する)、及び呼吸合胞体ウイルスを含むニューモウイルスが含まれる(他、糖(G)タンパク質及び融合(F)タンパク質、これらの配列はGenBankより入手可能である)。インフルエンザウイルスは、オルソミクソウイルス科内に分類され、適当な抗原(例えば、HAタンパク質、N1タンパク質)のソースとなりうる。ブンヤウイルス科は、ブンヤウイルス属、(カリフォルニア脳炎、ラ・クロッス)、フレボウイルス(リフトバレー熱)、ハンタウイルス(プレマラ(puremala)はヘマハギン熱ウイルスである)、ナイロウイルス(ナイロビヒツジ病)及び種々の非指定ブンヤウイルスを含む。アレナウイルス科はLCM及びラッサ熱ウイルスに対する抗原のソースを与える。レオウイルス科は、レオウイルス属、ロタウイルス属(子供の急性胃腸炎を引き起こす)、オルビウイルス属及びカルチウイルス属(コロラドダニ熱、レボンボ(Lebombo)(ヒト)、ウマ脳炎、ブルータング)を含む。レトロウイルス科は、ネコ白血病ウイルス、HTLVI及びHTLVIIのようなヒト及び獣医学的疾患を包含するオンコウイルス亜科、レンチウイルス亜科(ヒト免疫不全ウイルス(HIV)、サル免疫不全ウイルス(SIV)、ネコ免疫不全ウイルス(FIV)、ウマ伝染性貧血ウイルス及びスプマウイルス亜科を含む)を含む。レンチウイルス間では、多くの適当な抗原が記載されており、容易に選択することができる。適当なHIV及びSIV抗原の例としては、これらに限定されるものではないが、gag、pol、Vif、Vpx、VPR、Env、Tat、Nef、及びRevタンパク質、ならびにそれらの種々の断片が挙げられる。例えば、Envタンパク質の適当な断片には、gp120、gp160、gp41などのそのサブユニットのいずれか、または例えば少なくともアミノ酸約8個の長さのそれらのより小さい断片が含まれ得る。同様に、tatタンパク質の断片も選択することができる[米国特許第5,891,994号及び米国特許第6,193,981号を参照]。D.H.Barouch et al,J.Virol.,75(5):2462-2467(March 2001)、及びR.R.Amara,et al,Science,292:69-74(6 Apr.2001)に記載されるHIV及びSIVタンパク質についても参照されたい。別の例では、HIV及び/またはSIV免疫原性タンパク質またはペプチドを用いて、融合タンパク質または他の免疫原性分子を形成することができる。例えば、2001年8月2日公開のWO01/54719及び1999年4月8日公開のWO99/16884に記載されるHIV-1 Tat及び/またはNef融合タンパク質及び免疫化のレジメンを参照されたい。本発明は、本明細書に記載されるHIV及び/またはSIV免疫原性タンパク質またはペプチドに限定されない。さらに、これらのタンパク質に対するさまざまな改変がこれまでに記載されているか、または当業者によって容易に行うことができる。例えば、米国特許第5,972,596号に記載される改変gagタンパク質を参照されたい。さらに、あらゆる所望のHIV及び/またはSIV免疫原を単独でまたは組み合わせて投与することができる。かかる組み合わせには、単一のベクターからの、または複数のベクターからの発現が含まれ得る。パポバウイルス科はポリオーマウイルス亜科(BKU及びJCUウイルス)及びパピローマウイルス亜科(がん又は乳頭腫の悪性進行に関連する)を含む。アデノウイルス科は呼吸疾患及び/又は腸炎を引き起こすウイルス(EX、AD7、ARD、O.B.)を含む。パルボウイルス科は、ネコパルボウイルス(ネコ腸炎)、ネコ汎白血球減少症ウイルス、イヌパルボウイルス及びブタパルボウイルスを含む。ヘルペスウイルス科は、シンプレックスウイルス属(HSVI、HSVII)、バリセロウイルス(仮性狂犬病、水痘帯状疱疹)を含むアルファヘルペスウイルス亜科及び、サイトメガロウイルス属(ヒトCMV、ムロメガロウイルス)を含むベータヘルペスウイルス亜科、ならびに、リンフォクリプトウイルス属、EBV(バーキットリンパ腫)、伝染性鼻気管炎、マレック病ウイルス及びラジノウイルスを包含するガンマヘルペスウイルス亜科を含む。ポックスウイルス科は、オルソポックスウイルス属(痘瘡(天然痘)及びワクシニア(牛痘))、パラポックスウイルス、アビポックスウイルス、カプリポックスウイルス、ウサギポックスウイルス、スイポックスウイルスを包含する脊椎動物ポックスウイルス亜科、及び昆虫ポックスウイルス亜科を含む。ヘパドナウイルス科はB型肝炎ウイルスを含む。抗原の適切なソースとなりうる未分類のウイルスの1つに、デルタ型肝炎ウイルスがある。更に他のウイルス源としては、ニワトリ伝染性ファブリキウス嚢病ウイルス及びブタ呼吸繁殖障害症候群ウイルスが含まれうる。アルファウイルス科はウマ動脈炎ウイルス及び種々の脳炎ウイルスを含む。
ワクチンに組み込む(例えば、カセットにコードする)ことができる抗原には、ヒト及び非ヒト脊椎動物に感染する細菌、真菌、寄生性微生物または多細胞寄生生物を含む病原体に対してヒトまたは非ヒト動物を免疫化するうえで有用な免疫原も含まれる。細菌病原体の例としては、肺炎球菌、ブドウ球菌、及び連鎖球菌を含む病原性グラム陽性球菌が挙げられる。病原性グラム陰性球菌は髄膜炎菌、淋菌を含む。病原性腸グラム陰性桿菌は、腸内細菌科;シュードモナス、アシネトバクテリア及びエイケネラ;類鼻疽;サルモネラ;赤痢菌;ヘモフィルス(ヘモフィルス・インフルエンザエ、ヘモフィルス・ソムナス);モラクセラ;H.デュクレイ(H.ducreyi)(軟性下疳を引き起こす);ブルセラ;フランシセラ・ツラレンシス(Franisella tularensis)(野兎病を引き起こす);エルシニア(パスツレラ);ストレプトバシラス・モニリフォルミス及びスピリルムを含む。グラム陽性桿菌は、リステリア・モノサイトゲネス;ブタ丹毒菌;コリネバクテリウム・ジフテリア(Corynebacterium diphtheria)(ジフテリア);コレラ;B.アントラシス(B.anthracis)(炭疽菌);ドノヴァン症(鼠径肉芽腫);及びバルトネラ症を含む。病原性嫌気性菌により引き起こされる疾患として、破傷風、ボツリヌス中毒、その他のクロストリジウム症、結核、ハンセン病及びその他のマイコバクテリアが挙げられる。具体的な細菌種の例としては、これらに限定されるものではないが、肺連レンサ球菌(Streptococcus pneumoniae)、化膿レンサ球菌(Streptococcus pyogenes)、ストレプトコッカス・アガラクチア(Streptococcus agalactiae)、大便レンサ球菌(Streptococcus faecalis)、カタル球菌(Moraxella catarrhalis)、ピロリ菌(Helicobacter pylori)、髄膜炎菌(Neisseria meningitidis)、淋菌(Neisseria gonorrhoeae)、クラミジア・トラコマティス(Chlamydia trachomatis)、クラミジア・ニューモニエ(Chlamydia pneumoniae)、オウム病クラミジア(Chlamydia psittaci)、百日咳菌(Bordetella pertussis)、チフス菌(Salmonella typhi)、ネズミチフス菌(Salmonella typhimurium)、サルモネラ・コレレスイス(Salmonella choleraesuis)、大腸菌(Escherichia coli)、赤痢菌(Shigella)、コレラ菌(Vibrio cholerae)、ジフテリア菌(Corynebacterium diphtheriae)、結核菌(Mycobacterium tuberculosis)、マイコバクテリウム・アビウム(Mycobacterium avium)、マイコバクテリウム細胞内複合体(Mycobacterium intracellularecomplex)、プロテウス・ミラビリス(Proteus mirabilis)、プロテウス・ブルガリス(Proteus vulgaris)、黄色ブドウ球菌(Staphylococcus aureus)、破傷風菌(Clostridium tetani)、レプトスピラ・インターロガンス(Leptospira interrogans)、ライム病菌(Borrelia burgdorferi)、ヘモリチカ菌(Pasteurella haemolytica)、パスツレラ・マルトシダ(Pasteurella multocida)、アクチノバチルス・プルロニューモニア(Actinobacillus pleuropneumoniae)及びマイコプラズマ・ガリセプチカム(Mycoplasma gallisepticum)が挙げられる。病原性スピロヘータ疾患として、梅毒;トレポネーマ症;イチゴ腫、ピンタ及び地方病性梅毒;並びにレプトスピラ症が挙げられる。より高等な病原性細菌および病原性真菌により引き起こされるその他の感染として、放線菌症;ノカルジア症;クリプトコッカス症(クリプトコッカス)、ブラストミセス症(ブラストミセス)、ヒストプラスマ症(ヒストプラスマ)及びコクシジオイデス症(コクシジオイデス);カンジダ症(カンジダ)、アスペルギルス症(アスペルギルス)及びムコール症;スポロトリクム症;パラコクシジオイドミコーシス、ペトリエリオジオーシス(petriellidiosis)、トルロプシス症、菌腫及び黒色真菌症;ならびに皮膚糸状菌症が挙げられる。リケッチア感染症として、発疹チフス、ロッキー山紅斑熱、Q熱およびリケッチア痘症が挙げられる。マイコプラズマ及びクラミジア感染症の例としては、肺炎マイコプラズマ、鼠径リンパ肉芽腫症、オウム病及び周産期のクラミジア感染症が挙げられる。病原性真核生物には病原性原生動物及び蠕虫が包含され、これによる感染症としては、アメーバ症、マラリア、リーシュマニア症(例えば、大形リーシュマニアにより引き起こされる)、トリパノソーマ症、トキソプラズマ症(例えば、Toxoplasma gondiiにより引き起こされる)、ニューモシスチス・カリニ、トリカンス(Trichans)、トキソプラズマ(Toxoplasma gondii)、バベシア症、ジアルジア症(例えば、Giardiaにより引き起こされる)、旋毛虫症(例えば、トリコモナスにより引き起こされる)、フィラリア症、住血吸虫症(例えば、住血吸虫により引き起こされる)、線虫、吸虫(trematode)すなわち吸虫(fluke)、及び条虫(サナダムシ)感染症が挙げられる。他の寄生虫感染症には、特に、回虫、鞭虫、クリプトスポリジウム、及びニューモシスチス・カリニにより引き起こされるものがある。
本明細書では、感染症生物、対象の感染症、または対象の感染細胞に関連する任意のポリヌクレオチドに由来するペプチドも開示される。抗原は、感染症生物の核酸配列またはポリペプチド配列に由来するものであってよい。感染症生物のポリペプチド配列としては、これらに限定されるものではないが、病原体由来ペプチド、ウイルス由来ペプチド、細菌由来ペプチド、真菌由来ペプチド、及び/または寄生虫由来ペプチドが挙げられる。感染症生物としては、これらに限定されるものではないが、重症急性呼吸器症候群関連コロナウイルス(SARS)、重症急性呼吸器症候群コロナウイルス2型(SARS-CoV-2)、エボラ、HIV、B型肝炎ウイルス(HBV)、インフルエンザ、C型肝炎ウイルス(HCV)、及び結核菌が挙げられる。
腫瘍細胞、感染細胞、または、樹状細胞などのプロフェッショナル抗原提示細胞を含む免疫細胞などの細胞の細胞表面状に提示されることが予測される抗原を選択することができる。免疫原性を有することが予測される抗原を選択することができる。
抗原核酸配列によってコードされる1つ以上のポリペプチドは、以下のうちの少なくとも1つを含むことができる:1000nM未満のIC50値でのMHCとの結合親和性、MHCクラスIペプチドについてはアミノ酸8~15個、8、9、10、11、12、13、14、または15個の長さ、プロテアソーム切断を促進するペプチド内またはその近くの配列モチーフの存在、及び、TAP輸送を促進する配列モチーフの存在、MHCクラスIIのポリペプチドについてはアミノ酸6~30個、6、7、8、9、10、11、12、13、14、15、16、17、18,19、20、21、22、23、24、25、26、27、28、29、または30個の長さ、細胞外もしくはリソソームプロテアーゼ(例えば、カテプシン)によるペプチド促進切断部位またはHLA-DMにより触媒されるHLA結合部位内またはその近くの配列モチーフの存在。
1つ以上の抗原が腫瘍の表面上に提示されうる。1つ以上の抗原が感染細胞の表面上に提示されうる。
1つ以上の抗原が、腫瘍を有する対象で免疫原性でありうる(例えば、対象にT細胞応答またはB細胞応答を誘発することができる)。1つ以上の抗原が、感染症を有するか有することが疑われる対象で免疫原性でありうる(例えば、対象にT細胞応答またはB細胞応答を誘発することができる)。1つ以上の抗原が、感染症のリスクがある対象で免疫原性でありうる(例えば、感染症に特異的なメモリーT細胞、メモリーB細胞、または抗体の産生を刺激するなど、感染症に対する免疫学的防御(すなわち、免疫)を与えるT細胞応答またはB細胞応答を対象に誘発することができる)。
1つ以上の抗原が、1つ以上の抗原を認識する抗体の産生などのB細胞応答を誘発することが可能な場合がある。抗体は、直鎖状ポリペプチド配列を認識するか、または二次及び三次構造を認識することができる。したがって、B細胞の抗原としては、これらに限定されるものではないが、完全長タンパク質、タンパク質サブユニット、タンパク質ドメイン、または二次及び三次構造を有することが知られているかもしくは予測される任意のポリペプチドを含む直鎖状ポリペプチド配列または二次及び三次構造を有するポリペプチドを挙げることができる。
対象において自己免疫応答を誘導する1つ以上の抗原は、対象のためのワクチン生成の文脈において、考察から排除することができる。
少なくとも1つの抗原性ペプチド分子(例えば、エピトープ配列)のサイズは、約5個、約6個、約7個、約8個、約9個、約10個、約11個、約12個、約13個、約14個、約15個、約16個、約17個、約18個、約19個、約20個、約21個、約22個、約23個、約24個、約25個、約26個、約27個、約28個、約29個、約30個、約31個、約32個、約33個、約34個、約35個、約36個、約37個、約38個、約39個、約40個、約41個、約42個、約43個、約44個、約45個、約46個、約47個、約48個、約49個、約50個、約60個、約70個、約80個、約90個、約100個、約110個、約120個、またはそれよりも多いアミノ分子残基、及びこれらの範囲から導出される任意の範囲を含むことができるが、それらに限定されない。具体的な実施形態において、抗原性ペプチド分子は、アミノ酸50個以下である。
抗原性ペプチド及びポリペプチドは、MHCクラスIについては長さが15残基以下で、通常約8~約11残基の間からなり、特に9または10残基であることができ;MHCクラスIIについては、6~30残基であることができる。
望ましい場合、より長いペプチドを、いくつかのやり方において設計することができる。1つの例において、HLAアレル上のペプチドの提示尤度が予測されるかまたは公知である場合、より長いペプチドは、(1)各々の対応する遺伝子産物のN末端及びC末端に向かって2~5アミノ酸の伸長を有する個々の提示されるペプチド;(2)各々について伸長した配列を有する、提示されるペプチドのいくつかまたはすべての連鎖のいずれかからなることができる。別の例において、シークエンシングにより、腫瘍中に存在する長い(10残基より長い)新生エピトープ配列(例えば、新規のペプチド配列をもたらすフレームシフト、リードスルー、またはイントロンの包含による)が明らかになる場合、より長いペプチドは、(3)新規の腫瘍特異的または感染症特異的アミノ酸のストレッチ全体からなることになり、したがって、最強のHLAに提示されるより短いペプチドの計算的なまたはインビトロ試験ベースの選択の必要を回避する。いずれの例においても、より長いペプチドの使用によって、患者細胞による内因性のプロセシングが可能になり、より有効な抗原提示及びT細胞応答の誘導がもたらされ得る。
抗原性ペプチド及びポリペプチドは、HLAタンパク質上に提示されることができる。いくつかの態様において、抗原性ペプチド及びポリペプチドは、野生型ペプチドよりも強い親和性でHLAタンパク質上に提示される。いくつかの態様において、新生抗原性ペプチドまたはポリペプチドは、少なくとも5000nM未満、少なくとも1000nM未満、少なくとも500nM未満、少なくとも250nM未満、少なくとも200nM未満、少なくとも150nM未満、少なくとも100nM未満、少なくとも50nM未満、またはそれよりも小さいIC50を有することができる。
いくつかの態様において、抗原性ペプチド及びポリペプチドは、対象に投与された場合に、自己免疫応答を誘導せず、及び/または免疫寛容を引き起こさない。
また、少なくとも2種類以上の抗原性ペプチドを含む組成物も提供する。いくつかの実施形態において、組成物は、少なくとも2種類の異なるペプチドを含有する。少なくとも2種類の異なるペプチドは、同じポリペプチドに由来することができる。異なるポリペプチドとは、ペプチドが、長さ、アミノ酸配列、またはその両方において異なることを意味する。ペプチドは、正常細胞または組織と比較して腫瘍細胞またはがん性組織中で発現が変更されていることが知られているかまたは見出されている任意のポリペプチド、例えば、正常細胞または組織と比較して腫瘍細胞またはがん性組織中で異常に発現することが知られているかまたは見出されている任意のポリペプチドに由来する腫瘍特異的変異またはペプチドを含むことが知られているかまたは見出されている任意のポリペプチドに由来するものとすることができる。抗原性ペプチドが由来しうる適当なポリペプチドは、例えば、COSMICデータベースまたはAACR GENIE(Genomics Evidence Neoplasia Information Exchange)データベースに見出すことができる。COSMICは、ヒトのがんにおける体細胞変異に関する包括的な情報をキュレートしたものである。AACR GENIEは、数万人のがん患者からの臨床成績を用いた臨床グレードのがんゲノムデータを集約及びリンクしたものである。いくつかの態様において、腫瘍特異的変異は、特定のがんタイプについてのドライバー変異である。ペプチドは、感染症生物に関連することが知られているかもしくは疑われる任意のポリペプチドに由来するものとするか、またはペプチドは、正常細胞または組織と比較して感染細胞で発現が変更されていることが知られているかもしくは見出されている任意のポリペプチド(例えば、宿主細胞に発現が制限されている感染症ポリヌクレオチドまたはポリペプチドを含む感染症ポリヌクレオチドまたはポリペプチド)に由来するものとすることができる。
望ましい活性または性質を有する抗原性ペプチド及びポリペプチドは、望ましいMHC分子に結合して適切なT細胞を活性化する非改変ペプチドの生物学的活性を増大させるかまたは実質的にそのすべてを少なくとも保持しつつ、特定の望ましい属性、例えば、改善された薬理学的特徴を与えるように改変することができる。例として、抗原性ペプチド及びポリペプチドを、保存的または非保存的のいずれかの置換などの、種々の改変にさらに供することができ、そのような改変は、改善されたMHC結合、安定性、または提示などの、それらの使用におけるある特定の利点を提供し得る。保存的置換とは、アミノ酸残基を、生物学的及び/または化学的に類似している別のもので、例えば、1つの疎水性残基を別の疎水性残基、または1つの極性残基を別の極性残基で置き換えることを意味する。置換は、Gly、Ala;Val、Ile、Leu、Met;Asp、Glu;Asn、Gln;Ser、Thr;Lys、Arg;及びPhe、Tyrなどの組み合わせを含む。単一アミノ酸置換の効果はまた、D-アミノ酸を用いて探査してもよい。そのような改変は、例えば、Merrifield,Science 232:341-347(1986),Barany & Merrifield,The Peptides,Gross & Meienhofer,eds.(N.Y.,Academic Press),pp.1-284(1979);及びStewart & Young,Solid Phase Peptide Synthesis,(Rockford,Ill.,Pierce),2d Ed.(1984)に記載されているように、周知のペプチド合成手順を用いて行うことができる。
種々のアミノ酸模倣物または非天然アミノ酸でのペプチド及びポリペプチドの改変は、インビボでのペプチド及びポリペプチドの安定性の増大に特に有用である場合がある。安定性は多くの方法でアッセイすることができる。例として、ペプチダーゼ、ならびに、ヒト血漿及び血清などの種々の生物学的媒質が、安定性を試験するために使用されている。例えば、Verhoef et al.,Eur.J.Drug Metab Pharmacokin.11:291-302(1986)を参照されたい。ペプチドの半減期は、25%ヒト血清(v/v)アッセイを用いて好都合に決定することができる。プロトコールは、概して以下のようなものである。プールしたヒト血清(タイプAB、非熱不活性化)を、使用前に遠心分離によって脱脂する。次いで、血清を、RPMI組織培養培地で25%に希釈し、ペプチド安定性を試験するために使用する。あらかじめ決定された時間間隔で、少量の反応溶液を取り出して、6%水性トリクロロ酢酸またはエタノールのいずれかに添加する。濁った反応試料を15分間冷却(4℃)し、次いで、スピンして沈降血清タンパク質を沈殿させる。次いで、ペプチドの存在を、安定性特異的クロマトグラフィー条件を用いた逆相HPLCによって決定する。
ペプチド及びポリペプチドを、改善された血清半減期以外の望ましい属性を提供するために修飾することができる。例として、CTL活性を誘導するペプチドの能力を、Tヘルパー細胞応答を誘導することができる少なくとも1つのエピトープを含有する配列への連結によって増強することができる。免疫原性ペプチド/Tヘルパーコンジュゲートは、スペーサー分子によって連結することができる。スペーサーは、典型的には、生理学的条件下で実質的に無電荷である、アミノ酸またはアミノ酸模倣物などの相対的に小さな中性分子から構成される。スペーサーは、典型的には、例えば、Ala、Gly、または、非極性アミノ酸もしくは中性極性アミノ酸の他の中性スペーサーから選択される。任意で存在するスペーサーは、同じ残基から構成される必要はなく、したがって、ヘテロオリゴマーまたはホモオリゴマーであり得ることが、理解されるであろう。存在する場合、スペーサーは、通常、少なくとも1または2残基、より通常は、3~6残基であろう。あるいは、ペプチドを、スペーサーなしでTヘルパーペプチドに連結することができる。
抗原性ペプチドは、ペプチドのアミノ末端またはカルボキシ末端のいずれかで、直接またはスペーサーを介してのいずれかでTヘルパーペプチドに連結することができる。抗原性ペプチドまたはTヘルパーペプチドのいずれかのアミノ末端を、アシル化することができる。例示的なTヘルパーペプチドは、破傷風毒素の830~843、インフルエンザの307~319、マラリアスポロゾイトの周囲382~398及び378~389を含む。
タンパク質またはペプチドは、標準的な分子生物学的技法を通したタンパク質、ポリペプチド、もしくはペプチドの発現、天然由来源からのタンパク質もしくはペプチドの単離、またはタンパク質もしくはペプチドの化学合成を含む、当業者に公知の任意の技法によって作製することができる。種々の遺伝子に対応する、ヌクレオチドならびにタンパク質、ポリペプチド及びペプチドの配列は、以前に開示されており、当業者に公知のコンピュータ処理されたデータベースで見出すことができる。1つのそのようなデータベースは、National Institutes of Healthのウェブサイトに位置する、National Center for Biotechnology InformationのGenbank及びGenPeptデータベースである。公知の遺伝子のコード領域は、本明細書に開示する技法を用いて、または当業者に公知であるように、増幅及び/または発現させることができる。あるいは、タンパク質、ポリペプチド、及びペプチドの種々の商業的調製物が、当業者に公知である。
さらなる態様において、抗原は、抗原性ペプチドまたはその一部をコードする核酸(例えば、ポリヌクレオチド)を含む。ポリヌクレオチドは、例えば、DNA、cDNA、PNA、CNA、RNA(例えば、mRNA)、例えば、ホスホロチオアートバックボーンを有するポリヌクレオチドなどの、ポリヌクレオチドの一本鎖及び/もしくは二本鎖、または天然形態もしくは安定化形態のいずれか、または、それらの組み合わせであることができ、イントロンを含有してもよく、または含有しなくてもよい。またさらなる態様は、ポリペプチドまたはその一部を発現することができる発現ベクターを提供する。様々な細胞タイプ用の発現ベクターが、当技術分野において周知であり、過度の実験なしで選択することができる。概して、DNAを、プラスミドなどの発現ベクター中に、発現のための適正な方向及び正確なリーディングフレームで挿入する。必要な場合は、DNAを、望ましい宿主によって認識される適切な転写及び翻訳調節性制御核酸配列に連結することができるが、そのような制御は、概して発現ベクターにおいて利用可能である。次いで、ベクターを、標準的な技法を通して宿主中に導入する。手引きは、例えば、Sambrook et al.(1989)Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.において見出すことができる。
V.送達組成物
また、特異的な免疫応答、例えば、腫瘍特異的な免疫応答または感染症生物に特異的な免疫応答を生じることができる免疫原性組成物、例えば、ワクチン組成物も、本明細書に開示する。ワクチン組成物は、典型的に、例えば、本明細書に記載される方法を用いて選択された1つまたは多数の抗原を含む。ワクチン組成物はまた、ワクチンと呼ぶこともできる。
ワクチンは、1~30種類のペプチド、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、もしくは30種類の異なるペプチド、6、7、8、9、10、11、12、13、もしくは14種類の異なるペプチド、または12、13、もしくは14種類の異なるペプチドを含有することができる。ペプチドは、翻訳後修飾を含むことができる。ワクチンは、1~100種類もしくはそれよりも多い核酸配列、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100種類もしくはそれよりも多い異なる核酸配列、6、7、8、9、10、11、12、13、もしくは14種類の異なる核酸配列、または12、13、もしくは14種類の異なる核酸配列を含有することができる。ワクチンは、1~30種類の抗原配列、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100種類もしくはそれよりも多い異なる抗原配列、6、7、8、9、10、11、12、13、もしくは14種類の異なる抗原配列、または12、13、もしくは14種類の異なる抗原配列を含有することができる。
ワクチンは、1~30個の抗原コード核酸配列、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94,95、96、97、98、99、100個、もしくはそれよりも多くの異なる抗原コード核酸配列、6、7、8、9、10 11、12、13、もしくは14個の異なる抗原コード核酸配列、または12、13もしくは14個の異なる抗原コード核酸配列を含むことができる。抗原コード核酸配列は、抗原「カセット」の抗原コード部分を指す場合もある。カセットの特徴については、下記により詳細に述べる。
ワクチンは、1~30個の異なるエピトープコード核酸配列、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94,95、96、97、98、99、100個、もしくはそれよりも多くの異なるエピトープコード核酸配列、6、7、8、9、10 11、12、13、もしくは14個の異なるエピトープコード核酸配列、または12、13もしくは14個の異なるエピトープコード核酸配列を含むことができる。エピトープコード核酸配列は、個別のエピトープ配列の配列を指す場合もある。
ワクチンは、エピトープコード核酸配列の少なくとも2個の反復配列を含むことができる。本明細書で使用される「反復配列」とは、抗原コード核酸配列内の同じ核酸エピトープコード核酸配列(本明細書に記載される任意の5’リンカー配列及び/または任意の3’リンカー配列を含む)の2個以上の繰り返しを指す。1つの例では、カセットの抗原コード核酸配列部分は、エピトープコード核酸配列の少なくとも2個の反復配列をコードする。さらなる非限定的な例では、カセットの抗原コード核酸配列部分は複数の異なるエピトープをコードし、異なるエピトープのうちの少なくとも1つは、異なるエピトープをコードした核酸配列の少なくとも2個の反復(すなわち、少なくとも2個の異なるエピトープコード核酸配列)によってコードされる。例示的な非限定例では、抗原コード核酸配列は、エピトープコード核酸配列A(E)、エピトープコード配列B(E)、及びエピトープコード配列C (E)によってコードされるエピトープA、B、及びCをコードし、異なるエピトープのうちの少なくとも1つの反復配列を有する例示的な抗原コード核酸配列は、これらに限定されるものではないが、下式によって示される。
-1つの異なるエピトープの反復配列(エピトープAの反復配列):
-E-E-E、または
-E-E-E
-複数の異なるエピトープの反復配列(エピトープA、B、及びCの反復配列):
-E-E-E-E-E、または
-E-E-E-E-E
-複数の異なるエピトープの複数の反復配列(エピトープA、B、及びCの反復配列):
-E-E-E-E-E-E-E-E、または
-E-E-E-E-E-E-E-E
上記の例は限定的なものではなく、異なるエピトープのうちの少なくとも1つの反復配列を有する抗原コード核酸配列は、異なるエピトープのそれぞれを任意の順序または頻度でコードすることができる。例えば、順序及び頻度は、例えば式E-E-E-E-E-E-E-E-E-E-E-EによるエピトープA、B、及びCを有する例におけるように、異なるエピトープのランダムな配置とすることができる。
本明細書では、5’から3’に向けて下式によって記述される少なくとも1つの抗原コード核酸配列を有する抗原コードカセットが提供される。
(E-(E
式中、Eは、少なくとも1つの異なるエピトープコード核酸配列を含む核酸配列を表し、
nは、別個の異なるエピトープコード核酸配列の数を表し、0を含む任意の整数であり、
は、それぞれの対応するnについて別個の異なるエピトープコード核酸配列を含む核酸配列を表し、
zのそれぞれの繰り返しについて、各nにおいてx=0または1、y=0または1であり、xまたはyの少なくとも一方は1であり、
z=2以上であり、抗原コード核酸配列は、E、特定のE、またはこれらの組み合わせの少なくとも1つの2回の繰り返しを含む。
各EまたはEは、本明細書に記載されるエピトープコード核酸配列を独立して含むことができる。例えば、各EまたはEは、5’から3’に向けて式(L5-N-L3)によって記述される核酸配列を独立して含むことができ、式中、Nは、各EまたはEに関連付けられた異なるエピトープコード核酸配列を含み、ただしc=1であり、L5は5’リンカー配列を含み、ただしb=0または1であり、L3は3’リンカー配列を含み、ただしd=0または1である。使用することができるエピトープ及びリンカーについては本明細書でさらに述べる(例えば、「V.A.カセット」のセクションを参照)。
エピトープコード核酸配列(任意の5’リンカー配列及び/または任意の3’リンカー配列を含む)の反復配列は互いに直接連結されてもよい(例えば、上記に示したように、E-E-…)。エピトープコード核酸配列の反復配列は、1つ以上のさらなるヌクレオチド配列によって分離されてもよい。一般的に、エピトープコード核酸配列の反復配列は、本明細書に記載される組成物に適用可能な任意のサイズの核酸配列によって分離されうる。1つの例では、エピトープコード核酸配列の反復配列は、別個の異なるエピトープコード核酸配列によって分離されうる(例えば、上記に示したように、E-E-E-E…)。反復配列が単一の別個の異なるエピトープコード核酸配列によって分離されており、各エピトープコード核酸配列(任意の5’リンカー配列及び/または任意の3’リンカー配列を含む)がアミノ酸25個の長さのペプチドをコードする例では、反復配列は、例えばE-E-E…(Eは75個のヌクレオチドによって分離されている)により表される抗原コード核酸におけるように75個のヌクレオチドによって分離されうる。例示的な1つの例では、25マーの抗原Trp1(VTNTEMFVTAPDNLGYMYEVQWPGQ)及びTrp2(TQPQIANCSVYDFFVWLHYYSVRDT)の反復配列をコードした配列VTNTEMFVTAPDNLGYMYEVQWPGQTQPQIANCSVYDFFVWLHYYSVRDTVTNTEMFVTAPDNLGYMYEVQWPGQTQPQIANCSVYDFFVWLHYYSVRDTを有する抗原コード核酸であり、Trp1の反復配列が25マーのTrp2によって分離されており、したがって、Trp1エピトープコード核酸配列の反復配列は、ヌクレオチド75個のTrp2エピトープコード核酸配列によって分離される。反復配列が2、3、4、5、6、7、8、または9個の別個の異なるエピトープコード核酸配列によって分離されており、各エピトープコード核酸配列(任意の5’リンカー配列及び/または任意の3’リンカー配列を含む)がアミノ酸25個の長さのペプチドをコードする例では、反復配列は、それぞれ、150、225、300、375、450、525、600、または675個のヌクレオチドによって分離されうる。
一実施形態では、異なるペプチド及び/もしくはポリペプチド、またはそれらをコードする核酸配列は、ペプチド及び/またはポリペプチドが、異なるMHCクラスI分子及び/または異なるMHCクラスII分子などの異なるMHC分子と結合することができるように選択される。いくつかの態様において、1つのワクチン組成物は、最も頻繁に存在するMHCクラスI分子及び/または異なるMHCクラスII分子と結合することができるペプチド及び/またはポリペプチドのコード配列を含む。したがって、ワクチン組成物は、少なくとも2種類の好ましい、少なくとも3種類の好ましい、または少なくとも4種類の好ましいMHCクラスI分子及び/または異なるMHCクラスII分子と結合することができる異なる断片を含むことができる。
ワクチン組成物は、特異的な細胞傷害性T細胞応答、及び/または特異的なヘルパーT細胞応答を生じることができる。
ワクチン組成物は、アジュバント及び/または担体をさらに含むことができる。有用なアジュバント及び担体の例を、本明細書の下記に示す。組成物は、例えば、タンパク質などの担体、または、例えば、T細胞に対してペプチドを提示することができる樹状細胞(DC)などの抗原提示細胞と結合することができる。
アジュバントは、ワクチン組成物中へのその混合が、抗原に対する免疫応答を増大させるか、または別の方法で修飾する任意の物質である。担体は、抗原がそれに結合することができる足場構造、例えば、ポリペプチドまたは多糖であることができる。任意で、アジュバントは、共有結合性または非共有結合性にコンジュゲートされる。
抗原に対する免疫応答を増大させるアジュバントの能力は、典型的に、免疫媒介性反応の有意なもしくは実質的な増大、または疾患症候の低減によって明示される。例えば、体液性免疫の増大は、典型的に、抗原に対して生じた抗体の力価の有意な増大によって明示され、T細胞活性の増大は、典型的に、細胞増殖、または細胞性細胞傷害、またはサイトカイン分泌の増大において明示される。アジュバントはまた、例えば、主として体液性またはTh応答を、主として細胞性またはTh応答へと変化させることによって、免疫応答を変更し得る。
適しているアジュバントは、1018 ISS、アラム、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、JuvImmune、LipoVac、MF59、モノホスホリル脂質A、Montanide IMS 1312、MontanideISA206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PepTelベクターシステム、PLGマイクロ粒子、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、β-グルカン、Pam3Cys、サポニンに由来するAquila’s QS21 stimulon(Aquila Biotech、Worcester、Mass.、USA)、マイコバクテリア抽出物及び合成細菌細胞壁模倣物、及びRibi’s Detox.QuilまたはSuperfosなどの他の専売アジュバントを含むが、それらに限定されない。不完全フロインドまたはGM-CSFなどのアジュバントが、有用である。樹状細胞に特異的ないくつかの免疫学的アジュバント(例えば、MF59)及びそれらの調製物が、以前に記載されている(Dupuis M,et al.,Cell Immunol.1998;186(1):18-27;Allison A C;Dev Biol Stand.1998;92:3-11)。また、サイトカインを使用することもできる。いくつかのサイトカインは、リンパ組織に対する樹状細胞の遊走への影響(例えば、TNF-α)、Tリンパ球に対する効率的な抗原提示細胞への樹状細胞の成熟の加速化(例えば、GM-CSF、IL-1、及びIL-4)(具体的にその全体が参照により本明細書に組み入れられる、米国特許第5,849,589号)、及び免疫アジュバントとしての作用(例えば、IL-12)に直接結び付けられている(Gabrilovich D I,et al.,J ImmunotherEmphasis Tumor Immunol.1996(6):414-418)。
CpG免疫刺激性オリゴヌクレオチドもまた、ワクチン設定においてアジュバントの効果を増強することが報告されている。TLR 7、TLR 8、及び/またはTLR 9に結合するRNAなどの他のTLR結合分子がまた、使用されてもよい。
有用なアジュバントの他の例は、化学的に修飾されたCpG(例えば、CpR、Idera)、Poly(I:C)(例えば、polyi:CI2U)、非CpG細菌DNAまたはRNA、ならびに、治療的に及び/またはアジュバントとして作用し得る、シクロホスファミド、スニチニブ、ベバシズマブ、セレブレックス、NCX-4016、シルデナフィル、タダラフィル、バルデナフィル、ソラフィニブ、XL-999、CP-547632、パゾパニブ、ZD2171、AZD2171、イピリムマブ、トレメリムマブ、及びSC58175などの免疫活性小分子及び抗体を含むが、それらに限定されない。アジュバント及び添加物の量及び濃度は、当業者が過度の実験なしで容易に決定することができる。追加的なアジュバントは、顆粒球マクロファージコロニー刺激因子(GM-CSF、サルグラモスチム)などのコロニー刺激因子を含む。
ワクチン組成物は、1種類よりも多い異なるアジュバントを含むことができる。さらに、治療用組成物は、上記の任意またはそれらの組み合わせを含む、任意のアジュバント物質を含むことができる。ワクチン及びアジュバントを、任意の適切な配列において、一緒にまたは別々に投与できることもまた、企図される。
担体(または賦形剤)は、アジュバントから独立して存在することができる。担体の機能は、例えば、活性または免疫原性を増大させるため、安定性を与えるため、生物学的活性を増大させるため、または血清半減期を増大させるために、特に変異体の分子量を増大させることであり得る。さらに、担体は、T細胞に対してペプチドを提示するのを助けることができる。担体は、当業者に公知の任意の適している担体、例えば、タンパク質または抗原提示細胞であることができる。担体タンパク質は、キーホールリンペットヘモシアニン、トランスフェリンなどの血清タンパク質、ウシ血清アルブミン、ヒト血清アルブミン、サイログロブリンもしくはオボアルブミン、免疫グロブリン、またはインスリンなどのホルモン、またはパルミチン酸であることができるが、それらに限定されない。ヒトの免疫化のためには、担体は概して、ヒトに許容されかつ安全な、生理学的に許容される担体である。しかし、破傷風トキソイド及び/またはジフテリアトキソイドは、適している担体である。あるいは、担体は、デキストラン、例えばセファロースであることができる。
細胞傷害性T細胞(CTL)は、無傷の外来抗原自体よりも、MHC分子に結合したペプチドの形態において抗原を認識する。MHC分子自体は、抗原提示細胞の細胞表面に位置する。したがって、CTLの活性化は、ペプチド抗原、MHC分子、及びAPCのトリマー複合体が存在する場合に可能である。対応して、ペプチドがCTLの活性化のために使用される場合だけではなく、追加的にそれぞれのMHC分子を有するAPCが添加される場合に、それは免疫応答を増強し得る。したがって、いくつかの実施形態において、ワクチン組成物は、追加的に、少なくとも1つの抗原提示細胞を含有する。
抗原はまた、ワクシニア、鶏痘、自己複製アルファウイルス、マラバウイルス、アデノウイルス(例えば、Tatsis et al.,Adenoviruses,Molecular Therapy(2004)10,616-629を参照されたい)、または、第2、第3、もしくはハイブリッド第2/第3世代のレンチウイルス、及び特異的な細胞タイプもしくは受容体を標的とするように設計された任意の世代の組換えレンチウイルスを含むがそれらに限定されないレンチウイルス(例えば、Hu et al.,Immunization Delivered by Lentiviral Vectors for Cancer and Infectious Diseases,Immunol Rev.(2011)239(1):45-61、Sakuma et al.,Lentiviral vectors:basicto translational,Biochem J.(2012)443(3):603-18、Cooper et al.,Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter,Nucl.AcidsRes.(2015)43(1):682-690、Zufferey et al.,Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery,J.Virol.(1998)72(12):9873-9880を参照されたい)などの、ウイルスベクターベースのワクチンプラットフォームに含めることもできる。上述のウイルスベクターベースのワクチンプラットフォームのパッケージング能力に依存して、このアプローチは、1つ以上の抗原性ペプチドをコードする1つ以上の核酸配列を送達することができる。配列は、非変異配列が隣接していてもよく、リンカーによって分離されていてもよく、または、細胞内区画を標的とする1つもしくは複数の配列が先行していてもよい(例えば、Gros et al.,Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients,Nat Med.(2016)22(4):433-8、Stronen et al.,Targeting of cancer neoantigens with donor-derived T cell receptor repertoires,Science.(2016)352(6291):1337-41、Lu et al.,Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions,Clin Cancer Res.(2014)20( 13):3401-10を参照されたい)。宿主中への導入時に、感染した細胞は、抗原を発現し、それにより、ペプチドに対する宿主免疫(例えば、CTL)応答を惹起する。免疫化プロトコールにおいて有用なワクシニアベクター及び方法は、例えば、米国特許第4,722,848号に記載されている。別のベクターは、BCG(カルメット・ゲラン桿菌)である。BCGベクターは、Stover et al.(Nature 351:456-460(1991))に記載されている。抗原の治療的投与または免疫化に有用な、多種多様の他のワクチンベクター、例えば、チフス菌(Salmonella typhi)ベクターなどが、本明細書における記載から当業者に明らかであろう。
本明細書では、1つ以上のペイロード核酸配列を送達することができるアデノウイルスベクター送達組成物も開示する。ペイロード核酸配列は、目的の細胞に送達されることが望ましい任意の核酸配列とすることができる。一般的にペイロードは、核酸配列の発現を誘導するためのプロモーターに連結された核酸配列である。ペイロード核酸配列は、ポリペプチドをコードすることができる(すなわち、転写され、タンパク質に翻訳されることが可能な核酸配列)。一般的に、ペプチドをコードするペイロード核酸配列は、細胞内で発現されることが望ましい任意のタンパク質をコードすることができる。タンパク質の例としては、これらに限定されるものではないが、抗原(例えば、MHCクラスIエピトープ、MHCクラスIIエピトープ、またはB細胞応答を刺激することが可能なエピトープ)、抗体、サイトカイン、キメラ抗原受容体(CAR)、T細胞受容体、またはゲノム編集システムの構成成分(例えば、ゲノム編集システムで使用されるヌクレアーゼ)が挙げられる。ゲノム編集システムとしては、これらに限定されるものではないが、CRISPRシステム、ジンクフィンガーシステム、またはTALENシステムが挙げられる。ペイロード核酸配列は、非コード配列であってもよい(すなわち、転写はされうるがタンパク質に翻訳されない核酸配列)。一般的に、非コードペイロード核酸配列は、細胞内で発現されることが望ましい任意の非コードポリヌクレオチドをコードすることができる。非コードポリヌクレオチドの例としては、これらに限定されるものではないが、RNA干渉(RNAi)ポリヌクレオチド(例えば、アンチセンスオリゴヌクレオチド、shRNA、siRNA、miRNAなど)またはゲノム編集システムのポリヌクレオチド(例えば、ガイド[gRNA]、シングルガイドRNA[sgRNA]、トランス活性化CRISPR[tracrRNA]、及び/またはCRISPR RNA[crRNA])が挙げられる。ペイロード核酸配列は、2個以上(例えば、2、3、4、5個以上)の異なるポリペプチド(例えば、互いに連結された2個以上の異なるエピトープ配列)をコードすることができるか、または2個以上の異なる非コード核酸配列(例えば、2個以上の異なるRNAiポリペプチド)を含むことができる。ペイロード核酸配列は、ポリペプチドコード核酸配列と非コード核酸配列との組み合わせを有してもよい。
V.A.1 カセット
1つ以上の抗原の選択に用いられる方法、「カセット」のクローニング及び構築、ならびにウイルスベクターへのその挿入は本明細書に与えられる教示を考慮すれば当該技術分野の範囲内である。カセットは、それぞれが独立して別個のプロモーターに機能的に連結されるか、かつ/または、2Aリボソームスキッピング配列エレメント(例えば、E2A、P2A、F2A、またはT2A配列)または内部リボソーム進入部位(IRES)配列エレメントなどの他のマルチシストロニックシステムを用いて互いに連結された複数のペイロード核酸配列を含むカセットなどの1つ以上のペイロード核酸配列を有することができる。複数のペイロード核酸配列を含むカセットにおいて、各ペイロード核酸配列は1つ以上のペイロードを含むことができる(例えば、各ペイロード核酸配列は2個以上のポリペプチドをコードするかまたは2個以上の非コード核酸配列を含むことができる)。カセットは、ポリペプチドコード核酸配列と非コード核酸配列との組み合わせを有してもよい。
カセットは、抗原カセットとすることができる。「抗原カセット」とは、選択された抗原または複数の抗原と、この抗原(複数可)を転写し、転写産物を発現するために必要とされる他の調節エレメントとの組み合わせを意味する。抗原カセットは、1つ以上の抗原を含むことができる。選択された抗原または複数の抗原とは、異なるエピトープ配列を指す場合がある(例えば、カセット内の抗原コード核酸配列は、エピトープが転写されて発現されるようにエピトープコード核酸配列(または複数のエピトープコード核酸配列)をコードすることができる)。
ペイロード核酸配列または複数のペイロード核酸配列は、転写と可能とする形で調節要素に機能的に連結することができる。かかる要素としては、ウイルスベクターをトランスフェクトした細胞内で抗原(複数可)の発現を誘導することができる従来の調節エレメントが挙げられる。したがって、カセットは、ペイロード核酸配列(複数可)に連結され、組換えベクターの選択されたウイルス配列内に他の任意の調節エレメントとともに配置された選択されたプロモーターも含むことができる。
有用なプロモーターは、発現させようとするペイロード核酸配列(複数可)の量、及び一般的にはコーディングペイロード核酸配列の場合ではペプチド(例えば抗原)の量の制御を可能とする構成的プロモーターまたは調節された(例えば、誘導性)プロモーターであってよい。例えば、望ましいプロモーターとして、サイトメガロウイルス最初期プロモーター/エンハンサーのものがある[例えば、Boshart et al,Cell,41:521-530(1985)を参照]。別の望ましいプロモーターとしては、ラウス肉腫ウイルスLTRプロモーター/エンハンサーが挙げられる。さらに別のプロモーター/エンハンサー配列は、ニワトリβアクチンプロモーターである[T.A.Kost et al,Nucl.Acids Res.,11(23):8287(1983)]。当業者であれば、CMV、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列などの他の適当な、または望ましいプロモーターも選択することができる。
カセットは、転写産物の効率的なポリアデニル化(ポリ(A)、ポリAまたはpA)のためのシグナルを与える配列ならびに機能的スプライスドナー及びアクセプター部位を含むイントロンを含む、ウイルスベクター配列に対して異種の核酸配列も含みうる。本明細書の例示的なベクターに用いられる一般的なポリA配列は、パポバウイルスSV-40由来のものである。ポリA配列は、ペイロード核酸配列の後で、ウイルスベクター配列の前にカセットに挿入することができる。一般的なイントロン配列もまたSV-40由来のものでよく、SV-40Tイントロン配列と呼ばれる。カセットは、プロモーター/エンハンサー配列とペイロード核酸配列(複数可)との間に位置するイントロンを含んでもよい。これら及び他の一般的なベクターエレメントの選択は従来のものであり[例えば、Sambrook et al,“Molecular Cloning.A Laboratory Manual.”,2d edit.,Cold Spring Harbor Laboratory, New York(1989)及び本明細書に引用される参照文献を参照]、多くのかかる配列が商業的及び産業的供給元、ならびにGenbankより入手可能である。
カセットは、1つ以上のペイロード核酸配列を有することができる。例えば、特定のカセットは、1~10個、1~20個、1~30個、10~20個、15~25個、15~20個、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、またはそれよりも多くのペイロード核酸配列を含むことができる。ペイロード核酸配列同士は互いに直接連結されてもよい。ペイロード核酸配列同士はリンカーによって互いに連結されてもよい。
カセットは、ポリペプチドをコードする1つ以上のペイロード核酸配列を有することができる。例えば、特定のカセットは、ポリペプチドをコードする1~10個、1~20個、1~30個、10~20個、15~25個、15~20個、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、またはそれよりも多くのペイロード核酸配列を含むことができる。カセットは、それぞれが異なるポリペプチドをコードする1つ以上のペイロード核酸配列を有することができる。カセットは、それぞれが1つ以上のポリペプチドをコードする1つ以上のペイロード核酸配列を有することができる。カセットは、1つ以上のポリペプチドをコードする1つ以上のペイロード核酸配列を有することができる。ペイロード核酸配列によってコードされるポリペプチドはN~CまたはC~Nを含む、互いに対して任意の方向とすることができる。
抗原カセットは、1つ以上の抗原を有することができる。例えば、特定のカセットは、1~10個、1~20個、1~30個、10~20個、15~25個、15~20個、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、またはそれよりも多くの抗原を含むことができる。抗原同士は互いに直接連結されてもよい。抗原同士はリンカーによって互いに連結されてもよい。抗原は、N~CまたはC~Nを含む、互いに対して任意の方向とすることができる。
上記に述べたように、カセットは、選択することができるものの中でもとりわけ、例えばE1遺伝子領域の欠失、またはE3遺伝子領域の欠失などのウイルスベクター内の任意の選択された欠失部位内に配置することができる。
カセットは、5’から3’に向けて各要素の順序付けられた配列を記述する下式を用いて記述することができる。すなわち、
(P-(L5-N-L3-(P2-(G5-U-G3
[式中、P及びP2は、プロモーター核酸配列を含み、Nは、異なるエピトープコード核酸配列を含み、L5は、5’リンカー配列を含み、L3は、3’リンカー配列を含み、G5は、アミノ酸リンカーをコードする核酸配列を含み、G3は、アミノ酸リンカーをコードする少なくとも1つの核酸配列のうちの1つを含み、Uは、MHCクラスII抗原コード核酸配列を含み、ただし、各Xについて、対応するNcは、エピトープコード核酸配列であり、各Yについて、対応するUfは、抗原コード核酸配列である]。組成物及び順序付けられた配列は、存在する要素の数を選択することによってさらに定義することができ、例えば、a=0または1である場合、b=0または1である場合、c=1である場合、d=0または1である場合、e=0または1である場合、f=1である場合、g=0または1である場合、h=0または1である場合、X=1~400であり、Y=0、1、2、3、4または5であり、Z=1~400であり、かつW=0、1、2、3、4または5である。
1つの例では、存在する要素は、a=0、b=1、d=1、e=1、g=1、h=0、X=10、Y=2、Z=1、かつW=1であり、さらなるプロモーターが存在しない場合が記述される場合(すなわち、RNAアルファウイルス骨格によって与えられるプロモーター核酸配列のみが存在する)、20個のMHCクラスIエピトープが存在し、各Nについて5’リンカーが存在し、各Nについて3’リンカーが存在し、2個のMHCクラスIIエピトープが存在し、2個のMHCクラスIIエピトープを連結するリンカーが存在し、2個のMHCクラスIIエピトープの5’末端を最後のMHCクラスIエピトープの3’リンカーに連結するリンカーが存在し、2個のMHCクラスIIエピトープの3’末端をRNAアルファウイルス骨格に連結するリンカーが存在する。カセットの3’末端の、RNAアルファウイルス骨格との連結の例としては、3’の19ntのCSEのような、RNAアルファウイルス骨格によって与えられる3’UTR要素に直接連結することが挙げられる。カセットの5’末端の、RNAアルファウイルス骨格との連結の例としては、26Sプロモーター配列、アルファウイルスの5’UTR、51ntのCSE、または24ntのCSEに直接連結することが挙げられる。
他の例としては、a=1であり、RNAアルファウイルス骨格によって与えられるプロモーター核酸配列以外のプロモーターが存在する場合が記述される場合;a=1かつZが1よりも大きく、それぞれが1つ以上の異なるMHCクラスIエピトープコード核酸配列の発現をもたらす、RNAアルファウイルス骨格によって与えられるプロモーター核酸配列以外の複数のプロモーターが存在する場合;h=1であり、MHCクラスII抗原コード核酸配列の発現をもたらす別のプロモーターが存在することが記述される場合;及び、g=0であり、MHCクラスII抗原コード核酸配列(存在する場合)がRNAアルファウイルス骨格に直接連結される場合などが挙げられる。
他の例としては、存在する各MHCクラスIエピトープが、5’リンカーを有する、3’リンカーを有する、どちらも有さない、または両方を有する場合が挙げられる。複数のMHCクラスIエピトープが同じカセット内に存在する例では、一部のMHCクラスIエピトープが5’リンカー及び3’リンカーの両方を有してよく、他のMHCクラスIエピトープが、5’リンカーまたは3’リンカーを有するか、またはどちらも有さなくてもよい。複数のMHCクラスIエピトープが同じカセット内に存在するその他の例では、一部のMHCクラスIエピトープが5’リンカーまたは3’リンカーのどちらかを有してよく、他のMHCクラスIエピトープが5’リンカーまたは3’リンカーを有するか、またはどちらも有さなくてもよい。
複数のMHCクラスIIエピトープが同じカセット内に存在する例では、一部のMHCクラスIIエピトープが5’リンカー及び3’リンカーの両方を有してよく、他のMHCクラスIIエピトープが5’リンカーまたは3’リンカーを有するか、またはどちらも有さなくてもよい。複数のMHCクラスIIエピトープが同じカセット内に存在するその他の例では、一部のMHCクラスIIエピトープが5’リンカーまたは3’リンカーのどちらかを有してよく、他のMHCクラスIIエピトープが5’リンカーまたは3’リンカーを有するか、またはどちらも有さなくてもよい。
プロモーター核酸配列P及び/またはP2は、RNAアルファウイルス骨格によって与えられるプロモーター核酸配列と同じであってよい。例えば、RNAアルファウイルス骨格によって与えられるプロモーター配列であるPn及びP2が、それぞれ26Sのサブゲノミックプロモーターを含むことができる。プロモーター核酸配列P及び/またはP2は、RNAアルファウイルス骨格によって与えられるプロモーター核酸配列と異なっていてもよく、また、互いと異なっていてもよい。
5’リンカーL5は、天然配列または非天然配列であってよい。非天然配列としては、これらに限定されるものではないが、AAY、RR、及びDPPが挙げられる。3’リンカーL3もまた、天然配列または非天然配列であってよい。さらに、L5及びL3は、いずれも天然配列であってよく、いずれも非天然配列であってよく、または一方が天然で他方が非天然であってもよい。各Xについて、アミノ酸リンカーは、アミノ酸2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、31個、32個、33個、34個、35個、36個、37個、38個、39個、40個、41個、42個、43個、44個、45個、46個、47個、48個、49個、50個、51個、52個、53個、54個、55個、56個、57個、58個、59個、60個、61個、62個、63個、64個、65個、66個、67個、68個、69個、70個、71個、72個、73個、74個、75個、76個、77個、78個、79個、80個、81個、82個、83個、84個、85個、86個、87個、88個、89個、90個、91個、92個、93個、94個、95個、96個、97個、98個、99個、100個、またはそれ以上の長さであってよい。各Xについて、アミノ酸リンカーはまた、アミノ酸が少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも11個、少なくとも12個、少なくとも13個、少なくとも14個、少なくとも15個、少なくとも16個、少なくとも17個、少なくとも18個、少なくとも19個、少なくとも20個、少なくとも21個、少なくとも22個、少なくとも23個、少なくとも24個、少なくとも25個、少なくとも26個、少なくとも27個、少なくとも28個、少なくとも29個、または少なくとも30個の長さであってもよい。
各Yについて、アミノ酸リンカーG5は、アミノ酸2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、31個、32個、33個、34個、35個、36個、37個、38個、39個、40個、41個、42個、43個、44個、45個、46個、47個、48個、49個、50個、51個、52個、53個、54個、55個、56個、57個、58個、59個、60個、61個、62個、63個、64個、65個、66個、67個、68個、69個、70個、71個、72個、73個、74個、75個、76個、77個、78個、79個、80個、81個、82個、83個、84個、85個、86個、87個、88個、89個、90個、91個、92個、93個、94個、95個、96個、97個、98個、99個、100個、またはそれ以上の長さであってよい。各Yについて、アミノ酸リンカーはまた、アミノ酸が少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも11個、少なくとも12個、少なくとも13個、少なくとも14個、少なくとも15個、少なくとも16個、少なくとも17個、少なくとも18個、少なくとも19個、少なくとも20個、少なくとも21個、少なくとも22個、少なくとも23個、少なくとも24個、少なくとも25個、少なくとも26個、少なくとも27個、少なくとも28個、少なくとも29個、または少なくとも30個の長さであってもよい。
アミノ酸リンカーG3は、アミノ酸2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、31個、32個、33個、34個、35個、36個、37個、38個、39個、40個、41個、42個、43個、44個、45個、46個、47個、48個、49個、50個、51個、52個、53個、54個、55個、56個、57個、58個、59個、60個、61個、62個、63個、64個、65個、66個、67個、68個、69個、70個、71個、72個、73個、74個、75個、76個、77個、78個、79個、80個、81個、82個、83個、84個、85個、86個、87個、88個、89個、90個、91個、92個、93個、94個、95個、96個、97個、98個、99個、100個、またはそれ以上の長さであってよい。G3はまた、アミノ酸が少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも11個、少なくとも12個、少なくとも13個、少なくとも14個、少なくとも15個、少なくとも16個、少なくとも17個、少なくとも18個、少なくとも19個、少なくとも20個、少なくとも21個、少なくとも22個、少なくとも23個、少なくとも24個、少なくとも25個、少なくとも26個、少なくとも27個、少なくとも28個、少なくとも29個、または少なくとも30個の長さであってもよい。
各Xについて、各Nは、アミノ酸7~15個の長さのMHCクラスIエピトープをコードすることができる。各Xについて、各Nは、アミノ酸5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、または30個の長さのMHCクラスIエピトープをコードしてもよい。各Xについて、各Nはまた、アミノ酸が、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも11個、少なくとも12個、少なくとも13個、少なくとも14個、少なくとも15個、少なくとも16個、少なくとも17個、少なくとも18個、少なくとも19個、少なくとも20個、少なくとも21個、少なくとも22個、少なくとも23個、少なくとも24個、少なくとも25個、少なくとも26個、少なくとも27個、少なくとも28個、少なくとも29個、または少なくとも30個の長さのMHCクラスIエピトープをコードしてもよい。
ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよい。ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよく、2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよく、少なくとも2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよく、3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよく、少なくとも3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、700ヌクレオチド以下であってよく、1~10個、1~5個、1、2、3、4、5、6、7、8、9、10個、またはそれよりも多い抗原を含むことができる。
ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよい。ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよく、2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよく、少なくとも2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよく、3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよく、少なくとも3個の異なるエピトープコード核酸配列をコードすることできる。ペイロード核酸配列をコードするカセットは、375~700ヌクレオチドの長さであってよく、1~10個、1~5個、1、2、3、4、5、6、7、8、9、10個、またはそれよりも多い抗原を含むことができる。
ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチドの長さであってよい。ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチドの長さであってよく、2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチドの長さであってよく、少なくとも2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチドの長さであってよく、3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチドの長さであってよく、少なくとも3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、600、500、400、300、200、または100ヌクレオチド以下の長さであってよく、1~10個、1~5個、1、2、3、4、5、6、7、8、9、10個、またはそれよりも多い抗原を含むことができる。
ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよい。ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよく、2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよく、少なくとも2個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよく、3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよく、少なくとも3個の異なるエピトープコード核酸配列をコードすることができる。ペイロード核酸配列をコードするカセットは、375~600、375~500、または375~400ヌクレオチドの長さであってよく、1~10個、1~5個、1、2、3、4、5、6、7、8、9、10個、またはそれよりも多い抗原を含むことができる。
V.A.2 TETプロモーターシステム
本明細書では、TET-OnシステムまたはTET-OffシステムのようなTETプロモーターシステムである調節可能なプロモーターに機能的に連結された少なくとも1つのペイロード配列を有するカセットを含むウイルスベクターも開示する。理論に束縛されることを望まずに言えば、TETプロモーターシステムを用いることで、ウイルス生産時における、ワクチンカセットにコードされた抗原などのカセットにコードされたペイロード核酸配の転写を最小限に抑えることができる。TETプロモーターシステムは、テトラサイクリン(TET)リプレッサータンパク質(TETr)により制御されるプロモーターを含むことができる。したがって、本明細書では、テトラサイクリン(TET)リプレッサータンパク質(TETr)により制御されるプロモーターに機能的に連結された少なくとも1つのペイロード配列を有するカセットを含むウイルスベクターも開示される。TETr配列(tTS)は、配列番号63に示され、かつ/または配列番号62に示されるヌクレオチド配列によりコードされたアミノ酸配列を含むことができる。TETr制御プロモーターは、19bpのTETオペレーター(TETo)配列TCCCTATCAGTGATAGAGA(配列番号60)を含むことができる。TETr制御プロモーターは、2、3、4、5、6、7、8、9、または10個またはそれ以上のTETo核酸配列を含むことができる。2個以上のTETo核酸配列を有するTETr制御プロモーターでは、TETo配列同士は互いに連結されてもよい。2個以上のTETo核酸配列を有するTETr制御プロモーターでは、TETo配列同士は互いに直接連結されてもよい。2個以上のTETo核酸配列を有するTETr制御プロモーターでは、TETo配列同士は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20個以上のヌクレオチドを有するリンカー配列などのリンカー配列によって互いに連結されてもよい。1つの例では、リンカー配列は配列番号61に示されるリンカーヌクレオチド配列を有する。一般的に、TETr制御プロモーターは、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列などの任意の望ましいプロモーター配列を用いることができる。TETr制御プロモーターはCMVプロモーター配列を用いることができる。TETr制御プロモーターは最小CMVプロモーター配列を用いることができる。TETo配列は、RNAポリメラーゼが結合するプロモーター配列領域の上流(5’)にあってよい。例示的な1つの例では、7個のTETo配列が、プロモーター配列の上流(5’)にある。TETo配列がプロモーター配列領域の上流にある、少なくとも1つのペイロード核酸配列に機能的に連結されたTETr制御プロモーターは、5’から3’に向けて下式に記述される順序付けられた配列を有することができる。すなわち、
(T-L-P-N
式中、Nは、ペイロード核酸配列であり、Pは、ペイロード核酸配列に機能的に連結されたプロモーター配列のRNAポリメラーゼ結合配列であり、Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列であり、Lは、リンカー配列であり、ただし、各XについてY=0または1であり、X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である。例示的な1つの例では、各XについてX=7かつY=1とは、7個のTETo配列がプロモーター配列の上流(5’)にあり、各TETo配列がリンカーによって分離されている場合を記述している。
TETo配列は、RNAポリメラーゼが結合するプロモーター配列領域の下流(3’)にあってもよい。別の例示的な例では、2個のTETo配列が、プロモーター配列の下流(3’)にある。TETo配列がプロモーター配列領域の下流にある、少なくとも1つのペイロード核酸配列に機能的に連結されたTETr制御プロモーターは、5’から3’に向けて下式に記述される順序付けられた配列を有することができる。すなわち、
P-(T-L-N
式中、Nは、ペイロード核酸配列であり、Pは、ペイロード核酸配列に機能的に連結されたプロモーター配列のRNAポリメラーゼ結合配列であり、Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列であり、Lは、リンカー配列であり、ただし、各XについてY=0または1であり、X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である。例示的な1つの例では、各XについてX=2かつY=1とは、2個のTETo配列がプロモーター配列の下流(3’)にあり、各TETo配列がリンカーによって分離されている場合を記述している。
TETr制御プロモーターを有するベクターのウイルス生産では、TETr配列(tTS)を発現するように操作された293細胞株またはその誘導株(例えば、293F細胞)など、tTSを発現するように操作されたあらゆるウイルス産生細胞株を使用することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、ウイルス生産を改善することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、感染単位(IU)当たりのウイルス粒子(VP)として定義されるウイルス感染性を改善することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、非tTS発現細胞内での生産と比較してウイルス生産及び/またはウイルス感染性を少なくとも1.5、少なくとも2、少なくとも2.5、少なくとも3、少なくとも3.5、少なくとも4、少なくとも4.5、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、または少なくとも10倍改善することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、非tTS発現細胞内での生産と比較してウイルス生産及び/またはウイルス感染性を少なくとも15、少なくとも20、少なくとも25、少なくとも30、少なくとも35、少なくとも40、少なくとも45、少なくとも50、少なくとも60、少なくとも70、少なくとも80、少なくとも90、または少なくとも100倍改善することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、TETr制御プロモーターを有さないベクターの生産と比較してウイルス生産及び/またはウイルス感染性を少なくとも1.5、少なくとも2、少なくとも2.5、少なくとも3、少なくとも3.5、少なくとも4、少なくとも4.5、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、または少なくとも10倍改善することができる。tTS発現細胞内でのTETr制御プロモーターを有するベクターのウイルス生産により、TETr制御プロモーターを有さないベクターの生産と比較してウイルス生産及び/またはウイルス感染性を少なくとも15、少なくとも20、少なくとも25、少なくとも30、少なくとも35、少なくとも40、少なくとも45、少なくとも50、少なくとも60、少なくとも70、少なくとも80、少なくとも90、または少なくとも100倍改善することができる。
V.B.免疫チェックポイント
本明細書に記載されるベクター、例えば本明細書に記載されるC68ベクター、または本明細書に記載されるアルファウイルスベクターは少なくとも1つの抗原をコードする核酸を含むことができ、また、同じまたは別のベクターが、免疫チェックポイント分子に結合してその活性を遮断する少なくとも1つの免疫調節因子(例えばscFvなどの抗体)をコードする核酸を含むことができる。ベクターは、カセットと、チェックポイント阻害剤をコードする1つ以上の核酸分子とを含むことができる。
遮断または阻害するための標的となりうる例示的な免疫チェックポイント分子としては、これらに限定されるものではないが、CTLA-4、4-1BB(CD137)、4-1BBL(CD137L)、PDL1、PDL2、PD1、B7-H3、B7-H4、BTLA、HVEM、TIM3、GAL9、LAG3、TIM3、B7H3、B7H4、VISTA、KIR、2B4(CD2ファミリーの分子に属し、すべてのNK(γδ)及びメモリーCD8+(αβ)T細胞で発現する)、CD160(BY55とも呼ばれる)、及びCGEN-15049が挙げられる。免疫チェックポイント阻害剤には、CTLA-4、PDL1、PDL2、PD1、B7-H3、B7-H4、BTLA、HVEM、TIM3、GAL9、LAG3、TIM3、B7H3、B7H4、VISTA、KIR、2B4、CD160、及びCGEN-15049の1つ以上に結合してその活性を遮断または阻害する抗体、またはその抗原結合フラグメント、または他の結合タンパク質が挙げられる。例示的な免疫チェックポイント阻害剤としては、トレメリムマブ(CTLA-4遮断抗体)、抗OX40、PD-L1モノクローナル抗体(抗B7-H1;MEDI4736)、イピリムマブ、MK-3475(PD-1blocker)、ニボルマブ(抗PD1抗体)、CT-011(抗PD1抗体)、BY55モノクローナル抗体、AMP224(抗PDL1抗体)、BMS-936559(抗PDL1抗体)、MPLDL3280A(抗PDL1抗体)、MSB0010718C(抗PDL1抗体)、及びヤーボイ/イピリムマブ(抗CTLA-4チェックポイント阻害剤)が挙げられる。抗体をコードする配列は、当該技術分野における通常の技能を用いてベクターに操作により組み込むことができる。例示的な方法の1つが、あらゆる目的で参照により本明細書に援用する、Fang et al.,Stable antibody expression at therapeutic levels using the 2A peptide.Nat Biotechnol.2005 May;23(5):584-90.Epub 2005 Apr 17;に記載されている。
V.C.ワクチン設計及び製造のさらなる考慮事項
V.C.1.すべての腫瘍サブクローンをカバーするペプチドのセットの決定
すべてのまたは大部分の腫瘍サブクローンによって提示されるものを意味するトランカルペプチド(truncal peptide)が、ワクチン中への包含について優先される53。任意で、高い確率で提示されかつ免疫原性であることが予測されるトランカルペプチドがない場合、または、高い確率で提示されかつ免疫原性であることが予測されるトランカルペプチドの数が、追加的な非トランカルペプチドをワクチンに含めることができるほど少ない場合には、腫瘍サブクローンの数及び同一性を推定すること、及びワクチンによってカバーされる腫瘍サブクローンの数を最大化するようにペプチドを選ぶことによって、さらなるペプチドを優先順位付けすることができる54
V.C.2.抗原の優先順位決定
上記の抗原フィルターのすべてを適用した後、ワクチン技術が対応できるよりも多くの候補抗原が、依然としてワクチン包含に利用可能である可能性がある。追加的に、抗原解析の種々の態様についての不確定度が残っている可能性があり、候補ワクチン抗原の様々な性状の間にトレードオフが存在する可能性がある。したがって、選択プロセスの各段階でのあらかじめ決定されたフィルターの代わりに、少なくとも以下の軸を有する空間に候補抗原を置き、積分アプローチを用いて選択を最適化する、積分多次元モデルを考えることができる。
1. 自己免疫または寛容のリスク(生殖細胞系列のリスク)(より低い自己免疫のリスクが、典型的に好ましい)
2. シークエンシングアーチファクトの確率(より低いアーチファクトの確率が、典型的に好ましい)
3. 免疫原性の確率(より高い免疫原性の確率が、典型的に好ましい)
4. 提示の確率(より高い提示の確率が、典型的に好ましい)
5. 遺伝子発現(より高い発現が、典型的に好ましい)
6. HLA遺伝子のカバレッジ(抗原のセットの提示に関与する、より多い数のHLA分子は、腫瘍が、HLA分子の下方制御または変異を介して免疫攻撃を回避するであろう確率を低くする可能性がある)
7.HLAクラスのカバレッジ(HLA-I及びHLA-IIの両方をカバーすることで、治療応答の確率が高まり、腫瘍の免疫回避の確率が低くなる可能性がある)
さらに、場合によっては、抗原が患者の腫瘍または感染細胞のすべてまたは一部において喪失するかまたは不活性化されたHLAアレルによって提示されることが予想される場合には、これらの新生抗原のワクチン接種における優先順位を下げる(例えば除外)することができる。HLAアレルの喪失は、体細胞変異、ヘテロ接合性の喪失、または遺伝子座のホモ接合欠失のいずれかによって生じうる。HLAアレルの体細胞変異の検出方法は当該技術分野では周知のものである(例えば、Shukla et al.,2015)。体細胞LOH及びホモ接合欠失(HLA遺伝子座を含む)の検出方法についても同様に述べられている(Carter et al.,2012;McGranahan et al.,2017;Van Loo et al.,2010)。抗原は、質量分析データが、予測された抗原が予測されたHLAアレルによって提示されないことを示す場合には優先順位付けを外してもよい。
V.D.アルファウイルス
V.D.1.アルファウイルスの生物学
アルファウイルスは、トガウイルス科のメンバーであり、一本鎖プラス鎖RNAウイルスである。メンバーは、一般的に、シンドビス、ロスリバー、マヤロ、チクングニア、及びセムリキ森林ウイルスなどの旧世界型、または、東部ウマ脳炎ウイルス、アウラ、フォートモルガン、もしくはベネズエラウマ脳炎ウイルス及びその誘導株TC-83などの新世界型に分類される(Strauss Microbrial Review 1994)。天然のアルファウイルスゲノムは、通常、長さ約12kbであり、その最初の2/3は、ウイルスゲノムを自己複製するためのRNA複製複合体を形成する非構造タンパク質(nsP)をコードする遺伝子を含んでおり、最後の1/3は、ビリオンを産生するための構造タンパク質をコードするサブゲノム発現カセットを含んでいる(Frolov RNA 2001)。
アルファウイルスのモデル生活環は、複数の異なるステップを含む(Strauss Microbrial Review 1994,Jose Future Microbiol 2009)。宿主細胞にウイルスが吸着した後、ビリオンが細胞内区画内の膜と融合し、最終的にゲノムRNAをサイトゾル中に放出する。プラス鎖の向きを有し、5’メチルグアニル酸キャップ及び3’ポリAテールを有するゲノムRNAは、翻訳されて非構造タンパク質nsP1-4を生成し、これが複製複合体を形成する。感染初期には、プラス鎖はこの複合体によってマイナス鎖の鋳型に複製される。現在のモデルでは、複製複合体は感染が進行するにつれてさらにプロセシングされ、生じたプロセス後の複合体はマイナス鎖の完全長プラス鎖ゲノムRNA及び構造遺伝子を含む26Sのサブゲノムプラス鎖RNAへの転写に切り替わる。アルファウイルスのいくつかの保存配列エレメント(CSE)が、マイナス鎖鋳型からのプラス鎖RNAの複製における5’UTRの相補体、ゲノム鋳型からのマイナス鎖合成の複製における51ntのCSE、マイナス鎖からのサブゲノムRNAの転写におけるnsPと26S RNAとのジャンクション領域内の24ntのCSE、及び、プラス鎖鋳型からのマイナス鎖合成における3’の19ntのCSEを含む様々なRNA合成ステップにおいて潜在的に一定の役割を担っているものとして同定されている。
ウイルスの自然の生活環では、異なるRNA種の複製後、ウイルス粒子が通常、アセンブルされる。26S RNAは翻訳され、生じたタンパク質はさらにプロセシングされて、カプシドタンパク質、糖タンパク質E1及びE2、ならびに2種類の小ポリペプチドE3及び6Kを含む構造タンパク質を生成する(Strauss 1994)。ウイルス粒子のカプシド形成が生じ、通常はゲノムRNAのみに特異的なカプシドタンパク質がパッケージングされた後、ビリオンがアセンブルされ、膜表面に出芽する。
V.D.2.送達ベクターとしてのアルファウイルス
アルファウイルス(アルファウイルス配列、特徴、及び、他の要素)を使用してアルファウイルスベースの送達ベクター(アルファウイルスベクター、アルファウイルスウイルスベクター、アルファウイルスワクチンベクター、自己複製RNA(srRNA)ベクター、または自己増幅RNA(samRNA)ベクターとも称される)を作製することができる。アルファウイルスは、発現ベクター系として使用するために従来、遺伝子操作がなされている(Pushko 1997,Rheme 2004)。アルファウイルスは、異種抗原の発現が望ましい場合があるワクチン設定においていくつかの長所を有する。アルファウイルスは、宿主のサイトゾル中で自己複製するその能力のため、細胞内の発現カセットの高いコピー数を一般的に得ることができることから、高いレベルの異種抗原の産生を実現することができる。さらに、ベクターは一般的に一過性であるため、バイオセーフティーが高く、ベクターに対する免疫寛容の誘導は低い。また、一般公衆は、一般的にヒトアデノウイルスのような他の標準的ウイルスベクターと比較してアルファウイルスに対する既存の免疫を有していない。アルファウイルスに基づくベクターはまた、感染細胞に対する細胞毒性反応を一般的に生じる。細胞毒性は、発現された異種抗原に対して免疫応答を適性に誘発するためにワクチン設定においてある程度の重要性を有しうる。しかしながら、所望の細胞毒性の程度はバランスの問題であり、そのため、VEEのTC-83株をはじめとするいくつかの弱毒化されたアルファウイルスが開発されている。したがって、本明細書に記載される抗原発現ベクターの一例では、高いレベルの抗原発現を可能とし、抗原に対する強い免疫応答を誘発し、ベクター自体に対する免疫応答は誘発せず、安全に使用することができるアルファウイルス骨格を用いることができる。さらに、抗原発現カセットは、ベクターが、VEEまたはその弱毒化誘導株TC-83に由来する配列を含む(ただしこれらに限定されない)どのアルファウイルス配列を用いるかを最適化することを通じて異なるレベルの免疫応答を誘発するように設計することができる。
アルファウイルス配列を用いたいくつかの発現ベクターの設計戦略が開発されている(Pushko 1997)。1つの戦略では、アルファウイルスベクターの設計は、構造タンパク質遺伝子の下流に26Sプロモーター配列因子の第2のコピーを挿入した後、異種遺伝子を挿入することを含む(Frolov 1993)。これにより、天然の非構造及び構造タンパク質以外に、さらなる異種タンパク質を発現するサブゲノムRNAが産生される。このシステムでは、感染性ビリオンを産生するためのすべての因子が存在し、したがって、非感染細胞において発現ベクターの繰り返しの感染のラウンドが行われうる。
別の発現ベクターの設計では、ヘルパーウイルスシステムを利用する(Pushko 1997)。この戦略では、構造タンパク質は異種遺伝子によって置換される。したがって、依然としてインタクトな非構造遺伝子によって媒介されるウイルスRNAの自己複製の後、26SサブゲノムRNAが異種タンパク質の発現をもたらす。従来、構造タンパク質を発現するさらなるベクターが、例えば、細胞株の同時トランスフェクションなどによってイン・トランスで与えられることで感染性ウイルスを生じる。1つのシステムが米国特許第8,093,021号に記載されており、当該特許の全容をあらゆる目的で参照によって本明細書に援用する。ヘルパーベクターシステムは、感染性粒子を形成する可能性を制限するという長所をもたらし、したがってバイオセーフティーを改善する。さらに、ヘルパーベクターシステムは、全ベクター長を短縮し、複製及び発現の効率を改善する可能性がある。したがって、本明細書に記載される抗原発現ベクターの一例では、構造タンパク質がカセットで置換されたアルファウイルス骨格を用いることができ、得られるベクターはバイオセーフティーの問題が低減されるのと同時に全体的な発現ベクターのサイズの減少により、効率的な発現を促進する。
V.D.3.インビトロでのアルファウイルスの生成
アルファウイルス送達ベクターは、一般的に、プラス鎖のRNAポリヌクレオチドである。RNA生成のための当該技術分野では周知の従来の方法として、インビトロ翻訳IVTがある。この方法では、所望のベクターのDNA鋳型が、クローニング、制限消化、ライゲーション、遺伝子合成、及びポリメラーゼ連鎖反応(PCR)などの標準的な分子生物学的方法を含む当該技術分野では周知の方法によって最初に生成される。このDNA鋳型は、RNAに転写されることが望ましい配列の5’末端にRNAポリメラーゼのプロモーターを有している。プロモーターとしては、これらに限定されるものではないが、T3、T7、またはSP6などのバクテリオファージポリメラーゼのプロモーターが挙げられる。次に、DNA鋳型は、適当なRNAポリメラーゼ酵素、バッファー剤、及びヌクレオチド(NTP)とインキュベートされる。得られたRNAポリヌクレオチドは、7-メチルグアノシンまたは関連する構造などの5’キャップ構造の付加、及び場合によりポリアデニル化(ポリA)テールを有するように3’末端を改変することを含む(ただしこれらに限定されない)方法によって、場合によりさらに改変することができる。次に、RNAをフェノールクロロホルム抽出などの当該技術分野では周知の方法を用いて精製することができる。
V.D.4.脂質ナノ粒子による送達
ワクチンベクターの設計において考慮すべき重要な側面の1つとして、ベクター自体に対する免疫がある(Riley 2017)。これは、例えば特定のヒトアデノウイルス系などのベクター自体に対する既存の免疫の形である場合もあり、またはワクチンの投与後に生じるベクターに対する免疫の形である場合もある。後者は、例えば別々のプライミング及びブースター投与のように同じワクチンの複数回の投与が行われる場合、または異なるカセットを送達するために同じワクチンベクターシステムが用いられるような場合に重要な考慮事項となる。
アルファウイルスベクターの場合では、標準的な送達方法は、カプシド、E1、及びE2タンパク質をイン・トランスで与えることによって感染性のウイルス粒子を生じる上記に述べたヘルパーウイルスシステムである。しかしながら、E1及びE2タンパク質は、しばしば中和抗体の主要な標的である点に留意することが重要である(Strauss 1994)。したがって、対象とする抗原を標的細胞に送達するためにアルファウイルスベクターを使用することの有効性は、感染性粒子が中和抗体の標的とされる場合に低下する可能性がある。
ウイルス粒子を媒介とする遺伝子送達に代わる代替的手法として、ナノ粒子を用いた発現ベクターの送達がある(Riley 2017)。重要な点として、ナノ材料担体は、非免疫原性材料で形成することができ、送達ベクター自体に対する免疫の誘発を一般的に回避することができる。これらの材料としては、これらに限定されるものではないが、脂質、無機ナノ材料、及び他のポリマー材料を挙げることができる。脂質は、カチオン性、アニオン性、または中性であってよい。かかる材料は、合成または天然由来のものであってよく、特定の例では生分解性であってよい。脂質は、脂肪、コレステロール、リン脂質、ポリエチレングリコール(PEG)複合体(PEG化脂質)を含む(ただしこれに限定されない)脂質複合体、ワックス、油類、グリセリド、及び脂溶性ビタミンを含みうる。
脂質ナノ粒子(LNP)は、膜及び小胞状構造の形成を可能とする脂質の両親媒性の性質のために魅力的な送達システムである(Riley 2017)。一般的にこれらの小胞は、標的細胞の膜内に吸収され、サイトゾル中に核酸を放出することによって発現ベクターを送達する。さらに、LNPは特定の細胞種のターゲティングを促すようにさらに改変または官能化することができる。LNPの設計における別の考慮事項は、ターゲティングの効率と細胞毒性との間のバランスである。脂質の組成は一般的に、カチオン性、中性、アニオン性、及び両親媒性脂質の規定の混合物を含む。いくつかの例では、LNPの凝集を防止するか、脂質の酸化を防止するか、またはさらなる部分の付着を促す化学官能基を与えるために特定の脂質が含まれる。脂質の組成は、全体のLNPのサイズ及び安定性に影響しうる。1つの例では、脂質の組成は、ジリノレイルメチル-4-ジメチルアミノブチレート(MC3)またはMC3様分子を含む。MC3及びMC3様脂質の組成物は、例えばPEGまたはPEG複合化脂質、ステロール、または中性脂質などの1種類以上の他の脂質を含むように製剤化することができる。
血清に直接曝露された発現ベクターなどの核酸ベクターは、血清中のヌクレアーゼによる核酸の分解、または遊離核酸による免疫系のオフターゲットの刺激を含むいくつかの望ましくない影響を有しうる。したがって、アルファウイルスベクターの封入を利用して分解を防止する一方で、潜在的なオフターゲット効果も防止することができる。特定の例では、アルファウイルスベクターは、LNPの水性の内部など、送達担体内に完全に封入される。LNP内へのアルファウイルスベクターの封入は、微小流体液滴生成装置で行われる微小流体混合及び液滴生成などの当該技術分野では周知の方法によって実施することができる。かかる装置としては、これらに限定されるものではないが、標準的なTジャンクション装置またはフローフォーカシング装置が挙げられる。1つの例では、MC3またはMC3様分子含有組成物などの所望の脂質製剤を、アルファウイルス送達ベクター及び他の所望の物質と並行して液滴生成装置に供給することで、送達ベクター及び所望の物質がMC3またはMC3様分子ベースのLNPの内部に完全に封入される。1つの例では、液滴生成装置は、生成されたLNPの粒径範囲及び粒度分布を制御することができる。例えば、LNPは、直径1~1000nmの範囲の粒径、例えば、1、10、50、100、500、または1000nmの粒径を有することができる。液滴生成の後、発現ベクターを封入した送達ベクターを、投与に備えてさらに処理または改変することができる。
V.E.チンパンジーアデノウイルス(ChAd)
V.E.1.チンパンジーアデノウイルスによるウイルス送達
1つ以上の抗原を送達するためのワクチン組成物(例えば、1つ以上の抗原または新生抗原をコードするカセットを介して)は、チンパンジー由来のアデノウイルスヌクレオチド配列、各種の新規ベクター、及びチンパンジーアデノウイルス遺伝子を発現する細胞株を与えることにより作出することができる。チンパンジーC68アデノウイルス(本明細書ではChAdV68とも呼ぶ)の核酸配列を、抗原を送達するためのワクチン組成物中に使用することができる(配列番号1を参照)。C68アデノウイルス由来ベクターの使用については米国特許第6,083,716号にさらに詳細に記載されており、当該特許の全容をあらゆる目的で参照によって本明細書に援用する。
さらなる態様において、本明細書では、C68などのチンパンジーアデノウイルスのDNA配列と、発現を誘導する調節配列に機能的に連結されたカセットとを含む組換えアデノウイルスが提供される。この組換えウイルスは、哺乳動物、好ましくはヒトの細胞に感染させることが可能であり、細胞内でカセットのペイロードを発現することが可能である。このベクターでは、天然のチンパンジーE1遺伝子、及び/またはE3遺伝子、及び/またはE4遺伝子を欠失させることができる。カセットを、これらの遺伝子欠失部位のいずれに挿入することもできる。カセットは、それに対するプライミングされた免疫応答が望ましい抗原を含むことができる。
別の態様において、本明細書では、C68などのチンパンジーアデノウイルスを感染させた哺乳動物細胞が提供される。
さらなる別の態様では、チンパンジーアデノウイルス遺伝子(例えばC68由来の)またはその機能的フラグメントを発現する新規な哺乳動物細胞株が提供される。
いっそうさらなる態様において、本明細書では、哺乳動物細胞内にカセットを送達するための方法であって、細胞内に、抗原カセットを発現するように操作された、有効量のC68などのチンパンジーアデノウイルスを導入する工程を含む方法が提供される。
さらなる別の態様は、哺乳動物宿主に免疫応答を誘発してがんを治療するための方法を提供する。この方法は、免疫応答が標的とする腫瘍に由来する1種類以上の抗原をコードするカセットを含む、有効量のC68などの組換えチンパンジーアデノウイルスを宿主に投与する工程を含むことができる。
さらなる別の態様は、哺乳動物宿主に免疫応答を誘発して、感染症などの対象の疾患を治療または予防するための方法を提供する。この方法は、免疫応答が標的とする感染症に由来する抗原などの1つ以上の抗原をコードする抗原カセットを含む、有効量のC68などの組換えチンパンジーアデノウイルスを宿主に投与する工程を含むことができる。
さらに、配列番号1の配列から得られるチンパンジーアデノウイルス遺伝子を発現する非サル哺乳動物細胞も開示される。この遺伝子は、配列番号1のアデノウイルスE1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4及びL5からなる群から選択することができる。
さらに、配列番号1の配列から得られる遺伝子を含むチンパンジーアデノウイルスのDNA配列を含む核酸分子も開示される。この遺伝子は、配列番号1の前記チンパンジーアデノウイルスE1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4及びL5遺伝子からなる群から選択することができる。いくつかの態様において、核酸分子は、配列番号1を含む。いくつかの態様において、核酸分子は、配列番号1のE1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4及びL5遺伝子からなる群から選択される少なくとも1つの遺伝子が欠失した、配列番号1の配列を含む。
さらに、配列番号1から得られるチンパンジーアデノウイルスDNA配列と、異種宿主細胞内でカセットの発現を誘導する1つ以上の調節配列に機能的に連結されたカセットとを含むベクターであって、場合により、チンパンジーアデノウイルスDNA配列が、複製及びカプシド形成に必要とされる少なくともシスエレメントを含み、シスエレメントがカセット及び調節配列に隣接している、ベクターも開示される。いくつかの態様において、チンパンジーアデノウイルスDNA配列は、配列番号1のE1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4及びL5遺伝子配列から選択される遺伝子を含む。いくつかの態様において、ベクターは、E1A及び/またはE1B遺伝子を欠失していてもよい。
さらに、カセットを発現するように操作されたC68ベクターなどの本明細書に開示されるベクターをトランスフェクトした宿主細胞も開示される。さらに、細胞内に本明細書に開示されるベクターを導入することによって細胞内に導入された選択された遺伝子を発現するヒト細胞も開示される。
本明細書では、欠失または部分欠失E4orf2領域及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含む部分欠失E4遺伝子を含むアデノウイルスベクターも開示される。部分欠失E4は、配列番号1に示される配列の少なくともヌクレオチド34,916~35,642のE4欠失を含むことができ、ベクターは、配列番号1に記載される配列の少なくともヌクレオチド2~36,518を含む。部分欠失E4は、配列番号1に示される配列のヌクレオチド34,916~34,942の少なくとも部分欠失、配列番号1に示される配列のヌクレオチド34,952~35,305の少なくとも部分欠失、及び配列番号1に示される配列のヌクレオチド35,302~35,642の少なくとも部分欠失のE4欠失を含むことができ、ベクターは、配列番号1に記載される配列の少なくともヌクレオチド2~36,518を含む。部分欠失E4は、配列番号1に示される配列の少なくともヌクレオチド34,980~36,516のE4欠失を含むことができ、ベクターは、配列番号1に記載される配列の少なくともヌクレオチド2~36,518を含む。部分欠失E4は、配列番号1に示される配列の少なくともヌクレオチド34,979~35,642のE4欠失を含むことができ、ベクターは、配列番号1に記載される配列の少なくともヌクレオチド2~36,518を含む。部分欠失E4は、E4Orf2の少なくとも部分欠失、完全欠失したE4Orf3、及びE4Orf4の少なくとも部分欠失のE4欠失を含むことができる。部分欠失E4は、E4Orf2の少なくとも部分欠失、E4Orf3の少なくとも部分欠失、及びE4Orf4の少なくとも部分欠失のE4欠失を含むことができる。部分欠失E4は、E4Orf1の少なくとも部分欠失、完全欠失したE4Orf2、及びE4Orf3の少なくとも部分欠失のE4欠失を含むことができる。部分欠失E4は、E4Orf2の少なくとも部分欠失及びE4Orf3の少なくとも部分欠失のE4欠失を含むことができる。部分欠失E4は、E4Orf1の開始部位からE4Orf5の開始部位までのE4欠失を含むことができる。部分欠失E4は、E4Orf1の開始部位に隣接したE4欠失であってよい。部分欠失E4は、E4Orf2の開始部位に隣接したE4欠失であってよい。部分欠失E4は、E4Orf3の開始部位に隣接したE4欠失であってよい。部分欠失E4は、E4Orf4の開始部位に隣接したE4欠失であってよい。E4欠失は、少なくとも50、少なくとも100、少なくとも200、少なくとも300、少なくとも400、少なくとも500、少なくとも600、少なくとも700、少なくとも800、少なくとも900、少なくとも1000、少なくとも1100、少なくとも1200、少なくとも1300、少なくとも1400、少なくとも1500、少なくとも1600、少なくとも1700、少なくとも1800、少なくとも1900、or 少なくとも2000ヌクレオチドであってよい。E4欠失は、少なくとも700ヌクレオチドであってよい。E4欠失は、少なくとも1500ヌクレオチドであってよい。E4欠失は、50以下、100以下、200以下、300以下、400以下、500以下、600以下、700以下、800以下、900以下、1000以下、1100以下、1200以下、1300以下、1400以下、1500以下、1600以下、1700以下、1800以下、1900以下、または2000ヌクレオチド以下であってよい。E4欠失は、750ヌクレオチド以下であってよい。E4欠失は、少なくとも1550ヌクレオチドまたはそれ以下であってよい。
部分欠失E4遺伝子は、配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列であってよい。部分欠失E4遺伝子は、配列番号1に示されるE4遺伝子配列を欠いており、かつ、配列番号1に示される配列の少なくともヌクレオチド34,916~34,942、ヌクレオチド34,952~35,305、及び配列番号1に示される配列のヌクレオチド35,302~35,642を欠いている、配列番号1に示されるE4遺伝子配列であってよい。部分欠失E4遺伝子は、配列番号1に示される配列の少なくともヌクレオチド34,980~36,516を欠いている、配列番号1に示されるE4遺伝子配列であってよい。部分欠失E4遺伝子は、配列番号1に示される配列の少なくともヌクレオチド34,979~35,642を欠いている、配列番号1に示されるE4遺伝子配列であってよい。部分欠失E4遺伝子を有するアデノウイルスベクターは、カセットを含むことができ、カセットは少なくとも1つのペイロード核酸配列を含み、さらにカセットは、少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む。部分欠失E4遺伝子を有するアデノウイルスベクターは、配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列を有することができ、場合により、1つ以上の遺伝子または調節配列は、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む。部分欠失E4遺伝子を有するアデノウイルスベクターは配列番号1に示される配列のヌクレオチド2~34,916を有することができ、部分欠失E4遺伝子は、ヌクレオチド2~34,916の3’であり、場合により、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている。部分欠失E4遺伝子を有するアデノウイルスベクターは、配列番号1に示される配列のヌクレオチド35,643~36,518を有することができ、部分欠失E4遺伝子はヌクレオチド35,643~36,518の5’である。部分欠失E4遺伝子を有するアデノウイルスベクターは配列番号1に示される配列のヌクレオチド2~34,916を有することができ、部分欠失E4遺伝子は、ヌクレオチド2~34,916の3’であり、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつE3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている。部分欠失E4遺伝子を有するアデノウイルスベクターは配列番号1に示される配列のヌクレオチド2~34,916を有することができ、部分欠失E4遺伝子は、ヌクレオチド2~34,916の3’であり、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いており、かつ配列番号1に示される配列のヌクレオチド35,643~36,518を有し、部分欠失E4遺伝子は、ヌクレオチド35,643~36,518の5’である。
部分欠失E4遺伝子は、配列番号1に示される配列の少なくともヌクレオチド34,916~35,642、配列番号1に示される配列のヌクレオチド2~34,916を欠いている、配列番号1に示されるE4遺伝子配列であってよく、部分欠失E4遺伝子は、ヌクレオチド2~34,916の3’であり、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつE3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いており、かつ配列番号1に示される配列のヌクレオチド35,643~36,518を有し、部分欠失E4遺伝子は、ヌクレオチド35,643~36,518の5’である。
部分欠失E4遺伝子を有するアデノウイルスベクターは、を有することができる。
さらに、哺乳動物細胞にカセットを送達するための方法であって、前記細胞内に、カセットを発現するように操作された有効量のC68ベクターなどの本明細書に開示されるベクターを導入することを含む方法も提供される。
さらに、哺乳動物細胞内に本明細書に開示されるベクターを導入することと、適当な条件下で細胞を培養することと、抗原を産生することと、を含む、カセットを産生するための方法も開示される。
V.E.2.E1を発現する相補性細胞株
本明細書に記載される遺伝子のいずれかにおいて欠失を有する組換えチンパンジーアデノウイルス(Ad)を作製するため、欠失させた遺伝子領域の機能(ウイルスの複製及び感染性に不可欠である場合)をヘルパーウイルスまたは細胞株(すなわち、相補性またはパッケージング細胞株)によって組換えウイルスに供給することができる。例えば、複製欠損チンパンジーアデノウイルスベクターを作製するには、ヒトまたはチンパンジーアデノウイルスのE1遺伝子産物を発現する細胞株を使用することができ、そのような細胞株にはHEK293またはその変異体が含まれうる。チンパンジーE1遺伝子を発現する細胞株の作製のプロトコール(米国特許第6,083,716号の実施例3及び4)にしたがって任意の選択されたチンパンジーアデノウイルス遺伝子を発現する細胞株を作製することができる。
AAV強化アッセイを用いてチンパンジーアデノウイルスE1発現細胞株を同定することができる。このアッセイは、他の特性評価されていないアデノウイルス(例えば他の種由来)のE1遺伝子を使用して作製された細胞株においてE1の機能を同定するうえで有用である。このアッセイは米国特許第6,083,716号の実施例4Bに記載されている。
選択されたチンパンジーアデノウイルス遺伝子(例えばE1)は、選択された親細胞株で発現するためのプロモーターの転写制御下にある可能性がある。この目的で誘導性または構成性プロモーターを用いることができる。誘導性プロモーターには、亜鉛によって誘導されるヒツジメタロチオニンプロモーター、または糖質コルチコイド、特にデキサメタゾンによって誘導されるマウス哺乳動物腫瘍ウイルス(MMTV)がある。本明細書に参照により援用するところの国際出願第WO95/13392号において特定されるものなどの他の誘導性プロモーターもパッケージング細胞株の作製に使用することができる。チンパンジーアデノウイルス遺伝子の発現を制御する構成性プロモーターも用いることができる。
任意の所望のC68遺伝子を発現する新規な細胞株を作製するために親細胞を選択することができる。限定されることなく、かかる親細胞株は、HeLa[ATCC寄託番号CCL2]、A549[ATCC寄託番号CCL185]、KB[CCL17]、Detroit[例えばDetroit510、CCL72]、及びWI-38[CCL75]細胞であってよい。他の適当な親細胞株を他の供給元から入手することができる。親細胞株としては、CHO、HEK293またはその変異体、911、HeLa、A549、LP-293、PER.C6、またはAE1-2aを挙げることができる。
E1発現細胞株は、組換えチンパンジーアデノウイルスE1欠失ベクターの作製において有用となりうる。1つ以上の他のチンパンジーアデノウイルス遺伝子産物を発現する基本的に同じ手順を用いて構築された細胞株は、これらの産物をコードする遺伝子に欠失を有する組換えチンパンジーアデノウイルスベクターの作製において有用である。さらに、他のヒトAdE1遺伝子産物を発現する細胞株も、チンパンジー組換えAdを作製するうえで有用である。
V.E.3.ベクターとしての組換えウイルス粒子
本明細書に開示される組成物は、少なくとも1種類の抗原を細胞に送達するウイルスベクターを含むことができる。かかるベクターは、C68のようなチンパンジーアデノウイルスDNA配列と、カセットを直接発現するための調節配列に機能的に連結されたカセットとを含む。C68ベクターは、感染した哺乳動物細胞内でカセットを発現することが可能である。C68ベクターは1つ以上のウイルス遺伝子に機能的欠失を有することができる。カセットは、プロモーターなどの1つ以上の調節配列の制御下にある少なくとも1つの抗原を含む。任意選択的なヘルパーウイルス及び/またはパッケージング細胞株によって、チンパンジーウイルスベクターに、欠失させたアデノウイルス遺伝子の任意の必要な産物を供給することができる。
「機能的に欠失された」という用語は、その遺伝子領域の充分な量が除去または例えば変異もしくは改変により他の形で変更されていることにより、その遺伝子領域が遺伝子発現の1つ以上の機能的産物を産生できなくなっていることを意味する。機能的欠失につながりうる変異または改変としては、これらに限定されるものではないが、未成熟終止コドンの導入及び基準及び非基準開始コドンの除去のようなナンセンス変異、mRNAスプライシングまたは他の転写プロセシングを変化させる変異、またはこれらの組み合わせが挙げられる。必要な場合、遺伝子領域全体を除去することができる。
配列の欠失、挿入、及び他の変異を含む、本明細書に開示されるベクターを形成する核酸配列の改変は、標準的な分子生物学的手法を用いて生成することができるものであり、本明細書の範囲内である。
V.E.4.ウイルスプラスミドベクターの構築
本発明において有用なチンパンジーアデノウイルスC68ベクターには、組換え欠損アデノウイルス、すなわち、E1aまたはE1b遺伝子に機能的欠失を有し、場合により例えば温度感受性変異または他の遺伝子における欠失などの他の変異を有するチンパンジーアデノウイルス配列が含まれる。これらのチンパンジー配列は、他のアデノウイルス及び/またはアデノ随伴ウイルス配列からハイブリッドベクターを形成するうえでも有用であると予想される。ヒトアデノウイルスから調製された同種アデノウイルスベクターについては、刊行文献に記載されている[例えば、上記に引用のKozarsky I及びII、ならびに同文献に引用された参照文献、米国特許第5,240,846号を参照]。
抗原カセットをヒト(または他の哺乳動物)細胞に送達するための有用なチンパンジーアデノウイルスC68ベクターの構築において、広範囲のアデノウイルス核酸配列をベクターに用いることができる。最小のチンパンジーC68アデノウイルス配列を含むベクターをヘルパーウイルスとともに使用して感染性の組換えウイルス粒子を作製することができる。ヘルパーウイルスは、最小のチンパンジーアデノウイルスベクターのウイルス感染性及び増殖に必要な基本的な遺伝子産物を提供する。チンパンジーアデノウイルス遺伝子の1つ以上の選択された欠失のみが、欠失がなければ機能性のウイルスベクターに導入される場合、欠失された遺伝子産物は、欠失された遺伝子機能をイン・トランスで与えるウイルスを選択されたパッケージング細胞株内で増殖させることによるウイルスベクター作製プロセスで供給することができる。
V.E.5.組換え最小アデノウイルス
最小チンパンジーAd C68ウイルスとしては、複製及びビリオンのカプシド形成に必要なアデノウイルスのシスエレメントのみを含むウイルス粒子がある。すなわち、このベクターは、アデノウイルスのシス作用性の5’及び3’の末端逆位繰り返し配列(ITR)(複製起点として機能する)と、天然の5’パッケージング/エンハンサードメイン(直鎖状のAdのゲノム及びE1プロモーターのエンハンサーエレメントをパッケージングするために必要な配列を含む)とを含む。例えば、国際出願第WO96/13597号において「最小」ヒトAdベクターの調製について述べられ、本明細書に参照によって援用する方法を参照されたい。
V.E.6.他の欠損アデノウイルス
組換え複製不全アデノウイルスは、最小チンパンジーアデノウイルス配列以上のものを含んでもよい。これらの他のAdベクターは、ウイルスの遺伝子領域の異なる部分の欠失、ならびに、必要に応じたヘルパーウイルス及び/またはパッケージング細胞株の使用によって形成される感染性ウイルス粒子によって特徴づけることができる。
1つの例として、適当なベクターは、C68アデノウイルスの最初期遺伝子E1a及び後初期遺伝子E1bの全体または充分な部分を欠失させることにより、それらの正常な生物学的機能を失わせることによって形成することができる。複製不全E1欠失ウイルスは、対応する遺伝子産物をイン・トランスで与える機能的アデノウイルスE1a及びE1b遺伝子を含むチンパンジーのアデノウイルス形質転換相補性細胞株で増殖させた場合に感染性のウイルスを複製及び生成することが可能である。既知のアデノウイルス配列に対する相同性に基づけば、得られる組換えチンパンジーアデノウイルスは、当該技術分野のヒト組換えE1欠失アデノウイルスでそうであるように多くの細胞種に感染することが可能であり、抗原(複数可)を発現することができるが、チンパンジーE1領域DNAを有していない多くの細胞では、細胞が極めて高い感染多重度で感染していないかぎりは複製できないものと予想される。
別の例として、C68アデノウイルス後初期遺伝子E3の全体または一部を、組換えウイルスの一部を形成するチンパンジーアデノウイルス配列から除去することができる。
チンパンジーアデノウイルスC68ベクターは、E4遺伝子の欠失を有するように構築することもできる。さらに別のベクターは、後初期遺伝子E2aに欠失を有することができる。
欠失は、チンパンジーC68アデノウイルスゲノムの後期遺伝子L1~L5のいずれに導入することもできる。同様に、中期遺伝子IX及びIVa2内の欠失も特定の目的では有用となりうる。他の欠失を他の構造または非構造アデノウイルス遺伝子に導入することもできる。
上記に述べた欠失は、個々に用いることもできる。すなわち、アデノウイルス配列はE1のみの欠失を有してもよい。また、それらの生物学的活性を破壊または低減するうえで効果的な遺伝子全体またはその一部を任意の組み合わせで用いることもできる。例えば、1つの例示的なベクターでは、アデノウイルスC68配列は、E1遺伝子及びE4遺伝子、またはE1、E2a、及びE3遺伝子、またはE1及びE3遺伝子、または、E3の欠失をともなうかまたはともなわない、E1、E2a、及びE4遺伝子の欠失を有することができる。上記に述べたように、かかる欠失は、所望の結果を得るために温度感受性変異などの他の変異と組み合わせて用いることができる。
抗原(複数可)を含むカセットを場合によりチンパンジーC68Adウイルスの任意の欠失領域に挿入することができる。また、必要に応じて既存の遺伝子領域内にカセットを挿入することでその領域の機能を破壊することもできる。
V.E.7.ヘルパーウイルス
カセットを送達するために用いられるウイルスベクターのチンパンジーアデノウイルス遺伝子の含量に応じて、ヘルパーアデノウイルスまたは非複製ウイルスフラグメントを用いて、カセットを含む感染性の組換えウイルス粒子を生成するのに充分なチンパンジーアデノウイルス遺伝子配列を与えることができる。
有用なヘルパーウイルスは、アデノウイルスベクターコンストラクト中に存在しない、及び/またはベクターをトランスフェクトしたパッケージング細胞株によって発現されない選択されたアデノウイルス遺伝子配列を含む。ヘルパーウイルスは複製不全であってよく、上記に述べた配列以外の様々なアデノウイルス遺伝子を含むことができる。ヘルパーウイルスは、本明細書に記載されるE1発現細胞株と組み合わせて用いることができる。
C68では、「ヘルパー」ウイルスは、C68ゲノムのC末端を、ウイルスの左端から約1300bpを除去するSspIによって短縮することによって形成されるフラグメントとすることができる。次に、この短縮されたウイルスをプラスミドDNAとともにE1発現細胞株内に同時トランスフェクトすることにより、プラスミド内のC68配列との相同組み換えによって組換えウイルスを形成する。
ヘルパーウイルスは、Wu et al,J.Biol.Chem.,264:16985-16987 (1989);K.J.Fisher and J.M.Wilson,Biochem.J.,299:49(Apr.1,1994)に記載されるようなポリカチオン複合体として形成することもできる。ヘルパーウイルスは、場合によりレポーター遺伝子を含んでもよい。多くのかかるレポーター遺伝子が当該技術分野で知られている。アデノウイルスベクター上のカセットとは異なるヘルパーウイルス上のレポーター遺伝子の存在によって、Adベクターとヘルパーウイルスを独立して観察することが可能となる。この第2のレポーター遺伝子を用いることで、精製時に得られた組換えウイルスとヘルパーウイルスとを分離することが可能である。
V.E.8.ウイルス粒子のアセンブリと細胞株の感染
アデノウイルス、カセット、及び他のベクター因子の選択されたDNA配列の様々な中間プラスミド及びシャトルベクターへのアセンブリ、ならびに組換えウイルス粒子を作製するためのプラスミド及びシャトルベクターの使用は、従来の手法を用いてすべて実現することができる。かかる手法としては、従来のcDNAのクローニング法、インビトロ組換え法(例えば、ギブソンアセンブリ)、アデノウイルスゲノムの重複するオリゴヌクレオチド配列の使用、ポリメラーゼ連鎖反応、及び所望の核酸配列を与える任意の適当な方法が挙げられる。標準的なトランスフェクション及び同時トランスフェクションの手法、例えば、CaPO4沈殿法またはリポフェクタミンなどのリポソーム媒介トランスフェクション法が用いられる。用いられる他の従来の方法としては、ウイルスゲノムの相同組み換え、アガーオーバーレイ中でのウイルスのプラーク形成、シグナル発生測定の方法などが挙げられる。
例えば、所望のカセットを含むウイルスベクターの構築及びアセンブリの後、ベクターをインビトロでヘルパーウイルスの存在下でパッケージング細胞株にトランスフェクトすることができる。ヘルパーとベクター配列との間で相同組み換えが起こり、これによりベクター内のアデノウイルス-抗原配列が複製されてビリオンカプシド内にパッケージングされ、組換えウイルスベクター粒子が得られる。
得られた組換えチンパンジーC68アデノウイルスは、カセットを選択された細胞に導入するうえで有用である。パッケージング細胞株内で増殖させた組換えウイルスを用いたインビボ実験において、E1欠失組換えチンパンジーアデノウイルスが、カセットを非チンパンジー細胞、好ましくはヒト細胞に導入するうえで実用性を有することが実証されている。
V.E.9.組換えウイルスベクターの使用
したがって、抗原カセットを含む得られた組換えチンパンジーC68アデノウイルス(上記に述べたように、アデノウイルスベクターとヘルパーウイルスとの協同、またはアデノウイルスベクターとパッケージング細胞株との協同により作製される)は、抗原(複数可)をインビボまたはエクスビボで対象に送達することができる効率的な遺伝子導入担体を与えるものである。
上記に述べた組換えベクターは、遺伝子治療について公開されている方法にしたがってヒトに投与される。カセットを有するチンパンジーウイルスベクターは、好ましくは生体適合性溶液または薬学的に許容される送達溶媒中に懸濁させて患者に投与することができる。適当な溶媒としては滅菌生理食塩水が挙げられる。薬学的に許容される担体として知られ、当業者には周知のものである他の水性及び非水性等張滅菌注射溶液、ならびに水性及び非水性滅菌懸濁液をこの目的で使用することもできる。
チンパンジーアデノウイルスベクターは、ヒト細胞を形質転換し、医療分野の当業者によって判定することが可能な有害作用をともなわずに、または医学的に許容される生理学的作用をともなって、治療効果を与えるうえで充分なレベルの抗原の導入及び発現をもたらすのに充分な量で投与される。従来の薬学的に許容される投与経路としては、これらに限定されるものではないが、肝臓、鼻腔内、静脈内、筋肉内、皮下、皮内、経口、及び他の非経口の投与経路が挙げられる。投与経路は必要に応じて組み合わせることができる。
ウイルスベクターの用量は、治療される状態、患者の年齢、体重、及び健康状態などの因子に主として依存し、したがって患者間で異なりうる。用量は、あらゆる副作用に対して治療効果のバランスが取れるように調節され、かかる用量は、組換えベクターが用いられる治療用途に応じて異なりうる。抗原(複数可)の発現レベルを観察することにより、投与頻度を決定することができる。
組換え複製不全アデノウイルスは、「薬学的有効量」、すなわち、所望の細胞をトランスフェクトし、ワクチン効果、すなわち一定の測定可能なレベルの防御免疫をもたらすような選択された遺伝子の充分な発現レベルを与えるのにある投与経路で有効な組換えアデノウイルスの量で投与することができる。カセットを含むC68ベクターは、アジュバントと同時投与することができる。アジュバントは、ベクターとは別のモノマーの出会ってもよく(例えばミョウバン)または特にアジュバントがタンパク質である場合にはベクター内にコードされてもよい。アジュバントは当該技術分野では周知のものである。
従来の薬学的に許容される投与経路としては、これらに限定されるものではないが、鼻腔内、筋肉内、気管内、皮下、皮内、直腸内、経口、及び他の非経口の投与経路が挙げられる。投与経路は必要に応じて組み合わせるか、または免疫原もしくは疾患に応じて調節することができる。例えば、狂犬病の予防では、皮下、気管内、及び鼻腔内経路が好ましい。投与経路は、主として治療される疾患の性質によって決められる。
抗原(複数可)の発現レベルを観察することにより、ブースターの必要性(ある場合)を決定することができる。例えば、血清中の抗体力価の評価の後、必要に応じてブースター免疫が望ましい場合がある。
VI.治療及び製造方法
本明細書に開示する方法を用いて特定された複数の抗原などの1つ以上の抗原を対象に投与することにより、対象に腫瘍特異的な免疫応答を誘導し、腫瘍に対するワクチン接種を行い、対象のがんの症状を治療及び/または緩和する方法も提供される。
本明細書に開示する方法を用いて特定された複数の抗原などの1つ以上の抗原を対象に投与することにより、対象に感染症生物特異的な免疫応答を誘導し、感染症生物に対するワクチン接種を行い、対象の感染症生物に関連した感染症の症状を治療及び/または緩和する方法も提供される。
いくつかの態様において、対象は、がんと診断されているか、またはがんを発症するリスクにある。対象は、ヒト、イヌ、ネコ、ウマ、または、腫瘍特異的な免疫応答が望ましい任意の動物であることができる。腫瘍は、乳、卵巣、前立腺、肺、腎臓、胃、結腸、精巣、頭頸部、膵臓、脳、黒色腫、及び他の組織器官の腫瘍などの、任意の固形腫瘍、ならびに、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ球性白血病、T細胞リンパ球性白血病、及びB細胞リンパ腫を含むリンパ腫及び白血病などの、血液腫瘍であることができる。
いくつかの態様では、対象は、感染症を診断されているかまたは感染症のリスクを有する(例えば、年齢、地理的/移動、及び/または仕事に関連した感染症の高いリスクまたは素因、または季節性及び/または新規の疾患感染のリスクを有する)。
抗原は、CTL応答を誘導するのに充分な量で投与することができる。抗原は、T細胞応答を誘導するのに充分な量で投与することができる。抗原は、B細胞応答を誘導するのに充分な量で投与することができる。
抗原は、単独で、または他の治療薬と併用して投与することができる。治療薬は、例えば、化学療法薬、放射線治療、または免疫療法である。特定のがんに対する任意の適当な治療を投与することができる。治療薬は、抗ウイルス剤または抗生剤などの感染症生物を標的とするものを含みうる。
加えて、対象に、チェックポイント阻害因子などの抗免疫抑制性/免疫刺激性物質をさらに投与することができる。例えば、対象に、抗CTLA抗体または抗PD-1または抗PD-L1をさらに投与することができる。抗体によるCTLA-4またはPD-L1の遮断は、患者においてがん性細胞に対する免疫応答を増強することができる。特に、CTLA-4遮断は、ワクチン接種プロトコールを採用した場合に有効であることが示されている。
ワクチン組成物に含まれるべき各抗原の最適量、及び最適投薬レジメンを、決定することができる。例えば、抗原またはその変異体は、静脈内(i.v.)注射、皮下(s.c.)注射、皮内(i.d.)注射、腹腔内(i.p.)注射、筋肉内(i.m.)注射のために調製することができる。注射の方法は、s.c.、i.d.、i.p.、i.m.、及びi.v.を含む。DNAまたはRNA注射の方法は、i.d.、i.m.、s.c.、i.p.、及びi.v.を含む。ワクチン組成物の投与の他の方法は、当業者に公知である。
ワクチンは、組成物中に存在する抗原の選択、数、及び/または量が、組織、がん、感染症、及び/または患者に特異的であるように編集することができる。例として、ペプチドの厳密な選択は、所定の組織における親タンパク質の発現パターンによって手引きさるか、または患者の変異または疾患状態によって手引きされ得る。選択は、特定のがんの種類、特定の感染症、疾患の状態、ワクチン接種の目標(例えば、予防的なものか、または進行中の疾患を標的とするものか)、より早期の処置レジメン、患者の免疫状態、及び当然、患者のHLAハロタイプに依存し得る。さらに、ワクチンは、特定の患者の個人的な必要にしたがって、個別化された構成要素を含有することができる。例は、特定の患者における抗原の発現にしたがって抗原の選択を変えること、または、処置の第1のラウンドまたはスキームの後の二次的処置についての調整を含む。
抗原ワクチンの投与を行うための患者は、さまざまな診断方法、例えば、下記でさらに述べる患者選択方法の使用により特定することができる。患者選択では、1つ以上の遺伝子の変異または発現パターンを特定することを含むことができる。患者選択は、進行中の感染の感染症を特定することを含むことができる。患者選択は、感染症による感染のリスクを特定することを含むことができる。場合により、患者選択では、患者のハプロタイプを特定することを含む。さまざまな患者選択方法を並行して行うことができ、例えば、シークエンシング診断によって患者の変異及びハプロタイプの両方を特定することができる。さまざまな患者選択方法を順次行うこともでき、例えば、1つの診断検査で変異を特定し、別の診断検査で患者のハプロタイプを特定し、その場合、各検査は、同じ(例えば、両方ともハイスループットシークエンシング)か、または異なる(例えば、一方がハイスループットシークエンシングで他方がサンガーシークエンシング)診断方法であってよい。
がんまたは感染症のワクチンとして使用されるべき組成物について、正常組織において多量に発現している類似した正常な自己ペプチドを有する抗原は、本明細書に記載した組成物において、避けられるか、または少量で存在することができる。他方で、患者の腫瘍または感染細胞が、多量のある特定の抗原を発現することが公知である場合、このがんまたは感染の処置のためのそれぞれの薬学的組成物は、多量に存在することができ、及び/または、この特定の抗原もしくはこの抗原の経路に特異的な1種類よりも多い抗原を含めることができる。
抗原を含む組成物を、既にがんまたは感染を患っている個体に投与することができる。治療的適用において、組成物は、腫瘍抗原または感染症生物抗原に対する有効なCTL応答を惹起し、かつ、症候及び/または合併症を治癒するかまたは少なくとも部分的に停止するのに充分な量で、患者に投与される。これを達成するのに妥当な量を、「治療的有効用量」として定義する。この用途のために有効な量は、例えば、組成物、投与の様式、処置される疾患の病期及び重症度、患者の体重及び健康の全身状態、ならびに処方医の判断に依存するであろう。組成物は、概して、重篤な疾患状態、すなわち、命に関わるか、または潜在的に命に関わる状況、特にがんが転移している場合に使用できることを、心に留めるべきである。そのような例において、外来性物質の最小化、及び抗原の相対的な非毒性の性質を考慮して、実質的過剰量のこれらの組成物を投与することが、可能であり、かつ処置する医師が望ましいと感じることができる。
治療的用途のために、投与は、腫瘍の検出もしくは外科的除去時に開始するかまたは感染の検出もしくは治療時に開始することができる。これに続いて、少なくとも症候が実質的に減ずるまで、及びその後ある期間にわたって、ブースト投与を行うことができる。
治療的処置のための薬学的組成物(例えば、ワクチン組成物)は、非経口、局部、経鼻、経口、または局所投与について意図される。薬学的組成物は、非経口的に、例えば、静脈内、皮下、皮内、または筋肉内に投与することができる。組成物は、腫瘍に対する局所免疫応答を誘導するために、外科的切除の部位に投与することができる。組成物は、対象の特定の感染組織及び/または細胞(例えば、抗原提示細胞)を標的とするように投与することができる。抗原の溶液を含む非経口投与用の組成物を、本明細書に開示し、ワクチン組成物は、許容される担体、例えば、水性担体に溶解または懸濁される。様々な水性担体、例えば、水、緩衝水、0.9%食塩水、0.3%グリシン、ヒアルロン酸などを使用することができる。これらの組成物は、従来の周知の滅菌技法によって滅菌することができ、または滅菌濾過することができる。結果として生じた水溶液を、そのままで使用のためにパッケージングするか、または凍結乾燥することができ、凍結乾燥調製物は、投与前に滅菌溶液と組み合わされる。組成物は、pH調整剤及び緩衝剤、等張化剤、湿潤剤など、例えば、酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、ソルビタンモノラウラート、トリエタノールアミンオレアートなどのような、生理学的条件に近づけるために必要とされる、薬学的に許容される補助物質を含有してもよい。
抗原はまた、それらをリンパ組織などの特定の細胞組織にターゲティングする、リポソームを介して投与することもできる。リポソームはまた、半減期を増大させるのにも有用である。リポソームは、エマルジョン、フォーム、ミセル、不溶性単層、液晶、リン脂質分散物、ラメラ層などを含む。これらの調製物において、送達されるべき抗原は、単独で、または、CD45抗原に結合するモノクローナル抗体などの、例えば、リンパ系細胞の間で優性な受容体に結合する分子、または他の治療用組成物もしくは免疫原性組成物と共に、リポソームの一部として組み込まれる。したがって、所望の抗原で満たされたリポソームは、リンパ系細胞の部位へ方向付けられることができ、そこで、リポソームは次いで、選択された治療用/免疫原性組成物を送達する。リポソームは、概して、中性及び負電荷を有するリン脂質、及びコレステロールなどのステロールを含む、標準的な小胞形成脂質から形成され得る。脂質の選択は、概して、例えば、リポソームサイズ、酸不安定性、及び血流におけるリポソームの安定性の考慮により手引きされる。例えば、Szoka et al., Ann.Rev.Biophys.Bioeng.9;467 (1980)、米国特許第4,235,871号、第4,501,728号、第4,501,728号、第4,837,028号、及び第5,019,369号に記載されているように、様々な方法を、リポソームを調製するために利用可能である。
免疫細胞へのターゲティングのために、リポソーム中に組み込まれるべきリガンドは、例えば、所望の免疫系細胞の細胞表面決定基に特異的な抗体またはその断片を含むことができる。リポソーム懸濁液は、とりわけ、投与の様式、送達されるペプチド、及び処置される疾患の病期にしたがって変動する用量で、静脈内、局所、局部などに投与することができる。
治療目的または免疫化目的で、本明細書に記載したペプチド、及び任意でペプチドの1つ以上をコードする核酸をまた、患者に投与することもできる。数多くの方法が、核酸を患者に送達するために好都合に使用される。例として、核酸を、「裸のDNA」として直接送達することができる。このアプローチは、例として、Wolff et al., Science 247:1465-1468 (1990)、ならびに米国特許第5,580,859号及び第5,589,466号に記載されている。核酸はまた、例として、米国特許第5,204,253号に記載されているような弾道送達を用いて投与することもできる。単にDNAからなる粒子を、投与することができる。あるいは、DNAを、金粒子などの粒子に接着させることができる。核酸配列を送達するためのアプローチは、エレクトロポレーションを伴うかまたは伴わない、ウイルスベクター、mRNAベクター、及びDNAベクターを含むことができる。
核酸はまた、カチオン性脂質などのカチオン性化合物に複合体化させて送達することもできる。脂質媒介性遺伝子送達法は、例として、9618372WOAWO 96/18372;9324640WOAWO 93/24640;Mannino & Gould-Fogerite, BioTechniques 6(7): 682-691 (1988);米国特許第5,279,833号 Rose、米国特許第5,279,833号;9106309WOAWO 91/06309;及びFelgner et al., Proc.Natl.Acad.Sci.USA 84: 7413-7414 (1987)に記載されている。
抗原はまた、ワクシニア、鶏痘、自己複製アルファウイルス、マラバウイルス、アデノウイルス(例えば、Tatsis et al., Adenoviruses, Molecular Therapy (2004) 10, 616-629を参照されたい)、または、第2、第3、もしくはハイブリッド第2/第3世代のレンチウイルス、及び特異的な細胞タイプもしくは受容体を標的とするように設計された任意の世代の組換えレンチウイルスを含むがそれらに限定されないレンチウイルス(例えば、Hu et al., Immunization Delivered by Lentiviral Vectors for Cancer and Infectious Diseases, Immunol Rev.(2011) 239(1): 45-61、Sakuma et al., Lentiviral vectors:basicto translational, Biochem J.(2012) 443(3):603-18、Cooper et al., Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter, Nucl.AcidsRes.(2015) 43 (1): 682-690、Zufferey et al., Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery,J.Virol.(1998) 72 (12): 9873-9880を参照されたい)などの、ウイルスベクターベースのワクチンプラットフォームに含めることもできる。上述のウイルスベクターベースのワクチンプラットフォームのパッケージング能力に依存して、このアプローチは、1つ以上の抗原ペプチドをコードする1つ以上の核酸配列を送達することができる。配列は、非変異配列が隣接していてもよく、リンカーによって分離されていてもよく、または、細胞内区画を標的とする1つもしくは複数の配列が先行していてもよい(例えば、Gros et al.,Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients,Nat Med.(2016) 22 (4):433-8、Stronen et al.,Targeting of cancer neoantigens with donor-derived T cell receptor repertoires,Science.(2016) 352 (6291):1337-41、Lu et al.,Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions,Clin Cancer Res.(2014) 20( 13):3401-10を参照されたい)。宿主中への導入時に、感染した細胞は、抗原を発現し、それにより、ペプチドに対する宿主免疫(例えば、CTL)応答を惹起する。免疫化プロトコールにおいて有用なワクシニアベクター及び方法は、例えば、米国特許第4,722,848号に記載されている。別のベクターは、BCG(カルメット・ゲラン桿菌)である。BCGベクターは、Stover et al.(Nature 351:456-460 (1991))に記載されている。抗原の治療的投与または免疫化に有用な、多種多様の他のワクチンベクター、例えば、チフス菌ベクターなどが、本明細書における記載から当業者に明らかであろう。
核酸を投与する手段は、1つ以上のエピトープをコードするミニ遺伝子構築物を使用する。ヒト細胞における発現のための、選択されたCTLエピトープをコードするDNA配列(ミニ遺伝子)を作製するために、エピトープのアミノ酸配列を逆翻訳する。各アミノ酸に対するコドン選択を手引きするために、ヒトコドン使用頻度表を使用する。これらのエピトープをコードするDNA配列を、直接隣り合わせて、連続的なポリペプチド配列を作製する。発現及び/または免疫原性を最適化するために、追加の要素を、ミニ遺伝子設計中に組み入れることができる。逆翻訳して、ミニ遺伝子配列に含めることができるアミノ酸配列の例は、ヘルパーTリンパ球エピトープ、リーダー(シグナル)配列、及び小胞体保持シグナルを含む。加えて、CTLエピトープのMHC提示は、CTLエピトープに近接した合成の(例えば、ポリアラニン)または天然に存在する隣接配列を含むことによって、改善することができる。ミニ遺伝子配列は、ミニ遺伝子のプラス鎖及びマイナス鎖をコードするオリゴヌクレオチドをアセンブルすることによって、DNAに変換される。オーバーラップするオリゴヌクレオチド(30~100塩基長)を、周知の技法を用いて適切な条件下で、合成し、リン酸化し、精製し、アニーリングする。オリゴヌクレオチドの端は、T4DNAリガーゼを用いて連結する。CTLエピトープポリペプチドをコードするこの合成ミニ遺伝子を、次いで、望ましい発現ベクター中にクローニングすることができる。
精製プラスミドDNAは、様々な製剤を用いて、注射のために調製することができる。これらのうちでもっとも単純なものは、滅菌リン酸緩衝食塩水(PBS)における凍結乾燥DNAの再構成である。様々な方法が記載されており、新たな技法が利用可能になり得る。上記で言及したように、核酸は、カチオン性脂質で好都合に製剤化される。加えて、糖脂質、融合性リポソーム、ペプチド、及び保護的、相互作用的、非縮合性(PINC)と集合的に呼ばれる化合物もまた、精製プラスミドDNAと複合体化させて、安定性、筋肉内分散、または特異的な器官もしくは細胞タイプへの輸送などの変数に影響を及ぼすことができる。
本明細書に開示される方法の各工程を実施することと、複数の抗原または複数の抗原のサブセットを含むワクチンを生産することと、を含む、ワクチンの製造方法も提供される。本明細書に開示される方法の各工程を実施することと、カセットを含むアデノウイルスベクターを生産することと、を含む、アデノウイルスベクターの製造方法も提供される。例えば、本明細書に記載されるTETr制御プロモーターシステムなどのTETプロモーターシステムを使用してアデノウイルスベクターを製造する方法が開示される。TETr制御プロモーターシステムを用いたウイルス生産は、a.カセットを含むウイルスベクターを与えることであって、カセットが、(i)少なくとも1つのペイロード核酸配列と、(ii)少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列であって、少なくとも1つのプロモーターが、テトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターである、少なくとも1つのプロモーター配列と、を含む、ことと、b.TETrタンパク質を発現するように操作された細胞を与えることと、c.ウイルスベクターを、ウイルスの生産に充分な条件下で細胞と接触させることと、を含むことができる。
本明細書に開示する抗原は、当技術分野において公知の方法を用いて製造することができる。例えば、本明細書に開示する抗原またはベクター(例えば、1つ以上の抗原をコードする少なくとも1つの配列を含むベクター)を生産する方法は、抗原またはベクターを発現するのに適している条件下で宿主細胞を培養する工程であって、宿主細胞が、抗原またはベクターをコードする少なくとも1つのポリヌクレオチドを含む工程、及び、抗原またはベクターを精製する工程を含むことができる。標準的な精製法は、クロマトグラフィー技法、電気泳動技法、免疫学的技法、沈降技法、透析技法、濾過技法、濃縮技法、及びクロマトフォーカシング技法を含む。
宿主細胞は、チャイニーズハムスター卵巣(CHO)細胞、NS0細胞、酵母、またはHEK293細胞を含むことができる。宿主細胞は、本明細書に開示する抗原またはベクターをコードする少なくとも1つの核酸配列を含む、1つ以上のポリヌクレオチドで形質転換することができ、任意で、単離されたポリヌクレオチドは、抗原またはベクターをコードする少なくとも1つの核酸配列に機能的に連結されたプロモーター配列をさらに含む。ある特定の実施形態において、単離されたポリヌクレオチドは、cDNAであることができる。
VII.抗原の使用及び投与
ワクチン接種プロトコールを用いて対象に1つ以上の抗原を投与することができる。プライミングワクチン及びブースターワクチンを用いて対象への投与を行うことができる。プライミングワクチンは、C68(例えば、配列番号1または2に示される配列)またはsrRNA(例えば、配列番号3または4に示される配列)に基づいたものとすることができ、ブースターワクチンは、C68(例えば、配列番号1または2に示される配列)またはsrRNA(例えば、配列番号3または4に示される配列)に基づいたものとすることができる。各ベクターは、通常、抗原を含むカセットを含んでいる。カセットは、各抗原を通常取り囲む天然の配列、またはAAYなどの他の非天然のスペーサー配列などのスペーサーによって分離された約20個の抗原を含むことができる。カセットは、破傷風毒素抗原などのMHCII抗原、及び普遍的なクラスII抗原とみなされるPADRE抗原を含んでもよい。カセットは、ユビキチンターゲティング配列などのターゲティング配列を含んでもよい。さらに、各ワクチン用量は、チェックポイント阻害剤(CPI)と組み合わせて(例えば、同時、その前、またはその後で)対象に投与することができる。CPIは、抗体またはその抗原結合部分など、CTLA4、PD1、及び/またはPDL1を阻害するものを含むことができる。かかる抗体としては、トレメリムマブまたはデュルバルマブを挙げることができる。
プライミングワクチンは、対象に注射(例えば筋肉内に)することができる。用量ごとに両側性注射を用いることができる。例えば、ChAdV68(C68)の1回以上の注射を用いることができ(例えば、総用量1×1012個のウイルス粒子)、0.001~1ugのRNAの範囲から選択される低ワクチン用量、詳細には0.1もしくは1ugの自己複製RNA(srRNA)の1回以上の注射を用いることができ、または、1~100ugのRNAの範囲から選択される高ワクチン用量、詳細には10もしくは100ugのsrRNAの1回以上の注射を用いることができる。
プライムワクチン接種後に、ワクチンブースト(ブースターワクチン)を注射(例えば筋肉内に)することができる。ブースターワクチンは、プライム後の約1、2、3、4、5、6、7、8、9、または10週間ごと、例えば、4週間ごと、及び/または8週間ごとに投与することができる。用量ごとに両側性注射を用いることができる。例えば、ChAdV68(C68)の1回以上の注射を用いることができ(例えば、総用量1×1012個のウイルス粒子)、0.001~1ugのRNAの範囲から選択される低ワクチン用量、詳細には0.1もしくは1ugの自己複製RNA(srRNA)の1回以上の注射を用いることができ、または、1~100ugのRNAの範囲から選択される高ワクチン用量、詳細には10もしくは100ugのsrRNAの1回以上の注射を用いることができる。
抗CTLA-4(例えばトレメリムマブ)を対象に投与することもできる。例えば、抗CTLA4を筋肉内ワクチン注射(ChAdV68プライムまたはsrRNA低用量)の部位の近くに皮下投与することで同じリンパ節内に確実に送り込むことができる。トレメリムマブは、CTLA-4の選択的ヒトIgG2mAb阻害剤である。標的抗CTLA-4(トレメリムマブ)皮下用量は、通常、70~75mg(詳細には75mg)であり、例えば、1~100mgまたは5~420mgの用量範囲である。
特定の場合では、デュルバルマブ(MEDI4736)などの抗PD-L1抗体を使用することができる。デュルバルマブは、PD-1及びCD80へのPD-L1の結合を阻害する選択的な高親和性のヒトIgG1 mAbである。デュルバルマブは一般的に4週間ごとに20mg/kgが静脈内投与される。
免疫モニタリングを、ワクチン投与の前、その間、及び/またはその後に行うことができる。かかるモニタリングは、他のパラメータの中でもとりわけ、安全性及び有効性についての情報を与えることができる。
免疫モニタリングを行うには、PBMCが一般的に用いられる。PBMCは、プライムワクチン接種の前、及びプライムワクチン接種の後(例えば、4週間及び8週間)に単離することができる。PBMCは、ブーストワクチン接種の直前、及び各ブーストワクチン接種の後(例えば、4週間及び8週間)に採取することができる。
T細胞応答を、免疫モニタリングプロトコールの一環として評価することができる。例えば、本明細書に記載されるワクチン組成物が免疫応答を刺激する能力を監視及び/または評価することができる。本明細書で使用する「免疫応答を刺激する」とは、免疫応答を開始させること(例えば、ナイーブな対象において免疫応答の開始を刺激するプライミングワクチン)、または免疫応答の増強(例えば、プライミングワクチンにより開始された既存の免疫応答などの抗原に対する既存の免疫応答を有する対象における免疫応答の増強を刺激するブースターワクチン)などの免疫応答のあらゆる増加を指す。T細胞応答は、ELISpot、細胞内サイトカイン染色、サイトカイン分泌、及び細胞表面捕捉、T細胞増殖、MHCマルチマー染色、または細胞毒性アッセイなどの当業者には周知の1つ以上の方法を用いて測定することができる。ワクチンにコードされたエピトープに対するT細胞応答は、ELISpotアッセイを用いて、IFN-γなどのサイトカインの誘導を測定することによりPBMCから監視することができる。ワクチンにコードされたエピトープに対する特異的なCD4またはCD8 T細胞応答は、フローサイトメトリーを用いて、IFN-γなどの細胞内または細胞外で捕捉されたサイトカインの誘導を測定することによりPBMCから監視することができる。ワクチンにコードされたエピトープに対する特異的なCD4またはCD8 T細胞応答は、MHCマルチマー染色を用い、エピトープ/MHCクラスI複合体に対して特異的なT細胞受容体を発現するT細胞集団を測定することによりPBMCから監視することができる。ワクチンにコードされたエピトープに対する特異的なCD4またはCD8 T細胞応答は、3Hチミジン、ブロモデオキシウリジン、及びカルボキシフルオロセインジアセテートスクシンイミジルエステル(CFSE)の取り込み後に、T細胞集団のエクスビボ増殖を測定することによりPBMCから監視することができる。ワクチンにコードされたエピトープに特異的なPBMC由来T細胞の抗原認識能及び溶解活性は、クロム放出アッセイまたは代替的な比色細胞毒性アッセイにより機能的に評価することができる。
B細胞応答は、B細胞の分化(例えば、形質細胞への分化)、B細胞または形質細胞の増殖、B細胞または形質細胞の活性化(例えば、CD80またはCD86などの共刺激マーカーの増加)、抗体のクラススイッチ、及び/または抗体産生(例えば、ELISA)を判定するために用いられるアッセイなど、当該技術分野では周知の1つ以上の方法を用いて測定することができる。
VIII.抗原の特定
VIII.A.抗原候補の特定
腫瘍及び正常のエクソーム及びトランスクリプトームのNGS解析のための研究法を、抗原の特定のスペースに記載し、適用している6,14,15。臨床設定における抗原の特定において、より大きな感度及び特異性のためのある特定の最適化を考慮することができる。これらの最適化は、実験室プロセスに関連するもの及びNGSデータ解析に関連するものの、2つの区域にグループ化することができる。記載される研究法は、感染症生物、対象の感染症、または対象の感染細胞からの特定など、他の状況での抗原の特定にも適用することができる。最適化の例は当業者には周知のものであり、例えば、そのような方法が、あらゆる目的で本明細書に参照によりその全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際特許出願公開第WO/2018/195357号及び同第WO/2018/208856号により詳細に記載されている。
VIII.B.HLAペプチドの単離及び検出
HLAペプチド分子の単離は、組織試料の溶解及び可溶化後に、古典的な免疫沈降(IP)法を用いて行った(55~58)。清澄化した溶解物を、HLA特異的IPに使用した。
免疫沈降は、抗体がHLA分子に特異的である、ビーズにカップリングした抗体を用いて行った。汎クラスI HLA免疫沈降のためには、汎クラスI CR抗体を使用し、クラスII HLA-DRのためには、HLA-DR抗体を使用する。抗体を、一晩インキュベーション中に、NHS-セファロースビーズに共有結合で付着させる。共有結合性の付着後、ビーズを洗浄して、IPのために等分した(59、60)。免疫沈降は、ビーズに共有結合されていない抗体を用いて行うこともできる。一般的に、これは、抗体をカラムに保持するためにProteinA及び/またはProteinGでコーティングしたセファロースまたは磁気ビーズを使用して行われる。MHC/ペプチド複合体を選択的に濃縮するために使用することができるいくつかの抗体を下記に示す。
Figure 2022534282000002
清澄化した組織溶解物を、免疫沈降のために抗体ビーズに添加する。免疫沈降後、ビーズを溶解物から除去し、追加的なIPを含む追加的な実験のために、溶解物を保存する。標準的な技法を用いて、IPビーズを洗浄して非特異的結合を除去し、HLA/ペプチド複合体をビーズから溶出する。分子量スピンカラムまたはC18分画を用いて、タンパク質構成要素をペプチドから除去する。結果として生じたペプチドを、SpeedVac蒸発によって乾燥させ、いくつかの場合には、MS解析の前に-20℃で保存する。
乾燥したペプチドを、逆相クロマトグラフィーに適しているHPLC緩衝液において再構成し、Fusion Lumos質量分析計(Thermo)における勾配溶出のために、C-18マイクロキャピラリーHPLCカラム上にロードする。ペプチド質量/電荷(m/z)のMS1スペクトルを、Orbitrap検出器において高解像度で収集し、その後、MS2低解像度スキャンを、選択イオンのHCDフラグメンテーション後にイオントラップ検出器において収集した。追加的に、MS2スペクトルは、CIDもしくはETDフラグメンテーション法、または、ペプチドのより大きなアミノ酸カバレッジを獲得するための3つの技法の任意の組み合わせのいずれかを用いて、取得することができる。MS2スペクトルはまた、Orbitrap検出器において高解像度質量精度で測定することもできる。
各解析由来のMS2スペクトルを、Comet(61、62)を用いてタンパク質データベースに対して検索し、ペプチド特定を、Percolator(63~65)を用いてスコア化する。PEAKS studio(Bioinformatics Solutions Inc.)及び他のサーチエンジンを用いてさらなるシークエンシングを行うか、またはスペクトルマッチング及びデノボシークエンシング(97)を含むシークエンシング法を用いることができる。
VIII.B.1.総合的HLAペプチドシークエンシングのためのMS検出限界の研究
ペプチドYVYVADVAAK(配列番号29364)を用いて、何が検出の限界かを、LCカラム上にロードした様々な量のペプチドを用いて決定した。試験したペプチドの量は、1pmol、100fmol、10fmol、1fmol、及び100amolであった。(表1)結果を図24A及び24Bに示す。これらの結果は、検出の最低限界(LoD)がアトモルの範囲(10-18)にあること、ダイナミックレンジが5桁に及ぶこと、及び、シグナル対ノイズが、低いフェムトモル範囲(10-15)でシークエンシングに充分であるように見えることを示す。
Figure 2022534282000003
IX.提示モデル
提示モデルを用いて、患者におけるペプチド提示の尤度を特定することができる。さまざまな提示モデルが当業者には周知であり、例えば、そのような提示モデルが、あらゆる目的で本明細書に参照によりそれらの全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号及び同第US20110293637号、ならびに国際特許出願公開第WO/2018/195357号、同第WO/2018/208856号、及び同第WO2016187508号により詳細に記載されている。
X.訓練モジュール
訓練モジュールを用いて、ペプチド配列がそのペプチド配列に関連したMHCアレルによって提示される尤度を生成する1つ以上の提示モデルを訓練データセットに基づいて構築することができる。さまざまな訓練モジュールが当業者には周知であり、例えば、そのような訓練モジュールが、あらゆる目的で本明細書に参照によりそれらの全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際特許出願公開第WO/2018/195357号、及び同第WO/2018/208856号により詳細に記載されている。訓練モジュールは、アレル毎ベースでペプチドの提示尤度を予測するための予測モデルを構築することができる。訓練モジュールは、2つ以上のMHCアレルが存在する複数アレル場面においてペプチドの提示尤度を予測するための提示モデルも構築することができる。
XI.予測モジュール
予測モジュールを用いて、配列データを受け取って、提示モデルを用いて配列データ中の候補抗原を選択することができる。具体的には、配列データは、患者の腫瘍組織細胞から抽出されたDNA配列、RNA配列、及び/またはタンパク質配列、患者感染細胞、または感染症生物自体であってよい。予測モジュールは、患者の正常組織細胞から抽出された配列データをその患者の腫瘍組織細胞から抽出された配列データと比較して1つ以上の変異を有する部分を特定することによって、変異したペプチド配列である候補新生抗原を特定することができる。予測モジュールは、例えば、患者の正常組織の細胞から抽出された配列データを、患者の感染細胞から抽出された配列データと比較して1つ以上の感染症生物関連抗原を含む部分を特定することにより、病原体由来ペプチド、ウイルス由来ペプチド、細菌由来ペプチド、真菌由来ペプチド、及び寄生虫由来ペプチドである候補抗原を特定することができる。予測モジュールは、患者の正常組織細胞から抽出された配列データをその患者の腫瘍組織細胞から抽出された配列データと比較して不適切に発現している候補抗原を特定することにより、正常細胞または組織と比較して腫瘍細胞またはがん性組織で発現が変更されている候補抗原を特定することができる。予測モジュールは、患者の正常組織の細胞から抽出された配列データをその患者の感染組織の細胞から抽出された配列データと比較して、発現される候補抗原を特定する(例えば、感染症で特異的に発現されるポリヌクレオチド及び/またはポリペプチドを特定する)ことにより、正常細胞または組織と比較して感染細胞または感染組織で発現される候補抗原を特定することができる。
提示モジュールは、1つ以上の提示モデルを処理されたペプチド配列に適用してペプチド配列の提示尤度を推定することができる。具体的には、予測モジュールは、提示モデルを候補抗原に適用することによって、腫瘍HLA分子または感染細胞HLA分子上に提示される可能性が高い1つ以上の候補抗原ペプチド配列を選択することができる。一実現形態では、提示モジュールは、あらかじめ決定された閾値を上回る推定提示尤度を有する候補抗原配列を選択する。別の実現形態では、提示モデルは、最も高い推定提示尤度を有するN個の候補抗原配列を選択する(Nは、一般的に、ワクチン中で送達することができるエピトープの最大数である)。所定の患者について選択された候補抗原を含むワクチンを患者に注射して免疫応答を誘導することができる。
XI.B. カセット設計モジュール
XI.B.1 概要
カセット設計モジュールを用いて、患者に注射するために選択された候補ペプチドに基づいてワクチンカセット配列を生成することができる。さまざまなカセット設計モジュールが当業者には周知であり、例えば、そのようなカセット設計訓練モジュールが、あらゆる目的で本明細書に参照によりそれらの全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際特許出願公開第WO/2018/195357号、及び同第WO/2018/208856号により詳細に記載されている。
治療エピトープのセットは、所定の閾値を上回る提示尤度(提示尤度は、提示モデルにより決定される)に関連付けられた予測モジュールによって決定された選択されたペプチドに基づいて生成することができる。しかしながら、他の実施形態では、治療エピトープのセットは、多くの方法の任意の1つ以上(単独または組み合わせ)に基づいて、例えば、患者のHLAクラスIまたはクラスIIアレルに対する結合親和性もしくは予測される結合親和性、患者のHLAクラスIまたはクラスIIアレルに対する結合安定性もしくは予測される結合安定性、ランダムサンプリングなどに基づいて、生成することができる。
治療エピトープはそれ自体が選択されたペプチドに相当してもよい。治療エピトープは、選択されたペプチド以外にC及び/またはN末端フランキング配列を含むこともできる。N及びC末端フランキング配列は、その由来源タンパク質との関連において治療ワクチンエピトープの天然のN及びC末端フランキング配列であってよい。治療エピトープは固定長のエピトープを表してもよい。治療エピトープは、可変長のエピトープを表してもよく、エピトープの長さは例えばCまたはN末端フランキング配列の長さによって異なりうる。例えば、C末端フランキング配列及びN末端フランキング配列は、それぞれ2~5残基の異なる長さを有してよく、これによりエピトープの16種類の可能な選択肢が与えられる。
カセット設計モジュールは、カセット内の2個の治療エピトープ間の連結部にまたがるジャンクションエピトープの提示を考慮することによってカセット配列を生成することもできる。ジャンクションエピトープは、カセット内で治療エピトープ及びリンカー配列を連結するプロセスによってカセット内に生じる新規な非自己であるが無関係なエピトープ配列である。ジャンクションエピトープの新規な配列は、カセットの治療エピトープ自体とは異なる。
カセット設計モジュールは、ジャンクションエピトープがその患者において提示される尤度を低下させるカセット配列を生成することができる。具体的には、カセットが患者に注射される際、ジャンクションエピトープは、患者のHLAクラスIまたはHLAクラスIIアレルによって提示される可能性を有し、それぞれCD8またはCD4 T細胞応答を刺激する。かかる応答は、ジャンクションエピトープに対する反応性を有するT細胞は治療効果を有さないことから望ましくなく、抗原競合によりカセット内の選択された治療エピトープに対する免疫応答を消失させる可能性がある76
カセット設計モジュールは、1つ以上の候補カセットについて繰り返し処理を行って、そのカセット配列に関連付けられたジャンクションエピトープの提示スコアが数値閾値を下回るカセット配列を決定することができる。ジャンクションエピトープ提示スコアは、カセット内のジャンクションエピトープの提示尤度に関連付けられた量であり、ジャンクションエピトープ提示スコアの値が高いほど、カセットのジャンクションエピトープがHLAクラスIまたはHLAクラスIIまたはその両方によって提示されやすいことを示す。
一実施形態では、カセット設計モジュールは、候補カセット配列間で最も低いジャンクションエピトープ提示スコアに関連付けられたカセット配列を決定することができる。
カセット設計モジュールは、1つ以上の候補カセット配列について繰り返し処理を行い、各候補カセットのジャンクションエピトープ提示スコアを決定し、閾値を下回るジャンクションエピトープ提示スコアに関連付けられた最適なカセット配列を特定することができる。
カセット設計モジュールは、候補カセット配列内のジャンクションエピトープのいずれかが、ワクチンを設計しようとする特定の患者の自己エピトープであるかどうかを識別するために1つ以上の候補カセット配列をさらに確認することができる。これを行うには、カセット設計モジュールは、BLASTなどの既知のデータベースに対してジャンクションエピトープを確認する。一実施形態では、カセット設計モジュールは、ジャンクション自己エピトープを防止するカセットを設計するように構成することができる。
カセット設計モジュールは、ブルートフォースアプローチを実行して、すべての、または大部分の可能な候補カセット配列について繰り返し処理を行うことで最小のジャンクションエピトープ提示スコアを有する配列を選択することができる。しかしながら、かかる候補カセットの数は、ワクチンの容量が大きくなるにしたがって途方もなく大きくなりうる。例えば、20個のエピトープのワクチン容量では、カセット設計モジュールは、最小のエピトープ提示スコアを有するカセットを決定するために約1018個の可能な候補カセットについて繰り返し処理を行わなければならない。この決定は、カセット設計モジュールが妥当な長さの時間内で患者に対するワクチンを生成するには計算の負荷(必要とされる計算処理リソースの点で)が大きくなり、時として処理不能となりうる。さらに、各候補カセットについて可能なジャンクションエピトープを処理することはよりいっそうの負荷となりうる。したがって、カセット設計モジュールは、ブルートフォースアプローチにおける候補カセット配列の数よりも大幅に小さい候補カセット配列の数について繰り返し処理を行う方法に基づいてカセット配列を選択することができる。
カセット設計モジュールは、ランダムに、または少なくとも疑似ランダムに生成された候補カセットを生成し、所定の閾値を下回るジャンクションエピトープ提示スコアに関連付けられた候補カセットをカセット配列として選択することができる。さらに、カセット設計モジュールは、最小のジャンクションエピトープ提示スコアを有するサブセットからの候補カセットをカセット配列として選択することができる。例えば、カセット設計モジュールは、20個の選択されたエピトープのセットについて約100万の候補カセットのサブセットを生成し、最小のジャンクションエピトープ提示スコアを有する候補カセットを選択することができる。ランダムカセット配列のサブセットを生成し、このサブセットからジャンクションエピトープ提示スコアの低いカセット配列を選択することはブルートフォースアプローチと比べて最適とはいえないが、これは、必要な計算リソースが大幅に少なく、そのため、その実施が技術的に可能である。さらに、このより効率的な手法に対してブルートフォース法を行うことは、ジャンクションエピトープ提示スコアのわずかな、またはさらには無視される程度の改善しかもたらされない可能性があるため、リソースの配分の観点からはあまり価値がない。カセット設計モジュールは、カセットのエピトープ配列を非対称巡回セールスマン問題(TSP)として定式化することにより、改善されたカセット構成を決定することができる。ノードのリスト、及び各ノードのペア間の距離が与えられた場合、TSPは、各ノードをちょうど1回ずつ訪問して元のノードに戻るための最小の総距離に関連付けられたノードの配列を決定する。例えば、互いの間の距離が既知である都市A、B、及びCが与えられた場合、TSPの解は、可能な巡回路のうちで各都市をちょうど1回ずつ訪問するのに移動する総距離が最小となるような都市の閉じた配列を生成する。TSPの非対称バージョンは、ノードのペア間の距離が非対象である場合の最適なノードの配列を決定する。例えば、ノードAからノードBに移動するための「距離」は、ノードBからノードAに移動するための「距離」と異なる場合がある。非対称TSPを用いて改善された最適カセットについて解くことにより、カセット設計モジュールは、カセットの各エピトープ間のジャンクションにわたって低い提示スコアを与えるカセット配列を見つけることができる。非対称TSPの解は、カセットの各ジャンクションにわたったジャンクションエピトープ提示スコアを最小とするために各エピトープが連結されなければならない順序に対応した治療エピトープの配列を示す。このアプローチによって決定されたカセット配列は、ジャンクションエピトープの提示が大幅に低い配列を与える一方で、特に生成される候補カセット配列の数が大きい場合に、必要とされる計算リソースがランダムサンプリングアプローチよりも大幅に少なくなる可能性がある。カセット設計を最適化するための異なる計算アプローチ及び比較の例示的な例が、あらゆる目的で本明細書に参照によりそれらの全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際特許出願公開第WO/2018/195357号、及び同第WO/2018/208856号により詳細に記載されている。
XI.B.2 共有抗原ワクチン配列の選択
共有抗原ワクチンに含めるための共有抗原の配列及びかかるワクチンによる治療に適当な患者は、本明細書に示される詳細な開示を用いることで当業者が選択することができる。特定の場合では、特定の変異とHLAアレルの組み合わせが好ましい場合があり(例えば、それぞれが対象に存在することを示す特定の対象から得られるシークエンシングデータに基づき)、次にこれらを組み合わせて用い、共有新生抗原配列を同定することができる。
XIII.例示的なコンピュータ
本明細書に記載される計算方法のいずれにおいてもコンピュータを使用することができる。当業者には、コンピュータは異なるアーキテクチャを有し得る点が認識されよう。コンピュータの例は当業者には周知のものであり、例えば、そのようなコンピュータが、あらゆる目的で本明細書に参照によりその全容をそれぞれ援用する米国特許第10,055,540号、米国特許出願公開第US20200010849A1号、ならびに国際特許出願公開第WO/2018/195357号及び同第WO/2018/208856号により詳細に記載されている。
XIV.抗原送達ベクターの例
以下は、本明細書を実施するための具体的な実施形態の例である。これらの例はあくまで例示の目的で示されるものにすぎず、本発明の範囲をいかなる意味においても限定しようとするものではない。用いられる数値(例えば、量、温度など)に関して精度を確実とするべく努力に努めてはいるが、ある程度の実験的誤差及び偏差は無論のこと許容されなければならない。
本発明の実施では、特に断らない限りは、当該技術分野の技術の範囲内で、タンパク質化学、生化学、組換えDNA技術、及び薬理学の従来の方法を用いている。かかる技術は文献に完全に説明されている(例えば、T.E.Creighton,Proteins:Structures and Molecular Properties(W.H.Freeman and Company,1993);A.L.Lehninger,Biochemistry(Worth Publishers,Inc.,current addition);Sambrook,et al.,Molecular Cloning: A Laboratory Manual(2nd Edition,1989);Methods In Enzymology(S.Colowick and N.Kaplan eds.,Academic Press,Inc.);Remington’s Pharmaceutical Sciences,18th Edition(Easton,Pennsylvania:Mack Publishing Company,1990);Carey and Sundberg Advanced Organic Chemistry 3rd Ed.(Plenum Press) Vols A and B(1992)を参照されたい)。
XIV.A.新生抗原カセットの設計
ワクチン接種によって、対応する細胞免疫応答(複数可)を刺激するクラスI MHCに制限された複数の腫瘍特異的新生抗原(TSNA)を送達することができる。1つの例では、複数のエピトープを単一の遺伝子産物をしてコードするようにワクチンカセットを操作しているが、ここで各エピトープはそれらの天然の包囲ペプチド配列内に埋め込まれるか、または非天然リンカー配列によって分離されている。抗原のプロセシング及び提示、ひいてはTSNA特異的CD8 T細胞応答の程度及び幅に潜在的に影響を及ぼしうるいくつかの設計パラメータが特定されている。本例では、いくつかのモデルカセットを設計及び構築して以下を評価した。すなわち、(1)1個の発現カセットに組み込まれた複数のエピトープに対する強いT細胞応答を生じることができるかどうか、(2)どのような条件が、すべてのエピトープの最適なプロセシング及び提示につながる、発現カセット内のTSNA間に配置される最適リンカーを作るか、(3)カセット内の各エピトープの相対位置がT細胞応答に影響するか、(4)カセット内のエピトープの数が個々のエピトープに対するT細胞応答の程度または質に影響するかどうか、(5)細胞ターゲティング配列の付加がT細胞応答を向上させるか。
抗原提示及びモデルカセット内のマーカーエピトープに特異的なT細胞応答を評価するために以下の2つの指標が開発された。すなわち、(1)特殊な操作を行ったレポーターT細胞の活性化によって測定される抗原提示の評価を可能としたインビトロ細胞ベーススクリーン(Aarnoudse et al.,2002;Nagai et al.,2012)、及び(2)対応するエピトープ特異的T細胞応答によるヒト由来のカセットから誘導されたエピトープのワクチン接種後の免疫原性を評価するためにHLA-A2トランスジェニックマウス(Vitiello et al.,1991)を使用したインビボアッセイ(Cornet et al.,2006;Depla et al.,2008;Ishioka et al.,1999)。
XIV.B.抗原カセット設計の評価
XIV.B.1.方法及び材料
TCR及びカセット設計及びクローニング
選択されたTCRは、A*0201により提示される場合にペプチドNLVPMVATV(配列番号29365)(PDB番号5D2N)、CLGGLLTMV(配列番号29366)(PDB番号3REV)、GILGFVFTL(配列番号29367)(PDB番号1OGA)LLFGYPVYV(配列番号29368)(PDB番号1AO7)を認識する。2Aペプチド連結TCRサブユニット(βに続きα)、EMCVIRES、及び2A連結CD8サブユニット(βに続きα及びプロマイシン耐性遺伝子)を含むトランスファーベクターを構築した。オープンリーディングフレーム配列は、コドン最適化され、GeneArt社により合成されたものである。
インビトロエピトーププロセシング及び提示実験用の細胞株の作製
ペプチドは、ProImmune社またはGenscript社より購入し、水/DMSO(2:8,v/v)に加えた10mM tris(2-カルボキシルエチル)ホスフィン(TCEP)で10mg/mLに希釈した。細胞培地及び補助添加物質は特に断らない限りはGibco社より入手した。熱不活化ウシ胎児血清(FBShi)はSeradigm社より入手した。QUANTI-Luc基質、ゼオシン、及びプロマイシンはInvivoGen社より入手した。Jurkat-Lucia NFAT細胞(InvivoGen社)を10% FBShi、ピルビン酸ナトリウム、及び100μg/mLのゼオシンを添加したRPMI1640中で維持した。形質導入した後、これらの細胞にさらに0.3μg/mLのプロマイシンを加えた。T2細胞(ATCC CRL-1992)をIscove培地(IMDM)+20%FBShi中で培養した。U-87 MG(ATCC HTB-14)細胞を、10%FBShiを添加したMEM Eagles培地中で維持した。
Jurkat-Lucia NFAT細胞は、NFAT誘導性Luciaレポーターコンストラクトを含んでいる。Lucia遺伝子は、T細胞受容体(TCR)の結合によって活性化されると、セレンテラジンを利用するルシフェラーゼを培地中に分泌させる。このルシフェラーゼは、QUANTI-Lucルシフェラーゼ検出試薬を用いて測定することができる。Jurkat-Lucia細胞をレンチウイルスで形質導入して抗原特異的TCRを発現させた。HIV由来レンチウイルストランスファーベクターをGeneCopoeia社より入手し、VSV-G(pCMV-VsvG)、Rev(pRSV-Rev)及びGag-pol(pCgpV)を発現するレンチウイルス支持プラスミドをCell Design Labs社より入手した。
レンチウイルスを、40μLのリポフェクタミン及び20μgのDNAミクスチャー(重量比4:2:1:1のトランスファープラスミドpCgpV:pRSV-Rev:pCMV-VsvG)を使用し、HEK293細胞の50~80%コンフルエンスにあるT75フラスコをリポフェクタミン2000(Thermo Fisher社)でトランスフェクトすることにより調製した。8~10mLのウイルス含有培地をLenti-Xシステム(Clontech社)を用いて濃縮し、ウイルスを100~200μlの新鮮培地中に再懸濁した。この体積を用いて等しい体積のJurkat-Lucia細胞(5×10E4~1×10E6個の細胞を異なる実験で使用した)にオーバーレイした。0.3μg/mlのプロマイシン含有培地中での培養後、細胞をソートしてクロナリティーを得た。これらのJurkat-Lucia TCRクローンを、ペプチドを取り込ませたT2細胞を用いて活性及び選択性について試験した。
インビトロエピトーププロセシング及び提示アッセイ
T2細胞はTCRによる抗原認識を調べる目的で日常的に使用されている。T2細胞は、抗原プロセシング用のペプチドトランスポーターを欠失しており(TAP欠損)、内因性のペプチドをMHC上に提示するために小胞体に取り込むことができない。しかしながら、T2細胞には外因性のペプチドを容易に取り込ませることができる。5種類のマーカーペプチド(NLVPMVATV(配列番号29365)、CLGGLLTMV(配列番号29366)、GLCTLVAML(配列番号29369)、LLFGYPVYV(配列番号29368)、GILGFVFTL(配列番号29367)及び2種類の無関係のペプチドWLSLLVPFV(配列番号29370)、FLLTRICT(配列番号29371)をT2細胞に取り込ませた。簡単に述べると、T2細胞をカウントし、IMDM+1%FBShiで1×10細胞/mLに希釈した。各ペプチドは10μgペプチド/1×10細胞となるように加えた。次いで細胞を37℃で90分間インキュベートした。細胞をIMDM+20%FBShiで2回洗浄し、5×10E5細胞/mLに希釈し、100μLを96ウェルCostar組織培養プレートにプレーティングした。Jurkat-Lucia TCRクローンをカウントし、RPMI1640+10%FBShi中で5×10E5細胞/mLに希釈し、100μLをT2細胞に加えた。プレートを37℃、5%COで一晩インキュベートした。次いでプレートを400gで3分間遠心し、20μLの上清を白色平底Greinerプレートに取った。指示にしたがってQUANTI-Luc基質を調製し、50μL/ウェルで加えた。ルシフェラーゼ発現をMolecular Devices SpectraMax iE3xで読み取った。
アデノウイルスカセットによるマーカーエピトープ提示を試験するため、U-87 MG細胞を代理抗原提示細胞(APC)として用い、アデノウイルスベクターで形質導入した。U-87 MG細胞を収穫し、96ウェルCostar組織培養プレート中で培地中に5×10E5細胞/100μlでプレーティングした。プレートを37℃で約2時間インキュベートした。アデノウイルスカセットをMEM+10%FBShiでMOI100、50、10、5、1及び0に希釈し、U-87 MG細胞に5μl/ウェルで加えた。プレートを再び37℃で約2時間インキュベートした。Jurkat-Lucia TCRクローンをカウントし、RPMI+10%FBShi中で5×10E5細胞/mLに希釈し、U-87 MG細胞に100μL/ウェルで加えた。次いでプレートを37℃、5%COで約24時間インキュベートした。プレートを400gで3分間遠心し、20μLの上清を白色平底Greinerプレートに取った。指示にしたがってQUANTI-Luc基質を調製し、50μL/ウェルで加えた。ルシフェラーゼ発現をMolecular Devices SpectraMax iE3xで読み取った。
免疫原性実験用のマウス系統
トランスジェニックHLA-A2.1(HLA-A2 Tg)マウスをTaconic Labs,Inc社より入手した。これらのマウスは、ヒトHLA-A2.1リーダードメイン、α1ドメイン、及びα2ドメインと、マウスH2-Kb α3ドメイン、膜貫通ドメイン、及び細胞質ドメインからなる導入遺伝子を有するものである(Vitiello et al.,1991)。これらの実験で使用したマウスは、C57Bl/6バックグラウンドの野生型BALB/cAnNTacの雌及びホモ接合型HLA-A2.1Tgの雌の第1世代子孫(F1)である。
アデノウイルスベクター(Ad5v)による免疫化
HLA-A2 Tgマウスを、前脛骨筋の両側性の筋肉内注射により1×1010~1×10個のアデノウイルスベクターのウイルス粒子で免疫化した。免疫応答を免疫化の12日後に測定した。
リンパ球の単離
免疫化したマウスの新しく収穫した脾臓及びリンパ節からリンパ球を単離した。GentleMACS組織解離装置を製造者の指示にしたがって使用して、10%ウシ胎児血清をペニシリン及びストレプトマイシンとともに含むRPMI(完全RPMI)中で組織を解離させた。
エクスビボ酵素結合免疫スポット(ELISPOT)分析
マウスIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン(Janetzki et al.,2015)にしたがってELISPOT分析を行った。1×10個の脾細胞を、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次いでスポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
エクスビボ細胞内サイトカイン染色(ICS)及びフローサイトメトリー分析
新しく単離したリンパ球を2~5×10細胞/mLの密度で10uMの示したペプチドと2時間インキュベートした。2時間後、ブレフェルジンAを5ug/mlの濃度にまで加え、細胞を刺激物質とさらに4時間インキュベートした。刺激後、生細胞を製造者のプロトコールにしたがって固定可能な生存率解析用色素eFluor780で標識し、抗CD8 APC(クローン53-6.7,BioLegend社)により1:400の希釈率で染色した。細胞内染色には抗IFNg PE(クローンXMG1.2,BioLegend社)を1:100で使用した。試料をAttune NxT Flow Cytometer(Thermo Scientific社)で収集した。FlowJoを使用してフローサイトメトリーデータをプロットし、分析を行った。抗原特異的応答の程度を評価するため、CD8+細胞のIFNg+の割合(%)及び全IFNg+細胞数/1×10個の生細胞の両方を、各ペプチド刺激物質に対して計算した。
XIV.B.2.抗原カセット設計のインビトロ評価
抗原カセットの設計の評価の一例として、インビトロの細胞ベースのアッセイを開発し、モデルワクチンカセット内の選択されたヒトエピトープが抗原提示細胞によって発現、プロセシング、及び提示されるかどうかを評価した(図1)。認識後、特性がよく知られているペプチド-HLAの組み合わせに特異的な5種類のTCRのうちの1つを発現するように操作されたJurkat-LuciaレポーターT細胞が活性化され、活性化T細胞の核因子(NFAT)を核内に移行させると、ルシフェラーゼレポーター遺伝子の転写が活性化される。個々のレポーターCD8 T細胞株の抗原刺激をバイオルミネッセンスによって定量した。
個々のJurkat-Luciaレポーター株は、等モル量の翻訳産物が得られるようにP2Aリボソームスキップ配列によって分離された抗原特異的TCRβ鎖とTCRα鎖を含む発現コンストラクトによるレンチウイルス形質導入によって改変されたものである(Banu et al.,2014)。細胞表面上のCD8は標的pMHC分子に対する結合親和性にとって重要であり、その細胞質テールの結合を介してシグナル伝達を促進する(Lyons et al.,2006;Yachi et al.,2006)ことから、レンチウイルスコンストラクトへの第2のCD8β-P2A-CD8α因子の付加によって、親レポーター細胞株に欠損しているCD8共受容体の発現がもたらされる。
レンチウイルスによる形質導入の後、Jurkat-Luciaレポーターをプロマイシン選択下で増殖させ、FACS(single cell fluorescence assisted cell sorting)(単一細胞蛍光支援細胞選別)に供し、モノクローナル集団をルシフェラーゼ発現について試験した。これにより、機能的細胞応答を有する特異的ペプチド抗原1、2、4、及び5について安定的に形質導入されたレポーター細胞株が得られた(表2)。
Figure 2022534282000004
別の例では、一連の短いカセットにおいて、すべてのマーカーエピトープを同じ位置に組み込み(図2A)、HLA-A0201制限エピトープ(図2B)を分離するリンカーのみを変えた。レポーターT細胞を、これらの短いカセットを発現するアデノウイルスコンストラクトを感染させたU-87抗原提示細胞(APC)と個々に混合し、ルシフェラーゼ発現を非感染コントロールに対して測定した。モデルカセット内の4つすべての抗原が、一致するレポーターT細胞により認識され、複数の抗原が効率的にプロセシング及び提示されていることが示された。T細胞応答の程度は、天然及びAAYリンカーについて概ね同様の傾向にしたがった。RRリンカーベースのカセットから放出された抗原は、低いルシフェラーゼの誘導を示す(表3)。抗原プロセシングを阻害するように設計されたDPPリンカーは、エピトープ提示が低いワクチンカセットを生じた(表3)。
Figure 2022534282000005
別の例では、ヒト及びマウスのエピトープ以外に、カセットのN末端またはC末端のいずれかに配置された、ユビキチン(Ub)、MHC及びIg-κシグナルペプチド(SP)、及び/またはMHC膜貫通(TM)モチーフなどのターゲティング配列を含むさらなる一連の短いカセットを構築した(図3)。アデノウイルスベクターによってU-87 APCに送達されると、レポーターT細胞は、複数のカセット由来の抗原の効率的なプロセシング及び提示を示した。しかしながら、T細胞応答の程度は、異なるターゲティング機構によって大きく影響されなかった(表4)。
Figure 2022534282000006
XIV.B.3.抗原カセット設計のインビボ評価
抗原カセット設計の評価の別の例として、HLA-A02:01に制限された形でCD8 T細胞を刺激することが知られている、特性がよく知られた5つのヒトクラスI MHCエピトープを含むようにワクチンカセットを設計した(図2A、3、5A)。それらのインビボ免疫原性の評価を行うため、これらのマーカーエピトープを含むワクチンカセットをアデノウイルスベクターに組み込み、HLA-A2トランスジェニックマウスに感染させるのに使用した(図4)。このマウスモデルは、ヒトHLA-A0201及びマウスH2-Kbから一部が構成された導入遺伝子を保有しており、したがって、ヒトHLA-A2.1のリーダー、マウスα3に連結されたα1及びα2ドメイン、膜貫通及び細胞質H2-Kbドメインで構成されたキメラクラスI MHC分子をコードしている(Vitiello et al.,1991)。このキメラ分子は、HLA-A*02:01に制限された抗原提示を可能とする一方で、CD8共受容体とMHC上のα3ドメインとの種の一致した相互作用を維持する。
短いカセットでは、すべてのマーカーエピトープが、一般的に報告されているもの(Cornet et al.,2006;Depla et al.,2008;Ishioka et al.,1999)よりも約10~50倍強い、T細胞応答を生じた。評価を行ったすべてのリンカーのうち、それぞれにその天然のアミノ酸配列が隣接した最小エピトープを含む25マー配列のコンカテマーが、最大かつ最も広いT細胞応答を生じた(表5)。細胞内サイトカイン染色(ICS)及びフローサイトメトリーにより、抗原特異的T細胞応答がCD8 T細胞から誘導されることが示された。
Figure 2022534282000007
別の例では、元の5つのマーカーエピトープの隣に、既知のCD8 T細胞反応性を有するさらに16個のHLA-A02:01、A03:01及びB44:05エピトープを含む一連の長いワクチンカセットを構築し、アデノウイルスベクターに組み込んだ(図5A、5B)。これらの長いカセットのサイズは、最終的な臨床用のカセット設計によく似たものとし、各エピトープの互いに対する位置のみを変えた。CD8 T細胞応答は、長いワクチンカセット及び短いワクチンカセットの両方でその程度及び幅において同等であり、(a)さらなるエピトープの追加が元のエピトープのセットに対する免疫応答の程度に大きく影響せず、また、(b)カセット内のエピトープの位置はそれに続くT細胞応答に大きく影響しないことを示すものである(表6)。
Figure 2022534282000008
XIV.B.4.免疫原性及び毒性試験用の抗原カセットの設計
要約すると、モデルカセット評価による知見(図2~5、表2~6)によって、モデルワクチンカセットでは、アデノウイルスベースのベクターとの関連で約20個のエピトープをコードする「数珠つなぎ」アプローチを用いた場合に強い免疫原性が得られることが実証された。エピトープは、両側にその天然の周辺ペプチド配列(例えば、両側に8個のアミノ酸残基)が隣接した最小のCD8 T細胞エピトープ(例えば、9個のアミノ酸残基)をそれぞれが埋め込んだ25マー配列を連結することによって最も効果的にアセンブルされる。本明細書において使用される場合、「天然」または「自然」のフランキング配列とは、その由来源タンパク質内のそのエピトープの天然に存在するという文脈で特定のエピトープのN末端及び/またはC末端側のフランキング配列のことを指す。例えば、HCMV pp65 MHC IのエピトープNLVPMVATV(配列番号29365)は、その5’末端側に天然の5’配列WQAGILAR(配列番号29372)が、その3’末端側に天然の3’配列QGQNLKYQ(配列番号29373)が隣接し、それによりHCMV pp65由来源タンパク質内にみられるWQAGILARNLVPMVATVQGQNLKYQ(配列番号29374)という25マーペプチドを生成する。天然または自然の配列は、天然のフランキング配列(複数可)が隣接したエピトープをコードする核酸配列のことを指す場合もある。各25マー配列は、それに続く25マー配列に直接連結される。最小のCD8 T細胞エピトープがアミノ酸9個よりも大きいかまたは小さい場合、フランキングペプチドの長さは、全体の長さが依然25マーのペプチド配列となるように調節することができる。例えば、アミノ酸10個のCD8 T細胞エピトープには、アミノ酸8個とアミノ酸7個の配列を隣接させることができる。このコンカテマーの後には、CD4 Tヘルパー細胞を刺激し、ワクチンカセット抗原の全体のインビボ免疫原性を改善するため(Alexander et al.,1994;Panina-Bordignon et al.,1989)に含ませた2個の普遍的クラスII MHCエピトープを繋げた。これらのクラスIIエピトープは、GPGPGアミノ酸リンカー(配列番号56)によって最後のクラスIエピトープに連結した。2個のクラスIIエピトープは、GPGPGアミノ酸リンカー(配列番号56)によって互いに対しても連結し、さらにC末端側にGPGPGアミノ酸リンカー(配列番号56)を隣接させた。エピトープの位置もその数もT細胞の認識または応答に大きく影響しないようであった。ターゲティング配列も、カセットに由来する抗原の免疫原性に大きく影響しないようであった。
さらなる例として、モデルカセットにより得られたインビトロ及びインビボデータ(図2~5、表2~6)に基づき、非ヒト霊長類(NHP)、マウス及びヒトで免疫原性を示すことが知られている、特性のよく知られたT細胞エピトープを交互に配したカセット設計を生成した。いずれもそれらの天然の25マー配列に埋め込まれた20個のエピトープの後に、評価を行ったすべてのモデルカセットに存在する2個の普遍的クラスII MHCエピトープを繋げた(図6)。このカセット設計を用いて、複数種における免疫原性を調べ、ならびに薬理学的及び毒物学的研究を行った。
XIV.B.5. 抗原カセットの設計ならびに30個、40個、及び50個の抗原の評価
それぞれがアミノ酸25個の長さである30個(L)、40個(XL)、または50個(XXL)のエピトープを有する大きな抗原カセットを設計した。これらのエピトープは、腫瘍抗原を含む疾患抗原をモデル化するためのヒト、NHP、及びマウスのエピトープの混合である。図29に、異なる種からのエピトープの一般的な編成を示す。使用したモデル抗原は、ヒト、霊長類、及びマウスモデルについて表32、33、及び34にそれぞれ記載されている。表32、33、及び34のそれぞれは、エピトープの位置、名前、最小エピトープの記述、及びMHCクラスを記載している。
これらのカセットを記載したようにChAdV68及びアルファウイルスベクターにクローニングし、より長い複数エピトープのカセットの有効性の評価を行った。図30は、ウェスタンブロットによる、予想されたサイズの少なくとも1つの大きなバンドによって示されるように、大きな抗原カセットのそれぞれがChAdVベクターから発現されたことを示している。
マウスを記載したように免疫して大きなカセットの有効性の評価を行った。T細胞応答を、エピトープAH1(上のパネル)及びSIINFEKL(下のパネル)について、ChAdV68ベクターによる免疫後にICS及びテトラマー染色することにより(それぞれ図31/表35及び図32/表36)、また、srRNAベクターによる免疫後にICS染色することにより(図33/表37)分析した。30個(L)、40個(XL)、または50個(XXL)のエピトープを発現するChAdV68及びsrRNAワクチンベクターを用いた免疫により、モデル疾患エピトープに対するCD8+免疫応答が誘導された。
Figure 2022534282000009
Figure 2022534282000010
Figure 2022534282000011
Figure 2022534282000012
Figure 2022534282000013
Figure 2022534282000014
XV.ChAd抗原カセット送達ベクター
XV.A.ChAd抗原カセット送達ベクターの構築
1つの例では、チンパンジーアデノウイルス(ChAd)を操作して抗原カセットの送達ベクターとした。さらなる例では、完全長ChAdV68ベクターを、AC_000011.1(米国特許第6083716号に記載の配列番号2)に基づいて合成し、E1(nt457~3014)及びE3(nt27,816~31,332)配列を欠失させた。CMVプロモーター/エンハンサーの制御下にあるレポーター遺伝子を欠失させたE1配列の代わりに挿入した。このクローンをHEK293細胞にトランスフェクトしたところ、感染性のウイルスは生成されなかった。野生型C68ウイルスの配列を確認するため、単離VR-594をATCCより入手して継代した後、個々に配列決定した(配列番号10)。AC_000011.1配列を野生型ChAdV68ウイルスのATCC VR-594配列(配列番号10)と比較したところ、6個のヌクレオチドの相違が特定された。1つの例では、改変ChAdV68ベクターを、AC_000011.1に基づいて作製し、対応するATCC VR-594ヌクレオチドを5つの位置で置換した(ChAdV68.5WTnt 配列番号1)。
別の例では、改変ChAdV68ベクターを、AC_000011.1に基づいて作製し、E1(nt577~3403)及びE3(nt27,816~31,332)配列を欠失させ、対応するATCC VR-594ヌクレオチドを4つの位置で置換した。CMVプロモーター/エンハンサーの制御下にあるGFPレポーター(ChAdV68.4WTnt.GFP;配列番号11)またはモデル新生抗原カセット(ChAdV68.4WTnt.MAG25マー;配列番号12)を、欠失させたE1配列の代わりに挿入した。
別の例では、改変ChAdV68ベクターを、AC_000011.1に基づいて作製し、E1(nt577~3403)及びE3(nt27,125~31,825)配列を欠失させ、対応するATCC VR-594ヌクレオチドを5つの位置で置換した。CMVプロモーター/エンハンサーの制御下にあるGFPレポーター(ChAdV68.5WTnt.GFP;配列番号13)またはモデル新生抗原カセット(ChAdV68.5WTnt.MAG25マー;配列番号2)を欠失させたE1配列の代わりに挿入した。
関連するベクターを下記に示す。
-完全長ChAdVC68配列「ChAdV68.5WTnt」(配列番号1);対応するATCC VR-594ヌクレオチドを5つの位置で置換したAC_000011.1配列
-ATCC VR-594 C68 (配列番号10);独立してシークエンシングしたもの;完全長C68
-ChAdV68.4WTnt.GFP (配列番号11);AC_000011.1のE1(nt 577~3403)及びE3 (nt 27,816~31,332)配列を欠失させたもの;対応するATCC VR-594ヌクレオチドを4つの位置で置換;GFPレポーターは、欠失させたE1の代わりに挿入されたCMVプロモーター/エンハンサーの制御下にある
-ChAdV68.4WTnt.MAG25マー (配列番号12);AC_000011.1のE1 (nt 577~3403)及びE3 (nt 27,816~31,332)配列を欠失させたもの;対応するATCC VR-594ヌクレオチドを4つの位置で置換;モデル新生抗原カセットは、欠失させたE1の代わりに挿入されたCMVプロモーター/エンハンサーの制御下にある
-ChAdV68.5WTnt.GFP (配列番号13);AC_000011.1のE1(nt 577~3403)及びE3 (nt 27,125~31,825)配列を欠失させたもの;対応するATCC VR-594ヌクレオチドを5つの位置で置換;GFPレポーターは、欠失させたE1の代わりに挿入されたCMVプロモーター/エンハンサーの制御下にある
XV.B.ChAd抗原カセット送達ベクターの試験
XV.B.1.ChAdベクターの評価方法及び材料
リポフェクタミンを用いたHEK293A細胞のトランスフェクション
ChAdV68コンストラクト(ChAdV68.4WTnt.GFP、ChAdV68.5WTnt.GFP、ChAdV68.4WTnt.MAG25マー、及びChAdV68.5WTnt.MAG25マー)のDNAを調製し、以下のプロトコールを用いてHEK293A細胞にトランスフェクトした。
10ugのプラスミドDNAをPacIで消化してウイルスゲノムを遊離させた。次いでGeneJet DNA cleanup Microカラム(Thermo Fisher社)を製造者の指示にしたがって使用してDNAを長いDNAフラグメントについて精製し、20ulの予め加熱した水中に溶出した。溶出工程の前にカラムを37℃で0.5~1時間放置した。
トランスフェクションの14~18時間前にHEK293A細胞を10細胞/ウェルの細胞密度で6ウェルプレートに導入した。各ウェルごとに細胞に新鮮な培地(ペニシリン/ストレプトマイシン及びグルタミン酸を含む1mlのDMEM-10%hiFBS)を被せた。トランスフェクションでは、各ウェル当たり1~2ugの精製したDNAを製造者のプロトコールにしたがってul体積の2倍(2~4ul)のリポフェクタミン2000とともに用いた。トランスフェクションミックスを含む0.5mlのOPTI-MEM培地を、各ウェル内で1mlの通常の培地に加え、細胞上で一晩放置した。
トランスフェクトした細胞培養物を37℃で少なくとも5~7日間インキュベートした。ウイルスプラークがトランスフェクションの7日後に視認されなかった場合、細胞を1:4または1:6に分割し、37℃でインキュベートしてプラーク生成について監視した。あるいは、トランスフェクトした細胞を収穫し、3サイクルの凍結と解凍に供し、細胞ライセートを用いてHEK293A細胞に感染させ、ウイルスプラークが観察されるまで細胞をインキュベートしてもよい。
リン酸カルシウムを用いたHEK293A細胞へのChAdV68ベクターのトランスフェクション及び三次ウイルスストックの生成
ChAdV68コンストラクト(ChAdV68.4WTnt.GFP、ChAdV68.5WTnt.GFP、ChAdV68.4WTnt.MAG25マー、ChAdV68.5WTnt.MAG25マー)のDNAを調製し、以下のプロトコールを用いてHEK293A細胞にトランスフェクトした。
トランスフェクションの1日前にHEK293A細胞を5%BS/DMEM/1XP/S,1×Glutamax中で、6ウェルプレートの各ウェル当たり10細胞で播種した。トランスフェクション当たり2個のウェルが必要とされる。トランスフェクションの2~4時間前に培地を新鮮な培地に交換した。ChAdV68.4WTnt.GFPプラスミドをPacIで直鎖状とした。次いで、直鎖状とされたDNAをフェノールクロロホルム抽出し、1/10体積の3M酢酸ナトリウム、pH5.3、及び2体積の100%エタノールを用いて沈殿させた。沈殿したDNAを12,000×gで5分間遠心することによってペレット化した後、70%エタノールで1回洗浄した。ペレットを風乾し、50μLの滅菌水に再懸濁した。NanoDrop(商標)(ThermoFisher社)を使用してDNA濃度を決定し、体積を5μgのDNA/50μLに調整した。
169μLの滅菌水をマイクロチューブに加えた。次いで5μLの2M CaClをこの水に加え、ピペッティングして静かに混合した。50μLのDNAをCaCl溶液に滴下した。次いで26μLの2M CaClを加えてμピペッターで2回ピペッティングして静かに混合した。この最終溶液は、250μLの0.25M CaCl中の5μgのDNAからなるはずである。次いで250μLの2×HBS(Hepes緩衝液)の入った第2のチューブを用意した。ピペットエイドに取り付けた2mL滅菌ピペットを使用して2×HBS溶液に空気を徐々にバブリングした。同時に、0.25M CaCl溶液中のDNA溶液を滴下した。最後のDNAの液滴の滴下後、約5秒間、バブリングを継続した。次いで溶液を室温で最大20分間インキュベートした後、293A細胞に加えた。6ウェルプレートの各ウェル当たり10細胞で1日前に播種した293A細胞の単層に250μlのDNA/リン酸カルシウム溶液を滴下した。細胞をインキュベーターに戻して一晩インキュベートした。24時間後に培地を交換した。72時間後に細胞を6ウェルプレート内に1:6に分割した。単層を細胞変性効果(CPE)の証拠について光学顕微鏡によって毎日監視した。トランスフェクションの7~10日後にウイルスプラークを観察し、ウェル内の培地をピペッティングして細胞を浮かせることにより単層を収穫した。収穫した細胞及び培地を50mLの遠心チューブに移した後、凍結解凍を3ラウンド行った(-80℃及び37℃)。その後得られた、一次ウイルスストックと呼ばれるライセートを、ベンチトップ遠心分離器上で最大速度(4300×g)で遠心することにより清澄化させ、ライセートの一定の割合(10~50%)を使用してT25フラスコ中で293A細胞に感染させた。感染細胞を48時間インキュベートした後、細胞及び培地を完全なCPEで収穫した。細胞を再び収穫し、凍結解凍して清澄化した後、この二次ウイルスストックを使用して、フラスコ当たり1.5×10細胞で播種されたT150フラスコに感染させた。72時間後に完全CPEが得られた時点で細胞を収穫し、上記のウイルスストックと同様に処理して三次ストックを生成した。
293F細胞内での生成
8%COのインキュベーター内の293FreeStyle(商標)(ThermoFisher社)培地中で増殖させた293F細胞内でChAdV68ウイルス生成を行った。感染の当日、細胞を生存率98%で1mL当たり10細胞に希釈し、1LのShakeフラスコ(Corning社)中、1回の生成操作当たり400mLを使用した。1回の感染当たり目標MOIが3.3よりも高い4mLの三次ウイルスストックを使用した。トリパンブルーによって測定される生存率が70%を下回るまで48~72時間にわたって細胞をインキュベートした。次いで感染細胞をベンチトップ遠心分離器で最大速度で遠心して収穫し、1×PBS中で洗浄し、再び遠心してから20mLの10mM Tris pH7.4に再懸濁した。細胞ペレットを、凍結解凍を3回行って溶解し、4,300×gで5分間遠心して清澄化した。
CsCl遠心分離による精製
ウイルスDNAをCsCl遠心分離により精製した。2つの不連続な勾配の操作を行った。第1の遠心は、細胞成分からウイルスを精製するためのもので、第2の遠心は、細胞成分からの分離物をさらに精製し、感染性粒子から機能不全粒子を分離するためのものである。
10mLの1.2(26.8gのCsClを92mLの10mM Tris pH8.0に溶かしたもの)CsClをポリアロマー製チューブに加えた。次いで、8mLの1.4CsCl(53gのCsClを87mLの10mM Tris pH8.0に溶かしたもの)をピペットを用いてチューブの底に届けるように慎重に加えた。清澄化したウイルスをこの1.2の層の上に層をなすように慎重に加えた。必要な場合、さらに10mM Trisを加えてチューブのバランスを取った。次いでチューブをSW-32Tiローターに入れて、10℃で2時間30分遠心した。次いでチューブを層流キャビネットに取り出して、18ゲージの針と10mLの注射器を使用してウイルスバンドを引き抜いた。夾雑した宿主細胞DNA及びタンパク質を除去しないように注意を払った。次いでバンドを少なくとも10mM Tris pH8.0で希釈し、上記に述べた不連続勾配で上記と同様に層をなすように加えた。今回は操作を一晩行った以外は上記と同様にして遠心操作を行った。翌日、機能不全の粒子バンドを引き抜かないように注意しながらバンドを引き抜いた。次いでカセット(Pierce社)を使用してARMバッファー(20mM Tris Slide-a-Lyzer(商標)pH8.0,25mM NaCl,2.5%グリセロール)に対してウイルスを透析した。これをバッファーを1回交換するごとに3回、1時間行った。次いでウイルスを一定分量に分けて-80℃で保存した。
ウイルスアッセイ
1.1×1012個のウイルス粒子(VP)の消光係数はOD260nmの吸光度の値=1に相当することに基づき、OD260アッセイを用いてVP濃縮を行った。アデノウイルスの2つの希釈度(1:5と1:10)をウイルス溶解バッファー(0.1%SDS,10mM Tris pH7.4,1mM EDTA)中で作った。両方の希釈度でODを2重に測定し、OD260値×希釈係数×1.1×1012VPを掛けることによりVP濃度/mLを測定した。
感染単位(IU)力価を、ウイルスストックの限界希釈アッセイによって計算した。ウイルスを最初にDMEM/5%NS/1×PS中で100倍に希釈した後、10倍希釈率を用いて1×10-7にまで希釈した。次いで100μLのこれらの希釈液を、24ウェルプレートのウェル当たり3e5細胞で少なくとも1時間前に播種した293A細胞に加えた。これを2重に行った。プレートを48時間、37℃のCO2インキュベーター内でインキュベートした。次いで細胞を、1×PBSで洗浄した後、100%の冷却メタノール(-20℃)で固定した。次いでプレートは最小で20分間にわたって-20℃でインキュベートした。各ウェルを1×PBSで洗浄した後、1×PBS/0.1%BSA中で1時間、室温でブロッキングした。ウサギ抗Ad抗体(Abcam,Cambridge,MA)をブロッキングバッファー(ウェル当たり0.25mL)中に1:8,000の希釈率で加え、室温で1時間インキュベートした。各ウェルをウェル当たり0.5mLのPBSで4回洗浄した。1000倍に希釈したHRP結合ヤギ抗ウサギ抗体(Bethyl Labs,Montgomery Texas)を各ウェルに加え、最終回の洗浄の1時間前にインキュベートした。PBSでの洗浄を5回行い、0.01%Hを含むTris緩衝生理食塩水中、DAB(ジアミノベンジジンテトラヒドロクロリド)基質を使用して現像した(50mM Tris pH7.5,150mM NaCl中、0.67mg/mL DAB)。各ウェルをカウントの5分前に現像した。視野当たり4~40個の染色された細胞を与えるような希釈率を用いて10倍の対物レンズ下で細胞をカウントした。使用した視野は0.32mmの格子とし、24ウェルプレート上の視野当たり625個に相当した。1mL当たりの感染性ウイルスの数は、格子1個当たりの染色細胞の数×視野当たりの格子の数×希釈係数10によって求めることができる。同様に、GFP発現細胞を扱う場合には、カプシド染色の代わりに蛍光を用いて1mL当たりのGFP発現ビリオンの数を決定することができる。
免疫化
C57BL/6J系の雌性マウス及びBalb/c系の雌性マウスに、1×10個のChAdV68.5WTnt.MAG25マーのウイルス粒子(VP)を、100uL体積中で両側性の筋肉内注射(各脚50uL)により注射した。
脾細胞の解離
各マウスの脾臓及びリンパ節を、3mLの完全RPMI(RPMI、10%FBS、ペニシリン/ストレプトマイシン)中にプールした。gentleMACS組織解離装置(Miltenyi Biotec社)を製造者の指示にしたがって使用して、機械的解離を行った。解離した細胞を40ミクロンのフィルターに通して濾過し、赤血球をACK溶解バッファー(150mM NHCl,10mM KHCO,0.1mM NaEDTA)で溶解した。細胞を30ミクロンのフィルターに通して再び濾過した後、完全RPMI中に再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。
エクスビボ酵素結合免疫スポット(ELISPOT)分析
マウスIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン{DOI: 10.1038/nprot.2015.068}にしたがってELISPOT分析を行った。5×10個の脾細胞を、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次いでスポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
XV.B.2.DNAトランスフェクション後のChAdV68ウイルス送達粒子の生成
1つの例において、ChAdV68.4WTnt.GFP(図7)及びChAdV68.5WTnt.GFP(図8)のDNAを、HEK293A細胞にトランスフェクトし、ウイルス複製(ウイルスプラーク)をトランスフェクションの7~10日後に観察した。ChAdV68ウイルスプラークを光学(図7A及び8A)及び蛍光顕微鏡法(図7B~C、及び図8B~C)を使用して可視化した。GFPは、増殖性ChAdV68ウイルス送達粒子の生成を示す。
XV.B.3.ChAdV68ウイルス送達粒子の増殖
1つの例において、ChAdV68.4WTnt.GFP、ChAdV68.5WTnt.GFP、及びChAdV68.5WTnt.MAG25マーウイルスをHEK293F細胞内で増殖させ、精製ウイルスストックをトランスフェクションの18日後に生成した(図9)。精製ChAdV68ウイルスストック中のウイルス粒子を定量し、同じプロトコールを使用して生成されたアデノウイルス5型(Ad5)及びChAdVY25(近縁のChAdV;Dicks,2012,PloS ONE7,e40385)ウイルスストックと比較した。ChAdV68ウイルス力価は、Ad5及びChAdVY25と同等であった(表7)。
Figure 2022534282000015
XV.B.4.腫瘍モデルにおける免疫原性の評価
マウス腫瘍抗原を発現するC68ベクターを、マウス免疫原性実験で評価して、C68ベクターがT細胞応答を誘発することを実証する。MHCクラスIエピトープSIINFEKL(配列番号29362)に対するT細胞応答C57BL/6J系雌性マウスで測定し、MHCクラスIエピトープAH1-A5(Slansky et al.,2000,Immunity13:529-538)に対するT細胞応答をBalb/c系マウスで測定した。図15に示されるように、ChAdV68.5WTnt.MAG25マーによるマウスの免疫後にコントロールに対して強いT細胞応答が測定された。脾細胞10個当たり、8957個及び4019個のスポット形成細胞(SFC)の平均の細胞性免疫応答が、ELISpotアッセイにおいて、C57BL/6J系またはBalb/c系マウスをそれぞれChAdV68.5WTnt.MAG25マーで免疫した場合に免疫の10日後に観察された。
腫瘍浸潤リンパ球についても、ChAdV及び抗CTLA4抗体の共投与を評価するCT26腫瘍モデルにおいて評価した。マウスにCT26腫瘍細胞を移植し、移植7日後にChAdVワクチンで免疫し、抗CTLA4抗体(クローン9D9)またはコントロールとしてIgGで処置した。免疫14日後に腫瘍浸潤リンパ球を分析した。各マウスからの腫瘍をgentleMACS Dissociator (Miltenyi Biotec)及びマウス腫瘍解離キット(Miltenyi Biotec)を用いて解離させた。解離した細胞を30ミクロンのフィルターに通して濾過し、完全RPMI中に再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。抗原特異的細胞をMHC-テトラマー複合体によって同定し、抗CD8及び生細胞マーカーで共染色した。プライム免疫の12日後に腫瘍を回収した。
腫瘍内の抗原特異的CD8+T細胞は、それぞれ、ChAdV、抗CTLA4、及びChAdV+抗CTLA4処置群において、全生細胞集団の中央値で3.3%、2.2%、または8.1%を構成していた(図41及び表40)。活性ChAdV免疫と組み合わせた抗CTLAによる処置により、ChAdV単独及び抗CTLA4単独のいずれよりも抗原特異的CD8+T細胞の頻度が統計的に有意に増大し、抗CTLA4はChAdV68ワクチンと共投与される場合に腫瘍内の浸潤T細胞の数を増大させることが示された。
Figure 2022534282000016
XVI.アルファウイルス抗原送達ベクター
XVI.A.アルファウイルス送達ベクター評価の材料及び方法
RNAを生成するためのインビトロ転写
インビトロ試験を行うため、プラスミドDNAをPmeIによる制限消化によって直鎖状とし、カラムを製造者の指示にしたがって洗浄し(GeneJet DNA cleanup kit,Thermo社)、テンプレートとして使用した。RiboMAX Large Scale RNA production System(Promega社)をmGキャップアナログ(Promega)とともに製造者の指示にしがって使用してインビトロ転写を行った。RNeasy kit(Qiagen社)を製造者の指示にしがって使用してmRNAを精製した。
インビボ実験を行うには、TriLInk Biotechnologies社によって生成され、精製されたRNAをEnzymatic Cap1でキャップした。
RNAのトランスフェクション
HEK293A細胞を、96ウェルのウェル当たり6e4細胞で、24ウェルのウェル当たり2e5細胞で、トランスフェクションの約16時間前に播種した。細胞にMessengerMAXリポフェクタミン(Invitrogen社)を製造者のプロトコールにしたがって使用してmRNAをトランスフェクションした。96ウェルでは、ウェル当たり0.15uLのリポフェクタミン及び10 ng のmRNAを使用し、24ウェルでは、ウェル当たり0.75uLのリポフェクタミン及び150ngのmRNAを使用した。GFPを発現するmRNA(TriLink Biotechnologies社)をトランスフェクションのコントロールとして使用した。
ルシフェラーゼアッセイ
ルシフェラーゼレポーターアッセイを、白い壁の96ウェルプレートで、ONE-Gloルシフェラーゼアッセイ(Promega社)を製造者のプロトコールにしたがって使用して各条件を三重にして行った。発光度をSpectraMaxを使用して測定した。
qRT-PCR
トランスフェクトした細胞をトランスフェクションの2時間後に新鮮な培地で洗い、新鮮な培地に交換してトランスフェクトしなかったmRNAをすべて除去した。次いで細胞を異なる時点でRLT plus lysis buffer(Qiagen社)中に収穫し、いずれも製造者のプロトコールにしたがってQiaShredder(Qiagen社)を使用してホモジナイズし、RNeasy kit(Qiagen社)を使用して抽出した。Nanodrop(Thermo Scientific社)を使用して全RNAを定量した。製造者のプロトコールにしたがってqTower (Analytik Jena)でQuantitect Probe One-Step RT-PCR kit(Qiagen社)を使用し、反応当たり20ngの全RNAを使用してqRT-PCRを行った。各試料を各プローブについて三重に試験した。ActinまたはGusBを参照遺伝子として用いた。カスタムプライマー/プローブはIDT社により生成されたものである(表8)。
Figure 2022534282000017
B16-OVA腫瘍モデル
C57BL/6J系マウスの左下脇腹に10個のB16-OVA細胞/動物を注射した。腫瘍を免疫化の前、3日間にわたって増殖させた。
CT26腫瘍モデル
Balb/c系マウスの左下脇腹に10個/動物のCT26細胞を注射した。腫瘍を免疫化の前、7日間にわたって増殖させた。
免疫化
srRNAワクチンについては、マウスに100uL体積中、10ugのRNAを、両側性に筋肉内注射(各脚50uL)により注射した。Ad5ワクチンについては、マウスに5×1010個のウイルス粒子(VP)を、100uL体積中で両側性に筋肉内注射(各脚50uL)により注射した。各動物に、抗CTLA-4(クローン9D9,BioXcell社)、抗PD-1(クローンRMP1-14,BioXcell社)、または抗IgG(クローンMPC-11,BioXcell社)を、用量250ugで、週2回、腹腔内注射により注射した。
インビボ生物発光イメージング
各時点においてマウスに腹腔内注射により150mg/kgのルシフェリン基質を注射し、注射の10~15分後にIVISインビボイメージングシステム(PerkinElmer社)を使用して生物発光を測定した。
脾細胞の解離
各マウスの脾臓及びリンパ節を、3mLの完全RPMI(RPMI、10%FBS、ペニシリン/ストレプトマイシン)中にプールした。gentleMACS組織解離装置(Miltenyi Biotec社)を製造者の指示にしたがって使用して、機械的解離を行った。解離した細胞を40ミクロンのフィルターに通して濾過し、赤血球をACK溶解バッファー(150mM NHCl,10mM KHCO,0.1mM NaEDTA)で溶解した。細胞を30ミクロンのフィルターに通して再び濾過した後、完全RPMI中に再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。
エクスビボ酵素結合免疫スポット(ELISPOT)分析
マウスIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン{DOI:10.1038/nprot.2015.068}にしたがってELISPOT分析を行った。5×10個の脾細胞を、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次いでスポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
XVI.B.アルファウイルスベクター
XVI.B.1.アルファウイルスベクターのインビトロ評価
本明細書の一実現形態では、抗原発現システム用のアルファウイルス骨格を、ベネズエラウマ脳炎ウイルス(VEE)(Venezuelan Equine Encephalitis(VEE)(Kinney,1986,Virology 152:400-413)ベースの自己複製RNA(srRNA)ベクターから生成した。1つの例では、26Sサブゲノムプロモーターの3’側に位置するVEEの構造タンパク質をコードする配列を欠失させ(VEE配列の7544~11,175を欠失させた。番号付けはKinney et al 1986に基づく。配列番号6)、抗原配列(配列番号14及び配列番号4)またはルシフェラーゼレポーター(例えばVEE-ルシフェラーゼ、配列番号15)に置き換えた(図10)。RNAをインビトロでsrRNA DNAベクターから転写させ、HEK293A細胞にトランスフェクトしてルシフェラーゼレポーターの発現を測定した。さらに、ルシフェラーゼをコードする(非複製)mRNAを比較のためにトランスフェクトした。VEE-ルシフェラーゼのsrRNAでは、2時間の測定値を23時間の測定値と比較した場合にsrRNAレポーターシグナルの約30,000倍の増大が観察された(表9)。これに対して、同じ時間でのmRNAレポーターのシグナルの増大は10倍未満であった(表9)。
Figure 2022534282000018
別の例では、srRNAの複製を、定量的逆転写ポリメラーゼ連鎖反応(qRT-PCR)を使用して、ルシフェラーゼをコードしたsrRNA(VEE-ルシフェラーゼ)または複数のエピトープカセット(VEE-MAG25マー)をコードしたsrRNAのいずれかのトランスフェクション後のRNAレベルを測定することにより確認した。VEE-ルシフェラーゼでは約150倍のRNAの増大が観察された(表10)のに対して、VEE-MAG25マーsrRNAでは30~50倍のRNAの増大が観察された(表11)。これらのデータは、VEE srRNAベクターが細胞にトランスフェクトされると複製されることを示すものである。
Figure 2022534282000019
Figure 2022534282000020
XVI.B.2.アルファウイルスベクターのインビボ評価
別の例において、VEE-ルシフェラーゼレポーターの発現をインビボで評価した。マウスに、脂質ナノ粒子(MC3)に封入された10ugのVEE-ルシフェラーゼを注射し、注射の24及び48時間後、ならびに7及び14日後に撮影して生物発光シグナルを測定した。ルシフェラーゼシグナルが注射の24時間後に検出され、時間とともに増大し、srRNA注射の7日後にピークとなった(図11)。
XVI.B.3.アルファウイルスベクター腫瘍モデルの評価
1つの実現形態において、VEE srRNAベクターがインビボで抗原特異的免疫応答を誘導するかを調べるため、2つの異なるMHCクラスIマウス腫瘍エピトープであるSIINFEKL(配列番号29362)及びAH1-A5(Slansky et al.,2000,Immunity 13:529-538)を発現するVEE srRNAベクターを作製した(VEE-UbAAY,配列番号14)。SFL(SIINFEKL(配列番号29362))エピトープは、B16-OVAメラノーマ細胞株によって発現され、AH1-A5(SPSYAYHQF(配列番号29363);Slansky et al.,2000,Immunity)エピトープは、CT26結腸癌細胞株によって発現される関連エピトープを標的とするT細胞を誘導する(AH1/SPSYVYHQF(配列番号29391);Huang et al.,1996,Proc Natl Acad Sci USA 93:9730-9735)。1つの例では、インビボ実験において、VEE-UbAAY srRNA が、T7ポリメラーゼ(TriLink Biotechnologies)を使用したインビトロ転写によって生成され、脂質ナノ粒子(MC3)に封入された。
SFLを標的とした、コントロールに対して強い抗原特異的T細胞応答が、MC3で製剤化したVEE-UbAAY srRNAによる、B16-OVA腫瘍を有するマウスの免疫化の2週間後に観察された。1つの例では、脾細胞10個当たり中央値で3835個のスポット形成細胞(SFC)が、ELISpotアッセイにおいてSFLペプチドによる刺激後に測定され(図12A、表12)、ペンタマー染色により測定した場合に、CD8 T細胞の1.8%(中央値)がSFL抗原特異的であった(図12B、表12)。別の例では、抗CTLA-4モノクローナル抗体(mAb)とVEE srRNAワクチンとの同時投与によって、全体のT細胞応答の中度の増大が認められ、脾細胞10個当たり中央値で4794.5個のSFCがELISpotアッセイで測定された(図12A、表12)。
Figure 2022534282000021
別の実現形態では、臨床アプローチを反映するため、B16-OVA及びCT26マウス腫瘍モデルにおいて異種プライム/ブーストを行い、腫瘍を有するマウスを、同じ抗原カセット(Ad5-UbAAY)を発現するアデノウイルスベクターで最初に免疫した後、Ad5-UbAAYプライムの14日後にVEE-UbAAY srRNAワクチンでブースト免疫を行った。1つの例では、Ad5-UbAAYワクチンによって抗原特異的免疫応答が誘導され、脾細胞10個当たり7330個(中央値)のSFCがELISpotアッセイで測定され(図13A、表13)、ペンタマー染色により測定した場合にCD8 T細胞の2.9%(中央値)がSFL抗原を標的化していた(図13C、表13)。別の例では、T細胞応答は、B16-OVAモデルにおいてVEE-UbAAY srRNAによるブーストの2週間後に維持され、脾細胞10個当たり3960個(中央値)のSFCがELISpotアッセイで測定され(図13B、表13)、ペンタマー染色により測定した場合にCD8 T細胞の3.1%(中央値)がSFLを標的化していた(図13D、表13)。
Figure 2022534282000022
別の実現形態では、同様の結果が、CT26マウスモデルにおけるAd5-UbAAYによるプライム及びVEE-UbAAY srRNAによるブースト後に観察された。1つの例では、Ad5-UbAAYによるプライム後(14日目)にAH1抗原特異的応答が観察され、脾細胞10個当たり平均で5187個のSFCがELISpotアッセイで測定され(図14A、表14)、VEE-UbAAY srRNAによるブースト後(28日目)には脾細胞10個当たり3799個のSFCがELISpotアッセイで測定された(図14B、表14)。
Figure 2022534282000023
XVII.ChAdV/srRNAの組み合わせの腫瘍モデル評価
ChAdV68及び自己複製RNA(srRNA)を用いた異なる投与プロトコールを、マウスCT26腫瘍モデルで評価した。
XVII.A ChAdV/srRNAの組み合わせの腫瘍モデル評価の方法及び材料
腫瘍の注入
Balb/c系マウスにCT26細胞株を注射した。腫瘍細胞注射の7日後にマウスを異なる実験アーム(各群当たりマウス28~40匹)をランダムカセット配列し、処置を開始した。Balb/c系マウスの左下脇腹に10個/動物のCT26細胞を注射した。腫瘍を免疫化の前、7日間にわたって増殖させた。各実験アームは表15に詳細に記載したとおりである。
Figure 2022534282000024
免疫化
srRNAワクチンについては、マウスに100uL体積中、10ugのVEE-MAG25マーsrRNAを、両側性に筋肉内注射(各脚50uL)により注射した。C68ワクチンについては、マウスに1×1011個のVEE-MAG25マーsrRNAのウイルス粒子(VP)を、100uL体積中で両側性に筋肉内注射(各脚50uL)により注射した。各動物に、抗PD-1(クローンRMP1-14,BioXcell社)、または抗IgG(クローンMPC-11,BioXcell社)を、用量250ugで、週2回、腹腔内注射により注射した。
脾細胞の解離
各マウスの脾臓及びリンパ節を、3mLの完全RPMI(RPMI、10%FBS、ペニシリン/ストレプトマイシン)中にプールした。gentleMACS組織解離装置(Miltenyi Biotec社)を製造者の指示にしたがって使用して、機械的解離を行った。解離した細胞を40ミクロンのフィルターに通して濾過し、赤血球をACK溶解バッファー(150mM NHCl,10mM KHCO,0.1mM NaEDTA)で溶解した。細胞を30ミクロンのフィルターに通して再び濾過した後、完全RPMI中に再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。
エクスビボ酵素結合免疫スポット(ELISPOT)分析
マウスIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン{DOI: 10.1038/nprot.2015.068}にしたがってELISPOT分析を行った。5×10個の脾細胞を、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次いでスポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
XVII.B CT26腫瘍モデルにおけるChAdV/srRNAの組み合わせの評価
ChAdV68.5WTnt.MAG25マー/VEE-MAG25マーsrRNAの異種プライム/ブースト、またはVEE-MAG25マーsrRNAの同種プライム/ブーストワクチンの免疫原性及び有効性をCT26マウス腫瘍モデルで評価した。Balb/c系マウスにCT26細胞株を注射した。腫瘍細胞注射の7日後にマウスを異なる実験アームをランダムカセット配列し、処置を開始した。各実験アームは表15に詳細に、また表16により一般的に記載したとおりである。
Figure 2022534282000025
脾臓をプライムワクチン接種の14日後に収穫して免疫モニタリングを行った。腫瘍及び体重測定値を週2回測定し、生存率を監視した。すべての活性ワクチン群でコントロールに対する強い免疫応答が観察された。
それぞれ、ChAdV68.5WTnt.MAG25マー(ChAdV/グループ3)、ChAdV68.5WTnt.MAG25マー+抗PD-1(ChAdV+PD-1/グループ4)、VEE-MAG25マーsrRNA(srRNA/グループ5と7を合わせた中央値)、またはVEE-MAG25マーsrRNA+抗PD-1(srRNA+PD-1/グループ6と8を合わせた中央値)で免疫したマウスのELISpotアッセイにおいて、最初の免疫の14日後に、脾細胞10個当たり、中央値で10,630個、12,976個、3319個、または3745個のスポット形成細胞(SFC)の細胞性免疫応答が観察された(図16及び表17)。これに対して、ワクチンコントロール(グループ1)または抗PD-1をともなうワクチンコントロール(グループ2)は、それぞれ、脾細胞10個当たり中央値で296個または285個のSFCの細胞性免疫応答を示した。
Figure 2022534282000026
ELISpotのデータと一致して、それぞれ、ChAdV68.5WTnt.MAG25マー(ChAdV/グループ3)、ChAdV68.5WTnt.MAG25マー+抗PD-1(ChAdV+PD-1/グループ4)、VEE-MAG25マーsrRNA(srRNA/グループ5と7を合わせた中央値)、またはVEE-MAG25マーsrRNA+抗PD-1(srRNA+PD-1/グループ6と8を合わせた中央値)で免疫したマウスの細胞内サイトカイン染色(ICS)分析において、最初の免疫の14日後にCD8 T細胞の5.6、7.8、1.8、または1.9%が抗原特異的応答を示した(図17及び表18)。ワクチンコントロール、またはワクチンコントロールと抗PD-1との組み合わせで免疫したマウスは、それぞれ、0.2及び0.1%の抗原特異的CD8応答を示した。
Figure 2022534282000027
CT26結腸腫瘍モデルのすべてのグループで腫瘍増殖が測定され、腫瘍増殖は処置開始の21日後(CT26腫瘍細胞の注射の28日後)までみられる。大きな腫瘍サイズ(>2500mm)に基づいて処置開始の21日後にマウスを屠殺したため、分析のバイアスを避けるために最初の21日間のみを示している。21日目における平均腫瘍体積は、ChAdV68.5WTnt.MAG25マープライム/VEE-MAG25マーsrRNAブースト(グループ3)、ChAdV68.5WTnt.MAG25マープライム/VEE-MAG25マーsrRNAブースト+抗PD-1(グループ4)、VEE-MAG25マーsrRNAプライム/ChAdV68.5WTnt.MAG25マーブースト(グループ5)、VEE-MAG25マーsrRNAプライム/ChAdV68.5WTnt.MAG25マーブースト+抗PD-1(グループ6)、VEE-MAG25マーsrRNAプライム/VEE-MAG25マーsrRNAブースト(グループ7)、及びVEE-MAG25マーsrRNAプライム/VEE-MAG25マーsrRNAブースト+抗PD-1(グループ8)でそれぞれ、1129、848、2142、1418、2198及び1606 mmであった(図18及び表19)。ワクチンコントロール、またはワクチンコントロールと抗PD-1との組み合わせにおける平均腫瘍体積は、それぞれ、2361または2067mmであった。これらのデータに基づけば、ChAdV68.5WTnt.MAG25マー/VEE-MAG25マーsrRNA(グループ3)、ChAdV68.5WTnt.MAG25マー/VEE-MAG25マーsrRNA+抗PD-1(グループ4)、VEE-MAG25マーsrRNA/ChAdV68.5WTnt.MAG25マー+抗PD-1(グループ6)、及びVEE-MAG25マーsrRNA/VEE-MAG25マーsrRNA+抗PD-1(グループ8)は、コントロール(グループ1)と有意に異なる腫瘍増殖の低下を21日目にもたらした。
Figure 2022534282000028
CT26腫瘍モデルにおいて処置開始後35日間(CT26腫瘍細胞の注射後42日間)にわたって生存率を監視した。改善された生存率が、試験した組み合わせのうちの4つでマウスをワクチン接種した後に観察された。ワクチン接種後、ChAdV68.5WTnt.MAG25マープライム/VEE-MAG25マーsrRNAブーストと抗PD-1との組み合わせ(グループ4;コントロールグループ1に対してP<0.0001)、VEE-MAG25マーsrRNAプライム/VEE-MAG25マーsrRNAブーストと抗PD-1との組み合わせ(グループ8;コントロールグループ1に対してP=0.0006)、ChAdV68.5WTnt.MAG25マープライム/VEE-MAG25マーsrRNAブースト(グループ3;コントロールグループ1に対してP=0.0003)、及び、VEE-MAG25マーsrRNAプライム/ChAdV68.5WTnt.MAG25マーブーストと抗PD-1との組み合わせ(グループ6;コントロールグループ1に対してP=0.0016)を用いたマウスの、それぞれ、64%,46%,41%及び36%が生存した(図19及び表20)。生存率は、残りの処置群[VEE-MAG25マーsrRNAプライム/ChAdV68.5WTnt.MAG25マーブースト(グループ5)、VEE-MAG25マーsrRNAプライム/VEE-MAG25マーsrRNA(グループ7)、及び抗PD-1単独(グループ2)]ではコントロールグループ1(≦14%)と有意差は認められなかった。
Figure 2022534282000029
結論として、ChAdV68.5WTnt.MAG25マー及びVEE-MAG25マーsrRNAは、コントロールに対して、各ワクチンによりコードされたマウス腫瘍抗原に対する強いT細胞応答を誘発した。腫瘍を有するマウスへの、抗PD-1の同時投与をともなう、もしくはともなわないChAdV68.5WTnt.MAG25マープライム及びVEE-MAG25マーsrRNAブーストの投与、VEE-MAG25マーsrRNAプライム及びChAdV68.5WTnt.MAG25マーと抗PD-1との組み合わせの投与、または、同種プライムブースト免疫としてのVEE-MAG25マーsrRNAと抗PD-1との組み合わせの投与は、高い生存率につながった。
XVIII.非ヒト霊長類実験
ChAdV68及び自己複製RNA(srRNA)を用いた異なる投与プロトコールを、非ヒト霊長類(NHP)NHPで評価した。
材料及び方法
プライミングワクチンを各NHPで筋肉内(IM)注射して実験を開始した(ワクチンプライム)。1回以上のブースターワクチン(ワクチンブースト)も各NHPに筋肉内注射した。下記表に概略を示し、下記に要約した各グループにしたがって、投与ごとに両側性注射で投与した。
免疫化
Mamu A01インドアカゲザルを、LNP-1またはLNP-2中で製剤化した1×1012個のウイルス粒子(注射1回当たり5×1011個のウイルス粒子)のChAdV68.5WTnt.MAG25マー、30ugのVEE-MAG25マーsrRNA、100ugのVEE-MAG25マーsrRNA、または300ugのVEE-MAG25マーsrRNAで両側性に免疫した。30ug、100ugまたは300ugのVEE-MAG25マー srRNAのワクチンブーストをプライムワクチン接種後の示した時間に筋肉内投与した。
免疫モニタリング
PBMCを、プライムワクチン接種後の示した時間にLymphocyte Separation Medium(LSM,MP Biomedicals社)及びLeucoSep分離チューブ(Greiner Bio-One社)を使用して単離し、10%FBS及びペニシリン/ストレプトマイシンを含んだRPMIに再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。実験に用いたそれぞれのサルについて、ELISpotまたはフローサイトメトリー法を用いてT細胞応答を測定した。ワクチンにコードされた6種類の異なるアカゲザルMamu-A01クラスIエピトープに対するT細胞応答を、ELISpot(ex vivo enzyme-linked immunospot)(エクスビボ酵素結合免疫スポット)分析を用いてIFN-γなどのサイトカインの誘導を測定することにより、PBMCから観測した。サルIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン{DOI: 10.1038/nprot.2015.068}にしたがってELISpot分析を行った。200,000個のPBMCを、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次に、スポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
ワクチンにコードされた6種類の異なるアカゲザルMamu-A01クラスIエピトープに対する特異的CD4及びCD8 T細胞応答を、フローサイトメトリーを用いてIFN-γなどの細胞内サイトカインの誘導を測定することにより、PBMCから観測した。いずれの方法の結果も、サイトカインが、エピトープに対して抗原特異的な形で誘導したことを示している。
アカゲザルにおける免疫原性
この実験は、(a)同種のプライム/ブーストまたは異種のプライム/ブーストとしてのVEE-MAG25マー srRNAの30μg及び100μgの用量とChAdV68.5WTnt.MAG25マーとの組み合わせの免疫原性及び予備的安全性を評価し、(b)LNP2に対してLNP1を使用した脂質ナノ粒子中のVEE-MAG25マー srRNAの免疫応答を比較し、(c)VEE-MAG25マー srRNA及びChAdV68.5WTnt.MAG25マーによる免疫化に対するT細胞応答の速度論を評価するように設計した。
この実験アームを、免疫原性を実証するためにMamu-A*01インドアカゲザルで行った。この実験で使用される選択抗原は、アカゲザル、具体的にはMamu-A*01 MHCクラスIハプロタイプを有するものにおいてのみ認識される。Mamu-A*01インドアカゲザルを異なる実験アーム(各群6匹のアカゲザル)にランダム化し、複数のMamu-A*01制限エピトープを含むモデル抗原をコードしたChAdV68.5WTnt.MAG25マーまたはVEE-MAG25マー srRNAベクターのいずれかを筋肉内注射により両側性に投与した。各実験アームは下記に記載したとおりである。
Figure 2022534282000030
免疫化の前及び初期免疫化の1、2、3、4、5、6、8、9、及び10週後にPBMCを採取して免疫モニタリングを行った。
結果
6種類の異なるMamu-A*01制限エピトープに対する末梢血単核細胞(PBMC)中の抗原特異的細胞性免疫応答を、免疫化の前、及び初期免疫化の1、2、3、4、5、6、8、9、及び10日後に測定した。表21に示すように、各動物に、4及び8週目に、LNP1またはLNP2のいずれかと製剤化した用量30μgまたは100μgのVEE-MAG25マー srRNAによるブースト免疫を行った。6種類のエピトープすべてに対する複合的な免疫応答を、それぞれの免疫モニタリング時点についてプロットした(図20A~D及び表22~25)。
複合的な抗原特異的免疫応答が、最初のVEE-MAG25マー srRNA-LNP1(30μg)によるプライム免疫化の1、2、3、4、5、6、8、9、または10週後にそれぞれ、PBMC10個当たり170、14、15、11、7、8、14、17、12SFC(6つのエピトープの合計)ですべての測定において観察された(図20A)。複合的な抗原特異的免疫応答が、最初のVEE-MAG25マー srRNA-LNP1(100μg)によるプライム免疫化の1、2、3、4、5、6、8、9、または10週後にそれぞれ、PBMC10個当たり108、-3、14、1、37、4、105、17、25SFC(6つのエピトープの合計)ですべての測定において観察された(図20B)。複合的な抗原特異的免疫応答が、最初のVEE-MAG25マー srRNA-LNP2(100μg)によるプライム免疫化の1、2、3、4、5、6、8、9、または10週後にそれぞれ、PBMC10個当たり-17、38、14、-2、87、21、104、129、89SFC(6つのエピトープの合計)ですべての測定において観察された(図20C)。負の値は、各エピトープ/動物のプレブリード値に対して正規化した結果である。
複合的な抗原特異的免疫応答が、最初のChAdV68.5WTnt.MAG25マーによるプライム免疫化の1、2、3、4、5、6、8、9、または10週後にそれぞれ、PBMC10個当たり1218、1784、1866、973、1813、747、797、1249、及び547SFC(6つのエピトープの合計)ですべての測定において観察された(図20D)。免疫応答は、予想されたプロファイルを示し、ピーク免疫応答がプライム免疫化の約2~3週後に測定され、4週後に免疫応答が退縮した。PBMC10個当たり1813SFC(6つのエピトープの合計)の複合的な抗原特異的免疫応答が、ChAdV68.5WTnt.MAG25マーによる最初の免疫化の5週後に測定された(すなわち、VEE-MAG25マー srRNAによる最初のブーストの1週後)。VEE-MAG25マー srRNAによる最初のブーストの1週後(5週目)に測定された免疫応答は、ChAdV68.5WTnt.MAG25マーによるプライム免疫化(3週目)について測定されたピーク免疫応答と同等であった(図20D)。PBMC10個当たり1249SFC(6つのエピトープの合計)の複合的な抗原特異的免疫応答がそれぞれ、ChAdV68.5WTnt.MAG25マーによる最初の免疫化の9週後に測定された(すなわち、VEE-MAG25マー srRNAによる2度目のブーストの1週後)。VEE-MAG25マー srRNAによる2度目のブーストの1週後(9週目)に測定された免疫応答は、ブースト免疫化の直前に測定された免疫応答よりも約2倍高かった(図20D)。
Figure 2022534282000031
Figure 2022534282000032
Figure 2022534282000033
Figure 2022534282000034
結果
Mamu-A*01インドアカゲザルを、ChAdV68.5-WTnt.MAG25マーで免疫化した。6種類の異なるMamu-A*01制限エピトープに対する末梢血単核細胞(PBMC)中の抗原特異的細胞性免疫応答を、免疫化の前、及び初期免疫化の4、5、6、7、8、10、11、12、13、14、15、16、17、18、19、20、21、22、23及び24週後に測定した(図21及び表27)。動物に、4、12、及び20週目にLNP2製剤を用いてVEE-MAG25マー srRNAによる免疫化を行った。最初のChAdV68.5WTnt.MAG25マーによる初期免疫化の4、5、6、7、8、10、11、12、13、14、15、16、17、18、19、20、21、22、23または24週後に、PBMC10個当たり1750、4225、1100、2529、3218、1915、1708、1561、5077、4543、4920、5820、3395、2728、1996、1465、4730、2984、2828、または3043SFC(6つのエピトープの合計)の複合的な抗原特異的免疫応答が観察された(図21)。VEE-MAG25マー srRNAによる2度目のブースト免疫化の1週後(13週目)に測定された免疫応答は、ブースト免疫化の直前(12週目)に測定された免疫応答よりも約3倍高かった。VEE-MAG25マー srRNAによる3度目のブースト免疫化の1週後(21週目)に測定された免疫応答は、2度目のブーストで観察された応答と同様、ブースト免疫化の直前(20週目)に測定された免疫応答よりも約3倍高かった。
Mamu-A*01インドアカゲザルを、さらに、2種類の異なるLNP製剤(LNP1及びLNP2)を用いてVEE-MAG25マー srRNAで免疫化した。6種類の異なるMamu-A*01制限エピトープに対する末梢血単核細胞(PBMC)中の抗原特異的細胞性免疫応答を、免疫化の前、及び初期免疫化の4、5、6、7、8、10、11、12、13、14、または15週後に測定した(図22及び23、表28及び29)。動物に、4及び12週目にLNP1またはLNP2製剤を用いてVEE-MAG25マー srRNAによる免疫化を行った。複合的な抗原特異的免疫応答が、VEE-MAG25マー srRNA-LNP2による免疫化の4、5、7、8、10、11、13、14、15週後にそれぞれ、PBMC10個当たり168、204、103、126、140、145、330、203、及び162SFC(6つのエピトープの合計)ですべての測定において観察された(図22)。VEE-MAG25マー srRNA-LNP1による免疫化の4、5、7、8、10、11、12、13、14、15週後に、PBMC10個当たり189、185、349、437、492、570、233、886、369、及び381SFC(6つのエピトープの合計)の複合的な抗原特異的免疫応答が観察された(図23)。
Figure 2022534282000035
Figure 2022534282000036
Figure 2022534282000037
srRNAの用量範囲実験
本発明の一実現形態では、srRNAの用量範囲実験を、MamuA01インドアカゲザルで実施することによって、どのsrRNA用量をNHP免疫原性実験に進めるべきかを特定することができる。1つの例では、MamuA01インドアカゲザルに、複数のMamuA01制限エピトープを含むモデル抗原をコードしたsrRNAベクターを筋肉内注射により投与することができる。別の例では、抗CTLA-4モノクローナル抗体を、筋肉内ワクチン注射の部位の近位に皮下投与することで1つの動物群でワクチン流入領域のリンパ節をターゲティングすることができる。最初の免疫化後、2週間ごとにPBMCを採取して免疫モニタリングを行うことができる。各実験アームを下記に記載する(表30)。
Figure 2022534282000038
インドアカゲザルにおける免疫原性の実験
抗原ベクターを用いて免疫原性を実証するため、MamuA01のインドアカゲザル(NHP)でワクチン実験を行った。図34は、ワクチン接種の手法を示す。NHPの3つのグループを、チェックポイント阻害剤として抗CTLA-4抗体であるイピリムマブ(グループ5及び6)とともに、またはチェックポイント阻害剤なし(グループ4)で、ChAdV68.5-WTnt.MAG25マーで免疫した。抗体は、静脈内(グループ5)または皮下(グループ6)投与した。三角は、0週目及び32週目におけるChAdV68によるワクチン接種(1e12vp/動物)を示す。丸は、0、4、12、20、28、及び32週目におけるアルファウイルスワクチン接種を示す。
免疫したNHPにおけるCD8+抗エピトープ応答の時間的経過を、ChAdV-MAGによる免疫単独(図35及び表31A)、ChAdV-MAGによる免疫とチェックポイント阻害剤の静脈内(IV)投与(図36及び表31B)、及びChAdV-MAGによる免疫とチェックポイント阻害剤の皮下(SC)投与(図37及び表31C)について示す。これらの結果は、ChAdV68ベクターが霊長類においてCD8+応答を効率的にプライミングし、アルファウイルスベクターがChAdV68ワクチンのプライミング応答を効率的にブーストし、チェックポイント阻害剤は静脈内または皮下投与のいずれでもプライミング及びブースト応答の両方を増幅し、ワクチン接種後のChAdV68ベクターの再投与が免疫応答を効果的にブーストしたことを示している。
Figure 2022534282000039
Figure 2022534282000040
Figure 2022534282000041
インドアカゲザルにおけるメモリー表現型の判定
アカゲザルを、抗CTLA4と、または抗CTLA4なしで、ChAdV68.5WTnt.MAG25マー/VEE-MAG25マーのsrRNA異種プライミング/ブーストレジメンで免疫してから、ChAdV68.5WTnt.MAG25マーで再びブーストした。各グループを、最後のchAdV68の投与の11ヶ月後(実験18ヶ月目)に、記載されるようにELISpotを行って評価した。図38及び表38は、免疫前(左パネル)及び18ヶ月後(右パネル)にELISpotにより測定した6種類の異なるMamu-A*01制限エピトープに対する細胞応答を示す。制限エピトープに対する応答の検出は、chAdV68/samRNAワクチンプロトコールによって抗原特異的メモリー応答が生じたことを示す。
メモリーを評価するため、ワクチンにコードされた4種類の異なるアカゲザルMamu-A*01クラスIエピトープを認識するCD8+T細胞を、各抗原が固有のダブルポジティブの組み合わせによって示されることで、単一の試料中の4つの抗原特異的集団のすべてを特定することができる、2色Mamu-A*01テトラマー標識を用いて観測した。メモリー細胞の表現型判定を、細胞表面マーカーCD45RA及びCCR7で共染色することにより行った。図39及び表39は、4種類の異なるMamu-A*01制限エピトープを認識するメモリーT細胞についてコンビナトリアルテトラマー染色及びCD45RA/CCR7共染色の結果を示す。T細胞表現型をフローサイトメトリーによっても評価した。図40は、実験18ヶ月目における4種類のMamu-A*01テトラマー+CD8+T細胞集団の総和中のメモリー細胞タイプの分布を示す。メモリー細胞は以下のようにキャラクタライズした。CD45RA+CCR7+=ナイーブ、CD45RA+CCR7-=エフェクター(Teff)、CD45RA-CCR7+=セントラルメモリー(Tcm)、CD45RA-CCR7-=エフェクターメモリー(Tem)。まとめると、これらの結果は、最後のブーストの少なくとも1年後にメモリー応答が検出されたことを示し、エフェクター、セントラルメモリー、及びエフェクターメモリーを含む、長期的に持続する免疫を示すものである。
Figure 2022534282000042
Figure 2022534282000043
インドアカゲザルにおける非GLP RNA用量範囲実験(より高い用量)
この実験は、(a)同種のプライム/ブーストまたは異種のプライム/ブーストとしての用量300μgのVEE-MAG25マーとChAdV68.5WTnt.MAG25マーとの組み合わせの免疫原性を評価し、(b)用量300μgで、LNP2に対してLNP1を使用した脂質ナノ粒子中のVEE-MAG25マー srRNAの免疫応答を比較し、(c)VEE-MAG25マー srRNA及びChAdV68.5WTnt.MAG25マーによる免疫化に対するT細胞応答の速度論を評価するように設計した。
この実験アームを、免疫原性を実証するためにMamu-A*01インドアカゲザルで行った。アカゲザルなどの非ヒト霊長類におけるワクチン免疫原性は、ヒトにおけるワクチン効力の最良の予測因子である。さらに、この実験で使用される選択抗原は、アカゲザル、具体的にはMamuA*01 MHCクラスIハプロタイプを有するものにおいてのみ認識される。Mamu-A*01インドアカゲザルを異なる実験アーム(各グループ6匹のアカゲザル)にランダム化し、複数のMamu-A*01制限抗原を含むモデル抗原をコードしたChAdV68.5-WTnt.MAG25マーまたはVEE-MAG25マー srRNAベクターのいずれかを筋肉内注射により両側性に投与した。各実験アームは下記に記載したとおりである。
グループ1については、免疫化の前及び初期免疫化の4、5、6、7、8、10、11、12、13、14、15、16、17、18、19、20、21、22、23または24週後にPBMCを採取して免疫モニタリングを行った(異種のプライム/ブースト)。グループ2及び3については、免疫化の前及び初期免疫化の5、7、8、10、11、12、13、14、または15週後にPBMCを採取して免疫モニタリングを行った(同種のプライム/ブースト)。
Figure 2022534282000044
XIX.MHC/ペプチド標的反応性T細胞及びTCRの同定
標的応答性T細胞及びTCRを、腫瘍関連抗原または感染症関連抗原などの本明細書に記載されるあらゆる抗原を含む、抗原/HLAペプチドのペアのうちの1つ以上のものについて同定する。
T細胞は、患者の血液、リンパ節、または腫瘍から単離することができる。T細胞は、例えば、抗原-MHCテトラマー結合細胞を分取することにより、またはT細胞と抗原でパルスした抗原提示細胞とのインビトロ共培養物中で刺激した活性化された細胞を分取することにより、抗原特異的T細胞について濃縮することができる。抗原ロードテトラマー及び他のMHCベースの試薬をはじめとする、抗原特異的T細胞の同定のためのさまざまな試薬が当該技術分野で知られている。
抗原関連αβ(またはγδ)TCRダイマーを、抗原特異的T細胞のTCRのシングルセルシークエンシングによって同定することができる。また、抗原特異的T細胞のバルクTCRシークエンシングを行ってもよく、マッチングの確率が高いαβのペアを当該技術分野では周知のTCRペアリング法を用いて決定することができる。
これに代えるかまたはこれに加えて、健康なドナーから得たナイーブT細胞のインビトロプライミングによって抗原特異的T細胞を得ることもできる。PBMC、リンパ節、または臍帯血から得られたT細胞を抗原でパルスした抗原提示細胞によって繰り返し刺激することにより、抗原経験T細胞の分化を開始させることができる。この後、TCRを患者からの抗原特異的T細胞について上記に述べたのと同様にして同定することができる。
XX.ChAdV68ベクターのE4欠失は、改善された生産性を示す
ChAdV68アデノウイルスベクターのクローンを、改善されたウイルス生産性について選択した。モデルTSNAカセットMAGを発現する急速増殖/適合ChAdV68ウイルスをプラーク単離中に選択し、下記に述べるように分析した。
材料及び方法
ChAdV68のプラーク単離
ChAdV68-MAGウイルスの段階希釈(10-2~10-9)を行い、100μLを、60mMプレート当たり1e6細胞で播種したHEK293A(ThermoFisherカタログ番号R70507)細胞上にプレーティングした。感染の24時間後に培地を除去し、感染細胞を覆うようにDMEM/1.25%アガロースを加え、プラークを10~15日間増殖させた。この期間中に72個のウイルスプラークを拾った。ウイルスを0.5mLのDMEM/5%FBS培地中で一晩溶出し、溶出液の半分(0.25mL)を用いて24ウェルのウェル当たり1e5細胞で播種した293A細胞に再感染させた。ウイルスを293A細胞で増幅させ、感染させた。急速に増殖するクローンをウイルス生産用に400mLの293F(ThermoFisherカタログ番号A14528)浮遊培養中に選択した。ウイルスを2×CsCl勾配精製により精製し、3ラウンドの透析によりARMバッファー(25mM NaCl、20mm Tris pH8.0、2.5%グリセロール)中に配合した。ウイルス粒子の力価を、56℃での0.1%SDSによる溶解後、260nMで吸光度を測定することによって決定した。感染力価を抗カプシド免疫染色アッセイを用いて決定した。
次世代シークエンシング
QiAmpウイルスDNAキット(Qiagen)を使用して精製されたウイルスからDNAを精製し、Illuminaプラットフォームを用いたNGSを行った。
クローン生産性のMOI評価
精製されたウイルスを0.1IUのMOIで用いて制御された感染を確立し、96時間インキュベートした。感染単位を細胞ライセート中で測定した。生産量を非プラーク選択ウイルス(プール)と比較した。
免疫化
Balb/c系雌性マウスに100μl体積中、ChAdV68.5WTnt.MAG25マー(配列番号2)またはChAdV68-MAG-E4欠失(配列番号57;「MAG E4Δ」 及び「ChAdV68-MAG-E4」)の1×10または1×1010個のウイルス粒子(VP)を両側筋肉内注射(各脚に50μL)により注射した。
Mamu-A*01インドアカゲザルを、ChAdV68.5WTnt.MAG25マー (「ChAdV68-CMV-MAG」;配列番号2;E4欠失またはTET応答エレメントなし)またはChAdV68-E4d-CMT-MAG (配列番号71;E4欠失及びCMT TET応答エレメント[下記参照])の1×1012個(注射1回当たり、5×1011 個のウイルス粒子)のウイルス粒子を大腿四頭筋に両側筋肉注射して免疫した。アカゲザルに、注射日に50mgの抗CTLA4抗体(イピリムマブ)も皮下投与した。
Figure 2022534282000045
Figure 2022534282000046
Figure 2022534282000047
Figure 2022534282000048
Figure 2022534282000049
Figure 2022534282000050
Figure 2022534282000051
Figure 2022534282000052
マウスの免疫監視
免疫したマウスの新しく収穫した脾臓及びリンパ節からリンパ球を単離した。GentleMACS組織解離装置を製造者の指示にしたがって使用して、10%ウシ胎児血清をペニシリン及びストレプトマイシンとともに含むRPMI(完全RPMI)中で組織を解離させた。新しく単離したリンパ球を2~5×10細胞/mLの密度で10uMの示したペプチドと2時間インキュベートした。2時間後、ブレフェルジンAを5ug/mlの濃度にまで加え、細胞を刺激物質とさらに4時間インキュベートした。刺激後、生細胞を製造者のプロトコールにしたがって固定可能な生存率解析用色素eFluor780で標識し、抗CD8 APC(クローン53-6.7,BioLegend社)により1:400の希釈率で染色した。細胞内染色には抗IFNg PE(クローンXMG1.2,BioLegend社)を1:100で使用した。試料をAttune NxT Flow Cytometer(Thermo Scientific社)で収集した。FlowJoを使用してフローサイトメトリーデータをプロットし、分析を行った。抗原特異的応答の程度を評価するため、CD8+細胞のIFNg+の割合(%)及び全IFNg+細胞数/1×10個の生細胞の両方を、各ペプチド刺激物質に対して計算した。
免疫監視NHP
PBMCを、プライムワクチン接種後の示された時点でLymphocyte Separation Medium(LSM,MP Biomedicals社)及びLeucoSep分離チューブ(Greiner Bio-One社)を使用して単離し、10%FBS及びペニシリン/ストレプトマイシンを含んだRPMIに再懸濁した。細胞を、死細胞及びアポトーシス細胞を除外するためのヨウ化プロピジウム染色を使用してAttune NxTフローサイトメーター(Thermo Fisher社)でカウントした。次に、その後の分析用に細胞を適当な生細胞の濃度に調整した。実験に用いたそれぞれのサルについて、ELISpotまたはフローサイトメトリー法を用いてT細胞応答を測定した。ワクチンにコードされた6種類の異なるアカゲザルMamu-A*01クラスIエピトープに対するT細胞応答を、ELISpot(ex vivo enzyme-linked immunospot)(エクスビボ酵素結合免疫スポット)分析を用いてIFN-γなどのサイトカインの誘導を測定することにより、PBMCから観測した。サルIFNg ELISpotPLUSキット(MABTECH社)を使用し、ELISPOTハーモナイゼーションガイドライン{DOI: 10.1038/nprot.2015.068}にしたがってELISpot分析を行った。200,000個のPBMCを、96ウェルIFNg抗体コーティングプレート中で、10uMの示したペプチドと16時間インキュベートした。スポットをアルカリホスファターゼを用いて現像した。反応時間を10分間計り、プレートに水道水を流して反応を停止させた。スポットをAID vSpot Reader Spectrumを用いてカウントした。ELISPOT分析を行うため、飽和度が50%よりも高いウェルを「多すぎてカウント不能」として記録した。複製ウェルの偏差が10%よりも大きい試料は分析から除外した。次いでスポットのカウントを、式:スポットカウント+2×(スポットカウント×コンフルエンス(%)/[100%-コンフルエンス(%)])を用いてウェルのコンフルエンシーについて補正した。ネガティブペプチド刺激ウェル中のスポットカウントを抗原刺激したウェルから引くことによってネガティブバックグラウンドを補正した。最後に、多すぎてカウント不能として示したウェルを、最も高い観察された補正値に設定し、100の位までの概数に四捨五入した。
結果
記載したように、モデルTSNAカセットMAG(ChAdV68.5WTnt.MAG25マー;配列番号2)を発現する急速増殖/適合ChAdV68ウイルスをプラーク単離で選択した。70個の最初のプラークのうち、33個が、CPE(細胞変性効果)の何らかの徴候により示されるようにウイルスを産生し、これらのうち、8個が、7日間のインキュベーション後の顕著なプラーク数またはプラークのサイズによって示されるように残りのものよりも急速に増殖した。急速に増殖するクローンをウイルス生産用に400mLの293F(ThermoFisherカタログ番号A14528)浮遊培養中に選択した。感染単位(IU)力価を8個のクローンについて決定した。図25に示されるように、選択したすべてのクローンが、未精製のプールされた基準ウイルス以上のIU力価を示した。クローン1、24、及び60は、未精製のプールされた基準ウイルスに対してIU力価の少なくとも9倍の増加を示した。
クローン1、24、及び60(最も生産性の高いクローン)をNGSによりさらに分析したところ、それぞれがE4領域に欠失を有することが示された。2つのクローン(クローン1Aとクローン24)がE4Orf2~E4Orf4の間、詳細には野生型ChAdV68ウイルス(配列番号1)の34,916~35,642bp間の同じ727bpの変異(図26)を共有していた。クローン60は、E4Orf1~E4Orf3領域(34,980~36,516)に欠失があったが、欠失はより大きかった(1539bp)。これらの欠失に基づけば、Orf2及び3の欠失(34,979~35,642)は両方のクローンの組に共通であり、Orf2及び3の欠失が生産性の向上に寄与することが示唆された。
クローン1A及び24で欠失されたE4領域の部分を欠失させた3つのE4欠失ウイルスベクターを作製し、E4を欠失させていないそれらの元のベクターと比較した。選択されたベクターは、1)カセットも調節領域(プロモーターまたはポリA)も有さないChAdV-Empty(「Empty」)、2)ChAdV68.5WTnt.GFP(配列番号13;「GFP」)、及び3)ChAdV68.5WTnt.MAG25マー(配列番号2;「MAG」)であった。これらはいずれも、配列AC_000011.1に基づいたものであり、E1(nt577~3403)及びE3(nt27,125~31,825)を欠失させたものである[配列番号1]。これらを、本発明者らが特定したE4領域(配列番号1の34,916~35,642)を欠失させた同じベクターであるChAdV68-Empty-E4欠失(配列番号59;「E4Δ」)、ChAdV68-GFP-E4欠失(配列番号58;「GFP E4Δ」)、及びChAdV68-MAG-E4欠失(配列番号57;「MAG E4Δ」及び「ChAdV68-MAG-E4」)と、それぞれ比較した。これら6つのベクターを作製し、ウイルス粒子(VP)及び感染単位(IU)力価を決定した。生産性を400mLの生産スケールで評価した。図27に示されるように、それぞれの比較で、E4欠失体は高いウイルス粒子力価(左パネル)及び感染単位力価(右パネル)を示した。
MAGカセットの発現をE4欠失ベクターと非欠失ベクターとの間で比較した。図28に示されるように、ChAdV68.5WTnt.MAG25マー (「MAG」)及びChAdV68-MAG-E4欠失(「MAG-E4」)ウイルスを感染させたHEK293F細胞ライセートに対するウェスタン分析により、E4欠失ウイルスが非E4欠失ウイルスと比較してより高いレベルのMAGカセットを発現することが示された。
次いで、マウスを免疫してChAdV68.5WTnt.MAG25マー(「ChAdV68-MAG」)とそのE4欠失体であるChAdV68-MAG-E4欠失(「ChAdV68-E4Δ」)とを比較した。T細胞応答を、AH1ペプチドによる刺激後にICSによりIFN-γの産生について分析した。図42A及び表41Aに示されるように、E4欠失ベクターは、試験した両方の用量(1×10 左パネル、1×1010右パネル)で少なくとも同等の免疫応答を示し、E4欠失ベクターでは応答が高くなる正の傾向がみられた。
Figure 2022534282000053
次いで、アカゲザルをChAdV68.5WTnt.MAG25マー(「ChAdV68-CMV-MAG」;配列番号2)またはChAdV68-E4d-CMT-MAG(配列番号71)で免疫し、各群に抗CTLA4抗体(イピリムマブ)も投与した。T細胞応答を、6つの異なるアカゲザルMamu-A*01クラスIエピトープによる刺激後に、ELISpotによりIFN-γの産生について分析した。図42B及び図42Cに示されるように、また、表41B(ChAdV68-CMV-MAG)及び表41C(ChAdV68-E4d-CMT-MAG)に定量化されているように、E4欠失ベクターによる免疫は少なくとも同等の免疫応答を示し、E4欠失ベクターでは応答が高くなる正の傾向がみられた。
Figure 2022534282000054
Figure 2022534282000055
XXI.TETr-調節カセット発現システムの構築
ウイルス生産時のカセット(ワクチン中の抗原コードカセットなど)内にコードされた核酸の転写が最小となるようにTETr-調節ウイルス発現システムを確立した。図43は、抗原コードワクチンの例を使用したテトラサイクリン制御ウイルス生産システムの一例の一般的なストラテジーを示す。すなわち、
-TETリプレッサータンパク質(TETr)を発現する293F細胞は、最小CMVプロモーターの上流のTETオペレーター配列に結合することによりワクチンカセットの発現を抑制する。
-カセット配列の転写は、カセット発現に影響することなくアデノウイルス産生を促進する。
-インビボ投与後、リプレッサーは存在せず、カセットの転写は阻害されることなく進行する。
図44Aは、プロモーター及び発現させようとするカセットに関して、TET応答領域(「TETo」応答領域と呼ばれる)の一例の配置を示す概略図を示す。TET応答領域は、各TETo間のスペーサー(aaagtgaaagtcgagtttaccac;配列番号70)で連結された19bpのTETオペレーター(TETo)配列(TCCCTATCAGTGATAGAGA;配列番号60)の7個の反復配列で構成されている。TET応答領域は、最小CMVプロモーター(67bp;配列番号61を参照)及びカセット位置の開始点の上流(5’)にある。TETo応答領域と各プロモーター配列の配置を、配列番号61に示し、説明する。
図44Bは、プロモーター及び発現させようとするカセットに関して、TET応答領域(「CMT」応答領域と呼ばれる)の一例の配置を示す概略図を示す。TET応答領域は、ヌクレオチド2個のスペーサーによって互いに連結された19bpのTETオペレーター(TETo)配列(TCCCTATCAGTGATAGAGA;配列番号60)の2個の反復配列を含む。TET応答領域は完全長CMVプロモーター(605bp;配列番号64を参照)の下流(3’)かつカセット位置の開始点の下流(5’)にある。CMT応答領域と各プロモーター配列の配置を、配列番号64に示し、説明する。
TETo応答領域を、ChAdV68.5WTnt.GFP(配列番号13) のI-SceIとAsisI部位の間に挿入してChAdV68-TETo-GFPを作製した。TETr配列(tTS;配列番号62)をレンチウイルスpLXベクターにクローニングしてpLXCMV-tTS-iPuroを作製し、293F細胞の形質導入に用いた。系の構築に用いた配列を下記に示す。クローン293F TETr株がプロマイシン選択後に生成された。GFP導入遺伝子の発現を評価して、インビトロでTETr株による発現調節を評価した。図45に示されるように、ChAdV68-TETo-GFPウイルスによる感染後、GFPは、親293F細胞株(左パネル)と比較してTETrを発現する293F細胞(クローン17、右パネル)で有意に減少した。
分泌型胎盤アルカリホスファターゼSEAPレポーターコンストラクトを、ChAdV68-Empty-E4欠失(配列番号59)のI-SceIとAsisI部位の間に挿入されたCMT応答領域、及び欠失させたE1の代わりに挿入されたSEAP(「ChAdV68-E4d-CMT-SEAP」)を用いて作製した。293F細胞に0.3のMOIで感染させ、24時間後に培地を収穫して製造者の記載に従ってSEAPアッセイを行った(分泌されたアルカリホスファターゼの検出用に化学発光基質を使用するPhospha-Light(商標)System (Applied Biosystems))。図45Bに示されるように、ChAdV68-E4d-CMT-SEAPウイルスによる感染後、SEAP分泌は、TETrを発現する293F細胞(「tTSクローン17」)でバックグラウンドレベルに対して120倍減少した。バックグラウンドレベルは親293F細胞株(「293F」)に対して、コントロール発現カセットを発現するChAdV68ベクターを使用して設定した。したがって、TETr制御プロモーターから発現されたアデノウイルスカセットは、インビトロでTETr発現細胞株で使用した場合にカセット発現の減少を示している。
Figure 2022534282000056
XXII.TETr調節カセット発現系におけるウイルス生産
TETo応答領域を、ChAdV68.5WTnt.MAG25マー (「ChAdV68-CMV-MAG」;配列番号2)のI-SceIとAsisI部位の間に挿入して、TET調節プロモーターの制御下でモデル抗原カセットを発現するChAdV68-TETo-MAGウイルス(配列番号65)を作製した。ウイルス生産をTETrを発現する細胞株(クローン17)とTETrを発現しない親細胞株(293F)との間で比較した。図46に示されるように、ウイルス生産は3つの独立した複製実験でウイルス粒子(VP;上のパネル)及び感染単位(IU;下のパネル)により評価されるように向上した。
TETrを発現する細胞株(クローン17)で産生されたChAdV68-TETo-MAGウイルスのウイルス生産を、TETo配列を欠くウイルス(「ChAdV68-CMV-MAG」)に対しても比較した。図47Aに示されるように、ウイルス生産は、ChAdV68-TETo-MAGでは、hAdV68-CMV-MAGに対して3.4倍向上した。これらの結果は、送達されたカセット導入遺伝子のインビトロ発現の減少が、より安定し、改善されたウイルス生産性を示しているを示すものである。
TETrを発現する細胞株(tTsクローン17)で産生されるウイルス生産を、E4欠失及びTET応答エレメントを有するコンストラクトを含む一連のウイルスコンストラクトにおいてさらに比較した。これらのコンストラクトはいずれも、同じコントロール腫瘍特異的新生抗原(TSNA)カセットを発現するものとした。E1/E3欠失及び/または5個のヌクレオチド置換を有する一般的な骨格はChAdV68.5WTnt.MAG25マー (配列番号2)と同じであり、示されるようにI-SceIとAsisI部位の間にTETo及びCMT応答領域を挿入し、MAG25マーカセットをTSNAカセットに置換した。欠失させたE4領域は上記で特定されたものとした(配列番号1の欠失34,916~35,642)。検討した異なるコンストラクトを以下に示す。
-ChAdV68-CMV-TSNA:E1/E3欠失、完全長CMVプロモーター
-ChAdV68-CT-TSNA:E1/E3欠失、完全長CMVプロモーター、代替的コドン最適化を用いてコドン最適化されたTSNAカセット(配列番号66)
-ChAdV68-TETo-TSNAd:E1/E3欠失、最小CMVプロモーターの上流(5’)の、スペーサーにより連結されたTEToの7個の反復配列(「TETo」応答領域)(配列番号67)
-ChAdV68-CMT-TSNA:E1/E3欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列(「CMT」応答領域)(配列番号68)
-ChAdV68-E4d-CMT-TSNA:E1/E3/E4欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列(配列番号69)
図47Bに示されるように、ChAdV68-CT-TSNA、ChAdV68-TETo-TSNA、ChAdV68-CMT-TSNA、及びChAdV68-E4d-CMT-TSNAウイルスのウイルス生産は、ChAdV68-CMV-TSNAに対してそれぞれ、約6倍、39倍、137倍、または300倍、向上した。ウイルスの感染能力を測定するために感染単位に対するウイルス粒子の比をさらに評価し、ウイルス粒子(VP)力価/mLを感染単位(IU)力価/mLで割ることによって計算した。この比が低いほど、粒子当たりの感染性が高いことを示す(1:1の比は、すべての粒子が感染性である完全比を示す)。表42Aに示されるように、TET制御されたベクターであるChAdV68-TETo-TSNA、ChAdV68-CMT-TSNA、及びChAdV68-E4d-CMT-TSNAはいずれも、ChAdV68-CMV-TSNAと比較して向上した感染能力を示し、CMTベクターが最も高い感染能力を示した。
E4欠失及びTET応答領域を有するコンストラクトを含む、別の一連のウイルスコンストラクトのウイルス生産を、大型のモデル抗原カセット(50XXL;図29及び表32~34を参照)またはM2.2モデル抗原カセットのいずれかを有するコンストラクトについて評価した。E1/E3欠失及び/または5個のヌクレオチド置換を有する一般的な骨格はChAdV68.5WTnt.MAG25マー (配列番号2)と同じであり、示されるようにI-SceIとAsisI部位の間にTETo及びCMT応答領域を挿入し、MAG25マーカセットを、示したカセットに置換した。欠失させたE4領域は上記で特定されたものとした(配列番号1の欠失34,916~35,642)。検討した異なるコンストラクトを以下に示す。
-ChAdV68-CMV-50XXL:E1/E3欠失、完全長CMVプロモーター、Genscriptコドン最適化ツールを用いてコドン最適化された50XXLカセット
-ChAdV68-CMT-50XXL:E1/E3欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列、Genscriptコドン最適化ツールを用いてコドン最適化された50XXLカセット
-ChAdV68-CT-50XXL:E1/E3欠失、完全長CMVプロモーター、代替的コドン最適化ツールを用いてコドン最適化された50XXLカセット
-ChAdV68-E4d-CMT-50XXL:E1/E3/E4欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列、Genscriptコドン最適化ツールを用いてコドン最適化された50XXLカセット
-ChAdV68-CMV-M2.2:E1/E3欠失、完全長CMVプロモーター、Genscriptコドン最適化ツールを用いてコドン最適化されたM2.2カセット
-ChAdV68-CMT-M2.2:E1/E3欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列、Genscriptコドン最適化ツールを用いてコドン最適化されたM2.2カセット
-ChAdV68-E4d-CMT-M2.2:E1/E3/E4欠失、完全長CMVプロモーターの下流(3’)の、互いに直接連結されたTEToの2個の反復配列、Genscriptコドン最適化ツールを用いてコドン最適化されたM2.2カセット
図47Cに示されるように、モデル抗原カセット50XXL及びM2.2のウイルス生産は、tTs発現細胞株でCMT応答領域を有するアデノウイルスベクターを使用することにより改善された。例えば、ウイルス生産は、ChAdV68-CMT-50XXLでは親293F細胞株(左パネル、左から2番目の柱)に対してtTs発現細胞株でおよそ10倍高く(左パネル、中央の柱)、親293F細胞株におけるCMT応答領域を欠くベクター(右パネル;左の柱)に対してChAdV68-CMT-M2.2では15倍高かった(右パネル、中央の柱)。50XXLコンストラクトの場合、CMT応答領域をE4欠失と組み合わせることにより、ウイルス生産のさらなる改善が実現された(左パネルの右の柱に対して左パネルの中央の柱)。改善は代替的コドン最適化により特定の状況下でも実現された(ChAdV68-CT-50XXLに示される)。感染単位に対するウイルス粒子の比も評価した。表42Cに示されるように、E4欠失バックグラウンドでのTET制御されたベクターはいずれも、E4欠失及びTET応答エレメントのないベクターと比較して改善された感染能力を示した。
Figure 2022534282000057
Figure 2022534282000058

Figure 2022534282000059
Figure 2022534282000060
Figure 2022534282000061
Figure 2022534282000062
Figure 2022534282000063
Figure 2022534282000064
Figure 2022534282000065
Figure 2022534282000066
Figure 2022534282000067
Figure 2022534282000068
Figure 2022534282000069
Figure 2022534282000070
Figure 2022534282000071
Figure 2022534282000072
Figure 2022534282000073
Figure 2022534282000074
Figure 2022534282000075
Figure 2022534282000076
Figure 2022534282000077
Figure 2022534282000078
Figure 2022534282000079
Figure 2022534282000080
Figure 2022534282000081
Figure 2022534282000082
Figure 2022534282000083
Figure 2022534282000084
Figure 2022534282000085
Figure 2022534282000086
Figure 2022534282000087
Figure 2022534282000088
Figure 2022534282000089
Figure 2022534282000090
Figure 2022534282000091
Figure 2022534282000092
Figure 2022534282000093
XXIII.TETr調節カセット発現系における免疫原性
Balb/c系マウスを、通常のCMVプロモーター(ChAdV-MAG)またはTETo調節されたプロモーター(TET-ChAdV-MAG)の制御下でモデル抗原カセットを発現する1×1010VPのChAdV68ワクチンで免疫した。ワクチン接種の12日後に脾臓を収穫し、単一の細胞懸濁液を調製した。CD8 T細胞における抗原特異的IFN-γ産生をICSを用いて測定した。図48及び表43に示されるように、インビボでの有効性は、マウスをTETo調節されたプロモーターから発現された抗原カセットで免疫した場合と同じかまたはそれよりも高かった。したがって、調節されたChAdベクターは、インビボでワクチン標的にCD8+免疫応答を誘導するうえで同様に有効であり、より有効である可能性もある。
上記でより詳細に述べたように、さらにアカゲザルをChAdV68.5WTnt.MAG25マー(「ChAdV68-CMV-MAG」;配列番号2)またはChAdV68-E4d-CMT-MAG(配列番号71)で免疫し、各群に抗CTLA4抗体(イピリムマブ)も投与した。T細胞応答を、6つの異なるアカゲザルMamu-A*01クラスIエピトープによる刺激後に、ELISpotによりIFN-γの産生について分析した。図42B及び図42Cに示されるように、また、表41B(ChAdV68-CMV-MAG)及び表41C(ChAdV68-E4d-CMT-MAG)に定量化されているように、E4欠失ベクターのバックグラウンドで「CMT」応答領域を有するコンストラクトによる免疫は少なくとも同等の免疫応答を示し、CMT-E4欠失ベクターでは応答が高くなる正の傾向がみられた。
Figure 2022534282000094
XXIV.患者集団の選択
1つ以上の抗原を用いて、本明細書に記載されるE4改変アデノウイルスなどの改変アデノウイルスを用いてワクチン組成物を配合する。ワクチンを例えばがんを治療する目的で患者に投与する。特定の場合では、患者を、例えば、コンパニオン診断、またはFoundationOne、FoundationOne CDx、Guardant 360、Guardant OMNI、またはMSK IMPACTなどの一般的に用いられているがん遺伝子パネルNGSアッセイを用いて選択する。例示的な患者選択基準を下記に述べる。
患者選択
共有新生抗原をワクチン接種するための患者選択は、腫瘍遺伝子発現、体細胞変異の状態、及び患者のHLA型を考慮して行われる。具体的には、患者は、以下の場合にワクチン治療に適格であるとみなされる。すなわち、
(a)ワクチンに含まれるエピトープを提示することが予測または知られているHLAアレルを患者が有し、患者の腫瘍がそのエピトープ配列を有する遺伝子を発現している、
(b)ワクチンに含まれるエピトープを提示することが予測または知られているHLAアレルを患者が有し、患者の腫瘍がそのエピトープ配列を生じる変異を有している、
(c)(b)と同じであるが、患者の腫瘍が所定の閾値(例えば、1TPMまたは10TPM)を上回る変異を有する遺伝子を発現していることも求められる、または、
(d)(b)と同じであるが、患者の腫瘍が所定の閾値(例えば、RNAのレベルで観察される少なくとも1つの変異リード)を上回る変異を発現していることも求められる、
(e)(b)と同じであるが、(c)及び(d)におけるさらなる基準の両方も求められる、
(f)上記のいずれかであるが、提示HLAアレルの喪失が腫瘍で検出されないことも場合により求められる。
遺伝子発現は、RNASeq、マイクロアレイ、PCR、ナノストリング、ISH、質量分析、またはIHCを含む確立された方法のいずれかによってRNAまたはタンパク質レベルで測定される。遺伝子発現の陽性の閾値は、以下を含むいくつかの方法によって確立される。すなわち、(1)異なる遺伝子発現レベルでのHLAアレルによるエピトープの提示の予測される確率、(2)質量分析により測定される遺伝子発現とHLAエピトープ提示との相関、及び/または(3)異なるレベルで遺伝子を発現している患者で得られるワクチン接種の臨床効果。患者選択は、ワクチンに含まれる複数のエピトープ、例えば、少なくとも2、3、4、または5個のエピトープについて陽性が求められるようにさらに広げられる。
体細胞変異の状態は、エクソームシークエンシング(NGS DNASeq)、標的化エクソームシークエンシング(遺伝子のパネル)、トランスクリプトームシークエンシング(RNASeq)、サンガーシークエンシング、PCRベースの遺伝子型決定アッセイ(例えば、Taqmanまたは液滴デジタルPCR)、質量分析に基づく方法(例えば、Sequenomによる)、または当業者には周知の他の任意の方法により評価される。
さらに新たな新生抗原が例えば質量分析により、記載の方法のいずれかを用いて同定される。これらの新たに同定された共有新生抗原は本明細書に記載のワクチンカセットに組み込まれる。
以前に検証された新生抗原が、さらなるHLAアレルによって提示されるものとしてさらに検証され、ワクチンカセットに新生抗原選択についての情報を与え、及び/または潜在的に治療可能な集団を広げる。
新たな新生抗原を含めることで、対処可能な腫瘍タイプを広げる(例えば、EGFR変異を有するNSCLC)ことが可能となり、新たな腫瘍タイプを有する患者を含めることが可能となる。
特定の配列
本明細書で言及するベクター、カセット、及び抗体を以下に記載し、配列番号で呼ぶ。
Figure 2022534282000095
Figure 2022534282000096
Figure 2022534282000097
Figure 2022534282000098
Figure 2022534282000099
Figure 2022534282000100
Figure 2022534282000101
Figure 2022534282000102
Figure 2022534282000103
Figure 2022534282000104
Figure 2022534282000105
Figure 2022534282000106
Figure 2022534282000107
Figure 2022534282000108
Figure 2022534282000109
Figure 2022534282000110
Figure 2022534282000111
Figure 2022534282000112
Figure 2022534282000113
Figure 2022534282000114
Figure 2022534282000115
Figure 2022534282000116
Figure 2022534282000117
Figure 2022534282000118
Figure 2022534282000119
Figure 2022534282000120
Figure 2022534282000121
参考文献
1. Desrichard,A.,Snyder,A.& Chan,T.A.Cancer Neoantigens and Applications for Immunotherapy.Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.(2015).doi:10.1158/1078-0432.CCR-14-3175
2. Schumacher,T.N.& Schreiber,R.D.Neoantigens in cancer immunotherapy.Science 348,69-74(2015).
3. Gubin,M.M.,Artyomov,M.N.,Mardis,E.R.& Schreiber,R.D.Tumor neoantigens:building a framework for personalized cancer immunotherapy.J.Clin.Invest.125,3413-3421(2015).
4. Rizvi,N.A.et al.Cancer immunology.Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.Science 348,124-128(2015).
5. Snyder,A.et al.Genetic basis for clinical response to CTLA-4 blockade in melanoma.N.Engl.J.Med.371,2189-2199(2014).
6. Carreno,B.M.et al.Cancer immunotherapy.A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.Science 348,803-808(2015).
7. Tran,E.et al.Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science 344,641-645(2014).
8. Hacohen,N.& Wu,C.J.-Y.United States Patent Application:20110293637 - COMPOSITIONS AND METHODS OF IDENTIFYING TUMOR SPECIFIC NEOANTIGENS.(A1).at <http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20110293637.PGNR.>
9. Lundegaard,C.,Hoof,I.,Lund,O.& Nielsen,M.State of the art and challenges in sequence based T-cell epitope prediction.Immunome Res.6 Suppl 2,S3(2010).
10. Yadav,M.et al.Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing.Nature 515,572-576(2014).
11. Bassani-Sternberg,M.,Pletscher-Frankild,S.,Jensen,L.J.& Mann,M.Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.Mol.Cell.Proteomics MCP 14,658-673(2015).
12. Van Allen,E.M.et al.Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.Science 350,207-211(2015).
13. Yoshida,K.& Ogawa,S.Splicing factor mutations and cancer.Wiley Interdiscip.Rev.RNA 5,445-459(2014).
14. Cancer Genome Atlas Research Network.Comprehensive molecular profiling of lung adenocarcinoma.Nature 511,543-550(2014).
15. Rajasagi,M.et al.Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia.Blood 124,453-462(2014).
16. Downing,S.R.et al.United States Patent Application:0120208706 - OPTIMIZATION OF MULTIGENE ANALYSIS OF TUMOR SAMPLES.(A1).at <http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20120208706.PGNR.>
17. Target Capture for NextGen Sequencing - IDT.at <http://www.idtdna.com/pages/products/nextgen/target-capture>
18. Shukla,S.A.et al.Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes.Nat.Biotechnol.33,1152-1158(2015).
19. Cieslik,M.et al.The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing.Genome Res.25,1372-1381(2015).
20. Bodini,M.et al.The hidden genomic landscape of acute myeloid leukemia:subclonal structure revealed by undetected mutations.Blood 125,600-605(2015).
21. Saunders,C.T.et al.Strelka:accurate somatic small-variant calling from sequenced tumor-normal sample pairs.Bioinforma.Oxf.Engl.28,1811-1817(2012).
22. Cibulskis,K.et al.Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.Nat.Biotechnol.31,213-219(2013).
23. Wilkerson,M.D.et al.Integrated RNA and DNA sequencing improves mutation detection in low purity tumors.Nucleic Acids Res.42,e107(2014).
24. Mose,L.E.,Wilkerson,M.D.,Hayes,D.N.,Perou,C.M.& Parker,J.S.ABRA:improved coding indel detection via assembly-based realignment.Bioinforma.Oxf.Engl.30,2813-2815(2014).
25. Ye,K.,Schulz,M.H.,Long,Q.,Apweiler,R.& Ning,Z.Pindel:a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads.Bioinforma.Oxf.Engl.25,2865-2871(2009).
26. Lam,H.Y.K.et al.Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library.Nat.Biotechnol.28,47-55(2010).
27. Frampton,G.M.et al.Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing.Nat.Biotechnol.31,1023-1031(2013).
28. Boegel,S.et al.HLA typing from RNA-Seq sequence reads.Genome Med.4,102(2012).
29. Liu,C.et al.ATHLATES:accurate typing of human leukocyte antigen through exome sequencing.Nucleic Acids Res.41,e142(2013).
30. Mayor,N.P.et al.HLA Typing for the Next Generation.PloS One 10,e0127153(2015).
31. Roy,C.K.,Olson,S.,Graveley,B.R.,Zamore,P.D.& Moore,M.J.Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation.eLife 4,(2015).
32. Song,L.& Florea,L.CLASS:constrained transcript assembly of RNA-seq reads.BMC Bioinformatics 14 Suppl 5,S14(2013).
33. Maretty,L.,Sibbesen,J.A.& Krogh,A.Bayesian transcriptome assembly.Genome Biol.15,501(2014).
34. Pertea,M.et al.StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.Nat.Biotechnol.33,290-295(2015).
35. Roberts,A.,Pimentel,H.,Trapnell,C.& Pachter,L.Identification of novel transcripts in annotated genomes using RNA-Seq.Bioinforma.Oxf.Engl.(2011).doi:10.1093/bioinformatics/btr355
36. Vitting-Seerup,K.,Porse,B.T.,Sandelin,A.& Waage,J.spliceR:an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data.BMC Bioinformatics 15,81(2014).
37. Rivas,M.A.et al.Human genomics.Effect of predicted protein-truncating genetic variants on the human transcriptome.Science 348,666-669(2015).
38. Skelly,D.A.,Johansson,M.,Madeoy,J.,Wakefield,J.& Akey,J.M.A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data.Genome Res.21,1728-1737(2011).
39. Anders,S.,Pyl,P.T.& Huber,W.HTSeq--a Python framework to work with high-throughput sequencing data.Bioinforma.Oxf.Engl.31,166-169(2015).
40. Furney,S.J.et al.SF3B1 mutations are associated with alternative splicing in uveal melanoma.Cancer Discov.(2013).doi:10.1158/2159-8290.CD-13-0330
41. Zhou,Q.et al.A chemical genetics approach for the functional assessment of novel cancer genes.Cancer Res.(2015).doi:10.1158/0008-5472.CAN-14-2930
42. Maguire,S.L.et al.SF3B1 mutations constitute a novel therapeutic target in breast cancer.J.Pathol.235,571-580(2015).
43. Carithers,L.J.et al.A Novel Approach to High-Quality Postmortem Tissue Procurement:The GTEx Project.Biopreservation Biobanking 13,311-319(2015).
44. Xu,G.et al.RNA CoMPASS:a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.PloS One 9,e89445(2014).
45. Andreatta,M.& Nielsen,M.Gapped sequence alignment using artificial neural networks:application to the MHC class I system.Bioinforma.Oxf.Engl.(2015).doi:10.1093/bioinformatics/btv639
46. Jorgensen,K.W.,Rasmussen,M.,Buus,S.& Nielsen,M.NetMHCstab - predicting stability of peptide-MHC-I complexes;impacts for cytotoxic T lymphocyte epitope discovery.Immunology 141,18-26(2014).
47. Larsen,M.V.et al.An integrative approach to CTL epitope prediction:a combined algorithm integrating MHC class I binding,TAP transport efficiency,and proteasomal cleavage predictions.Eur.J.Immunol.35,2295-2303(2005).
48. Nielsen,M.,Lundegaard,C.,Lund,O.& Kesmir,C.The role of the proteasome in generating cytotoxic T-cell epitopes:insights obtained from improved predictions of proteasomal cleavage.Immunogenetics 57,33-41(2005).
49. Boisvert,F.-M.et al.A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells.Mol.Cell.Proteomics 11,M111.011429-M111.011429(2012).
50. Duan,F.et al.Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity.J.Exp.Med.211,2231-2248(2014).
51. Janeway’s Immunobiology:9780815345312:Medicine & Health Science Books @ Amazon.com.at <http://www.amazon.com/Janeways-Immunobiology-Kenneth-Murphy/dp/0815345313>
52. Calis,J.J.A.et al.Properties of MHC Class I Presented Peptides That Enhance Immunogenicity.PLoS Comput.Biol.9,e1003266(2013).
53. Zhang,J.et al.Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing.Science 346,256-259(2014)
54. Walter,M.J.et al.Clonal architecture of secondary acute myeloid leukemia.N.Engl.J.Med.366,1090-1098(2012).
55.Hunt DF,Henderson RA,Shabanowitz J,Sakaguchi K,Michel H,Sevilir N,Cox AL,Appella E,Engelhard VH.Characterization of peptides bound to the class I MHC moleculeHLA-A2.1 by mass spectrometry.Science 1992.255:1261-1263.
56.Zarling AL,Polefrone JM,Evans AM,Mikesh LM,Shabanowitz J,Lewis ST,Engelhard VH,Hunt DF.Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy.Proc Natl Acad Sci U S A.2006 Oct 3;103(40):14889-94.
57.Bassani-Sternberg M,Pletscher-Frankild S,Jensen LJ,Mann M.Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.Mol Cell Proteomics.2015 Mar;14(3):658-73.doi:10.1074/mcp.M114.042812.
58.Abelin JG,Trantham PD,Penny SA,Patterson AM,Ward ST,Hildebrand WH,Cobbold M,Bai DL,Shabanowitz J,Hunt DF.Complementary IMAC enrichment methods forHLA-associated phosphopeptide identification by mass spectrometry.Nat Protoc.2015 Sep;10(9):1308-18.doi:10.1038/nprot.2015.086.Epub 2015 Aug 6
59.Barnstable CJ,Bodmer WF,Brown G,Galfre G,Milstein C,Williams AF,Ziegler A.Production of monoclonal antibodies to group A erythrocytes,HLA and other human cell surface antigens-new tools for genetic analysis.Cell.1978 May;14(1):9-20.
60.Goldman JM,Hibbin J,Kearney L,Orchard K,Th’ng KH.HLA-DR monoclonal antibodies inhibit the proliferation of normal and chronic granulocytic leukaemia myeloid progenitor cells.Br J Haematol.1982 Nov;52(3):411-20.
61.Eng JK,Jahan TA,Hoopmann MR.Comet:an open-sourceMS/MSsequence databasesearchtool.Proteomics.2013 Jan;13(1):22-4.doi:10.1002/pmic.201200439.Epub 2012 Dec 4.
62.Eng JK,Hoopmann MR,Jahan TA,Egertson JD,Noble WS,MacCoss MJ.A deeper look intoComet--implementation and features. J Am Soc Mass Spectrom.2015 Nov;26(11):1865-74.doi:10.1007/s13361-015-1179-x.Epub 2015 Jun 27.
63.Lukas Kall,Jesse Canterbury,Jason Weston,William Stafford Noble and Michael J.MacCoss.Semi-supervised learning for peptide identification from shotgun proteomics datasets.Nature Methods 4:923 - 925,November 2007
64.Lukas Kall,John D.Storey,Michael J.MacCoss and William Stafford Noble.Assigning confidence measures to peptides identified by tandem mass spectrometry.Journal of Proteome Research,7(1):29-34,January 2008
65.Lukas Kall,John D.Storey and William Stafford Noble.Nonparametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry.Bioinformatics,24(16):i42-i48,August 2008
66.Kinney RM,BJ Johnson ,VL Brown ,DW Trent.Nucleotide Sequence of the 26 S mRNA of the Virulent Trinidad Donkey Strain of Venezuelan Equine Encephalitis Virus and Deduced Sequence of the Encoded Structural Proteins.Virology 152(2),400-413.1986 Jul 30.
67.Jill E Slansky,Frederique M Rattis,Lisa F Boyd,Tarek Fahmy,Elizabeth M Jaffee,Jonathan P Schneck,David H Margulies,Drew M Pardoll.Enhanced Antigen-Specific Antitumor Immunity with Altered Peptide Ligands that Stabilize the MHC-Peptide-TCR Complex.Immunity,Volume 13,Issue 4,1 October 2000,Pages 529-538.
68.A Y Huang,P H Gulden,A S Woods,M C Thomas,C D Tong,W Wang,V H Engelhard,G Pasternack,R Cotter,D Hunt,D M Pardoll,and E M Jaffee.The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product.Proc Natl Acad Sci U S A.;93(18):9730-9735,1996 Sep 3.
69.JOHNSON,BARBARA J.B.,RICHARD M.KINNEY,CRYSTLE L.KOST AND DENNIS W.TRENT.Molecular Determinants of Alphavirus Neurovirulence:Nucleotide and Deduced Protein Sequence Changes during Attenuation of Venezuelan Equine Encephalitis Virus.J Gen Virol 67:1951-1960,1986.
70.Aarnoudse,C.A.,Krue,M.,Konopitzky,R.,Brouwenstijn,N.,and Schrier,P.I.(2002).TCR reconstitution in Jurkat reporter cells facilitates the identification of novel tumor antigens by cDNA expression cloning.Int J Cancer 99,7-13.
71.Alexander,J.,Sidney,J.,Southwood,S.,Ruppert,J.,Oseroff,C.,Maewal,A.,Snoke,K.,Serra,H.M.,Kubo,R.T.,and Sette,A.(1994).Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides.Immunity 1,751-761.
72.Banu,N.,Chia,A.,Ho,Z.Z.,Garcia,A.T.,Paravasivam,K.,Grotenbreg,G.M.,Bertoletti,A.,and Gehring,A.J.(2014).Building and optimizing a virus-specific T cell receptor library for targeted immunotherapy in viral infections.Scientific Reports 4,4166.
73.Cornet,S.,Miconnet,I.,Menez,J.,Lemonnier,F.,and Kosmatopoulos,K.(2006).Optimal organization of a polypeptide-based candidate cancer vaccine composed of cryptic tumor peptides with enhanced immunogenicity.Vaccine 24,2102-2109.
74.Depla,E.,van der Aa,A.,Livingston,B.D.,Crimi,C.,Allosery,K.,de Brabandere,V.,Krakover,J.,Murthy,S.,Huang,M.,Power,S.,et al.(2008).Rational design of a multiepitope vaccine encoding T-lymphocyte epitopes for treatment of chronic hepatitis B virus infections.Journal of Virology 82,435-450.
75.Ishioka,G.Y.,Fikes,J.,Hermanson,G.,Livingston,B.,Crimi,C.,Qin,M.,del Guercio,M.F.,Oseroff,C.,Dahlberg,C.,Alexander,J.,et al.(1999).Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes.J Immunol 162,3915-3925.
76.Janetzki,S.,Price,L.,Schroeder,H.,Britten,C.M.,Welters,M.J.P.,and Hoos,A.(2015).Guidelines for the automated evaluation of Elispot assays.Nat Protoc 10,1098-1115.
77.Lyons,G.E.,Moore,T.,Brasic,N.,Li,M.,Roszkowski,J.J.,and Nishimura,M.I.(2006).Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells.Cancer Res 66,11455-11461.
78.Nagai,K.,Ochi,T.,Fujiwara,H.,An,J.,Shirakata,T.,Mineno,J.,Kuzushima,K.,Shiku,H.,Melenhorst,J.J.,Gostick,E.,et al.(2012).Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity.Blood 119,368-376.
79.Panina-Bordignon,P.,Tan,A.,Termijtelen,A.,Demotz,S.,Corradin,G.,and Lanzavecchia,A.(1989).Universally immunogenic T cell epitopes:promiscuous binding to human MHC class II and promiscuous recognition by T cells.Eur J Immunol 19,2237-2242.
80.Vitiello,A.,Marchesini,D.,Furze,J.,Sherman,L.A.,and Chesnut,R.W.(1991).Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex.J Exp Med 173,1007-1015.
81.Yachi,P.P.,Ampudia,J.,Zal,T.,and Gascoigne,N.R.J.(2006).Altered peptide ligands induce delayed CD8-T cell receptor interaction--a role for CD8 in distinguishing antigen quality.Immunity 25,203-211.
82.Pushko P,Parker M,Ludwig GV,Davis NL,Johnston RE,Smith JF.Replicon-helper systems from attenuated Venezuelan equine encephalitis virus:expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo.Virology.1997 Dec 22;239(2):389-401.
83.Strauss,JH and E G Strauss.The alphaviruses:gene expression,replication,and evolution.Microbiol Rev.1994 Sep;58(3):491-562.
84.Rhee C,Ehrengruber MU,Grandgirard D.Alphaviral cytotoxicity and its implication in vector development.Exp Physiol.2005 Jan;90(1):45-52.Epub 2004 Nov 12.
85.Riley,Michael K.II,and Wilfred Vermerris.Recent Advances in Nanomaterials for Gene Delivery-review.Nanomaterials 2017,7(5),94.
86.Frolov I,Hardy R,Rice CM.Cis-acting RNA elements at the 5’ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis.RNA.2001 Nov;7(11):1638-51.
87.Jose J,Snyder JE,Kuhn RJ.A structural and functional perspective of alphavirus replication and assembly.Future Microbiol.2009 Sep;4(7):837-56.
88.Bo Li and C.olin N.Dewey.RSEM:accurate transcript quantification from RNA-Seq data with or without a referenfe genome.BMC Bioinformatics,12:323,August 2011
89. Hillary Pearson,Tariq Daouda,Diana Paola Granados,Chantal Durette,Eric Bonneil,Mathieu Courcelles,Anja Rodenbrock,Jean-Philippe Laverdure,Caroline Cote,Sylvie Mader,Sebastien Lemieux,Pierre Thibault,and Claude Perreault.MHC class I-associated peptides derive from selective regions of the human genome.The Journal of Clinical Investigation,2016,
90. Juliane Liepe,Fabio Marino,John Sidney,Anita Jeko,Daniel E.Bunting,Alessandro Sette,Peter M.Kloetzel,Michael P.H.Stumpf,Albert J.R.Heck,Michele Mishto.A large fraction of HLA class I ligands are proteasome-generated spliced peptides.Science,21,October 2016.
91.Mommen GP.,Marino,F.,Meiring HD.,Poelen,MC.,van Gaans-van den Brink,JA.,Mohammed S.,Heck AJ.,and van Els CA.Sampling From the Proteome to the Human Leukocyte Antigen-DR(HLA-DR) Ligandome Proceeds Via High Specificity.Mol Cell Proteomics 15(4):1412-1423,April 2016.
92.Sebastian Kreiter,Mathias Vormehr,Niels van de Roemer, Mustafa Diken,Martin Lower,Jan Diekmann,Sebastian Boegel,Barbara Schrors,Fulvia Vascotto,John C.Castle,Arbel D.Tadmor,Stephen P.Schoenberger,Christoph Huber,Ozlem Tureci,and Ugur Sahin.Mutant MHC class II epitopes drive therapeutic immune responses to caner.Nature 520,692-696,April 2015.
93.Tran E.,Turcotte S.,Gros A.,Robbins P.F.,Lu Y.C.,Dudley M.E.,Wunderlich J.R.,Somerville R.P.,Hogan K.,Hinrichs C.S.,Parkhurst M.R.,Yang J.C.,Rosenberg S.A.Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science 344(6184) 641-645,May 2014.
94.Andreatta M.,Karosiene E.,Rasmussen M.,Stryhn A.,Buus S.,Nielsen M.Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.Immunogenetics 67(11-12) 641-650,November 2015.
95.Nielsen,M.,Lund,O.NN-align.An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.BMC Bioinformatics 10:296,September 2009.
96.Nielsen,M.,Lundegaard,C.,Lund,O.Prediction of MHC class II binding affinity using SMM-align,a novel stabilization matrix alignment method.BMC Bioinformatics 8:238,July 2007.
97.Zhang,J.,et al.PEAKS DB:de novo sequencing assisted database search for sensitive and accurate peptide identification.Molecular & Cellular Proteomics.11(4):1-8.1/2/2012.
98.Jensen,Kamilla Kjaergaard,et al.“Improved Methods for Prediting Peptide Binding Affinity to MHC Class II Molecules.” Immunology,2018,doi:10.1111/imm.12889.
99.Carter,S.L.,Cibulskis,K.,Helman,E.,McKenna,A.,Shen,H.,Zack,T.,Laird,P.W.,Onofrio,R.C.,Winckler,W.,Weir,B.A.,et al.(2012).Absolute quantification of somatic DNA alterations in human cancer.Nat.Biotechnol.30,413-421
100.McGranahan,N.,Rosenthal,R.,Hiley,C.T.,Rowan,A.J.,Watkins,T.B.K.,Wilson,G.A.,Birkbak,N.J.,Veeriah,S.,Van Loo,P.,Herrero,J.,et al.(2017).Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.Cell 171,1259-1271.e11.
101.Shukla,S.A.,Rooney,M.S.,Rajasagi,M.,Tiao,G.,Dixon,P.M.,Lawrence,M.S.,Stevens,J.,Lane,W.J.,Dellagatta,J.L.,Steelman,S.,et al.(2015).Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes.Nat.Biotechnol.33,1152-1158.
102.Van Loo,P.,Nordgard,S.H.,Lingjarde,O.C.,Russnes,H.G.,Rye,I.H.,Sun,W.,Weigman,V.J.,Marynen,P.,Zetterberg,A.,Naume,B.,et al.(2010).Allele-specific copy number analysis of tumors.Proc.Natl.Acad.Sci.U.S.A.107,16910-16915.
103.Van Loo,P.,Nordgard,S.H.,Lingjarde,O.C.,Russnes,H.G.,Rye,I.H.,Sun,W.,Weigman,V.J.,Marynen,P.,Zetterberg,A.,Naume,B.,et al.(2010).Allele-specific copy number analysis of tumors.Proc.Natl.Acad.Sci.U.S.A.107,16910-16915.

Claims (145)

  1. アデノウイルスベクターであって、
    アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含み、
    前記アデノウイルス骨格が、前記アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、前記部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、
    場合により、前記アデノウイルスベクターがカセットをさらに含み、前記カセットが、
    (1)少なくとも1つのペイロード核酸配列であって、場合により前記少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合により前記ポリペプチドが抗原を含み、場合により前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含み、
    場合により前記少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、
    前記少なくとも1つのペイロード核酸配列と、場合により、
    (2)前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、
    (3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、
    (4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、
    (5)場合により、少なくとも1つのポリアデニル化配列と
    を含む、前記アデノウイルスベクター。
  2. 改変ChAdV68配列を含むチンパンジーアデノウイルスベクターであって、前記改変ChAdV68配列が、
    (a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と
    を含み、
    場合により、前記チンパンジーアデノウイルスベクターがカセットを含み、前記カセットが、少なくとも1つのペイロード核酸配列を含み、前記カセットが、前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、
    前記チンパンジーアデノウイルスベクター。
  3. 改変ChAdV68配列を含むチンパンジーアデノウイルスベクターであって、前記改変ChAdV68配列が、
    (a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (b)配列番号1に示される配列のヌクレオチド2~34,916であって、前記部分欠失E4遺伝子が前記ヌクレオチド2~34,916の3’であり、場合により、前記ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、前記ヌクレオチド2~34,916と、
    (c)配列番号1に示される配列のヌクレオチド35,643~36,518であって、前記部分欠失E4遺伝子が前記ヌクレオチド35,643~36,518の5’である、前記ヌクレオチド35,643~36,518と
    を含み、
    場合により、前記チンパンジーアデノウイルスベクターがカセットをさらに含み、前記カセットが少なくとも1つのペイロード核酸配列を含み、前記カセットが、前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、
    前記チンパンジーアデノウイルスベクター。
  4. チンパンジーアデノウイルスベクターであって、
    a.改変ChAdV68配列であって、
    (i)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (ii)配列番号1に示される配列のヌクレオチド2~34,916であって、前記部分欠失E4遺伝子が前記ヌクレオチド2~34,916の3’であり、場合により、前記ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、前記ヌクレオチド2~34,916と、
    (iii)配列番号1に示される配列のヌクレオチド35,643~36,518であって、前記部分欠失E4遺伝子が前記ヌクレオチド35,643~36,518の5’である、前記ヌクレオチド35,643~36,518と
    を含む前記改変ChAdV68配列と、
    b.CMV由来プロモーター配列と、
    c.SV40ポリアデニル化シグナルヌクレオチド配列と、
    d.カセットであって、
    -少なくとも1つのMHCクラスIエピトープであって、場合により、前記少なくとも1つのMHCクラスIエピトープが、互いに直線的に連結された少なくとも2個の異なるMHCクラスIエピトープを含み、前記異なるMHCクラスIエピトープのそれぞれが場合により、
    (A)コードされたペプチド配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更であって、前記異なるMHCクラスIエピトープがアミノ酸7~15個の長さである、前記少なくとも1つの変更、
    (B)少なくともアミノ酸3個の長さである前記異なるMHCクラスIエピトープの天然のN末端アミノ酸配列を含むN末端リンカー、
    (C)少なくともアミノ酸3個の長さである前記異なるMHCクラスIエピトープの天然のC末端アミノ酸配列を含むC末端リンカー、または
    (D)これらの組み合わせ
    を含む、前記少なくとも1つのMHCクラスIエピトープ、
    -少なくとも1つのMHCクラスIIエピトープであって、場合により、少なくとも2個の異なるMHCクラスIIエピトープを含む、前記少なくとも1つのMHCクラスIIエピトープ、
    -B細胞応答を刺激することができる少なくとも1つのエピトープ、または
    -これらの組み合わせ
    をコードする少なくとも1つのペイロード核酸配列
    を含む、前記カセットと
    を含み、
    前記カセットがChAdV68の欠失領域内に挿入され、前記CMV由来プロモーター配列が前記カセットに機能的に連結されている、
    前記チンパンジーアデノウイルスベクター。
  5. 前記カセットが、5’から3’に向けて、下式:
    -(L5-N-L3-(G5-U-G3-A
    [式中、
    Nは、前記少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、前記コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変化を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、ただしc=1であり、
    Pは、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された前記少なくとも1つのプロモーター配列を含み、ただしa=1であり、
    L5は、前記5’リンカー配列を含み、ただしb=0または1であり、
    L3は、前記3’リンカー配列を含み、ただしd=0または1であり、
    G5は、GPGPGアミノ酸リンカーをコードする前記少なくとも1つの核酸配列のうちの1つを含み、ただしe=0または1であり、
    G3は、GPGPGアミノ酸リンカーをコードする前記少なくとも1つの核酸配列のうちの1つを含み、ただしg=0または1であり、
    Uは、前記少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列のうちの1つを含み、ただしf=1であり、
    Aは、前記少なくとも1つのポリアデニル化配列を含み、ただしh=0または1であり、
    X=2~400であり、各Xについて、対応するNは、ペイロード核酸配列であり、場合により、各Xについて、対応するNは異なるペイロード核酸配列であり、
    Y=0~2であり、各Yについて、対応するUは、ユニバーサルMHCクラスII抗原コード核酸配列であり、場合により、各Yについて、対応するUは異なるユニバーサルMHCクラスII抗原コード配列である]
    に示される順序付けられた配列を含む、請求項1~4のいずれか1項に記載のベクター。
  6. 前記カセットが、前記順序付けられた配列にコードされない少なくとも1つのさらなるペイロード核酸配列をさらに含む、請求項5に記載のベクター。
  7. b=1、d=1、e=1、g=1、h=1、X=10、Y=2であり、
    Pが、CMV由来プロモーター配列であり、
    各Nが、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、
    L5が、前記エピトープの天然のN末端アミノ酸配列をコードし、前記5’リンカー配列が、少なくともアミノ酸3個の長さであるペプチドをコードし、
    L3が、前記エピトープの天然のC末端アミノ酸配列をコードし、前記3’リンカー配列が、少なくともアミノ酸3個の長さであるペプチドをコードし、
    Uが、PADREクラスII配列及び破傷風毒素MHCクラスII配列のそれぞれであり、
    前記ベクターが改変ChAdV68配列を含み、前記改変ChAdV68配列が、
    (a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (b)配列番号1に示される配列のヌクレオチド2~34,916であって、前記部分欠失E4遺伝子が前記ヌクレオチド2~34,916の3’であり、場合により、ヌクレオチド2~34,916はさらに、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ/または、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、前記ヌクレオチド2~34,916と、
    (c)配列番号1に示される配列のヌクレオチド35,643~36,518であって、前記部分欠失E4遺伝子が前記ヌクレオチド35,643~36,518の5’である、前記ヌクレオチド35,643~36,518と
    を含む、請求項5または6に記載のベクター。
  8. 前記ベクターがチンパンジーアデノウイルスベクターであり、場合により前記チンパンジーアデノウイルスベクターがChAdV68ベクターである、請求項2~4または7を除く先行請求項のいずれかに記載のベクター。
  9. 前記部分欠失E4遺伝子が、
    A.配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列、
    B.配列番号1に示される配列の少なくともヌクレオチド34,916~34,942、ヌクレオチド34,952~35,305、配列番号1に示される配列のヌクレオチド35,302~35,642を欠いている、配列番号1に示されるE4遺伝子配列であって、前記ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、前記配列番号1に示されるE4遺伝子配列、
    C.配列番号1に示される配列の少なくともヌクレオチド34,980~36,516を欠いている、配列番号1に示されるE4遺伝子配列であって、前記ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、前記配列番号1に示されるE4遺伝子配列、
    D.配列番号1に示される配列の少なくともヌクレオチド34,979~35,642を欠いている、配列番号1に示されるE4遺伝子配列であって、前記ベクターが、配列番号1に示される配列の少なくともヌクレオチド2~36,518を含む、前記配列番号1に示されるE4遺伝子配列、
    E.E4Orf2の少なくとも部分欠失、完全欠失したE4Orf3、及びE4Orf4の少なくとも部分欠失のE4欠失、
    F.E4Orf2の少なくとも部分欠失、E4Orf3の少なくとも部分欠失、及びE4Orf4の少なくとも部分欠失のE4欠失、
    G.E4Orf1の少なくとも部分欠失、完全欠失したE4Orf2、及びE4Orf3の少なくとも部分欠失のE4欠失、または
    H.E4Orf2の少なくとも部分欠失及びE4Orf3の少なくとも部分欠失のE4欠失
    を含む、請求項2~4または7を除く先行請求項のいずれかに記載のベクター。
  10. 前記ベクターが、配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列を含み、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルスの末端逆位繰り返し配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子からなる群から選択される、請求項2~4または7を除く先行請求項のいずれかに記載のベクター。
  11. 前記アデノウイルス骨格または改変ChAdV68配列が、アデノウイルスゲノムに関して、または配列番号1に示される配列に関して、アデノウイルスE1A、E1B、E2A、E2B、E3、L1、L2、L3、L4、及びL5遺伝子からなる群から選択される少なくとも1つの遺伝子に機能的欠失をさらに含み、
    場合により、前記アデノウイルス骨格もしくは改変ChAdV68配列が完全に欠失しているか、またはアデノウイルスゲノムに関して、もしくは配列番号1に示される配列に関して、(1)E1A及びE1B、または(2)E1A、E1B、及びE3に機能的欠失を有し、
    場合により、E1遺伝子が、配列番号1に示される配列に関して少なくともヌクレオチド577~3403のE1欠失により機能的に欠失しており、
    場合により、E3遺伝子が、配列番号1に示される配列に関して少なくともヌクレオチド27,125~31,825のE3欠失により機能的に欠失している、
    先行請求項のいずれかに記載のベクター。
  12. 前記カセットが、E1領域、E3領域、及び/または、前記カセットの組み込みが可能な任意の欠失されたAdV領域においてベクター中に存在しかつ挿入されている、先行請求項のいずれかに記載のベクター。
  13. 第1世代、第2世代、またはヘルパー依存型のアデノウイルスベクターのうちの1つから生成される、請求項2~4または7を除く先行請求項のいずれかに記載のベクター。
  14. 前記改変ChAdV68配列が、配列番号1に示される配列のヌクレオチド2~34,916を含み、前記部分欠失E4遺伝子が前記ヌクレオチド2~34,916の3’である、請求項2~13のいずれか1項に記載のベクター。
  15. 前記ヌクレオチド2~34,916が、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いている、請求項14に記載のベクター。
  16. 前記ヌクレオチド2~34,916が、配列番号1に示される配列に関してヌクレオチド456~3014を欠いている、請求項14に記載のベクター。
  17. 前記ヌクレオチド2~34,916が、E3欠失に相当する、配列番号1に示される配列に関してヌクレオチド27,125~31,825を欠いている、請求項14~16のいずれか1項に記載のベクター。
  18. 前記ヌクレオチド2~34,916が、配列番号1に示される配列に関してヌクレオチド27,816~31,333を欠いている、請求項14~16のいずれか1項に記載のベクター。
  19. 前記ヌクレオチド2~34,916が、E1欠失に相当する、配列番号1に示される配列のヌクレオチド577~3403を欠いており、かつ、E3欠失に相当する、配列番号1に示される配列のヌクレオチド27,125~31,825を欠いている、請求項14~16のいずれか1項に記載のベクター。
  20. 前記ヌクレオチド2~34,916がさらに、配列番号1に示される配列に関してヌクレオチド3957~10346、ヌクレオチド21787~23370、ヌクレオチド33486~36193、またはこれらの組み合わせを欠いている、請求項14~19のいずれか1項に記載のベクター。
  21. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが抗原をコードし、前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含む、先行請求項のいずれかに記載のベクター。
  22. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、エピトープへの抗原のプロセシングを受けることが可能なポリペプチド配列をコードしており、場合により、前記エピトープが、細胞の表面上のMHCクラスIにより提示されることが知られているかまたは疑われており、場合により、前記細胞の表面が腫瘍細胞表面または感染細胞表面である、先行請求項のいずれかに記載のベクター。
  23. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、細胞の表面上のMHCクラスI及び/またはMHCクラスIIにより提示されるポリペプチド配列またはその部分をコードしており、場合により、前記細胞の表面が腫瘍細胞表面または感染細胞表面である、先行請求項のいずれかに記載のベクター。
  24. 前記腫瘍細胞が、肺がん、メラノーマ、乳がん、卵巣がん、前立腺がん、腎臓がん、胃がん、結腸がん、精巣がん、頭頸部がん、膵臓がん、脳がん、B細胞リンパ腫、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ球性白血病、T細胞リンパ球性白血病、非小細胞肺がん、及び小細胞肺がんからなる群から選択されるか、または
    前記感染細胞が、病原体感染細胞、ウイルス感染細胞、細菌感染細胞、真菌感染細胞、及び寄生虫感染細胞からなる群から選択され、場合により、前記ウイルス感染細胞が、HIV感染細胞、重症急性呼吸器症候群関連コロナウイルス(SARS)感染細胞、重症急性呼吸器症候群コロナウイルス2型(SARS-CoV-2)感染細胞、エボラ感染細胞、B型肝炎ウイルス(HBV)感染細胞、インフルエンザ感染細胞、及びC型肝炎ウイルス(HCV)感染細胞からなる群から選択される、請求項22または23に記載のベクター。
  25. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、B細胞応答を刺激することができるエピトープを含むポリペプチド配列またはその部分をコードし、場合により、前記ポリペプチド配列またはその部分が、完全長タンパク質、タンパク質ドメイン、タンパク質サブユニット、または抗原が結合できることが予測されるかまたは知られている抗原性フラグメントを含む、先行請求項のいずれかに記載のベクター。
  26. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、病原体由来ペプチド、ウイルス由来ペプチド、細菌由来ペプチド、真菌由来ペプチド、及び寄生虫由来ペプチドからなる群から選択される感染症生物ペプチドをコードする、先行請求項のいずれかに記載のベクター。
  27. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、前記コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有するエピトープをコードする、先行請求項のいずれかに記載のベクター。
  28. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、前記コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有するMHCクラスIエピトープまたはMHCクラスIIエピトープをコードし、場合により、前記コードされたポリペプチド配列またはその部分が、翻訳された対応する野生型核酸配列と比較してその対応するMHCアレルに対する増加した結合親和性、前記MHCアレルに対する増加した結合安定性、及び/または前記MHCアレル上への提示の増加した尤度を有する、先行請求項のいずれかに記載のベクター。
  29. 前記少なくとも1つの変更が、点変異、フレームシフト変異、非フレームシフト変異、欠失変異、挿入変異、スプライスバリアント、ゲノム再編成、またはプロテアソームにより生成されたスプライス抗原を含む、請求項4、11~12、または14~28に記載のベクター。
  30. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、完全長タンパク質、タンパク質ドメイン、またはタンパク質サブユニットをコードする、先行請求項のいずれかに記載のベクター。
  31. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、抗体、サイトカイン、キメラ抗原受容体(CAR)、T細胞受容体、及びゲノム編集システムのヌクレアーゼをコードする、先行請求項のいずれかに記載のベクター。
  32. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、非コード核酸配列を含む、先行請求項のいずれかに記載のベクター。
  33. 前記非コード核酸配列が、RNA干渉(RNAi)ポリヌクレオチドまたはゲノム編集システムのポリヌクレオチドを含む、請求項32に記載のベクター。
  34. 前記少なくとも1つのペイロード核酸配列のそれぞれが互いに直接連結されている、請求項4または7を除く先行請求項のいずれかに記載のベクター。
  35. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、リンカーをコードする核酸配列によって、異なるペイロード核酸配列と連結されている、請求項4または7を除く先行請求項のいずれかに記載のベクター。
  36. 前記リンカーが、MHCクラスIエピトープをコードする2個のペイロード核酸配列同士を連結するか、またはMHCクラスIエピトープをコードする第1のペイロード核酸配列とMHCクラスIIエピトープをコードするかもしくはB細胞応答を刺激することができるエピトープ配列をコードする第2のペイロード核酸配列とを連結する、請求項35に記載のベクター。
  37. 前記リンカーが、(1)少なくとも残基2、3、4、5、6、7、8、9、または10個の長さの連続したグリシン残基、(2)少なくとも残基2、3、4、5、6、7、8、9、または10個の長さの連続したアラニン残基、(3)2個のアルギニン残基(RR)、(4)アラニン、アラニン、チロシン(AAY)、(5)哺乳動物プロテアソームによって効率的にプロセシングされる、少なくともアミノ酸残基2、3、4、5、6、7、8、9、または10個の長さのコンセンサス配列、及び(6)同種由来タンパク質に由来する抗原に隣接する、少なくともアミノ酸残基2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、または2~20個の長さの1つ以上の天然配列からなる群から選択される、請求項36に記載のベクター。
  38. 前記リンカーが、MHCクラスIIエピトープをコードする2個のペイロード核酸配列同士を連結するか、またはMHCクラスIIエピトープをコードする第1のペイロード核酸配列とMHCクラスIエピトープをコードするかもしくはB細胞応答を刺激することができるエピトープ配列をコードする第2のペイロード核酸配列とを連結する、請求項35に記載のベクター。
  39. 前記リンカーが、配列GPGPGを含む、請求項38に記載のベクター。
  40. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、前記少なくとも1つのペイロード核酸配列の発現、安定性、細胞トラフィッキング、プロセシング及び提示、ならびに/または免疫原性を高める、かつ、場合により、前記少なくとも1つのペイロード核酸配列によってコードされるポリペプチドの発現、安定性、細胞トラフィッキング、プロセシング及び提示、ならびに/または免疫原性を高める、分離したまたは連続した配列に機能的または直接的に連結されている、請求項4または7を除く先行請求項のいずれかに記載のベクター。
  41. 前記分離したまたは連続した配列が、
    ユビキチン配列、プロテアソームターゲティング性を高めるように改変され、場合により76位にGly→Ala置換を有するユビキチン配列、場合によりIgKを含む、免疫グロブリンシグナル配列、主要組織適合性クラスI配列、リソソーム関連膜タンパク質(LAMP)-1、ヒト樹状細胞リソソーム関連膜タンパク質、及び主要組織適合性クラスII配列
    のうちの少なくとも1つを含み、場合により、プロテアソームターゲティング性を高めるように改変された前記ユビキチン配列がA76である、請求項40に記載のベクター。
  42. 前記少なくとも1つのペイロード核酸配列のそれぞれの発現が、前記少なくとも1つのプロモーターによって駆動される、先行請求項のいずれかに記載のベクター。
  43. 前記少なくとも1つのペイロード核酸配列が、少なくとも2、3、4、5、6、7、8、9、または10個のペイロード核酸配列を含む、請求項7を除く先行請求項のいずれかに記載のベクター。
  44. 前記少なくとも1つのペイロード核酸配列が、少なくとも11、12、13、14、15、16、17、18、19、20、または最大400個のペイロード核酸配列を含む、請求項7を除く先行請求項のいずれかに記載のベクター。
  45. 前記少なくとも1つのペイロード核酸配列が、少なくとも2~400個のペイロード核酸配列を含み、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはそれらの組み合わせをコードする、請求項7を除く先行請求項のいずれかに記載のベクター。
  46. 前記少なくとも1つのペイロード核酸配列が少なくとも2~400個のペイロード核酸配列を含み、
    前記対象に投与されて翻訳された場合、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが抗原提示細胞上に提示される抗原をコードし、前記抗原を標的とする免疫応答をもたらす、
    請求項4または7を除く先行請求項のいずれかに記載のベクター。
  47. 前記少なくとも1つのペイロード核酸配列が少なくとも2~400個のMHCクラスI及び/またはMHCクラスII抗原コード核酸配列を含み、
    前記対象に投与されて翻訳された場合、前記MHCクラスIまたはMHCクラスII抗原のうちの少なくとも1つが抗原提示細胞上に提示され、細胞表面上の前記抗原のうちの少なくとも1つを標的とする免疫応答をもたらし、
    場合により、前記少なくとも2~400個のMHCクラスIまたはMHCクラスII抗原コード核酸配列のそれぞれの発現が、前記少なくとも1つのプロモーターによって駆動される、先行請求項のいずれかに記載のベクター。
  48. 各MHCクラスIエピトープが独立して、アミノ酸8~35個の長さ、場合により、アミノ酸7~15個、9~17個、9~25個、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34または35個の長さである、先行請求項のいずれかに記載のベクター。
  49. 前記少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在している、請求項7を除く先行請求項のいずれかに記載のベクター。
  50. 前記少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在し、かつこれが、前記コードされたペプチド配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を含む少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列を含む、請求項7を除く先行請求項のいずれかに記載のベクター。
  51. 前記少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が、アミノ酸12~20個、12、13、14、15、16、17、18、19、20、または20~40個の長さである、請求項7を除く先行請求項のいずれかに記載のベクター。
  52. 前記少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列が存在し、前記少なくとも1つのユニバーサル配列が、破傷風毒素及びPADREの少なくとも一方を含む、請求項7を除く先行請求項のいずれかに記載のベクター。
  53. 前記少なくとも1つのプロモーター配列が、調節可能なプロモーターであり、場合により、前記調節可能なプロモーターがテトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターであり、場合により、前記調節可能なプロモーターが、前記プロモーターのRNAポリメラーゼ結合配列の5’または3’に複数のTETオペレーター(TETo)配列を含む、先行請求項のいずれかに記載のベクター。
  54. 前記少なくとも1つのプロモーター配列が、構成的である、先行請求項のいずれかに記載のベクター。
  55. 前記少なくとも1つのプロモーター配列が、CMV、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列である、請求項4または7を除く先行請求項のいずれかに記載のベクター。
  56. 前記カセットが、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された少なくとも1つのポリアデニル化(ポリA)配列をさらに含み、場合により、前記ポリA配列が、前記少なくとも1つのペイロード核酸配列の3’に位置する、先行請求項のいずれかに記載のベクター。
  57. 前記ポリA配列が、SV40またはウシ成長ホルモン(BGH)のポリA配列を含む、請求項56に記載のベクター。
  58. 前記カセットが、
    イントロン配列、ウッドチャック肝炎ウイルス転写後調節因子(WPRE)配列、内部リボソーム進入配列(IRES)配列、2A自己切断ペプチド配列をコードするヌクレオチド配列、フーリン切断部位をコードするヌクレオチド配列、TEV切断部位をコードするヌクレオチド配列、または、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された、mRNAの核輸送、安定性、または翻訳効率を向上させることが知られている5’または3’の非コード領域内の配列
    のうちの少なくとも1つをさらに含む、先行請求項のいずれかに記載のベクター。
  59. 前記カセットが、緑色蛍光タンパク質(GFP)、GFP変異体、分泌型アルカリホスファターゼ、ルシフェラーゼ、またはルシフェラーゼ変異体を含むがこれらに限定されないレポーター遺伝子を含む、先行請求項のいずれかに記載のベクター。
  60. 前記ベクターが、少なくとも1つの免疫調節物質をコードする1つ以上のペイロード核酸配列をさらに含み、場合により、前記少なくとも1つの免疫調節物質が免疫チェックポイント分子を阻害する、先行請求項のいずれかに記載のベクター。
  61. 前記免疫調節物質が、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである、請求項60に記載のベクター。
  62. 前記抗体またはその抗原結合フラグメントが、Fabフラグメント、Fab’フラグメント、一本鎖Fv(scFv)、単一特異性抗体もしくは互いに連結された多重特異性抗体としての単一ドメイン抗体(sdAb)(例えば、ラクダ科動物の抗体ドメイン)、または完全長の一本鎖抗体(例えば、柔軟なリンカーによって重鎖と軽鎖が連結された完全長IgG)である、請求項61に記載のベクター。
  63. 前記抗体の前記重鎖配列と前記軽鎖配列とが、2Aなどの自己切断配列またはIRES配列によって分離された連続的配列であり、場合により、前記自己切断配列が前記自己切断配列の5’にフーリン切断部位配列を有し、あるいは、前記抗体の前記重鎖配列と前記軽鎖配列とが、連続したグリシン残基のような柔軟なリンカーによって連結されている、請求項61または62に記載のベクター。
  64. 前記免疫調節物質がサイトカインである、請求項60に記載のベクター。
  65. 前記サイトカインが、IL-2、IL-7、IL-12、IL-15、もしくはIL-21の少なくとも1つ、またはそれぞれのその変異体である、請求項64に記載のベクター。
  66. 前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つが、
    (a)腫瘍細胞、感染細胞、または感染症生物からエクソーム、トランスクリプトーム、または全ゲノムヌクレオチドシークエンシングデータのうちの少なくとも1つを取得する工程であって、前記ヌクレオチドシークエンシングデータが、抗原のセットのそれぞれのペプチド配列を表すデータを取得するために用いられる、前記工程と、
    (b)各抗原の前記ペプチド配列を提示モデルに入力して、前記抗原のそれぞれが細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上のMHCアレルのうちの1つ以上によって提示される数値的尤度のセットを生成する工程であって、前記数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、前記工程と、
    (c)前記抗原のセットのサブセットを前記数値的尤度のセットに基づいて選択して、前記少なくとも1つのペイロード核酸配列のそれぞれを生成するために用いられる選択された抗原のセットを生成する工程と
    を実施することによって選択される、先行請求項のいずれかに記載のベクター。
  67. 前記少なくとも1つのペイロード核酸配列のそれぞれが、
    (a)腫瘍細胞、感染細胞、または感染症生物からエクソーム、トランスクリプトーム、または全ゲノムヌクレオチドシークエンシングデータのうちの少なくとも1つを取得する工程であって、前記ヌクレオチドシークエンシングデータが、抗原のセットのそれぞれのペプチド配列を表すデータを取得するために用いられる、前記工程と、
    (b)各抗原の前記ペプチド配列を提示モデルに入力して、前記抗原のそれぞれが細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上のMHCアレルのうちの1つ以上によって提示される数値的尤度のセットを生成する工程であって、前記数値的尤度のセットが、受け取られた質量分析データに少なくとも基づいて特定されたものである、前記工程と、
    (c)前記抗原のセットのサブセットを前記数値的尤度のセットに基づいて選択して、前記少なくとも1つのペイロード核酸配列のそれぞれを生成するために用いられる選択された抗原のセットを生成する工程と
    を実施することによって選択される、先行請求項のいずれかに記載のベクター。
  68. 前記選択された抗原のセットの数が、2~20である、請求項66または67に記載のベクター。
  69. 前記提示モデルが、
    (a)前記MHCアレルのうちの特定の1つとペプチド配列の特定の位置の特定のアミノ酸とのペアの存在と、
    (b)前記ペアの前記MHCアレルのうちの前記特定の1つによる、前記特定の位置に前記特定のアミノ酸を含むそのようなペプチド配列の細胞表面上、場合により腫瘍細胞表面上または感染細胞表面上での提示の尤度と
    の間の依存性を表す、請求項66または67に記載のベクター。
  70. 前記選択された抗原のセットを選択することが、前記提示モデルに基づいて選択されない抗原に対して、前記細胞表面上に提示される尤度が増大している抗原を選択することを含む、請求項66または67に記載のベクター。
  71. 前記選択された抗原のセットを選択することが、前記提示モデルに基づいて選択されない抗原に対して、前記対象における細胞特異的な免疫応答を誘導することができる尤度が増大している抗原を選択することを含む、請求項66または67に記載のベクター。
  72. 前記選択された抗原のセットを選択することが、前記提示モデルに基づいて選択されない抗原に対して、プロフェッショナル抗原提示細胞(APC)によってナイーブT細胞に対して提示されることができる尤度が増大している抗原を選択することを含み、場合により、前記APCは樹状細胞(DC)である、請求項66または67に記載のベクター。
  73. 前記選択された抗原のセットを選択することが、前記提示モデルに基づいて選択されない抗原に対して、中枢性寛容または末梢性寛容による阻害に供される尤度が減少している抗原を選択することを含む、請求項66または67に記載のベクター。
  74. 前記選択された抗原のセットを選択することが、前記提示モデルに基づいて選択されない抗原に対して、前記対象における正常組織に対する自己免疫応答を誘導することができる尤度が減少している抗原を選択することを含む、請求項66または67に記載のベクター。
  75. エクソームまたはトランスクリプトームのヌクレオチドシークエンシングデータが、腫瘍細胞もしくは組織、感染細胞、または感染症生物でシークエンシングを行うことによって取得される、請求項66または67に記載のベクター。
  76. 前記シークエンシングが、次世代シークエンシング(NGS)または任意の大規模並列処理シークエンシングアプローチである、請求項66または67に記載のベクター。
  77. 前記カセットが、前記カセット内の隣接配列によって形成されたジャンクションエピトープ配列を含む、先行請求項のいずれかに記載のベクター。
  78. 少なくとも1つのまたはそれぞれのジャンクションエピトープ配列が、MHCに対して500nMよりも高い親和性を有する、請求項77に記載のベクター。
  79. それぞれのジャンクションエピトープ配列が、非自己である、請求項77または78に記載のベクター。
  80. 前記カセットが、非治療的なMHCクラスIまたはクラスIIエピトープをコードしておらず、前記非治療的エピトープが、前記対象のMHCアレル上に提示されると予測される、先行請求項のいずれかに記載のベクター。
  81. 前記非治療的な予測されたMHCクラスIまたはクラスIIエピトープ配列が、前記カセット内の隣接配列によって形成されたジャンクションエピトープ配列である、請求項80に記載のベクター。
  82. 前記予測が、前記非治療的エピトープの配列を提示モデルに入力することによって生成される提示尤度に基づいたものである、請求項77~81のいずれか1項に記載のベクター。
  83. 前記カセット内における前記少なくとも1つのペイロード核酸配列の順序が、
    i.前記少なくとも1つのペイロード核酸配列の異なる順序に対応した候補カセット配列のセットを生成する工程と、
    ii.前記各候補カセット配列について、候補カセット配列内の非治療的エピトープの提示に基づいた提示スコアを決定する工程と、
    iii.所定の閾値を下回る提示スコアに関連する候補カセット配列を前記カセット配列として選択する工程と
    を含む一連の工程によって決定される、請求項77~82のいずれか1項に記載のベクター。
  84. 前記MHCクラスI及び/またはクラスIIエピトープのそれぞれが、ヒト集団の少なくとも5%に存在する少なくとも1つのHLAアレルによって提示可能であると予測または検証されている、先行請求項のいずれか1項に記載の組成物。
  85. 前記MHCクラスI及び/またはクラスIIエピトープのそれぞれが、少なくとも1つのHLAアレルによって提示可能であると予測または検証されており、各抗原/HLAペアが、ヒト集団において少なくとも0.01%の抗原/HLA存在率(prevalence)を有する、先行請求項のいずれか1項に記載の組成物。
  86. 前記MHCクラスI及び/またはクラスIIエピトープのそれぞれが、少なくとも1つのHLAアレルによって提示可能であると予測または検証されており、各抗原/HLAペアが、ヒト集団において少なくとも0.1%の抗原/HLA存在率を有する、先行請求項のいずれか1項に記載の組成物。
  87. 前記ポリペプチドをコードする前記少なくとも1つのペイロード核酸配列が、対象の組織または試料から直接抽出された天然核酸配列に対してコドン最適化されている、先行請求項のいずれか1項に記載の組成物。
  88. 先行請求項のいずれかに記載のベクターと、薬学的に許容される担体とを含む、医薬組成物。
  89. アジュバントをさらに含む、請求項88に記載の医薬組成物。
  90. 免疫調節物質をさらに含む、請求項88または89に記載の医薬組成物。
  91. 前記免疫調節物質が、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである、請求項90に記載の医薬組成物。
  92. 先行するベクターの請求項のいずれかに記載のカセットと、配列番号1の配列の遺伝子と、を含む、単離ヌクレオチド配列であって、場合により、前記遺伝子が、配列番号1に示される配列のチンパンジーアデノウイルスのITR、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子からなる群から選択され、場合により、前記ヌクレオチド配列がcDNAである、前記単離ヌクレオチド配列。
  93. 請求項92に記載のヌクレオチド配列を含む単離細胞であって、場合により前記細胞が、CHO、HEK293もしくはその変異体、911、HeLa、A549、LP-293、PER.C6、またはAE1-2a細胞である、前記単離細胞。
  94. 請求項92に記載のヌクレオチド配列を含むベクター。
  95. 先行するベクターの請求項のいずれかに記載のベクターと、使用説明書と、を含むキット。
  96. 対象の免疫応答を刺激するための方法であって、前記対象に、先行するベクターの請求項のいずれかに記載のベクター、または請求項88~91のいずれかに記載の医薬組成物を投与することを含む、前記方法。
  97. 前記ベクターまたは組成物が、筋肉内(IM)、皮内(ID)、または皮下(SC)に投与される、請求項96に記載の方法。
  98. 前記対象に免疫調節物質を投与することをさらに含み、場合により、前記免疫調節物質が前記ベクターまたは医薬組成物の投与前、投与と同時、または投与後に投与される、請求項96または97に記載の方法。
  99. 前記免疫調節物質が、抗CTLA4抗体もしくはその抗原結合フラグメント、抗PD-1抗体もしくはその抗原結合フラグメント、抗PD-L1抗体もしくはその抗原結合フラグメント、抗4-1BB抗体もしくはその抗原結合フラグメント、または抗OX-40抗体もしくはその抗原結合フラグメントである、請求項98に記載の方法。
  100. 前記免疫調節物質が、静脈内(IV)、筋肉内(IM)、皮内(ID)、または皮下(SC)に投与される、請求項98に記載の方法。
  101. 前記皮下投与が、前記ベクターもしくは組成物の投与部位の近くであるか、または1つ以上のベクターもしくは組成物の流入領域リンパ節に近接している、請求項100に記載の方法。
  102. 前記対象に第2のワクチン組成物を投与することをさらに含む、請求項96~101のいずれか1項に記載の方法。
  103. 前記第2のワクチン組成物が、請求項88~91のいずれか1項に記載のベクターまたは医薬組成物の投与の前に投与される、請求項102に記載の方法。
  104. 前記第2のワクチン組成物が、請求項88~91のいずれか1項に記載のベクターまたは医薬組成物の投与の後に投与される、請求項102に記載の方法。
  105. 前記第2のワクチン組成物が、請求項88~91のいずれか1項に記載のベクターまたは医薬組成物と同じである、請求項103または104に記載の方法。
  106. 前記第2のワクチン組成物が、請求項88~91のいずれか1項に記載のベクターまたは医薬組成物と異なる、請求項103または104に記載の方法。
  107. 前記第2のワクチン組成物が、少なくとも1つのペイロード核酸配列をコードする自己複製RNA(samRNA)ベクターを含む、請求項106に記載の方法。
  108. 前記samRNAベクターによってコードされる前記少なくとも1つのペイロード核酸配列が、先行するベクターの請求項のいずれかに記載の少なくとも1つのペイロード核酸配列のうちの少なくとも1つと同じである、請求項107に記載の方法。
  109. 先行するベクターの請求項のいずれかに記載のベクターを製造する方法であって、
    前記アデノウイルスベクターまたはチンパンジーアデノウイルスベクターを含むプラスミド配列を得ることと、
    前記プラスミド配列を1つ以上の宿主細胞にトランスフェクトすることと、
    前記1つ以上の宿主細胞から前記ベクターを単離することと
    を含む、前記方法。
  110. 前記単離することが、
    前記1つ以上の宿主細胞を溶解させて前記ベクターを含む細胞ライセートを得ることと、
    前記細胞ライセートから、および、場合により前記1つ以上の宿主細胞を培養するために用いた培地からも、前記ベクターを精製することと
    を含む、請求項109に記載の方法。
  111. 前記プラスミド配列が、
    DNA組換え、または細菌組換え、または全ゲノムDNA合成、または細菌細胞内で合成されたDNAの増幅を伴う全ゲノムDNA合成
    のうちの1つを用いて生成される、請求項109または110に記載の製造方法。
  112. 前記1つ以上の宿主細胞が、CHO、HEK293もしくはその変異体、911、HeLa、A549、LP-293、PER.C6、及びAE1-2a細胞のうちの少なくとも1つである、請求項109~111のいずれかに記載の製造方法。
  113. 前記細胞ライセートから前記ベクターを精製することが、クロマトグラフィー分離、遠心分離、ウイルス沈殿、及び濾過のうちの1つ以上を伴う、請求項110~112のいずれかに記載の製造方法。
  114. 対象の免疫応答を刺激するための方法であって、前記対象に、アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含むアデノウイルスベクターを投与することを含み、
    前記アデノウイルス骨格が、前記アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、前記部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、
    前記アデノウイルスベクターがカセットをさらに含み、前記カセットが、
    (1)少なくとも1つのペイロード核酸配列であって、場合により前記少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合により前記ポリペプチドが抗原を含み、場合により前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含み、
    場合により前記少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、
    前記少なくとも1つのペイロード核酸配列と、場合により、
    (2)前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、
    (3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、
    (4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、
    (5)場合により、少なくとも1つのポリアデニル化配列と
    を含む、前記方法。
  115. 場合によりがんまたは感染症である疾患を有する対象を治療するための方法であって、前記対象に、アデノウイルスゲノムの1つ以上の遺伝子または調節配列を含むアデノウイルス骨格を含むアデノウイルスベクターを投与することを含み、
    前記アデノウイルス骨格が、前記アデノウイルスゲノムに関して部分欠失E4遺伝子を含み、前記部分欠失E4遺伝子が、欠失または部分欠失E4orf2領域、及び欠失または部分欠失E4orf3領域、及び場合により、欠失または部分欠失E4orf4領域を含み、
    前記アデノウイルスベクターがカセットをさらに含み、前記カセットが、
    (1)少なくとも1つのペイロード核酸配列であって、場合により前記少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合により前記ポリペプチドが抗原を含み、場合により前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含み、
    場合により前記少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、
    前記少なくとも1つのペイロード核酸配列と、場合により、
    (2)前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列と、
    (3)場合により、少なくとも1つのユニバーサルMHCクラスII抗原コード核酸配列と、
    (4)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、
    (5)場合により、少なくとも1つのポリアデニル化配列と
    を含む、前記方法。
  116. 対象の免疫応答を刺激するための方法であって、前記対象に、改変ChAdV68配列を含むアデノウイルスベクターを投与することを含み、
    前記改変ChAdV68配列が、
    (a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と
    を含み、
    前記チンパンジーアデノウイルスベクターがカセットをさらに含み、前記カセットが少なくとも1つのペイロード核酸配列を含み、前記カセットが、前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、前記方法。
  117. 場合によりがんまたは感染症である疾患を有する対象を治療するための方法であって、前記対象に、改変ChAdV68配列を含むアデノウイルスベクターを投与することを含み、
    前記改変ChAdV68配列が、
    (a)配列番号1に示される配列の少なくともヌクレオチド34,916~35,642を欠いている、配列番号1に示されるE4遺伝子配列の部分欠失E4遺伝子と、
    (b)配列番号1に示されるChAdV68配列の1つ以上の遺伝子または調節配列であって、場合により、前記1つ以上の遺伝子または調節配列が、配列番号1に示される配列のチンパンジーアデノウイルス末端逆位反復配列(ITR)、E1A、E1B、E2A、E2B、E3、E4、L1、L2、L3、L4、及びL5遺伝子のうちの少なくとも1つを含む、前記1つ以上の遺伝子または調節配列と
    を含み、
    前記チンパンジーアデノウイルスベクターがカセットをさらに含み、前記カセットが少なくとも1つのペイロード核酸配列を含み、前記カセットが、前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列を含む、前記方法。
  118. 前記ウイルスが、先行するベクターの請求項のいずれかを用いて生産される、ウイルスを生産する方法。
  119. 前記ウイルスの生産が、前記部分欠失E4遺伝子を含まないベクターを使用して生産されるウイルスの生産に対して、前記部分欠失E4遺伝子を含むベクターを使用して増加する、請求項118に記載の方法。
  120. 前記ウイルスの感染単位の力価が、前記部分欠失E4遺伝子を含まないベクターを使用して生産されるウイルスの感染単位の力価に対して、前記部分欠失E4遺伝子を含むベクターを使用して増加する、請求項118または119に記載の方法。
  121. 前記増加した生産が、前記部分欠失E4遺伝子を含まないベクターを使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、または少なくとも9倍増加している、請求項120に記載の方法。
  122. 前記増加した生産が、前記部分欠失E4遺伝子を含まないベクターを使用した生産に対して少なくとも10倍、少なくとも18倍、少なくとも20倍、少なくとも25倍、または少なくとも27倍増加している、請求項121に記載の方法。
  123. ウイルスを生産する方法であって、
    a.カセットを含むウイルスベクターを与える工程であって、前記カセットが、
    (i)少なくとも1つのペイロード核酸配列であって、場合により前記少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合により前記ポリペプチドが抗原を含み、場合により前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含み、
    場合により前記少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、
    前記少なくとも1つのペイロード核酸配列と、場合により、
    (ii)前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列であって、前記少なくとも1つのプロモーターが、テトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターである、前記少なくとも1つのプロモーター配列と、
    (iii)場合により、少なくとも1つのMHCクラスII抗原コード核酸配列と、
    (iv)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、
    (v)場合により、少なくとも1つのポリアデニル化配列と
    を含む、前記工程と、
    b.前記TETrタンパク質を発現するように操作された細胞を与える工程と、
    c.前記ウイルスベクターを、前記ウイルスの生産に充分な条件下で前記細胞と接触させる工程と
    を含む、前記方法。
  124. 前記ウイルスベクターがチンパンジーアデノウイルスベクターを含み、場合により前記チンパンジーアデノウイルスベクターがChAdV68ベクターである、請求項123に記載の方法。
  125. 前記ウイルスの生産が、前記TETr制御プロモーターを含まないベクターを使用して生産されるウイルスの生産に対して、前記TETr制御プロモーターを含むベクターを使用して増加する、請求項123または124に記載の方法。
  126. 前記増加した生産が、前記TETr制御プロモーターを含まないベクターを使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、少なくとも9倍、または少なくとも10倍増加している、請求項125に記載の方法。
  127. 前記増加した生産が、前記TETr制御プロモーターを含まないベクターを使用した生産に対して少なくとも15倍、少なくとも20倍、少なくとも25倍、少なくとも30倍、少なくとも35倍、少なくとも40倍、少なくとも50倍、少なくとも60倍、少なくとも70倍、少なくとも80倍、少なくとも90倍、または少なくとも100倍増加している、請求項125に記載の方法。
  128. 前記ウイルスの生産が、前記TETrタンパク質を発現するように操作されていない細胞を使用して生産されるウイルスの生産に対して、前記TETr制御プロモーターを含むベクターを使用して増加する、請求項123~127のいずれかに記載の方法。
  129. 前記増加した生産が、前記TETrタンパク質を発現するように操作されていない細胞を使用した生産に対して少なくとも1.5倍、少なくとも2倍、少なくとも2.5倍、少なくとも4倍、少なくとも5倍、少なくとも6倍、少なくとも7倍、少なくとも8倍、少なくとも9倍、または少なくとも10倍増加している、請求項128に記載の方法。
  130. カセットを含むウイルスベクターであって、前記カセットが、
    (i)少なくとも1つのペイロード核酸配列であって、場合により前記少なくとも1つのペイロード核酸配列がポリペプチドをコードし、場合により前記ポリペプチドが抗原を含み、場合により前記抗原が、
    -MHCクラスIエピトープ、
    -MHCクラスIIエピトープ、
    -B細胞応答を刺激することができるエピトープ、または
    -これらの組み合わせ
    を含み、
    場合により前記少なくとも1つのペイロード核酸配列が、5’リンカー配列及び/または3’リンカー配列をさらに含む、
    前記少なくとも1つのペイロード核酸配列と、場合により、
    (ii)前記少なくとも1つのペイロード核酸配列に機能的に連結された少なくとも1つのプロモーター配列であって、前記少なくとも1つのプロモーターが、テトラサイクリン(TET)リプレッサータンパク質(TETr)制御プロモーターである、前記少なくとも1つのプロモーター配列と、
    (iii)場合により、少なくとも1つのMHCクラスII抗原コード核酸配列と、
    (iv)場合により、少なくとも1つのGPGPGコードリンカー配列(配列番号56)と、
    (v)場合により、少なくとも1つのポリアデニル化配列と
    を含む、前記ウイルスベクター。
  131. 前記TETr制御プロモーターが1つ以上のTETオペレーター(TETo)核酸配列を含み、場合により前記1つ以上のTETo核酸配列が、配列番号60に示されるヌクレオチド配列を含む、請求項123~130のいずれか1項に記載の方法またはベクター。
  132. 前記1つ以上のTETo核酸配列が、2、3、4、5、6、7、8、9、または10個またはそれ以上のTETo核酸配列を含み、場合によりTETo核酸配列のそれぞれが、配列番号60に示されるヌクレオチド配列を含む、請求項131に記載のベクター。
  133. 前記2つ以上のTETo核酸配列が互いに連結されている、請求項132に記載のベクター。
  134. 前記2つ以上のTETo核酸配列が互いに直接連結されている、請求項133に記載のベクター。
  135. 前記2つ以上のTETo核酸配列がリンカー配列によって互いに連結され、前記リンカーが、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20個以上のヌクレオチドを含み、場合により、前記リンカー配列が、配列番号70に示されるリンカーヌクレオチド配列を含む、請求項133に記載のベクター。
  136. 前記1つ以上のTETo核酸配列が、前記プロモーター配列のRNAポリメラーゼ結合配列の5’である、請求項131~135のいずれか1項に記載のベクター。
  137. 前記1つ以上のTETo核酸配列が、前記プロモーター配列のRNAポリメラーゼ結合配列の3’である、請求項131~135のいずれか1項に記載のベクター。
  138. 前記少なくとも1つのプロモーター配列が、CMV、SV40、EF-1、RSV、PGK、HSA、MCKまたはEBVプロモーター配列を含む、請求項130~137のいずれか1項に記載のベクター。
  139. 前記少なくとも1つのプロモーター配列が、CMV由来プロモーター配列であり、場合により前記CMV由来プロモーター配列が、配列番号64に示されるCMVプロモーターヌクレオチド配列を含む、請求項130~137のいずれか1項に記載のベクター。
  140. 前記CMV由来プロモーター配列が最小CMVプロモーター配列であり、場合により前記最小CMVプロモーター配列が、配列番号61に示される最小CMVプロモーターヌクレオチド配列を含む、請求項139に記載のベクター。
  141. 前記少なくとも1つのペイロード核酸配列に機能的に連結された前記TETr制御プロモーターが、5’から3’に向けて以下を含む式:
    (T-L-P-N
    [式中、
    Nは、前記少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、前記コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、
    Pは、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された前記プロモーター配列のRNAポリメラーゼ結合配列を含み、
    Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列を含み、
    Lは、リンカー配列を含み、ただし各XについてY=0または1であり、
    X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である]
    に記述される順序付けられた配列を含む、請求項130~140のいずれか1項に記載のベクター。
  142. 前記少なくとも1つのペイロード核酸配列に機能的に連結された前記TETr制御プロモーターが、5’から3’に向けて以下を含む式:
    P-(T-L-N
    [式中、
    Nは、前記少なくとも1つのペイロード核酸配列のうちの1つを含み、場合により、各Nは、場合により、前記コードされたエピトープ配列を野生型核酸配列によってコードされる対応するペプチド配列とは異なるものとする少なくとも1つの変更を有する、MHCクラスIエピトープ、MHCクラスIIエピトープ、B細胞応答を刺激することができるエピトープ、またはこれらの組み合わせをコードし、
    Pは、前記少なくとも1つのペイロード核酸配列のうちの少なくとも1つに機能的に連結された前記プロモーター配列のRNAポリメラーゼ結合配列を含み、
    Tは、配列番号60に示されるヌクレオチド配列を含むTETo核酸配列を含み、
    Lは、リンカー配列を含み、ただし各XについてY=0または1であり、
    X=1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20である]
    に記述される順序付けられた配列を含む、請求項130~140のいずれか1項に記載のベクター。
  143. 前記TETr制御プロモーターが、
    (1)最小CMVプロモーター配列と、
    (2)そのそれぞれが配列番号60に示されるヌクレオチド配列を含む、7個のTETo核酸配列と
    を含み、
    前記TETo核酸配列のそれぞれがリンカー配列によって互いに連結され、前記7個のTETo核酸配列が前記最小CMVプロモーター配列の5’であり、場合により前記TETr制御プロモーターが、配列番号61に示されるヌクレオチド配列を含む、
    請求項130に記載のベクター。
  144. 前記TETr制御プロモーターが、
    (1)CMVプロモーター配列と、
    (2)そのそれぞれが配列番号60に示されるヌクレオチド配列を含む、2個のTETo核酸配列と
    を含み、
    前記TETo核酸配列のそれぞれが互いに直接連結され、前記2個のTETo核酸配列が前記CMVプロモーター配列の3’であり、場合により前記TETr制御プロモーターが、配列番号64に示されるヌクレオチド配列を含む、
    請求項130に記載のベクター。
  145. 前記ウイルスベクターがベクター骨格を含み、前記ベクター骨格がチンパンジーアデノウイルスベクターを含み、場合により前記チンパンジーアデノウイルスベクターがChAdV68ベクターである、請求項130~144のいずれか1項に記載のベクター。
JP2021570743A 2019-05-30 2020-06-01 改変アデノウイルス Active JP7457733B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962854865P 2019-05-30 2019-05-30
US62/854,865 2019-05-30
PCT/US2020/035591 WO2020243719A1 (en) 2019-05-30 2020-06-01 Modified adenoviruses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024040639A Division JP2024073576A (ja) 2019-05-30 2024-03-15 改変アデノウイルス

Publications (3)

Publication Number Publication Date
JP2022534282A true JP2022534282A (ja) 2022-07-28
JPWO2020243719A5 JPWO2020243719A5 (ja) 2023-06-15
JP7457733B2 JP7457733B2 (ja) 2024-03-28

Family

ID=73553330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021570743A Active JP7457733B2 (ja) 2019-05-30 2020-06-01 改変アデノウイルス

Country Status (13)

Country Link
US (2) US11591619B2 (ja)
EP (1) EP3976075A4 (ja)
JP (1) JP7457733B2 (ja)
KR (1) KR20220016137A (ja)
CN (1) CN114072516A (ja)
AU (1) AU2020282369A1 (ja)
BR (2) BR122024002387A2 (ja)
CA (1) CA3140019A1 (ja)
IL (1) IL288283A (ja)
MX (1) MX2021014525A (ja)
SG (1) SG11202113187WA (ja)
TW (1) TW202110870A (ja)
WO (1) WO2020243719A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018208856A1 (en) 2017-05-08 2018-11-15 Gritstone Oncology, Inc. Alphavirus neoantigen vectors
TW202043256A (zh) 2019-01-10 2020-12-01 美商健生生物科技公司 前列腺新抗原及其用途
WO2021119545A1 (en) * 2019-12-11 2021-06-17 Gritstone Bio, Inc. Durable vaccination
WO2022032196A2 (en) 2020-08-06 2022-02-10 Gritstone Bio, Inc. Multiepitope vaccine cassettes
RU2743963C1 (ru) * 2021-02-09 2021-03-01 федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации Средство для индукции специфического иммунитета против вируса тяжелого острого респираторного синдрома SARS-CoV-2 в жидкой форме (варианты)
RU2743962C1 (ru) * 2021-02-10 2021-03-01 федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации Средство для индукции специфического иммунитета против вируса тяжелого острого респираторного синдрома SARS-CoV-2 в лиофилизированной форме (варианты)
WO2023069551A1 (en) * 2021-10-20 2023-04-27 The Regents Of The University Of California Multi-epitope mrna sars-cov-2 vaccine for boosting immunity through the activation of cd4 and cd8 t cells as well as b lymphocytes
CN114410689B (zh) * 2022-03-29 2022-06-17 北京循生生物医学研究有限公司 一种增强肿瘤浸润淋巴细胞杀伤力的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106875A (ja) * 1998-07-07 2000-04-18 Transgene Sa 目的遺伝子の発現を改善するためのアデノウイルスe4リ―ディングフレ―ムの使用
JP2002199894A (ja) * 1995-12-14 2002-07-16 Genvec Inc 相補的なアデノウイルスベクター系と細胞株
JP2012516679A (ja) * 2009-02-02 2012-07-26 オカイロス アーゲー サルアデノウイルスの核酸配列及びアミノ酸配列、それを含有するベクター、並びにその使用
JP2013537426A (ja) * 2010-08-16 2013-10-03 ソーク インスティテュート フォー バイオロジカル スタディーズ 抗がんアデノウイルス
JP2015536147A (ja) * 2012-11-16 2015-12-21 ベス イスラエル デアコネス メディカル センター インコーポレイテッド 組換えアデノウイルスおよびその使用
WO2017221031A1 (en) * 2016-06-23 2017-12-28 Oxford University Innovation Limited Adenoviral vector
WO2018098362A1 (en) * 2016-11-23 2018-05-31 Gritstone Oncology, Inc. Viral delivery of neoantigens
WO2018104919A1 (en) * 2016-12-09 2018-06-14 Glaxosmithkline Biologicals Sa Chimpanzee adenovirus constructs with lyssavirus antigens

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
GB8311018D0 (en) 1983-04-22 1983-05-25 Amersham Int Plc Detecting mutations in dna
US6090406A (en) 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US5019369A (en) 1984-10-22 1991-05-28 Vestar, Inc. Method of targeting tumors in humans
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5223427A (en) 1987-03-31 1993-06-29 The Scripps Research Institute Hybridomas producing monoclonal antibodies reactive with human tissue-factor glycoprotein heavy chain
US5217879A (en) 1989-01-12 1993-06-08 Washington University Infectious Sindbis virus vectors
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
FR2650840B1 (fr) 1989-08-11 1991-11-29 Bertin & Cie Procede rapide de detection et/ou d'identification d'une seule base sur une sequence d'acide nucleique, et ses applications
ATE157012T1 (de) 1989-11-03 1997-09-15 Univ Vanderbilt Verfahren zur in vivo-verabreichung von funktionsfähigen fremden genen
US5670488A (en) * 1992-12-03 1997-09-23 Genzyme Corporation Adenovirus vector for gene therapy
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US6770283B1 (en) 1990-12-13 2004-08-03 Bioption Ab DNA expression systems based on alphaviruses
US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer
US6037135A (en) 1992-08-07 2000-03-14 Epimmune Inc. Methods for making HLA binding peptides and their uses
CA2134773A1 (en) 1992-06-04 1993-12-09 Robert J. Debs Methods and compositions for in vivo gene therapy
US9340577B2 (en) 1992-08-07 2016-05-17 Epimmune Inc. HLA binding motifs and peptides and their uses
US5662907A (en) 1992-08-07 1997-09-02 Cytel Corporation Induction of anti-tumor cytotoxic T lymphocytes in humans using synthetic peptide epitopes
US20050271676A1 (en) 1993-03-05 2005-12-08 Epimmune Inc. Inducing cellular immune responses to human immunodeficiency virus-1 using peptide and nucleic acid compositions
CN1135181A (zh) 1993-09-14 1996-11-06 Cytel有限公司 使用泛dr结合肽改变免疫应答
US6413935B1 (en) 1993-09-14 2002-07-02 Epimmune Inc. Induction of immune response against desired determinants
EP0711829A3 (en) 1993-09-15 1997-07-09 Viagene Inc Recombinant alphavirus vector
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
WO1995013392A1 (en) 1993-11-09 1995-05-18 Medical College Of Ohio Stable cell lines capable of expressing the adeno-associated virus replication gene
US5505947A (en) 1994-05-27 1996-04-09 The University Of North Carolina At Chapel Hill Attenuating mutations in Venezuelan Equine Encephalitis virus
FR2726285B1 (fr) 1994-10-28 1996-11-29 Centre Nat Rech Scient Adenovirus depourvus de particules contaminantes viables, preparation et utilisation
PT787200E (pt) 1994-10-28 2005-08-31 Univ Pennsylvania Adenovirus melhorado e metodos para a sua utilizacao
US5552350A (en) 1994-12-12 1996-09-03 Ceramco Inc. Low-fusing temperature porcelain
JPH10510987A (ja) * 1994-12-12 1998-10-27 ジェネティック セラピー,インコーポレイテッド 改良アデノウイルスベクターおよび生産者細胞
US5792462A (en) 1995-05-23 1998-08-11 University Of North Carolina At Chapel Hill Alphavirus RNA replicon systems
US5851796A (en) * 1995-06-07 1998-12-22 Yale University Autoregulatory tetracycline-regulated system for inducible gene expression in eucaryotes
UY24367A1 (es) 1995-11-23 2000-10-31 Boehringer Ingelheim Int Vacunas contra tumores y procedimiento para su produccion
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
US6451592B1 (en) 1996-04-05 2002-09-17 Chiron Corporation Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis
EP0803573A1 (en) 1996-04-25 1997-10-29 Gesellschaft für Biotechnologische Forschung mbH (GBF) Polycistronic expression construct with cytokines for multivalent vaccines
US6514731B1 (en) 1996-05-24 2003-02-04 Chiron Corporation Methods for the preparation of hepatitis C virus multiple copy epitope fusion antigens
EP0910343A1 (en) 1996-07-03 1999-04-28 University Of Pittsburgh Emulsion formulations for hydrophilic active agents
US6083716A (en) 1996-09-06 2000-07-04 The Trustees Of The University Of Pennsylvania Chimpanzee adenovirus vectors
US5994132A (en) * 1996-10-23 1999-11-30 University Of Michigan Adenovirus vectors
US7732129B1 (en) 1998-12-01 2010-06-08 Crucell Holland B.V. Method for the production and purification of adenoviral vectors
US5849561A (en) 1997-05-22 1998-12-15 Cornell Research Foundation, Inc. Method for the production of non-group C adenoviral vectors
EP1000628A1 (en) 1998-09-28 2000-05-17 Fondation Mondiale Recherche et Prevention SIDA Use of antigenic complexes of HIV envelope and HLA class I antigens as HIV vaccine
US20030072767A1 (en) 1998-09-30 2003-04-17 Alexander Gaiger Compositions and methods for WT1 specific immunotherapy
US20080050393A1 (en) 1998-12-03 2008-02-28 Tang Y Tom Novel nucleic acids and polypeptides
WO2000034445A2 (en) 1998-12-07 2000-06-15 U.S. Medical Research Institute Of Infectious Diseases Live attenuated venezuelan equine encephalitis vaccine
AU2992600A (en) 1999-02-11 2000-08-29 Genzyme Corporation Antigenic peptide concatomers
US7262049B2 (en) * 1999-03-16 2007-08-28 Dana-Farber Cancer Institute, Inc. Pseudotyped lentiviral vectors and uses thereof
DE60038011T2 (de) 1999-04-08 2009-02-12 Novartis Vaccines and Diagnostics, Inc., Emeryville Verbesserung der immunantwort als anwendung in impfstoff und gentherapie
JP4637368B2 (ja) 1999-04-14 2011-02-23 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド アルファウイルスに基づくベクター系を利用する免疫応答を生成するための組成物および方法
US8647864B2 (en) 1999-04-14 2014-02-11 Novartis Ag Compositions and methods for generating an immune response utilizing alphavirus-based vector systems
US6365394B1 (en) 1999-09-29 2002-04-02 The Trustees Of The University Of Pennsylvania Cell lines and constructs useful in production of E1-deleted adenoviruses in absence of replication competent adenovirus
EP1244465A4 (en) 1999-12-21 2005-01-12 Epimmune Inc INDUCTION OF CELLULAR IMMUNE RESPONSE TO PROSTATE CANCER BY MEANS OF PEPTIDE AND NUCLEIC ACID COMPOUNDS
US20040248113A1 (en) 1999-12-28 2004-12-09 Alessandro Sette Method and system for optimizing multi-epitope nucleic acid constructs and peptides encoded thereby
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
CA2397998A1 (en) 2000-01-28 2001-08-02 Statens Serum Institut Hiv peptides and nucleic acids encoding them for diagnosis and control of hiv infection
US7619057B2 (en) 2000-01-28 2009-11-17 The United States Of America As Represented By The Secretary, Department Of Health And Human Services MHC class II restricted T cell epitopes from the cancer antigen, NY ESO-1
US20010055596A1 (en) 2000-03-24 2001-12-27 Meagher Madeleine Joy Compositions and methods for therapy and diagnosis of colon cancer
US6436703B1 (en) 2000-03-31 2002-08-20 Hyseq, Inc. Nucleic acids and polypeptides
US20040115625A1 (en) 2000-10-02 2004-06-17 Reinhard Ebner Cancer gene determination and therapeutic screening using signature gene sets
US6783939B2 (en) 2000-07-07 2004-08-31 Alphavax, Inc. Alphavirus vectors and virosomes with modified HIV genes for use in vaccines
EP1320620B1 (en) 2000-09-25 2015-01-21 The Regents Of The University Of Michigan Production of viral vectors
US20020137081A1 (en) 2001-01-08 2002-09-26 Olga Bandman Genes differentially expressed in vascular tissue activation
EP1363660A4 (en) 2001-02-01 2006-06-21 Univ Johns Hopkins HIGHER MOLECULAR VACCINE BASED ON AUTOMPLICATIVE RNA, SUICIDE DNA OR UNDNA DNA VECTOR, WHICH LINKS ANTIGEN WITH A POLYPEPTIDE WHICH PROMOTES THE PRESENTATION OF THE ANTIGEN
CN1147587C (zh) * 2001-05-30 2004-04-28 方炳良 一种增强细胞特异性目的基因表达的方法
EP1399183B1 (en) 2001-05-31 2010-06-30 Novartis Vaccines and Diagnostics, Inc. Chimeric alphavirus replicon particles
US20030232324A1 (en) 2001-05-31 2003-12-18 Chiron Corporation Chimeric alphavirus replicon particles
CA2450470C (en) 2001-06-22 2012-08-28 The Trustees Of The University Of Pennsylvania Method for rapid screening of bacterial transformants and novel simian adenovirus proteins
PT1497438E (pt) 2002-04-25 2010-02-04 Crucell Holland Bv Meios e métodos para a produção de vectores de adenovírus
ATE405663T1 (de) 2002-04-25 2008-09-15 Crucell Holland Bv Stabile adenovirale vektoren und methoden für deren vermehrung
AU2003289716A1 (en) 2002-09-12 2004-04-30 Incyte Corporation Molecules for diagnostics and therapeutics
US20070224201A1 (en) 2002-10-02 2007-09-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1571909A4 (en) 2002-10-03 2009-11-11 Idm Pharma Inc OPTIMIZED CONSTRUCTIONS WITH SEVERAL EPITOPES AND USES THEREOF
WO2004055166A2 (en) 2002-12-13 2004-07-01 Alphavax, Inc. Multi-antigenic alphavirus replicon particles and methods
BRPI0317276B8 (pt) 2002-12-13 2021-05-25 Alphavax Inc método para a preparação de partículas de replicon de alfavírus (arps)
GB2398300A (en) 2003-02-17 2004-08-18 Isis Innovation Method and compositions for boosting immune response
US7425328B2 (en) 2003-04-22 2008-09-16 Purdue Pharma L.P. Tissue factor antibodies and uses thereof
WO2005033265A2 (en) 2003-04-25 2005-04-14 Epimmune Inc. Optimized multi-epitope constructs and uses thereof
US7605235B2 (en) 2003-05-30 2009-10-20 Centocor, Inc. Anti-tissue factor antibodies and compositions
SI1629004T1 (sl) 2003-06-05 2008-12-31 Wyeth Corp Imunogeni sestavki, ki vsebujejo vektorski replikon virusa venezuelskega konjskega encefalitisa in antigen za protein paramiksovirusa
US7291498B2 (en) 2003-06-20 2007-11-06 The Trustees Of The University Of Pennsylvania Methods of generating chimeric adenoviruses and uses for such chimeric adenoviruses
DE10347710B4 (de) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Rekombinante Impfstoffe und deren Verwendung
PL2163260T3 (pl) 2004-01-23 2017-12-29 Msd Italia S.R.L. Szympansie adenowirusowe nośniki szczepionek
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
ATE497785T1 (de) * 2004-04-28 2011-02-15 Univ Pennsylvania Sequenzielle freisetzung immunogener moleküle über adenoviren und adeno-assoziierte viren vermittelte abgaben
CA2563500C (en) * 2004-04-28 2016-06-28 The Trustees Of The University Of Pennsylvania Immunization regimen with e4-deleted adenovirus prime and e1-deleted adenovirus boost
WO2006078294A2 (en) 2004-05-21 2006-07-27 Novartis Vaccines And Diagnostics Inc. Alphavirus vectors for respiratory pathogen vaccines
EP1751290B1 (en) 2004-05-25 2014-10-15 Novartis Vaccines and Diagnostics, Inc. Alphavirus replicon packaging constructs
US20060051405A1 (en) 2004-07-19 2006-03-09 Protiva Biotherapeutics, Inc. Compositions for the delivery of therapeutic agents and uses thereof
JP2008515795A (ja) 2004-10-04 2008-05-15 バイオバクシム リミテッド Hiv感染患者を治療するための、サブタイプを一致させた不活化全粒子ウイルスワクチン
US20060198854A1 (en) 2004-12-28 2006-09-07 Peter Pushko Vector platforms derived from the alphavirus vaccines
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
FR2882557A1 (fr) 2005-02-25 2006-09-01 Centre Nat Rech Scient Epitopes de vih et composition pharmaceutique les contenant
US7283337B2 (en) 2005-03-04 2007-10-16 Headway Technologies, Inc. Abutted exchange bias design for sensor stabilization
EP2002003B1 (en) 2005-05-27 2015-12-30 Ospedale San Raffaele S.r.l. Gene vector comprising mi-rna
ES2735531T3 (es) 2005-08-23 2019-12-19 Univ Pennsylvania ARN que contiene nucleósidos modificados y métodos de uso del mismo
WO2007047749A1 (en) 2005-10-18 2007-04-26 Novartis Vaccines And Diagnostics Inc. Mucosal and systemic immunizations with alphavirus replicon particles
US8252574B2 (en) 2006-02-27 2012-08-28 The Board Of Regents Of The University Of Texas System Pseudoinfectious flavivirus and uses thereof
US20090022760A1 (en) 2006-09-12 2009-01-22 Alphavax Alphavirus Replicon Particles Matched to Protein Antigens as Immunological Adjuvants
US9085638B2 (en) 2007-03-07 2015-07-21 The Johns Hopkins University DNA vaccine enhancement with MHC class II activators
GB0706914D0 (en) 2007-04-10 2007-05-16 Isis Innovation Novel adenovirus vectors
CA2687141C (en) 2007-05-22 2014-04-01 Amgen Inc. Compositions and methods for producing bioactive fusion proteins
ES2440974T3 (es) 2007-05-31 2014-01-31 Genimmune N.V. Constructos poliepitópicos del VPH y uso de los mismos
AU2008266807B2 (en) 2007-06-21 2012-08-16 Alphavax, Inc. Promoterless cassettes for expression of alphavirus structural proteins
US20100015179A1 (en) 2007-08-16 2010-01-21 Frolov Ilya V Attenuation of encephalitogenic alphavirus and uses thereof
EP2201023A2 (en) 2007-09-14 2010-06-30 GENimmune N.V. Affinity tag
US20100285050A1 (en) 2007-10-05 2010-11-11 Isis Innovation Limited Compositions and Methods
GB0719526D0 (en) 2007-10-05 2007-11-14 Isis Innovation Compositions and methods
JP5627464B2 (ja) 2007-11-26 2014-11-19 ノバルティス アーゲー アルファウイルス粒子を生成する方法
US20110091496A1 (en) 2008-01-19 2011-04-21 Graham Barney S Methods and compositions for the delivery of vaccines to disrupted epithelium
US20090253184A1 (en) 2008-01-23 2009-10-08 Introgen Therapeutics, Inc. Compositions and methods related to an adenoviral trans-complementing cell line
NZ587502A (en) 2008-01-24 2012-12-21 Univ Texas Attenuated recombinant alphaviruses incapable of replicating in mosquitoes and uses thereof
US20110142880A1 (en) 2008-03-28 2011-06-16 Franck Yann Lemiale Lentivirus-based immunogenic vectors
AU2009254168A1 (en) 2008-06-03 2009-12-10 Okairos Ag A vaccine for the prevention and therapy of HCV infections
WO2010005704A2 (en) 2008-06-13 2010-01-14 New York University Novel helper plasmid, defective sindbis viral vectors and methods of use thereof
ES2902787T3 (es) 2008-07-17 2022-03-29 Medigen Inc Vacunas de ADNi y procedimientos para utilizar las mismas
US10369204B2 (en) 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
WO2010044515A1 (ko) 2008-10-17 2010-04-22 Lee Jeong-Min 병뚜껑
SG171828A1 (en) 2008-11-26 2011-07-28 Us Gov Health & Human Serv Virus like particle compositions and methods of use
ES2525707T3 (es) 2008-12-01 2014-12-29 Alphavax, Inc. Uso de microRNAs para el control de ácidos nucleicos colaboradores de virus
DE102008061522A1 (de) 2008-12-10 2010-06-17 Biontech Ag Verwendung von Flt3-Ligand zur Verstärkung von Immunreaktionen bei RNA-Immunisierung
CN101579528B (zh) 2009-06-24 2011-06-29 中国人民解放军军事医学科学院军事兽医研究所 一种hiv复合多表位dna疫苗及其应用
GB0918154D0 (en) 2009-10-16 2009-12-02 Isis Innovation Mycobacterial vaccines
US9101572B2 (en) 2009-12-31 2015-08-11 Medigen, Inc. Infectious DNA vaccines against chikungunya virus
GB201006405D0 (en) 2010-04-16 2010-06-02 Isis Innovation Poxvirus expression system
CN105648056A (zh) 2010-05-14 2016-06-08 综合医院公司 鉴定肿瘤特异性新抗原的组合物和方法
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
US10487332B2 (en) 2010-07-06 2019-11-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
MX2013000164A (es) 2010-07-06 2013-03-05 Novartis Ag Liposomas con lipidos que tienen valor de pka ventajoso para suministro de arn.
BR112013000391B8 (pt) 2010-07-06 2022-10-04 Novartis Ag Composição de emulsão catiônica de óleo em água e seu uso
PL3243526T3 (pl) 2010-07-06 2020-05-18 Glaxosmithkline Biologicals S.A. Dostarczanie rna w celu wyzwolenia wielu szlaków immunologicznych
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
CN103052400B (zh) 2010-07-06 2016-11-16 诺华股份有限公司 自我复制rna分子的病毒样递送颗粒
DK3981427T3 (da) 2010-08-31 2022-07-11 Glaxosmithkline Biologicals Sa Pegylerede liposomer til afgivelse af immunogen-kodende RNA
FI4043040T3 (fi) 2010-08-31 2023-04-04 Glaxosmithkline Biologicals Sa Pieniä liposomeja immunogeeniä koodaavan rna:n toimittamiseksi
ES2727583T3 (es) 2010-08-31 2019-10-17 Glaxosmithkline Biologicals Sa Lípidos adecuados para la administración liposómica de ARN que codifica proteínas
KR20210131432A (ko) 2010-12-30 2021-11-02 파운데이션 메디신 인코포레이티드 종양 샘플의 다유전자 분석의 최적화
US9487563B2 (en) 2011-01-31 2016-11-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Virus-like particles and methods of use
US8722044B2 (en) 2011-03-15 2014-05-13 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
RS64230B1 (sr) 2011-05-24 2023-06-30 BioNTech SE Individualizovane vakcine protiv kancera
GB201108879D0 (en) 2011-05-25 2011-07-06 Isis Innovation Vector
WO2012171541A1 (en) 2011-06-15 2012-12-20 Scil Proteins Gmbh Human fusion proteins comprising interferons and hetero-dimeric modified ubiquitin proteins
SG10201605537XA (en) 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
ES2656050T3 (es) 2011-07-06 2018-02-22 Glaxosmithkline Biologicals Sa Composiciones de combinación inmunogénica y usos de las mismas
CA2841047A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
KR102067760B1 (ko) 2011-08-16 2020-01-17 삼성전자주식회사 세포 내 전달용 단백질 복합체 및 그의 용도
TR201900264T4 (tr) 2011-08-31 2019-02-21 Glaxosmithkline Biologicals Sa İmmünojen şifreleyici rna'nın verilmesi için pegile edilmiş lipozomlar.
WO2013055905A1 (en) 2011-10-11 2013-04-18 Novartis Ag Recombinant self-replicating polycistronic rna molecules
AP2014007864A0 (en) 2012-02-16 2014-08-31 Vlp Therapeutics Llc Virus like particle composition
US20160289674A1 (en) 2012-04-02 2016-10-06 Moderna Therapeutics, Inc. Modified polynucleotides for the production of membrane proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
CA2873509A1 (en) 2012-05-18 2013-11-21 The Trustees Of The University Of Pennsylvania Subfamily e simian adenoviruses a1302, a1320, a1331 and a1337 and uses thereof
ES2663688T3 (es) 2012-07-04 2018-04-16 Sirion Biotech Gmbh Medios y métodos para aumentar la producción de adenovirus
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
US8961995B2 (en) 2012-09-20 2015-02-24 Uab Research Foundation Methods and compositions for alphavirus replicons
GB201220119D0 (en) 2012-11-08 2012-12-26 Univ Cork Vector
KR101429696B1 (ko) * 2012-11-21 2014-08-13 국립암센터 안전성 및 항암활성이 증가된 재조합 아데노바이러스 및 이의 용도
US9402888B2 (en) 2013-03-14 2016-08-02 The Wistar Institute Of Anatomy And Biology Methods and compositions for treating cancer
KR102341899B1 (ko) 2013-04-07 2021-12-21 더 브로드 인스티튜트, 인코퍼레이티드 개인맞춤화 신생물 백신을 위한 조성물 및 방법
CA2913832C (en) 2013-06-03 2023-07-04 Vlp Therapeutics, Llc A virus-like particle comprising a malaria antigen and use thereof as a malaria vaccine
HUE043042T2 (hu) * 2013-11-01 2019-07-29 Pfizer Vektorok prosztatához kapcsolódó antigének expressziójára
GB201319446D0 (en) 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
BR112016012862A2 (pt) 2013-12-06 2017-09-26 Broad Inst Inc formulações para vacinas para neoplasia
WO2015095811A2 (en) 2013-12-20 2015-06-25 The Board Institute Inc. Combination therapy with neoantigen vaccine
KR20190062617A (ko) 2014-09-03 2019-06-05 버베리안 노딕 에이/에스 면역 반응을 증대시키기 위한 방법 및 조성물
PL3223850T3 (pl) 2014-11-26 2020-08-24 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Receptory limfocytów t przeciwko zmutowanemu kras
WO2016100975A1 (en) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Molecular biomarkers for cancer immunotherapy
EP3757211A1 (en) 2014-12-19 2020-12-30 The Broad Institute, Inc. Methods for profiling the t-cell-receptor repertoire
CN107405393A (zh) 2015-01-29 2017-11-28 新加坡科技研究局 携带基孔肯亚相关肽的纳米胶囊
US20180030140A1 (en) 2015-02-06 2018-02-01 Navigo Proteins Gmbh Novel binding proteins comprising a ubiquitin mutein and antibodies or antibody fragments
WO2016154047A2 (en) 2015-03-20 2016-09-29 Memorial Sloan-Kettering Cancer Center Monoclonal antigen-binding proteins to intracellular oncogene products
CN115873129A (zh) 2015-03-23 2023-03-31 约翰·霍普金斯大学 由体细胞突变基因编码的hla限制性表位
KR20180010229A (ko) 2015-05-20 2018-01-30 더 브로드 인스티튜트, 인코퍼레이티드 공유 신생항원
DK4104687T3 (da) 2015-09-21 2024-03-04 Trilink Biotechnologies Llc Sammensætninger og fremgangsmåder til syntetisering af RNA'er med 5-kappe
CN108601820A (zh) 2015-10-12 2018-09-28 南托米克斯有限责任公司 用于病毒癌症新表位的组合物和方法
AU2016369519B2 (en) 2015-12-16 2023-04-20 Gritstone Bio, Inc. Neoantigen identification, manufacture, and use
KR20220018627A (ko) 2016-02-29 2022-02-15 파운데이션 메디신 인코포레이티드 종양 돌연변이 부담을 평가하기 위한 방법 및 시스템
AU2017225787B2 (en) 2016-03-03 2021-09-23 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US20190307868A1 (en) 2016-03-31 2019-10-10 Neon Therapeutics, Inc. Neoantigens and methods of their use
AU2017254477A1 (en) 2016-04-18 2018-11-01 Jennifer G. ABELIN Improved HLA epitope prediction
CA3022267A1 (en) 2016-05-04 2017-11-09 Fred Hutchinson Cancer Research Center Cell-based neoantigen vaccines and uses thereof
WO2017208191A1 (en) 2016-06-02 2017-12-07 Glaxosmithkline Biologicals Sa Zika viral antigen constructs
EP3471758A1 (en) 2016-06-20 2019-04-24 ISA Pharmaceuticals B.V Formulation of a peptide vaccine
CN107698593A (zh) 2016-08-09 2018-02-16 南京天印健华医药科技有限公司 作为fgfr抑制剂的杂环化合物
WO2018039131A1 (en) 2016-08-22 2018-03-01 Protiva Biotherapeutics, Inc. Anti-pd-1 antibodies, or fragments thereof, for treating hepatitis b
WO2018102585A1 (en) 2016-11-30 2018-06-07 Advaxis, Inc. Personalized immunotherapy in combination with immunotherapy targeting recurrent cancer mutations
GB201620968D0 (en) * 2016-12-09 2017-01-25 Glaxosmithkline Biologicals Sa Adenovirus polynucleotides and polypeptides
GB201621732D0 (en) 2016-12-20 2017-02-01 Agricultural Research Council A multi-epitope dna vaccine for heartwater
AU2017379901B2 (en) 2016-12-21 2024-02-15 Arbutus Biopharma Corporation Methods for ameliorating infusion reactions
CN108064305B (zh) * 2017-03-24 2021-10-08 清华大学 可编程的溶瘤病毒疫苗系统及其应用
CN111093691A (zh) 2017-04-03 2020-05-01 内恩疗法公司 蛋白质抗原及其用途
WO2018208856A1 (en) 2017-05-08 2018-11-15 Gritstone Oncology, Inc. Alphavirus neoantigen vectors
CA3066635A1 (en) 2017-06-09 2018-12-13 Gritstone Oncology, Inc. Neoantigen identification, manufacture, and use
AR112166A1 (es) 2017-06-16 2019-09-25 Arbutus Biopharma Corp Composiciones terapéuticas y métodos para el tratamiento de hepatitis b
KR20200093518A (ko) 2017-07-21 2020-08-05 제넨테크, 인크. 암에 대한 치료 및 진단 방법
JP7232476B2 (ja) 2017-08-07 2023-03-08 ザ ジョンズ ホプキンス ユニバーシティ がんを評価及び治療するための方法及び物質
WO2019090156A1 (en) 2017-11-03 2019-05-09 Guardant Health, Inc. Normalizing tumor mutation burden
EP3762512A1 (en) 2018-03-06 2021-01-13 Cancer Research Technology Limited Improvements in variant detection
US20210213122A1 (en) 2018-05-23 2021-07-15 Gritstone Oncology, Inc. Immune checkpoint inhibitor co-expression vectors
EP3796927A4 (en) 2018-05-23 2022-04-20 Gritstone bio, Inc. SHARED ANTIGENS
AU2019374874A1 (en) 2018-11-07 2021-06-10 Gritstone Bio, Inc. Alphavirus neoantigen vectors and interferon inhibitors
KR20220041844A (ko) 2019-07-02 2022-04-01 그릿스톤 바이오, 인코포레이티드 Hiv 항원 및 mhc 복합체
EP4125973A4 (en) 2019-11-04 2024-03-13 Gritstone Bio Inc NEOANTIGEN VACCINE THERAPY
WO2021119545A1 (en) 2019-12-11 2021-06-17 Gritstone Bio, Inc. Durable vaccination
WO2021142437A1 (en) 2020-01-10 2021-07-15 Gritstone Bio, Inc. Cell-free dna monitoring
KR20230014694A (ko) 2020-04-21 2023-01-30 그릿스톤 바이오, 인코포레이티드 항원-코딩 카세트
WO2022032196A2 (en) 2020-08-06 2022-02-10 Gritstone Bio, Inc. Multiepitope vaccine cassettes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199894A (ja) * 1995-12-14 2002-07-16 Genvec Inc 相補的なアデノウイルスベクター系と細胞株
JP2000106875A (ja) * 1998-07-07 2000-04-18 Transgene Sa 目的遺伝子の発現を改善するためのアデノウイルスe4リ―ディングフレ―ムの使用
JP2012516679A (ja) * 2009-02-02 2012-07-26 オカイロス アーゲー サルアデノウイルスの核酸配列及びアミノ酸配列、それを含有するベクター、並びにその使用
JP2013537426A (ja) * 2010-08-16 2013-10-03 ソーク インスティテュート フォー バイオロジカル スタディーズ 抗がんアデノウイルス
JP2015536147A (ja) * 2012-11-16 2015-12-21 ベス イスラエル デアコネス メディカル センター インコーポレイテッド 組換えアデノウイルスおよびその使用
WO2017221031A1 (en) * 2016-06-23 2017-12-28 Oxford University Innovation Limited Adenoviral vector
WO2018098362A1 (en) * 2016-11-23 2018-05-31 Gritstone Oncology, Inc. Viral delivery of neoantigens
WO2018104919A1 (en) * 2016-12-09 2018-06-14 Glaxosmithkline Biologicals Sa Chimpanzee adenovirus constructs with lyssavirus antigens

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FARINA, S.F., ET AL.: "Definition: Simian adenovirus 25, complete genome", DATABASE DDBJ/EMBL/GENBANK [ONLINE], ACCESSION NO. AF394196, JPN7023002425, 27 November 2001 (2001-11-27), ISSN: 0005090483 *
J. VIROL., vol. 70, no. 12, JPN6023026102, 1996, pages 8934 - 8943, ISSN: 0005090481 *
JOURNAL OF GENERAL VIROLOGY, vol. 78, JPN6023026103, 1997, pages 2131 - 2138, ISSN: 0005090482 *

Also Published As

Publication number Publication date
BR122024002387A2 (pt) 2024-03-12
TW202110870A (zh) 2021-03-16
IL288283A (en) 2022-01-01
US20220090138A1 (en) 2022-03-24
SG11202113187WA (en) 2021-12-30
BR112021024127A2 (pt) 2022-04-26
MX2021014525A (es) 2022-03-17
CN114072516A (zh) 2022-02-18
US20230407332A1 (en) 2023-12-21
EP3976075A4 (en) 2023-08-16
KR20220016137A (ko) 2022-02-08
EP3976075A1 (en) 2022-04-06
US11591619B2 (en) 2023-02-28
WO2020243719A1 (en) 2020-12-03
JP7457733B2 (ja) 2024-03-28
CA3140019A1 (en) 2020-12-03
AU2020282369A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US20210196806A1 (en) Shared antigens
JP7457733B2 (ja) 改変アデノウイルス
US20230047979A1 (en) Durable vaccination
US20220125919A1 (en) Alphavirus neoantigen vectors and interferon inhibitors
US20210213122A1 (en) Immune checkpoint inhibitor co-expression vectors
US11771747B2 (en) Multiepitope vaccine cassettes
US20230310563A1 (en) Antigen-encoding cassettes
US20240167057A1 (en) Modified alphavirus vectors
US20240093235A1 (en) Homologous adenoviral vaccination

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230601

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150